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Loss Analysis of Unsteady
Turbomachinery Flows Based on
the Mechanical Work Potential
Loss analysis is a valuable technique for improving the thermodynamic performance of tur-
bomachines. Analyzing loss in terms of the “mechanical work potential” (Miller, R.J.,
ASME Turbo Expo 2013, GT2013-95488) provides an instantaneous and local account
of the thermal and aerodynamic mechanisms contributing to the loss of thermodynamic per-
formance. This study develops the practical application of mechanical work potential loss
analysis, providing the mathematical formulations necessary to perform loss analysis using
practical Reynolds-averaged Navier–Stokes (RANS) or large eddy simulations (LES). The
analysis approach is demonstrated using RANS and LES of a linear compressor cascade,
both with and without incoming wakes. Spatial segmentation is used to attribute loss con-
tributions to specific regions of the flow, and phase-averaging is performed in order to asso-
ciate the variation of different loss contributions with the periodic passage of wakes through
the cascade. For this un-cooled linear cascade, viscous dissipation is the dominant source
of loss. The analysis shows that the contribution of the viscous reheat effect depends on the
operating pressure of the compressor stage relative to the ambient “dead state” pressure—
implying that the optimal blade profile for a low-pressure compressor stage may be different
from the optimal profile for a high-pressure compressor stage in the same engine, even if the
operating conditions for both stages are dynamically similar. [DOI: 10.1115/1.4048162]

Keywords: computational fluid dynamics (CFD), fluid dynamics and heat transfer
phenomena in compressor and turbine components of gas turbine engines, measurement
techniques

1 Introduction
The drive for energy and propulsion systems that satisfy compet-

ing demands for improved efficiency, increased loading, and robust
operation has motivated both optimization of conventional turbo-
machinery components and innovation in turbomachinery
systems. Improvement of both turbo-compressors and turbines ben-
efits substantially from careful unsteady aerodynamic design. Many
turbomachinery systems of current research interest, including
pulsed turbochargers, coupled pressure-gain combustors and tur-
bines, and rotating detonation wave engines are also inherently
unsteady and must be analyzed accordingly. In recent years, high-
fidelity simulation [1,2] and experimental diagnostics [3] have
been developed in order to provide detailed information about the
behavior and performance of unsteady aerodynamics in turboma-
chines. For these simulations and measurements to provide action-
able insight that benefits the design and development process, it is
important to develop correspondingly rigorous techniques for inter-
preting the unsteady aerodynamic and thermal phenomena present
in the high-fidelity data, such as loss analysis.
Loss analysis is concerned with quantifying the conversion of

useful energy into forms of energy that cannot be used. The
forms of energy that are useful depend on the application. Analysis
of external aerodynamic systems typically is concerned with losses
of kinetic energy [4]. Analysis of thermal power plant is concerned
with the loss of the energy that could be converted into work by
reversible processes that exchange heat and work with an environ-
ment defined as the “dead state;” this measure of energy is known as
“exergy” [5]. In the context of an aerospace propulsion system, it
might not be practical to exchange heat with the environment, so

the useful energy is the portion of energy that could be converted
into work by expanding the working fluid reversibly and adiabati-
cally to the “dead state” pressure: this property has been defined
recently by Miller [6] and described as the “mechanical work poten-
tial.” The mechanical work potential per unit mass is given by

m ≡ (e − ese) + pD(v − vse) +
1
2
u2i (1)

where subscript se denotes the state following isentropic expansion
to the dead state pressure pD. The change in internal energy e− ese
represents the work done by the fluid during the expansion, pD(v−
vse) represents the displacement work done on the environment and
thereby wasted, and, adopting the Einstein convention for summa-
tion over repeated indices, 12 u

2
i is the kinetic energy of the fluid. The

flow mechanical work potential is given by adding pressure work,

mf =m +
1
ρ

p − pD
( )

(2)

Composite flow variables, such as the mechanical work potential,
are not readily amenable to direct measurement in turbomachinery
flows. Instead, turbomachinery losses have been analyzed more
commonly in terms of measurements of stagnation pressure
changes. For example, the performance of a compressor cascade
is traditionally reported in the form of a stagnation pressure loss
coefficient

ω =
p01 − p02
p01 − p1

(3)

where p01 and p02 are the stagnation pressure at inlet and outlet of
the cascade, respectively, and p01− p1 is the dynamic head at inlet.
The pressure loss coefficient is a global measure of loss, but other
techniques have been developed in order to estimate how much
loss different regions of the flow contribute to the global loss. For
example, Denton [7] proposed a method for quantifying
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contributions to global loss from the pressure and suction-surface
boundary layers and from the trailing edge wake, based on the
boundary layer and blade thicknesses at the trailing edge. Applica-
tion of Denton’s loss analysis in LES of a compressor cascade is
presented in Ref. [2].
Pressure-based loss analysis presents difficulties in flows with

properties that vary steeply in time or space, since it becomes chal-
lenging to characterize inflow and outflow conditions with a single
value. Interpretation of stagnation pressure losses is also compli-
cated in practical situations, where losses are not only due to
viscous dissipation, but involve heat transfer, mixing, and chemical
reaction. Nonetheless, a great deal of design expertise has been
learned empirically in terms of pressure loss analysis. Any new
loss analysis techniques should therefore have a clear relationship
to pressure-loss analysis.
The need for local and instantaneous analysis of losses, including

thermal and aerodynamic contributions, has led to entropy-based
analysis [8]. Consideration of the entropy transport equation
relates these contributions to entropy changes locally and instanta-
neously, however entropy in itself is not a measure of useful energy
in a turbomachine—motivating use of the mechanical work
potential.
Miller derived a transport equation for the mechanical work

