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Multicomponent Bose–Einstein condensates, quantum Hall systems, and chiral magnetic materials display twists and
knots in the continuous symmetries of their order parameters known as skyrmions. Originally discovered as solutions to
the nonlinear sigma model in quantum field theory, these vectorial excitations are quantified by a topological winding
number dictating their interactions and global properties of the host system. Here, we report the experimental obser-
vation of a stable individual second-order meron and antimeron appearing in an electromagnetic field. We realize these
complex textures by confining light into a liquid-crystal-filled cavity that, through its anisotropic refractive index, pro-
vides an adjustable artificial photonic gauge field that couples the cavity photon motion to its polarization, resulting
in the formation of these fundamental vectorial vortex states of light. Our observations could help bring topologically
robust room-temperature optical vector textures into the field of photonic information processing and storage.
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1. INTRODUCTION

Twists in the SO(3) order parameter of magnetic systems lead to
topologically protected excitations known as skyrmions, follow-
ing a concept originating from elementary particle physics [1],
which are characterized by nontrivial spin textures [2–5]. Just like
quantized singular vortices in superfluid helium or Bose–Einstein
condensates, these skyrmionic excitations are topologically robust
against external perturbation since they cannot smoothly relax
into the defect-free ground state of the system, thus becoming
highly important to understand phase transitions and critical
behavior in ordered many-body systems down to the quantum
level [6]. This robustness has also led to innovative proposals in the
field of spintronics of stable information storage and processing
with skyrmions at unprecedented spatial scales. They have been
observed in chiral magnets [7], non-centrosymmetric magnets [8],
surface plasmons [9,10], and exciton–polaritons [11], to name a
few, and have reached room-temperature conditions in magnetic
thin films [12,13]. Skyrmions, among numerous other topological
effects [14], were also observed in liquid crystals (LCs) [15,16].

Skyrmion textures appear as natural excitations in multi-
component quantum systems since a surjective homomorphism
links the SU(2) unitary symmetry group to the SO(3) rotational
symmetry group. In a photonic system, the two orthogonal polari-
zation components of the electromagnetic field can be described
by a three-dimensional Stokes (pseudospin) vector located on the
surface of the Poincaré sphere. Therefore, such topological knots
and twists in an electromagnetic field can, in principle, exist in the
same sense as skyrmions in thin-film magnetic materials. Of special
interest are spin textures known as magnetic vortices or “merons,”
which originate from Yang–Mills theory [17]. Due to their similar-
ity to skyrmions, they are sometimes referred to as half-skyrmions
or baby skyrmions since they can possess half of the skyrmion
topological integer charge Q defined in a two-dimensional system
as

Q =
1

4π

∫
S ·
(
∂x S× ∂y S

)
dxdy , (1)

where S is the order parameter. Alternatively, the charge of the
meron can be determined through Q = vp/2 from its vorticity
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Fig. 1. Meron polarization textures. (a) Illustration of Bloch-type meron, antimeron, second-order meron, and second-order antimeron textures. The
arrows represent the order parameter S from Eq. (1). (b) Schematic of a microcavity filled with liquid crystal media. The liquid crystal microcavity can be
tuned to contain perpendicularly polarized, degenerate modes (c) with the same mode numbers or (d) with different mode numbers. The electric field distri-
bution of X - (Y )- polarized mode is plotted in green (pink) color.

(v) and polarity (p), which describe the in-plane and out-of-plane
order parameter orientation, respectively [18]. The simplest con-
figurations are those composed of v =±1 and p =±1 referred
to as merons (Q = 1/2) and antimerons (Q =−1/2) [Fig. 1(a)],
respectively.

In fact, twists in the Hamiltonian parameter space can be
regarded as merons whose textures relate to the Berry curvature and
charge determines the topological character of condensed matter
systems [19–22]. Interestingly, merons cannot exist as isolated
objects unless spatially constrained [23,24]. They form either
in lattices [25–31] or as paired objects observed before only in
magnetic thin films [32].

