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Abstract
The aim of this paper is to propose a novel prediction model based on an ensemble of

deep neural networks adapting the extremely randomized trees method originally developed
for random forests. The extra-randomness introduced in the ensemble reduces the variance
of the predictions and improves out-of-sample accuracy. As a byproduct, we are able to com-
pute the uncertainty about our model predictions and construct interval forecasts. Some
of the limitations associated with bootstrap-based algorithms can be overcome by not per-
forming data resampling and thus, by ensuring the suitability of the methodology in low and
mid-dimensional settings, or when the i.i.d. assumption does not hold. An extensive Monte
Carlo simulation exercise shows the good performance of this novel prediction method in
terms of mean square prediction error and the accuracy of the prediction intervals in terms
of out-of-sample prediction interval coverage probabilities. The advanced approach deliv-
ers better out-of-sample accuracy in experimental settings, improving upon state-of-the-art
methods like MC dropout and bootstrap procedures.
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1 Introduction

A popular and fruitful strategy in the prediction literature is model averaging. Steel (2020)

distinguishes two main categories: Bayesian model averaging (see Leamer, 1978), where the

model index is treated as unknown (and thus a prior is specified on both model and model

parameters); and frequentist model averaging (see Wang et al., 2009; Dormann et al., 2018),

where the predictions of a battery of different prediction models are ensembled. There is a

well established theoretical and empirical literature analyzing the predictive advantages of both

Bayesian and frequentist approaches.

When focusing on Bayesian model averaging (BMA), Min and Zellner (1993) show that the

expected squared errors are minimized by Bayesian ensembles as long as the model underlying

the data generating process is included in the model space. Raftery et al. (1997) introduce BMA

for linear regression models. These authors show how Bayesian model averaging improves over

single model predictions. 1 One of the main advantages of Bayesian ensembling is the possibility

of integrating the prior structure analytically. Thus, the literature on BMA models has studied

the suitability of prior density functions extensively. Reviews of the most popular options, both

in linear and generalized linear frameworks, can be found in Fernandez et al. (2001), Li and

Clyde (2018), and Steel (2020). Nonetheless, a vast model space may constitute a computational

challenge due to the impossibility of a complete model enumeration (this problem is often solved

with Markov chain Monte Carlo (MCMC) methods).

Steel (2020) also highlights that MCMC methods are not implementable for frequentist

model averaging approaches (no estimation of the model probabilities), ultimately limiting the

possibility of applying frequentist approaches to a large number of models. As a result, the

literature focusing on frequentist ensembles tries to propose methods directed to reducing the

model space (see, for example, Claeskens et al., 2006; Zhang et al., 2016; and Zhang et al.,

2013). Stock and Watson (2004) provide a seminal contribution within the frequentist approach.

After examining different weighting schemes found in the literature, these authors show how

”optimally” estimated weights perform worse than equal weights in terms of out-of-sample mean

squared error. Smith and Wallis (2009) explain that this ”forecast combination puzzle” can

be explained starting from the double estimation uncertainty associated with estimating the

”optimal” weights.

Similarly, model averaging in machine learning (e.g., boosting, bagging, random forest, and

extremely randomized trees) aims at constructing a predictive model by combining ”weak” learn-

ers to obtain a strong learner. As opposed to the aforementioned literature, model averaging in
1Rafter et al. (1997) offer two alternative approached for model selection in a Bayesian setting. First, the

"Occams window" procedure, which indicates a small set of models over which a model average can be com-
puted. Second, the authors describe a Markov chain Monte Carlo approach that directly approximates the
exact solution.
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machine learning does not allow the estimation of the uncertainty on the parameter estimates

and the identification of the model structure. Instead, it is mainly focused on point prediction/-

forecasting and associated uncertainty estimation.

Neural networks are increasingly popular prediction models in the machine learning litera-

ture. These models are widely used in prediction tasks due to their unrivaled performance and

flexibility in modeling complex unknown functions of the data. A plethora of literature has been

focusing on ensembling techniques for neural networks2. As also explained in Krogh and Vedelsby

(1995), an ensemble of neural networks ensures gains in prediction accuracy when there exists

disagreement (or what they call ambiguity) among the single learners. Implementing strategies

that lead to diversity in the error distributions across single learners ensures improvement in

the out-of-sample performance of the ensemble. As an example, when a frequentist approach is

used, it is possible to introduce diversity in the ensemble by training individual neural networks

on resampled versions of the datasets. When instead Bayesian model averaging is implemented,

independence can be achieved by creating a probability distribution of all feasible models from

which one can sample using MCMC methods (Neal, 2012).