potential of a perfect gas. Loss analysis based on the mechanical
work potential transport equation provides an instantaneous and
local breakdown of how the physical mechanisms corresponding
to the various terms in the transport equation contribute to the
overall loss. The rigorous basis of mechanical work potential anal-
ysis means that, in principle, it can be applied in a wide variety of
flows which are difficult to understand in terms of either total
pressure- or entropy-based analyses, for example flows involving
significant unsteadiness, heat transfer, mixing or chemical reaction.
Formally, loss analysis based on Miller’s transport equation
requires access to full-resolution measurement or simulation (i.e.,
DNS) of thermodynamic variables and molecular transport fluxes.
In order to apply mechanical work potential-based loss analysis in
the process of designing practical turbomachinery, involving high-
Reynolds number turbulence for which DNS is not feasible, it is
important to formulate the mechanical work potential analysis in
terms of Reynolds-averaged and filtered properties that are comput-
able using the RANS and LES approaches currently available for
turbomachinery simulation.
The objectives of this study are to provide the mathematical for-

mulations necessary and practical techniques for applying mechan-
ical work potential-based loss analysis in turbomachinery design
simulations. Given the long-standing use of stagnation pressure-
based loss analysis, we also seek to relate the mechanical work
potential loss analysis to pressure-based metrics. The report pro-
ceeds by setting out the configuration and methods used to
produce the wall-resolved LES compressor cascade data used for
this investigation; presenting a mechanical work potential analysis
framework; and then demonstrating how this framework can be
applied in the case of an unsteady compressor cascade flow.

2 Analysis
Turbulent simulations using Reynolds-averaged Navier–Stokes

and large eddy simulations provide Favre-averaged and Favre-
filtered solution variables, respectively. In order to use RANS or
LES for mechanical work potential-based loss analysis, it is neces-
sary either to evaluate the Favre-averaged or Favre-filtered mechan-
ical work potential from the solution variables, or to solve a
Favre-averaged or Favre-filtered transport equation for the mechan-
ical work potential. The necessary mathematical formulations are
introduced here. For simplicity, the formulation is presented for
the case of a perfect gas.

2.1 Mechanical Work Potential in Turbulent Flows. We
denote Reynolds averaging by an overbar ψ and Favre (i.e., density-

weighted) averages by a tilde ψ̃ ≡ ρψ/ρ. Favre fluctuations are
denoted ψ ′′ = ψ − ψ̃ . Note that the overbar and tilde can alterna-
tively be interpreted as filtered and Favre-filtered quantities such
that, in the context of LES with a spatio-temporally homogeneous
filter, the transport equations below can be interpreted equivalently
as LES or Reynolds-averaged equations. For brevity, the equations
are introduced using the language of filtering and LES only, rather
than ensemble-averaging and RANS. Quantities evaluated using the
solution variables available in the LES simulation are described as
computable, and denoted by the accent ψ̌ .
Favre-filtering Eq. (1) and Favre decomposition of the velocity

gives

(4)

The last term in Eq. (4) is the specific sub-filter turbulent kinetic

energy k = 1
2 ũ

′′2
i . Given that turbulent kinetic energy is usually dis-

sipated as thermal energy within the flow, it may be argued that the
turbulent kinetic energy should be excluded from the mechanical
work potential that would be recovered using an ideal turbine and
that the turbulent kinetic energy should be counted as a form of
internal energy within the turbulent mechanical work potential def-
inition. In LES of an unsteady flow, however, it is difficult to eval-
uate the turbulent kinetic energy instantaneously, since the majority
of turbulent kinetic energy is “resolved” and cannot be distin-
guished from the kinetic energy of the ensemble-averaged flow
also contained in the term 1

2 ũi
2 without running numerous statisti-

cally independent simulations simultaneously. In order to avoid
this difficulty, all turbulent kinetic energy is retained as “useful”
energy in this analysis. It is also noted that the treatment of turbulent
kinetic energy has little effect on the overall analysis since, in high-
speed turbomachinery flows, the turbulent kinetic energy is typi-
cally on the order of 1% of the kinetic energy of the ensemble-
averaged flow field.
The terms in Eq. (4) involving e′ ′, k, Tse/T, and ρ/ρse are not com-

putable from the LES solution variables. However, in a perfect gas,
fluctuations of Tse/T and ρ/ρse can be related to pressure fluctuations
using isentropic relations. The relative magnitude of turbulent pres-
sure fluctuations p′/�p scales with the turbulent Mach number
squared M2

t , implying that turbulent fluctuations of Tse/T and ρ/
ρse can be considered as negligible in flows in which M2

t � 0.
Assuming that there is an isentropic relationship between turbulent
fluctuations of e and p, Taylor expansion in terms of p′/�p shows
that the errors in the following approximations,

T̃se
T

( )
=

pD
�p

( )(γ−1)/γ

+O p′

�p

[ ]2( )
(5)

(6)

and

ρ
ρse

( )
=

pD
�p

( )−1/γ

+O p′

�p

[ ]2( )
(7)

are of order O p′/�p
( )

and higher. Assuming an adequate model for
the sub-filter turbulent kinetic energy is available, the following
formula therefore provides an acceptable approximation for evalu-
ating the filtered mechanical work potential in turbomachinery LES
in which Mt< <1:

m̃ ≈ ẽ 1 −
pD
�p

( )(γ−1)/γ
[ ]

+
pD
�ρ

1 −
pD
�p

( )−(1/γ)
[ ]

+
1
2
�ρũ2i + k

(8)
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2.2 Loss Coefficients. Performance of turbomachinery
blade-rows is commonly expressed in terms of loss coefficients
defined in terms of the stagnation pressure drop, as in Eq. (3),
and in terms of stage efficiencies. Miller [6] introduced a stage effi-
ciency based on mechanical work potential, allowing the loss of
efficiency to be attributed to different thermal and aerodynamic pro-
cesses. Here, loss coefficients are developed in terms of the rate of
mechanical work potential destruction within a system ṁsys, and we
develop an approximation to relate mechanical work potential loss
coefficient ωmf to the total pressure loss coefficient in Eq. (3). For a
compressor,

ωmf =
ṁcomp.

(po1 − p1)/ρo1
(9)

and for a turbine,

ωmf =
ṁturb.