There also exist higher-order merons, with vorticity v =±2,
which are referred to as “second-order merons” (Q = 1) and
“second-order anti-merons” (Q =−1) [Fig. 1(a)]. To the best of
our knowledge, these second-order twists in order parameter have
not been observed in any system to date.

In this study, we present experimental and numerical evidence
of second-order merons and antimerons in the photonic field of
an optical microcavity filled with a LC at room temperature. The
second-order merons appear as the natural eigenmodes of the
system due to its tunable optical anisotropic structure. We demon-
strate that a pattern of merons (antimerons) can smoothly merge to
form a second-order meron (antimeron). Effective Hamiltonians
describing the two distinct meron textures are derived linking our
observations to alternative low-dimensional condensed matter
systems and paving the way towards synthesizing fundamental
order parameter twists on nonlinear optical fluids in the strong
light–matter coupling regime.

2. RESULTS

We investigated microcavities with a birefringent LC layer enclosed
between two parallel distributed Bragg reflectors (DBRs), as

schematically shown in Fig. 1(b). The birefringent medium is
characterized with two refractive indices: extraordinary ne, parallel
to the director of the LC molecules defining the long optical axis,
and ordinary no, perpendicular to the director.

This molecular director can be altered by application of external
bias to transparent indium tin oxide (ITO) electrodes on the sam-
ple. We investigated a configuration in which the director rotates
in the x−z plane with applied field. Different effective refractive
indices n for linearly polarized light along x and y axes lead to
splitting of the optical modes fulfilling the standing wave condition
for an optical path length nd = Nλ/2 along the width of the cavity
d , for incident wavelength λ and mode number N. In a sufficiently
wide cavity, multiple optical modes with different mode numbers
can be confined. The unique property of a LC-filled microcavity is
the control over the energies of linearly x -polarized optical modes
(X ) with respect to y -polarized modes (Y ), which allows to tune
them in and out of resonance with respect to each other. In this
work, we concentrate on two different regimes where both X and Y
modes have the same parity corresponding to (NX , NY )= (N, N)
and (NX , NY )= (N + 2, N) [Figs. 1(c) and 1(d)], which possess
uniquely different photonic spin–orbit coupling mechanisms,
leading to meron and antimeron textures.

The optical eigenmodes, in the X Y polarization basis, can
be described by the following Hamiltonian with structure simi-
lar to the one describing TE-TM splitting in optically isotropic
semiconductor microcavities [33]:

Ĥ = ε(k)−
[
δx k2

x − δy k2
y −1E

]
σ̂z − δx y kx ky σ̂x , (2)

where ε(k)= ~2(k2
x/mx + k2

y/m y )/2 describes cavity photons
with masses mx ,y along the x , y direction, respectively, δx , δy , δx y

are parameters proportional to the birefringence 1n = ne − no

[34], σ̂x ,y ,z are the Pauli matrices, and 1E = EY ,NY − E X ,NX is
the X Y mode splitting at normal incidence (k = 0). Notably, this
splitting is equivalent to the presence of an effective magnetic field
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(Zeeman splitting), which plays the role of an artificial photonic
gauge field applied to the structure. In this sense, the polarization
of the cavity photons plays the same role as a two-level spinor for
massive particles. The derivation of Eq. (2) from a simplified model
of an optical two-dimensional waveguide filled with an anisotropic
dielectric medium is presented in Supplement 1.

In the (N, N) regime, the molecular director is oriented along
the z axis, so θ = 90◦, and the refractive indices of the cavity
medium are the same for normal-incident light polarized along
x or y axis (i.e., mx =m y ). Here, we have δx = δy = δx y > 0 and
1E = 0, which gives rise to the standard optical spin Hall effect
[Figs. 2(a) and 2(b)] observed for microcavity exciton–polaritons
and bare cavity photons [35–37]. This unique interplay between
photon motion and polarization results in a spatial polarization
texture composed of a meron–antimeron lattice, as previously
observed in a microcavity exciton–polariton condensate [29].