The literature has reported numerous justifications for the success of ensembles of neural

networks characterized by a sufficient degree of ambiguity. Lee et al. (2015) summarize them as

follows: (i) Ensembling ensures enlarging the hypotheses space considered by the single learner;

(ii) It ensures reduction in the estimation and optimization errors that may arise from variations

due to non-convex loss functions, random weight initialization, or stochastic learning; and (iii)

From a Bayesian perspective, ensembling ensures a finite sample approximation of the model

space.

Although neural networks provide accurate predictions, the development of tools to estimate

the uncertainty around their predictions is still in its infancy. As explained in Hüllermeier and

Waegeman (2020) and Pearce et al. (2018), out-of-sample pointwise accuracy is not enough3.

The predictions of deep neural network (DNN) models need to be supported by measures of

uncertainty in order to provide satisfactory answers for prediction in high-dimensional regression

models, pattern recognition, biomedical diagnosis, and others (see Schmidhuber (2015) and

LeCun et al. (2015) for overviews of the topic).

The present paper focuses on a machine learning approach for model prediction. We propose

an ensemble of neural network models with the aim of improving the accuracy of existing model

predictions from individual neural networks. A second main contribution of the present study

2The interested reader is referred to Lee et al. (2015), and Krogh and Vedelsby (1995) for a detailed re-
view.

3A trustworthy representation of uncertainty can be considered pivotal when machine learning techniques
are applied to medicine (Yang et al., 2009; Lambrou et al., 2011), or to anomaly detection, optimal resource
allocation and budget planning (Zhu and Laptev, 2017), or cyber-physical systems (Varshney and Alemzadeh,
2017) defined as surgical robots, self-driving cars and the smart grid.
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is to assess the uncertainty about the predictions of these ensembles of neural network models

and construct interval forecasts. Our novel approach extends the Extra-trees algorithm (Geurts

et al., 2006) to ensembles of deep neural networks using a fixed Bernoulli mask. To do this,

we estimate T different subnetworks with randomized architectures (each network will have

different layer-specific widths) that are independently trained on the same dataset. Thus, the

fixed Bernoulli mask introduces an additional randomization scheme to the prediction obtained

from the ensemble of neural networks that ensures independence between the components of the

ensemble, reducing the variance associated with the prediction and delivering accurate prediction

intervals. Additionally, based on the findings of Lee et al. (2015) and Lakshminarayanan et al.

(2017), the novel procedure is expected to outperform bootstrap based approaches in terms

not only of estimation accuracy but also of uncertainty estimation. This is confirmed in our

simulation experiments.

The competitors of our ensemble prediction model are found in the machine learning litera-

ture. In particular, we consider Monte Carlo dropout and bootstrap procedures as the benchmark

models to beat in out-of-sample prediction exercises. Monte Carlo dropout approximates the

predictive distribution of a target variable by fitting a deep or shallow network with dropout

both at train and test time. Conversely, both extra-neural network and bootstrap based ap-

proaches approximate the target predictive distribution via ensemble methods. When comparing

classical bootstrap approaches to the extra-neural network approach proposed in this paper, we

notice that (i) both methods guarantee conditional randomness of the predicted outputs, the

extra-neural network method does it through the Bernoulli random variables with probability p

and random weight initialization, whereas the bootstrap does it through the nonparametric data

resampling and random weight initialization; (ii) by performing data resampling, the naive (non-

parametric) bootstrap approach requires the assumption that observations are independent and

identically distributed (i.i.d). Importantly, each single model is trained with only 63% unique

observations of the original sample due to resampling with replacement; (iii) by randomizing the

neural network structures, the extra-neural network approach increases the diversity among the

individual learners (see Zhou (2012) for an analysis of diversity and ensemble methods); and (iv)

the extra-neural network will benefit from the generalization gains associated with dropout (one

can think of the dropout approach of Srivastava et al. (2014) as an ensemble of subnetworks

trained for one gradient step).