(po2 − p2)/ρo2
(10)

In a statistically stationary or periodic flow, the rate of mechanical
work potential destruction per unit of mass entering the system can
be evaluated by considering the integral of the net flux of mechan-
ical work potential into the system surface over a statistically sta-
tionary period or by considering a time average of the volume
integral of the mechanical work potential source terms within the
system volume:

ṁsys =

�
boundaryρ�um f · �nds�

inletsρ�u · �nds
=

�
volρṠmdv�

inletsρ�u · �nds
(11)

where �n is the unit vector normal to the system surface (pointing
inwards) and Ṡm is the net source term for mechanical work poten-
tial given by the right-hand side of Eq. (15). The periodic variation
of the mechanical work potential loss in periodic flows can be ana-
lyzed by phase averaging ρṠm in the numerator of Eq. (11), but aver-
aging the denominator over a statistically stationary period. The
averaged quantities in Eq. (11) are not directly computable from a
RANS or LES solution, and modeling of these terms is discussed
in Sec. 2.3.

2.2.1 Relationship to Pressure-Based Loss Coefficient. An
approximate relationship between the mechanical work potential
loss coefficient and the pressure loss coefficient is derived in
Appendix A. Neglecting changes in density and considering small
finite changes in thermodynamic properties across the stage
denoted by Δ, the destruction of mechanical work within the
system is given by

ṁsys ≈
pD
p01

( )(γ−1)/γΔp0
ρ1

(12)

The mechanical work potential and stagnation pressure loss coeffi-
cients can then be estimated, respectively, by

ωm,est. ≈ ω
pD
p01

( )(γ−1)/γ

(13)

ωest. ≈ ωm
pD
p01

( )−(γ−1)/γ

(14)

Experimental characterization of blade designs is often performed
with an inlet pressure different to the expected operating pressure
of the engine. Equation (13) can then be used to estimate the
mechanical work potential loss coefficient at the intended operating
pressure.

2.3 Transport Equations. Miller [6] developed a transport
equation for the mechanical work potential in a perfect gas:

∂(ρm)
∂t

+
∂ ρujmf
( )
∂xj

=
∂
∂xj

σijui
( )

−
∂
∂xj

1 −
Tse
T

( )
qj

[ ]
+ Δtherm −Φvisc( )

− 1 −
Tse
T

( )
Δtherm −Φvisc( )

(15)

where �q is the heat flux vector, �σ is the viscous stress tensor, and
Φvisc≡ σij(∂ui/∂xj) is the viscous dissipation rate. Thermal creation,
Δtherm, is given for perfect gases by

Δtherm =
γ − 1
γ

∇p
p

· �q (16)

The transport equation for the Favre-averaged or Favre-filtered
specific mechanical work potential is derived in Appendix B. The
equation for the averaged mechanical work potential can be
arranged in a form similar to the instantaneous equation (15):

∂(�ρm̃)
∂t

+
∂ �ρũjm̃f

( )
∂xj

=
∂σ̂ijũi
∂xj (I)

−
∂T̂ j

∂xj (II)

−
∂
∂xj

1 −
Ť se

T̃

( )
q̌j

[ ]
(III)

+ Δ̌therm(IV) − Φ̌visc(V )

− 1 −
Ť se

T̃

( )
Δ̌therm − Φ̌visc

( )
(VI)&(VII)

−
∂
∂xj

1 −
Ť se

T̃

( )
�qj − q̌j

( )[ ]
(VIII)

+
∂
∂xj

σijui − σ̂ijũi
( )

(IX)

+R(X)

(17)

in which the turbulent transport term T̂ j is given by

(18)

and the residual term R consists of further unclosed terms that
cannot be evaluated from the LES or RANS solution variables,

R =
∂
∂xj

ρu′′j e′′
Tse
T

−
Ťse

T̃

( )
+ pDu′′j

ρ
ρse

( )[ ]

+
∂
∂xj

Tse
T

qj −
Ťse

T̃
�qj

( )[ ]
Tse
T

Δtherm −Φvisc( ) − Ť se

T̃
Δ̌therm − Φ̌visc

( )
(19)

Several of the terms on the right-hand side of Eq. (17) are anal-
ogous to the terms on the right-hand side of Eq. (15) and Miller dis-
cusses their roles [6]. The terms in Eq. (17) identified by Roman
numerals are described as follows: (I) shear work, (II) turbulent
flux, (III) thermal conduction, (IV) thermal creation, (V) viscous dis-
sipation, (VI) thermal recool, (VII) viscous reheat, (VIII) thermal
conduction residual, (IX) shear work residual, and (X) the residual
R as defined in Eq. (19).
While terms (II), (VIII), and (IX) are unclosed, the turbulent

fluxes ẽ′′u′′j , pu
′′
j , and , the shear work residual

σijui
( )

− σ̌ijũj and the qj − q̌j
( )

term in the thermal conduction resi-

dual appear in the transport equation for total energy employed in
RANS or LES, and therefore, closure models for these terms are
already available within the simulation.
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The computable value of the ratio Tse/T is defined as

(20)

The computable thermal creation term is given by

Δ̌therm = −
γ − 1
γ

∇�p

�p
q̌j (21)

where the computable heat flux is given by

q̌j = −κ(T̃)
∂T̃
∂xj

(22)

in which κ is the temperature-dependent thermal conductivity.
The computable viscous dissipation is given by

Φ̌visc = σ̌ij
∂ũi
∂xj

(23)

The computable viscous stress tensor is

σ̌ij = μeff 2S̃ij −
2
3
δijS̃kk

( )
(24)

in which the mean rate of strain tensor is

S̃ij =
1
2

∂ũi
∂xj

+
∂ũj
∂xi

( )
(25)

In the RANS and LES simulations presented in this study, turbulent
transport is modeled using an eddy-viscosity approach, and the
dynamic viscosity in Eq. (24) is given by an effective viscosity
μeff= μ(T )+ μeddy including temperature-dependent molecular
viscosity and the modeled eddy-viscosity.
Due to the rigorous thermodynamic derivation, the mechanical

work potential transport equation can be applied in arbitrarily
complex flow geometries. In this study, the methodology is demon-
strated in the relatively simple context of a linear periodic cascade;
however, the methodology in principle is equally valid in fully
three-dimensional turbomachinery flows including, for example,
end-wall effects and tip leakage.
In most applications, it is sufficient to evaluate the mechanical

work potential equation at a small number of time instants for pur-
poses of obtaining (phase-)averages, in which case the computa-
tional effort for loss analysis is negligible when compared with the
computational cost of the simulation. In the worst case, if the
mechanical work potential is transported as a solution variable, the
number of transport equations increases by one, and with explicit
numerical methods, the computational cost increases approximately
in proportion to the number of transport equations—by a factor of
6/5 in the present LES.