On the other hand, the (N + 2, N) regime is obtained by
changing the molecular director θ< 90◦, which tunes the refrac-
tive index of the cavity for light polarized along x axis (Fig. 1).
In this regime, one has mx 6=m y , δx , δx y > 0, δy < 0. Detuning
the modes slightly, 1E < 0, leads to severely different artificial
spin–orbit coupling of the cavity photons [Figs. 2(c) and 2(d)].

To illustrate the difference between the two regimes, we show
in Fig. 3 the real-space polarization textures of light transmitted
through a LC microcavity, calculated using the Berreman method
[38] (see Supplement 1). Figures 3(a)–3(d) show the adiabatic
evolution of the polarization texture in the (N, N) regime for an
excitation polarization going from linear to circular. Figure 3(a)
shows the previously reported half-skyrmion lattice [29]. Here,
four Bloch-type merons of charge Q =±1/2—two with positive
and two with negative polarity—can be observed in the quadrants
of the system. When polarization of the excitation beam changes
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Fig. 2. Spin structure in momentum space. (a) Dispersion relation of
cavity modes in (N, N) regime along wave vector in x (kx ) and y (ky )
directions. (b) Polarization at constant energy cross section marked by
dashed horizontal line in (a). Polarization state of the inner cavity mode
is represented by the Stokes vectors S= (S1, S2, S3) (yellow arrows). (c)
Dispersion relation of cavity modes in (N + 2, N) regime along kx and
ky . (d) Polarization of the inner cavity mode at constant energy marked by
dashed horizontal line in (c) shown by Stokes vectors S.

to elliptical, two merons start merging and create a single second-
order meron (also referred to as bimeron) of Q =+1 as the laser
excitation becomes fully circularly polarized [Fig. 3(d)].

In the (N + 2, N) regime, corresponding to Figs. 3(e)–3(h), a
very different behavior is observed. Starting with linearly polarized
incident light [Fig. 3(e)], we observe again four antimerons with
the same polarity but inverse vorticity compared to the (N, N)
regime. When the excitation polarization is gradually changed to
circular, two of these antimerons merge, creating one second-order
antimeron Q =−1, presented in Fig. 3(h).

This dramatic change in the topological integer charge Q of
these spin textures is precisely captured by Eq. (2). The charge
Q has a different sign between (N, N) and (N + 2, N) regimes
because of the polarization structure of parabolic eigenmodes in
momentum space (Fig. 2). The splitting between X Y modes in
both regimes is inverted. The fixed energy of the excitation laser
selects an approximate circle in momentum space. Traversing the
k-space circle of excited modes results in spin rotation that is in
opposite direction between the two regimes.

The real-space polarization textures of the eigenmodes of
Eq. (2) can be investigated at room temperature using polarization-
resolved imaging of light transmitted through the LC microcavity.
The exact polarization state of light can be determined by a mea-
surements of Stokes parameters S1, S2, S3 defined as the degree
of linear [S1 for X (horizontal) and Y (vertical) linear polariza-
tions, S2 for diagonal and antidiagonal linear polarizations] and
circular polarization (S3). The Stokes parameters corresponding
to a second-order meron, given by its analytical form [Eq. (3)],
are presented in Figs. 4(a)–4(c). The overlaid black arrows in the
S3 maps correspond to S‖ = (S1, S2). The same symmetry can
be observed experimentally in the spatially resolved polarization
pattern of circularly polarized light transmitted through the LC
microcavity in the (N, N) regime, as shown in Figs. 4(d)–4(f ).