To analyze the out-of-sample performance and the prediction interval coverage probability

(PICP) of the proposed methodologies, we carry out an extensive Monte Carlo exercise that

evaluates the Monte Carlo dropout, the bootstrap approach, and extra-neural network for both

deep and shallow neural networks, given different dropout rates and data generating processes.

The simulation results show that all three procedures return prediction intervals approximately
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equal to the theoretical ones for nominal values equal to 0.01 and 0.05; for prediction intervals

constructed at 0.10 significance level, the extra-neural network is shown to outperform both

Monte Carlo dropout and bootstrap. Additionally, the simulation findings show that the extra-

neural network approach returns prediction intervals with correct empirical PICP for different

dropout rates (within a reasonable range) as opposed to MC dropout, that only returns correct

prediction intervals for specific values of the dropout rate. These findings show the robustness of

the extra-neural network to the choice of the dropout rate, and complete the results of Levasseur

et al. (2017) by showing that Monte Carlo dropout returns correct prediction intervals when

the dropout rate that yields the highest out-of-sample accuracy is adopted.

The novel methodology is also evaluated on real world datasets. In order to allow for compa-

rability with other approaches found in the literature, the experimental settings of Hernández-

Lobato and Adams (2015) are adopted. The empirical results show that extra-neural network

methods outperform other state-of-the-art approaches used in the literature. These results com-

plete the conclusions drawn from the Monte Carlo simulation by showing the generalization of

the extra-neural network methodology when applied to datasets of different dimensions.

The rest of the paper is organized as follows: Section 2 introduces the ensemble prediction

model in a deep neural network and discusses the different sources of uncertainty. Section 3

reviews extant methodologies to construct prediction intervals that can be applied to DNNs.

Section 4 introduces a novel methodology to construct prediction intervals based on an adapta-

tion of Extra-trees for random forests. Section 5 presents the simulation setup including linear

and nonlinear models along with the choice of parameters and hyperparameters for the imple-

mentation of neural network methods. Section 6 discusses the results of the empirical study.

Section 7 concludes. Appendix A provides the detailed derivations of the prediction intervals

obtained using the delta method (Hwang and Ding, 1997), the naive bootstrap approach (Hes-

kes, 1997), and the Monte Carlo dropout (Gal and Ghahramani, 2016a). Appendix B contains

a brief note discussing random weight initialization and uncertainty for extra-neural networks.

2 Ensemble predictors for DNN models

We propose the following additive model for predicting the output variable yi, for i = 1, . . . , n:

yi = f(xi) + εi, (1)

with f(xi) a real-valued function used to predict the outcome variable using a set of covariates

xi. The choice of the functional form f(xi) depends on the loss function penalizing the difference

between the outcome variable and the prediction. For example, it is well known that if the loss

function is quadratic then the best predictive model is f(xi) = E[yi | xi]. The error term
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ε defines the noise in the output variable that cannot be explained by the covariates x and

satisfies the conditional independence assumption E[εi | xi] = 0.

In this paper, we consider f(xi) to be modeled by a deep neural network. As explained

in Farrell et al. (2021), when focusing on deep neural networks, the choice of the specific

network class to be adopted becomes a crucial aspect. Different classes will be characterized

by different complexities and thus, by different approximating power. In the present paper we

focus on feedforward neural networks. More precisely, in the sub-category of fully connected

(between consecutive layers) feedforward neural networks. By considering the broader class

of fully connected sequential feedforward neural networks, it is possible to extend the results

of the present paper to other special cases (e.g., convolutional neural networks are a subclass

obtained by introducing a convolutional layer, as explained in LeCun et al., 2015) found in

the literature. For any two natural numbers d, n1 ∈ N, which are called input and output

dimension respectively, a Rd → Rn1 DNN is given by specifying a natural number N ∈ N,

a sequence of N natural numbers Z1, Z2, . . . , ZN , and a set of N + 1 affine transformations