2.4 Spatio-Temporal Segmentation. The mechanical work
potential and its transport equation provides local and instantaneous
information throughout the entire flow domain. In order to associate
losses of mechanical work potential with specific design or flow fea-
tures, the flow domain is segmented into sub-regions. The user is
free to specify their own domain segmentation in order to investi-
gate loss mechanisms in specific regions relevant to the flow they
are investigating including, for example, regions of tip-leakage
and corner separation. The mechanical work potential source
terms are then volume-integrated in each sub-region and either
time averaged or, in the case with periodic incoming wakes,
phase-averaged. In this study, the analysis region in between the
inlet and outlet reference planes is divided into four sub-regions,
as illustrated in Fig. 1. The four sub-regions are the pressure- and
the suction-surface boundary layers, the “wake” region downstream
of the blade trailing edges, and the “channel” region in between the
boundary layer regions and upstream of the trailing edge. The edge
of the boundary layers is defined using the vorticity limit as given

by Leggett et al. [9]. In the case with incoming wakes, the vorticity
limit is determined using the time-averaged flow field. The mechan-
ical work potential source contributions are non-dimensionalized by
dividing by (p01− p1)/ρ01.

3 Simulations
3.1 Configuration. Loss analysis is performed based on LES

of a linear compressor cascade for a range of incidence angles,
with and without incoming wakes. The blade profile is the NACA
65 V103 compressor aerofoil shown in Fig. 2. The nominal angle
of incidence is 42 deg at design conditions. The performance of
the NACA 65 compressor cascade has been investigated experi-
mentally by Leipold et al. [10] and Hilgenfeld and Pfitzner [11],
and computationally by Leggett et al. [2,9]. Comparison between
the LES data of Leggett et al. and the experimental data available
are presented in Refs. [2,9] showing close agreement in terms of
blade surface pressure profiles, pressure loss coefficient and, in
both the steady case and the case with periodic incident wakes,
boundary layer thicknesses. Therefore, the present loss analysis is
based on the well-validated LES data presented by Leggett et al. [2].
The Reynolds number for the simulations is 300,000 based on the

chord length C; the inflowMach number is 0.67; and the blade pitch
is 0.59C. The simulation domain extends 0.5C upstream of the
blade leading edges (0.6C in the case with incoming wakes) and
1C downstream of the trailing edges. A single blade passage is
simulated, with periodic boundary conditions in both the spanwise
and pitchwise directions, with a spanwise extent of 0.2C, making
the simulations representative of the flow behavior at mid-span of
a linear cascade where the flow is not significantly affected by
end-wall effects.
For the cases without incoming wakes, the inflow is fed with syn-

thetic turbulence with 3.5% turbulence intensity and a length scale
of 0.1C, with nominal angles of incidence in the range from 37 deg
to 49 deg. The case with incoming wakes has a nominal angle of
incidence equal to 44 deg and no background synthetic turbulence.
The incoming wakes are generated by simulating the flow over

Fig. 1 Schematic outline showing representative volumes for
volume breakdown

Fig. 2 Schematic of the NACA 65 linear compressor cascade
used based on work by Ref. [11]. Computational block boundar-
ies and boundary conditions are shown in light gray. The domain
used for loss analysis extends between the inlet and outlet refer-
ence planes indicated.
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circular bars passing across the front of the cascade, 0.38C upstream
of the blade leading edges. The bar diameter is 0.0595C, and the bar
pitch is equal to the blade pitch. The bar reduced frequency is set to
1.9, based on the axial velocity and bar pitch, and its flow coeffi-
cient is ubar/ux= 0.89. Both the blade and bar boundaries are
treated as non-slip and adiabatic.

3.2 Modeling and Numerical Methods. The wall-adaptive
local eddy viscosity (WALE) approach [12] is used to close the fil-
tered compressible Navier–Stokes equations. No additional model-
ing is employed for near-wall turbulence, requiring that the LES
mesh resolves near-wall flow structures. The fluid is modeled as a
perfect gas with properties of cold air, and the ratio of specific
heats equal to 1.4. The synthetic turbulence in the inflow is pro-
duced using the digital filter approach of Klein et al. [13].
The LESs are performed using an in-house compressible multi-

block structured flow solver, HiPSTAR [14], outlined in greater
detail in Ref. [2].
HiPSTAR has previously been used to perform in-depth studies

on various subjects such as supersonic wakes [15], unsteady turbu-
lent jets [16,17], and low pressure turbines [14]. Experimental vali-
dation for the present axial compressor simulations is reported in
Refs. [2,9].

3.3 Computational Setup. The flow around the compressor
blade is meshed with an O-grid immersed within an H-grid, as
illustrated in Fig. 2. The blade domain is discretized with 603,136
grid points in the cross plane and 128 Fourier modes in the span,
giving an effective grid count of ≈155M points. The flow domain
around the upstream bars, if present, is meshed similarly, using
an O-grid immersed in an H-grid, and connected to the blade
domain across a sliding interface, containing a further ≈34M grid
points. If upstream bars are not considered, the inflow domain is
meshed with two stationary blocks containing ≈6M points. The
blade mesh has a wall resolution of Δx+≈ 15− 20, Δy+≈ 1.5,
and Δz+≈ 12− 22, with the lowest resolution found near the stag-
nation point of the leading edge. Resolution of the moving bar
boundary layers is not of primary importance, since the turbulent
wake of the bar develops over several bar widths before interacting
with the compressor blades. The resolution of the bar mesh is
restricted to the smallest cell size of the blade to ensure no time-step
penalty is incurred, resulting in a resolution of Δx+≈ 5− 12, Δy+≈
2− 4, and Δz+≈ 15− 27 for the bar.