Similarly, the analytical pseudospin texture of a second-order
antimeron is depicted in Figs. 4(g)–4(i). As expected from numeri-
cal modeling, such a polarization texture can be observed in the
(N + 2, N) regime. Experimental results, presented in Figs.
4(j)–4(l), reveal second-order antimeron texture. In the case of
circularly polarized σ+ incident light, the LC microcavity, in the
(N + 2, N) regime, acts as a full waveplate, and the σ+ light is
transmitted directly, which gives a maximum for S3 in the center of
the incidence spot at x = y = 0. Off-center polarization becomes
linear far from the center of the topological texture. The rotation
of arrows around the center in Figs. 4(d) and 4(j) indicates the
rotation of the axis of linear polarization. The difference between
the second-order meron [Fig. 4(d)] and antimeron [Fig. 4(j)] is
associated with the direction of rotation of the linear polarization
axis. Along a clockwise directed path around the center of the
light spot, the polarization axis rotates clockwise for a meron and
anticlockwise for an antimeron. The difference is clearly visible in
the real-space patterns of S2 depicted in Fig. 4 and reveals exactly
the same rotation of polarization in the reciprocal space in Fig. 2.
It is straightforward to derive from Eq. (1) that the two opposite
vorticities correspond to opposite topological integer charge Q.

Our observations can be interpreted in terms of spin-to-orbital
angular momentum conversion [39], which conserves the angular
momentum of the excited photons when they convert from one
spin to the other through the spin–orbit coupling present in Eq.
(2). When a circularly polarized beam excites one spin component
it will, in-turn, induce a vortex of winding number 2 in the other

https://doi.org/10.6084/m9.figshare.13611410
https://doi.org/10.6084/m9.figshare.13611410
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Fig. 4. Second-order meron and antimeron textures in LC microcavities. (a)–(c) S3, S1, and S2 Stokes parameters showing the analytical spin texture of
a second-order meron given by Eq. (3). Black arrows correspond to S‖ = (S1, S2). (d)–(f ), Experimental spatial polarization texture of σ+-polarized light
transmitted through a LC microcavity in (N, N) regime. (g)–(i) S3, S1, and S2 Stokes parameters showing the analytical spin texture of a second-order
antimeron given by Eq. (3). (j)–(l) Experimental spatial polarization texture of σ+-polarized light transmitted through a LC microcavity in (N + 2, N)
regime.

spin component due to the double-winding nature of the effective
spin–orbit coupling magnetic fields [see yellow arrows in Figs. 2(b)
and 2(d)] coupling the spins. We point out that both the polarity p
(polarization at the core) and winding w (in-plane spin rotation)
of the merons are then uniquely determined by the polarization of
the excitation beam precisely because of the spin-to-orbital angular
momentum conversion between the spin components [39]. For
example, in the (N, N) regime, we obtain only a Q = 1 second-
order meron because the polarity and the winding always have the
same sign, regardless of changing the sign of the excitation beam’s
circular polarization. Conversely, in the (N + 2, N) regime, the

polarity and the winding of the meron are always of the opposite
sign, giving a Q =−1 second-order antimeron. Finally, the precise
size and orientation of the merons depend on the birefringence
of the LC filling the cavity and the energy of the optical mode
relative to the center of the stopband (see Supplement 1, Fig. S7
and Fig. S8).

3. CONCLUSION

In our study, we have provided the first experimental observation of
a second-order meron and antimeron in an electromagnetic field.

https://doi.org/10.6084/m9.figshare.13611410
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The meron and antimeron polarization textures result from the
anisotropic refractive index of our optical LC-filled cavity. The arti-
ficial photonic gauge field that couples the cavity photon motion
with its polarization enables the emergence of vortical polarization
patterns. The tunable voltage-dependent orientation of the LC
molecules offers a spectrum of different photonic gauge fields that
might be difficult to access through engineering of conventional
solid state optical microcavities. This flexibility in designing topo-
logical spin textures of light can be further combined in optical
lattices mimicking magnetic order [40], interference of multiple
beams [41], or integrated with photonics devices. Furthermore,
our findings are of fundamental interest to other systems described
by models hosting analogous textures such as Yang–Mills gauge
theory or nonlinear sigma models. These cavity merons can be
described as a novel high-order optical vector vortex state, provid-
ing a new element of structured light for study in the field of optical
physics with potential application in communication and high-
resolution imaging [42]. Our work opens new perspectives on
using merons as topologically robust optical quaternary memory
elements determined by a combination of two orthogonal flows
of spin (polarization) vorticity and two opposite orientations of
spin polarity. Our system also provides a pathway to study these
exotic polarization textures in state-of-the-art nonlinear opti-
cal host systems (e.g., annihilation, attraction, and/or repulsion
between distinct second-order merons) such as photon or exciton–
polariton condensates where they can be generated directly using
external laser light and thus of interest to the condensed matter
community.