4 Results
The loss analysis is presented by first considering the overall loss

coefficient and its contributions given by Eq. (17) for all of the
“clean” inflow cases without incident wakes and for the moving
bar case with moving bars upstream of the cascade. Subsequently,
the spatial and spatio-temporal segmentation of the loss contribu-
tions is presented for the clean and moving bar cases, respectively.
In order to illustrate how the various contributions to the budget
depend on the operating pressure of the cascade, relative to the
dead state pressure pD, each analysis is performed for two values
of p01/pD. The results for p01/pD= 1 are indicative of how this com-
pressor cascade would operate in a low-pressure compressor setting
and are denoted by the acronym LPC, and the results for p01/pD= 10
are considered indicative of how this compressor cascade would
operate in a higher pressure stage of the compressor and are
denoted by HPC. Note that the LPC and HPC results for each
inflow case are obtained from a single LES, but post-processed
using different values of pD.

4.1 Overall Loss Analysis. The mechanical work potential
loss coefficients for the clean inlet cases and for the moving bar
case are presented in Fig. 3 for the LPC and HPC operating condi-
tions. The mechanical work potential loss coefficient shows a

similar variation with incidence at both the LPC and HPC operat-
ing conditions, with a minimum close to 44 deg incidence.
However, the absolute magnitude of the mechanical work poten-
tial loss coefficient is a factor of approximately two greater in
the LPC case.
Figure 4 shows that the variation of mechanical work potential

loss coefficient in the LPC case has a similar magnitude and varia-
tion with angle of incidence as the pressure loss coefficient (note
that for the LPC case, ωest=ωmf since p01= pD). However, there
is a significant divergence between the mechanical work potential
loss coefficient and the pressure loss coefficient at more negative
values of incidence, indicating that the pressure loss coefficient
does not, in general, provide a linear measure of the thermodynamic
losses relevant to a propulsion system. The difference between ω
and ωest for the p01= pD LPC case shows the limitations of the sim-
plifying assumptions used to derive Eq. (14). In particular, the
divergence between the two loss measures shows the impact on
loss prediction due to the spatial correlation between the loss
source terms and thermodynamic variables such as static pressure
around the blade.
Estimating the pressure loss coefficient based on either the HPC

or LPC data using Eq. (14) yields nearly identical values, as shown
in Fig. 4. In general, it is not necessary for the two estimates to be
equal since the thermal, pv, and kinetic energy contributions to the
net flux of mechanical work potential have different scaling with
p01/pD. Put another way, some source terms in the averaged
mechanical work potential transport equation (Eq. (17)) have differ-
ent scaling with p01/pD. The very close agreement between the two
estimates is therefore remarkable and indicates that in the present
simulation cases, although the value of p01/pD may affect the
spatial distribution of mechanical work potential source terms, the
value p01/pD has little effect on the overall loss following integration
of the source terms over the whole flow domain.

Fig. 3 Mechanical work potential loss coefficient for all cases at
both LPC and HPC reference states

Fig. 4 Estimated pressure loss coefficient calculated using
Eq. (14) and mechanical work potential loss coefficient for all
cases at both LPC and HPC reference states. Including actual
pressure loss coefficient.
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The relative importance of the source terms in the averaged
mechanical work potential transport equation (Eq. (17)) are
assessed by integrating the source terms between the inlet and
outlet reference planes. The resulting breakdown of the overall
loss is presented in Fig. 5 for each simulation case, at both LPC
and HPC conditions. The data are normalized by ρ01/(p01− p1) in
order to show directly how much each term contributes to the
mechanical work loss coefficient. The mechanical work loss coeffi-
cient given by the sum of source terms in Eq. (17) is indicated by a
symbol. Because the simulations address a compressor cascade with
no heat transfer at the blade surface, the dominant contribution to
the mechanical work potential is associated with viscous dissipation
(including both resolved and the modeled sub-filter scale dissipa-
tion). Therefore, the only two significant contributions in the
mechanical work potential equation are viscous dissipation and
viscous reheat.
The present LES simulations are highly resolved with little sub-

filter variance and loss is dominated by viscous processes. As a
result, the magnitudes of the non-viscous terms and other residual
terms in Eq. (17) are typically at least two orders of magnitude
smaller than the dominant viscous dissipation term and, in the
present LES, they make a negligible overall contribution once inte-
grated over the solution domain. RANS simulations for the clean
inlet cases without incident wakes were compared with the
present LES results in Ref. [9], yielding reasonable overall predic-
tions for pressure loss coefficient, but with some differences in the
flow pattern, such as the location of boundary layer transition point
on the suction surface and rate of mixing in the wake of the blade.
While these RANS simulations are not the focus of the present
study, RANS contour plots of viscous dissipation and viscous
reheat for the 44 deg HPC case are compared with the correspond-
ing LES results in Fig. 6. The total change in viscous dissipation
and viscous reheat between the prescribed reference planes for
RANS is found to be −0.02143 and 9.463e−3, respectively,
which compares well with the LES results of −0.02159 and

9.551e−3. Despite differences in the flow predictions, it is con-
firmed that the viscous dissipation and viscous reheat terms (includ-
ing the modelled dissipation of (sub-filter) turbulent kinetic energy)
effectively account for the entire loss of mechanical work potential
in both the RANS and LES simulations, with thermal transport
terms and other residual terms making negligible overall
contributions.