4. METHODS

Skyrmionic textures can be written in polar coordinates as [2]

S= [cos8(ϕ) sin2(r ), sin8(ϕ) sin2(r ), cos2(r )] , (3)

where 8(ϕ)= vϕ + γ , with the helicity γ = 0 or π for
Néel-type and γ =±π/2 for Bloch-type skyrmion textures.
Meron textures in Fig. 1(a) and Figs. 4(a)–4(f ) are plotted for
cos2(r )= 0.5(cos πr + 1), where r ≤ 1.

The polarization of light coming from the cavity is described
through the standard definition of the Stokes parameters

S1 =
IX − IY

IX + IY
,

S2 =
Id − Ia

Id + Ia
,

S3 =
Iσ+ − Iσ−

Iσ+ + Iσ−
. (4)

Here, IX ,Y , Id ,a , Iσ+,σ− correspond to the intensities of hori-
zontal, vertical, diagonal, antidiagonal, right-hand circular, and
left-hand circular polarized light, respectively.

The Berreman method [38,43] was used to calculate electric
the field transmitted at different incidence angles corresponding
to varying in-plane wave vectors. The electric field in real space was
obtained as a Fourier transform of the results in reciprocal space
multiplied with a Gaussian envelope with dispersion σx = 0.9 µm
in real space.

Simulations in Fig. 3 are made for a cavity centered at 750 nm
consisting of eight pairs with refractive indices nlow = 1.45 and

nhigh = 2.2. The cavity is filled with birefringent material with
no = 1.539 and ne = 1.939. The (N, N) regime [Figs. 3(a)–
3(d)] is realized at the long optical axis along z direction and the
(N + 2, N) regime [Figs. 3(e)–3(h)] for 24.77 deg angle between
the director and z axis. Transmission wavelength is equal to 748.9
nm.

A. Experimental Methods

Experimental results were obtained in a polarization-resolved
tomography measurement. Light from a broadband halogen lamp
was circularly polarized and focused on a given sample with a
100× microscope objective. Transmitted light was collected by
a 50× microscope objective, polarization resolved, and focused
with a 400 mm lens on a slit of a monochromator equipped with
a CCD camera. The full image was obtained by movement of the
lens parallel to the slit. Experimental spatial polarization textures
present constant energy cross sections around 10 meV above the
resonances of the cavities at normal incidence, as shown in Fig. S3
and Fig. S4.

1. (N, N)Sample

Experimental results presented in Figs. 4(d)–4(f ) were obtained
on a cavity made of DBRs with six pairs of SiO2/TiO2 layers
designed for maximum reflectance at ≈700 nm. The ≈2 µm
thick cavity is filled with birefringent LC with no = 1.504 and
ne = 1.801 with the director oriented along z direction (homeo-
tropic alignment, i.e., with the director perpendicular to the
boundary surface). Cavity mode resonance occurs at 768.5 nm.
Transmission wavelength is equal to 763.3 nm.