4.2 Spatial Breakdown of Losses. Figure 7 presents the
spatial segmentation of the viscous dissipation and viscous reheat
loss contributions into the four regions illustrated in Fig. 1. The
overall viscous dissipation is dominated by contributions of the
boundary layer regions, with minor contributions in the channel
and wake regions. The proportion of the loss arising in the suction-
surface boundary layer increases with the angle of incidence, due to
thickening of the turbulent boundary layer and growth of the separa-
tion bubble shown for the 37 deg, 44 deg, and 49 deg incidence
cases in Fig. 8 and discussed in Refs. [2,9]. The spatial distribution
of viscous dissipation and viscous reheat for the RANS at 44 deg
also compares well with the LES. The suction surface viscous dis-
sipation and viscous reheat are found to be −0.012 and 5.183e−3
compared with the LES −0.012 and 5.075e−3 and the pressure
surface viscous dissipation and viscous reheat as −5.914e−3 and
2.692e−3 compared with the LES −6.813e−3 and 3.106e−3,
respectively.
The viscous dissipation contribution is independent of the dead

state pressure pD. In contrast, the viscous reheat contribution, as
defined in Eq. (17), is affected by the local ratio of static pressure
and dead state pressure. The viscous reheat contribution is negative
where the local pressure is below the dead state pressure (through-
out much of the flow domain for the LPC case) and positive when
the static pressure is above the dead state pressure (as in the HPC
case).
The relative magnitudes of the viscous reheat contributions from

the four different regions of the flow are similar to the relative mag-
nitudes of the viscous dissipation contributions from the corre-
sponding regions, with differences arising due to the variation of
static pressure around the blade. Contour plots showing the distribu-
tion of static pressure and viscous dissipation are presented in Fig. 8
for the 37 deg, 44 deg, and 49 deg incidence cases. The average
static pressure is highest in the pressure-surface boundary layer, fol-
lowed by the channel, then the wake, and it is lowest in the suction-
surface boundary layer. These differences in static pressure moder-
ate the relative magnitudes of the viscous reheat terms, making the
viscous reheat contribution more positive in the pressure-surface
boundary layer region, and more negative in the suction-surface
boundary layer.
A simple and accurate estimate of the effect of the static pressure

distribution on the magnitudes of the viscous reheat contribution for
a given region of the flow is given by scaling the viscous dissipation

Fig. 5 Mechanical work potential loss breakdown into source
terms for all cases at both LPC and HPC reference states. Resul-
tant total loss shown by black square.

Fig. 6 Color maps showing ensemble-averaged viscous dissipation (top) and viscous
reheat (bottom) contributions for (a) LES and (b) RANS simulations. The range of the
color maps is [−0.0269,0] for normalized viscous dissipation and [−0.0179,0.0179] for
normalized viscous reheat terms.
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contribution by

�
volρṠreheatdv�
volρṠdiss.dv

≈ (pD/pavg)
(γ−1)/γ − 1 (26)

where pavg is the spatially averaged static pressure for that
region. Given that, in the 44 deg incidence case, pavg/p01= 0.786
for the suction-surface boundary layer and pavg/p01= 0.877 for
the pressure-surface boundary layer, Fig. 9 shows that the
(pD/pavg)

(γ−1)/γ− 1 scaling correctly predicts the ratio of reheat
and dissipation contributions for a range of p01/pD.
Because the viscous reheat contribution in each region depends

on pavg/pD, and because pavg/p01 is constant between dynamically

similar operating points (i.e., keeping all non-dimensional
numbers other than p01/pD unchanged), the overall performance
of a given blade design depends on its operating conditions (i.e.,
whether it is in a low or high pressure stage, as characterized by
p01/pD). This implies that the optimal blade design can depend
on the target operating condition and that a blade profile optimized
based on its performance in an ambient pressure test rig is not nec-
essarily optimal for higher-pressure operation within a gas turbine
engine. In particular, this scaling implies that for low-pressure
operation, there is a relatively large benefit to localizing viscous
dissipation in regions around the blade with relatively high static
pressure, potentially at the expense of a small increase of the
total viscous dissipation, whereas for higher pressure operation,
there is relatively little benefit to localizing the viscous dissipa-
tion in higher-pressure regions of the flow, and the primary
focus should be on reducing the overall contribution of viscous
dissipation.

4.2.1 Denton’s Breakdown of Loss. In contrast with the
spatial-segmentation of mechanical work potential losses presented
here, Denton’s 1993 paper [7] proposed a phenomenologically
derived approach for quantifying contributions to profile loss
from the pressure- and suction-surface boundary layers and from
the trailing edge wake of the blade. An advantage of Denton’s
approach is that the attribution of losses to the different flow
regions is based solely on relatively simple measurements of the
boundary layer thicknesses and data for the trailing edge blade
thickness, whereas the spatial-segmentation of mechanical work
potential loss breakdown introduced in this study requires full-field
velocity and thermodynamic information that typically is only
available from computational fluid dynamics simulation. A limita-
tion of Denton’s approach is that loss is attributed to boundary
layer properties and not directly to physical processes, for
example in order to understand the different contributions of
viscous dissipation and viscous reheat.
Denton’s analysis has been applied to the clean-inlet LES simu-

lations [2] and the percentage breakdowns by region are compared
to the corresponding spatial segmentation of mechanical work
potential-based losses in Fig. 10. Denton’s method predicts the
correct trends, indicating an increase in the relative contribution
of losses in the suction-surface boundary layer as the angle of inci-
dence increases. Denton’s analysis does not account for losses in the
channel region separately, though these losses are relatively small in
the present cases. However, the predictions of Denton’s method
become less accurate moving away from the design incidence,
incorrectly suggesting that the pressure-surface loss is almost neg-
ligible in the 49 deg incidence case. While Denton’s method pro-
vides useful information about likely trends in the loss
distribution, the magnitude and breakdown of the losses it predicts
can give significant errors when compared with the mechanical
work potential loss, particularly in the unsteady moving bar case
(not shown) where the total loss is almost twice that predicted by
the mechanical work potential.

(a)

(b)

Fig. 7 Volume breakdown of (a) viscous dissipation and
(b) viscous reheat for all cases at both LPC and HPC states.
Volumes are designated suction surface (SS), pressure surface
(PS), wake region (WK), and channel (CH). Normalized with
(po1 −p1)/ρo1.

Fig. 8 Ensemble averaged contour plots of viscous dissipation and pressure contours (lines) for the 37 deg, 44 deg, and
49 deg incidence cases. Scale limits from low to high: viscous dissipation [−0.0269,0], p/p01 [0.651,0.884].
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4.3 Spatio-Temporal Breakdown of Losses. The
phase-averaged variation of the instantaneous loss coefficient is pre-
sented in Fig. 11 for the moving bar case at LPC conditions. The
phase is measured from the point in the cycle at which the wake
arrives at the leading edge of the blade, as shown in contour plots
of ensemble-averaged viscous dissipation and static pressure in
Fig. 12. The phase-averaged loss coefficient has an approximately
sinusoidal variation with a magnitude approximately equal to 3%
of the time-averaged loss coefficient.
For the operating conditions of the moving bar simulation, the

suction surface boundary layer is the dominant source of loss, con-
tributing approximately two-thirds of the overall loss, as shown in
Fig. 7. Figure 13 indicates that the phase-averaged loss contribution
of the suction-surface boundary layer is in-phase with the overall
loss variation. A detailed description of the boundary layer proper-
ties and the separate effects of free-stream turbulence and incoming
wakes on the present LES cases is given by Leggett et al. [2]. At

44 deg incidence, the suction-surface boundary layer remains
laminar until the location of peak suction, a short separation
bubble forms above which the boundary layer transitions to turbu-
lence and reattaches. The thick turbulent boundary layer down-
stream of the separation bubble contributes most of the viscous
dissipation. As incoming wakes sweep across the suction-surface
boundary layer, the footprint of the wake energizes the laminar
boundary layer, promoting earlier transition that periodically elim-
inates the separation bubble. The portion of boundary layer fluid
that does not undergo separation remains more closely attached to
the blade as it convects to the trailing edge of the blade, and this
portion of fluid contributes less loss than the boundary layer fluid
that does not interact with the wakes. The overall effect is that the
flow with incident wakes has a lower overall loss coefficient than
the 44 deg case without incident wakes (Fig. 5).
The reduction in suction-surface loss caused by the wake interac-

tion promoting earlier transition is realized as the well-attached
region of boundary layer it produces passes over the downstream
third of the blade chord (i.e., the region that usually contributes
most loss). The boundary layer fluid convects at velocity that is
slightly less than the wake convection velocity in the free-stream;
therefore, the maximum reduction in suction-surface loss is
observed around a phase angle of 180 deg, approximately when
the wake arrives at the trailing edge of the suction-surface.

4.3.1 Wake Recovery. Although the channel region contributes
only 6% of the overall loss, its contribution to the fluctuation of the
overall loss has a similar magnitude to the net contribution from the
two boundary layer regions. Since wake production by the bars is
continuous within the channel region and in this case the bar
wakes are largely dissipated by the time they exit from the
channel region, though not always the case, the fluctuation of loss
within the channel region is due to variation of the bar wake dissi-
pation rate as the bar wakes interact with the pressure field of the
blades. It has been confirmed that the periodic thickening of the
boundary layers does not cause a significant loss contribution to
cross into the channel region.
The interaction of incident wakes with the inter-blade pressure

field has been discussed extensively in the context of turbomachinery
[18–20] leading to description of the “wake recovery” phenomenon,
by which certain measures of stagnation pressure loss are reduced.
Wake recovery is due to the overall deceleration of the flow
through the channel causing the speed differential between the inci-
dent wake and the free-stream fluid to reduce. The wake recovery
process is itself inviscid and reversible (and therefore loss-free);
however, it can be considered as a loss reduction if one assumes
that the wake velocity deficit is eventually mixed out by viscous dis-
sipation. The current definition of mechanical work potential consid-
ers that all contributions to kinetic energy (including wake velocity
deficits and turbulent eddies) can be recovered as useful work. The
inviscid process of wake recovery therefore does not appear directly
in themechanical work potential equation. However the wake recov-
ery process affects the mechanical work potential loss indirectly by
affecting the amount of kinetic energy that is subsequently dissipated
by viscous processes. In order formechanical work potential analysis
to show wake recovery as a positive source of mechanical work
potential, a new “mixed out” definition of mechanical work potential
could be considered, whichwould consider only kinetic energy asso-
ciated with, for example, the time-averaged flow field as recoverable
using Miller’s hypothetical ideal turbine, and treating non-
recoverable kinetic energy associated with turbulence and unsteady
wakes as unrecoverable. Such a definition would add substantially to
the complexity of the mechanical work potential analysis and relies
upon a subjective view of what kinetic energy is usable and what is
not. However, because the turbulence timescales are short compared
to convective timescales in the present simulation case, the effects of
wake-recovery rapidly have an effect on the viscous dissipation rate:
as the incident wake accelerates toward the location of peak suction
on the suction-surface the velocity differential is amplified, leading to
maximum loss in the channel from phase angle −40 deg to 40 deg;

Fig. 9 Ratio of viscous reheat and viscous dissipation versus
dead-state pressure for the suction-surface (SS) and pressure-
surface (PS) boundary layers of the 44 deg case. Dashed-lines
show the estimate given by Eq. (26).

Fig. 10 The fraction of loss contributed by each region of the
flow domain, evaluated based on the mechanical work potential
analysis (solid) and estimated using Denton’s method [7]
(dashes). Subscripts, Dnt, are Denton-based breakdown
values. The regions defined in Fig. 1 are the suction surface
(circles), pressure surface (squares), wake (diamonds), and
channel (triangles).

Fig. 11 Phase locked averaged loss over one bar passing
period. Including ensemble averaged loss plotted as dashed line.
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and as the velocity differential is attenuated as the incident wake
decelerates downstream of the location of peak suction, leading to
minimum loss in the channel between phase angles 100 deg to
180 deg. The changes in loss are further amplified as the maximum
velocity differential occurs at lower pressure resulting in less
viscous reheat while the minimum velocity differential has reduced
viscous dissipation and hence lower viscous reheat, despite being
at a higher pressure.