2. (N + 2, N)Sample

Experimental results presented in Figs. 4(j)–4(l) were obtained on a
cavity made of DBRs with five pairs of SiO2/TiO2 layers designed
for maximum reflectance at≈580 nm. The≈2 µm thick cavity is
filled with birefringent LC with no = 1.539 and ne = 1.949 with
the director oriented along x axis (homogeneous alignment, i.e.,
with the director parallel to the boundary surface). Experiments
were performed with a square waveform with frequency 1 kHz and
peak-to-peak amplitude of 1.425 V applied to ITO electrodes that
rotate LC molecules towards z axis, resulting in close to degenerate
cavity modes in horizontal and vertical polarizations at 583.9 nm
and 584.3 nm, respectively. Transmission wavelength is equal to
581.5 nm.

B. Role of Symmetry

The eigenvalue problem for the modes in the birefringent cavity
can be analyzed from the point of view of the symmetry. Since we
are dealing with the coupling of two modes, we wish to express
the relevant Hamiltonians as second-order polynomials in kx and
ky , with coefficients given by combinations of Pauli matrices. In
our considerations, we have to take into account the fact that the
transformation law for the Pauli matrices in each case reflects the
symmetry of the basis functions under discussion.

(1) In the case of the (N, N) resonance (εx z = 0), the symmetry
of the system is given by the group D∞h with rotation symmetry
about the z axis and the reflection plane perpendicular to the z axis.
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It is easy to verify that under the reflection in the mirror x y
plane, all the Pauli matrices remain invariant, while under the
rotation by the angleφ about the z axis, only the σ̂y matrix remains
invariant, while (σ̂z ± i σ̂x )→ e∓2iφ(σ̂z ± i σ̂x ). Taking into
account that under this rotation kx ± iky → e∓iφ(kx ± iky ) and
that the only invariant of second-order is equal to k2

x + k2
y , we can

postulate the following form of the Hamiltonian:

Ĥ ∼ α0σ̂y + α1σ̂0 + α2σ̂y (k2
x + k2

y )+ α3σ̂0(k2
x + k2

y )

+ (α4 + iα5)(σ̂z + i σ̂x )(kx − iky )
2

+ (α4 − iα5)(σ̂z − i σ̂x )(kx + iky )
2

∼ α0σ̂y + α1σ̂0 + α2σ̂y (k2
x + k2

y )+ α3σ̂0(k2
x + k2

y )

+ 2α4(σ̂z(k2
x − k2

y )+ 2σ̂x kkky )

− 2α5(σ̂x (k2
x − k2

y )− 2σ̂zkkky ), (5)

with all coefficients αi real, due to the hermiticity requirement.
Under the rotation by π around the x axis, we have E x → E x ,
E y →−E y , so σ̂z remains invariant, and σ̂x changes sign. Under
the same transformation, also the term kx ky changes sign, so the
term proportional toα5 is not invariant, and we have to setα5 = 0.
Finally, the time reversal symmetry, which in this representation is
equivalent to the complex conjugation, requires that α0 = α2 = 0.
If we also set α1 = 0, we obtain the most general form of the
Hamiltonian admitted by the symmetry:

Ĥ ∼ α3σ̂0(k2
x + k2

y )+ 2α4(σ̂z(k2
x − k2

y )+ σ̂x kx ky ), (6)

with two parameters related to εx x and εzz.
(2) In the case of the (N + 2, N) resonance, εx z 6= 0 and the rel-

evant symmetry group is C2h with the twofold rotation symmetry
about the y axis. In this case, σ̂z is invariant under all symmetry
operations, while σ̂x and σ̂y change sign under rotation and reflec-
tion in the x z plane. The possible invariants are therefore σ̂0k2

x ,
σ̂0k2

y , σ̂zk2
x , σ̂zk2

y , σ̂x kx ky , and σ̂y kx ky . However, the last term is
excluded due to the time reversal symmetry, so the most general
form of the Hamiltonian admitted by the C2h symmetry for a
pair of modes of the same parity has six parameters, which can be
expressed in terms of no , ne , θ , and mode order N:

Ĥ ∼ (α0k2
x + α1k2

y )σ̂0 + (1E + α2k2
x + α3k2

y )σ̂z

+ α4kx ky σ̂x . (7)
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