5 Conclusions
This study extends the work of Miller and formulates mechanical

work potential analysis for use in practical design simulations based

on LES or RANS approaches. It provides an instantaneous filtered/
averaged and local account of the thermal and aerodynamic mech-
anisms contributing to the loss of propulsive performance. The
approach is demonstrated through application to LES and RANS
simulations of a linear compressor cascade, leading to the following
main conclusions:

• The conventional pressure loss coefficient does not provide a
direct measure of the effect of losses on propulsive perfor-
mance and fail 1 on page 1 to account for how the operating
pressure of a particular stage affects its performance within
an engine. The derivation of a mechanical work potential
loss coefficient and its relationship to the pressure loss coeffi-
cient presented in this work highlights this variation of overall
loss and the effect of operating pressure is accounted for
explicitly.

• Viscous dissipation and the associated viscous reheat effect are
the dominant contributions to the overall loss in this un-cooled
compressor flow. The contribution of viscous reheat depends
on the operating pressure of the compressor stage, implying
that, if the flow parameters such as Mach number are constant,
the optimal blade geometry for a low-pressure compressor
stage may be different from the optimal geometry for a high-
pressure compressor stage within the same engine due to the
change in the ratio of the pressure field to the dead state pres-
sure, resulting in different contributions of viscous reheat from
different regions of the flow.

• The mechanical work potential analysis provides an exact
spatio-temporal segmentation of losses and their physical
origins, and can provide a direct quantification of loss reduc-
tion due to flow phenomena such as the early-transition due

Fig. 12 Contour plots of phase-averaged viscous dissipation and static pressure iso contours from phase angle 0 deg to
320 deg. Scale limits from low to high: viscous dissipation [−0.0269,0], p/p01 [0.651,0.884].

Fig. 13 The periodic variation of the phase-averaged loss in
each of the four flow regions shown in Fig. 1. Data are normalized
by the values at −180 deg. Full field designated as (FL).
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to wake forcing of the boundary layer. In comparison, other
methods such as Denton’s analysis do not provide direct rela-
tion to physical processes and can give significant error under
adverse flow conditions.

Themechanical work potential analysis is therefore recommended
as a valuable tool within the turbomachine design work-flow.
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Nomenclature
e = internal energy per unit mass
k = turbulent kinetic energy per unit mass
p = static pressure
t = time
v = specific volume
m = mechanical work potential per unit mass
T = static temperature
�q = heat flux vector
�u = velocity vector

mf = flow mechanical work potential per unit mass
�x = position vector
γ = ratio of isobaric and isochoric specific heat capacities
κ = thermal conductivity
μ = dynamic viscosity
ρ = density
�σ = viscous stress tensor
�τ = Reynolds- or sub-grid stress tensor

Δtherm = rate of thermal creation
Φvisc = rate of dissipation per unit volume

ω = loss coefficient

Subscripts

D = dead state
0 = stagnation property
se = exit of isentropic turbine expanding to pressure pD

therm = thermal
visc = viscous

Averaging

ψ = ensemble average or filtering operation
ψ̃ = density-weighted averaging or filtering
ψ̌ = computable quantity

Appendix A
An approximate relationship between the mechanical work

potential loss coefficient and the pressure loss coefficient for a tur-
bomachinery cascade is derived as follows. Assuming that density
is constant across the cascade and that changes in fluid properties
are small across the cascade, one may write

TΔs = Δh −
Δp
ρ

and T0Δs = Δh0 −
Δp0
ρ

(A1)

where Δ represents the difference in a given property between the
inlet and outlet of the cascade. The flow mechanical work potential
of the fluid is given by the enthalpy change as it expands isentropi-
cally through a steady-flow turbine from the stagnation conditions
to the dead state pressure:

mf = h0 − hse (A2)

The change in mechanical work potential through the blade row is

Δmf = Δh0 − Δhse (A3)

The change in stagnation enthalpy through a stationary blade row is
Δh0= 0, giving Δs=−Δp0/(ρT0). From Eq. (A1), the change Δhse
is TseΔs+ΔpD/ρ. Noting that ΔpD= 0, substitution into Eq. (A3)
gives

Δmf ≈
Tse
T0

Δp0
ρ

(A4)

Assuming the working fluid is a perfect gas, Tse/T0= (pD/p0)
(γ−1)/γ,

giving

Δmf ≈
pD
p01

( )(γ−1)/γΔp0
ρ1

(A5)

Noting that Δmf in a system with uniform inlet and outlet properties
is equal to the rate of mechanical work potential destruction per unit
mass entering the system, ṁsys, the mechanical work potential loss
coefficient, ωm = ρ01ṁsys/ p01 − p1

( )
, can be related to the pressure

loss coefficient, ω= (p01− p02)/(p01− p1) by

ωm ≈ ω
pD
p01

( )(γ−1)/γ

(A6)

Appendix B
The transport equations for the Favre-averaged or Favre-filtered

mechanical work potential are obtained respectively by averaging
or filtering Eq. (15), giving

∂(�ρm̃)
∂t

+
∂
∂xj

ρujmf
( )

=
∂
∂xj

σijui
( )

−
∂
∂xj

1 −
Tse
T

( )
qj

[ ]
+ Δtherm −Φvisc

( )
− 1 −

Tse
T

( )
Δtherm −Φvisc( )

(B1)

The convective flux is decomposed as

ρujmf = �ρũjm̃f + T j (B2)

Splitting T j the turbulent flux of flow mechanical work potential,
into internal energy, pv, and kinetic energy contributions, as in
Eqs. (1) and (2), gives

(B3)

Several terms in Eqs. (B1) and (B3) are not computable from the
RANS or LES solution variables. In order to develop a form of
Eq. (B1) that can be modeled and computed from RANS or LES
solutions, the various terms are split into a computable part and a
residual part. The computable quantities Tse/T , Δ̌therm, q̌j, and Φ̌visc

and σ̌ij are defined in Eqs. (20)–(24). The turbulent flux expression
given in Eq. (B3) can also be decomposed further, separating out
the terms that define T̂ j in Eq. (18) which appear in the averaged
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or filtered total energy transport equation and are therefore the
subject of models already employed in the RANS or LES
computation. Unclosed and un-modelled terms in Eq. (B1) are rele-
gated to a residual termR defined in Eq. (19), yielding the final trans-
port equation for the averaged mechanical work potential, given as
Eq. (17).
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