T1 : Rd → RZ1 ,Ti : RZi−1 → RZi , for i = 2, . . . , N , and TN+1 : RZN → Rn1 . Such a DNN is

called a (N + 1)-layer DNN, and is said to have N hidden layers. The function f : Rd → Rn1 is

the output of this DNN that is constructed as

f(xi;ω) = TN+1 ◦ θ ◦TN ◦ . . . ◦T2 ◦ θ ◦T1, (2)

with ◦ indicating function composition; Tn = Wnhn−1 + bn, where - for N = 1 - Wn ∈ RZ1×d;

h0 ≡ x, with x ∈ Rd×1 the input layer, and bn ∈ RZ1 is an intercept or bias vector. For N 6= 1,

Wn ∈ RZn×Zn−1 is a matrix with the deterministic weights determining the transmission of

information across layers; and hn−1 ∈ RZn−1 is a vector defined as hn−1 = θ(Tn−1) where

θ is the activation function. Typical choices for θ are: (i) the Rectified linear unit (ReLu),

θ(Tn−1) = max{0,Tn−1}; (ii) leaky ReLu, θ(Tn−1) = max{λTn−1,Tn−1} with λ defining how

much the function "leaks"; (iii) Sigmoid, θ(Tn−1) = (1 + e−Tn−1)−1; or Hyperbolic tangent,

θ(Tn−1) = (e2Tn−1 − 1)/(e2Tn−1 + 1). Finally, ω = (W n,bn) collects the set of estimable

features of the model. The depth of a DNN is defined as N + 1. The width of the nth hidden

layer is Zn and the width of a DNN is defined by max{Z1, . . . , ZN}. The size of the DNN is

Ztot = Z1 + Z2 + . . . + ZN . The number of active weights (different from zero) - in a fully

connected DNN - of the nth hidden layer is wn = (Zn × Zn−1) + Zn. The number of active

weights in a fully connected DNN is w1 + w2 + . . .+ wN .

To reduce the tendency to overfitting when training DNNs, a regularization technique is

usually adopted. Among many, training with dropout (Srivastava et al., 2014) is a popular

approach that ensures good generalization performance. The present section discusses training

with dropout in detail because it is a powerful regularization technique and is closely related to
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Figure 1: ReLu Deep Neural Network with bias terms 0 and dropout mask.

model averaging and uncertainty estimation in neural network settings.

Training with dropout (dropout training - Figure 1) implies that for each iteration of the

learning algorithm different random subnetworks (or thinned networks) will be trained.4 Let

hzn denote the elements of the vector hn for a given node z = 1, . . . , Zn and layer n = 1, . . . , N .

Srivastava et al. (2014) develop a dropout methodology that is applied to each function hzn to

obtain a transformed variable hzn. This variable is obtained by pre-multiplying hzn by a random

variable rzn with distribution function F (rzn), such that hzn = rzn · hzn, for all (z, n), prior to

being fed forward to the activation function of the next layer, hzn+1, for all z = 1, . . . , Zn+1. For

any layer n, rn is then a vector of independent random variables, rn = [r1n, . . . , rZnn] ∈ RZn .

In this paper we consider only the Bernoulli probability distribution F (rzn), where each rzn has

probability p of being 1 (and q = 1−p of being 0). The vector rn is then sampled and multiplied

element-wise with the outputs of that layer, hzn, to create the thinned outputs, hzn, which are

then used as input to the next layer, hzn+1.

When this process is applied at each layer n = 1, . . . , N , it amounts to sampling a subnetwork

from a larger network at each forward pass (or gradient step). At test time, the weights are

scaled down as W
n

= pWn, n = 1, . . . , N , returning a deterministic output. We then identify

r? = [r1, . . . , rN ] as the collection of independent random variables applied to a feedforward

neural network of depth N + 15. Figure 1 shows how the dropout mask works; at each training

4Warde-Farley et al. (2014) explain how each subnetwork is usually trained for only one gradient step.
5In practice, an inverted dropout methodology is applied when implementing this methodology in Keras

for RStudio. In this case, instead of scaling-down the weights at test time, the weights are scaled-up during
train time as Wn

= (1/p)Wn, n = 1, . . . , N . At test time, a single deterministic forward pass on the unscaled
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step (forward and backward pass), every neuron of each hidden layer will randomly not be

considered when training the network and thus be ”dropped out” (Géron, 2019). It is now possible

to understand why dropout training is also closely related to model ensembling. In particular,

Goodfellow et al. (2016) explain how dropout involves training an ensemble of subnetworks

–obtained by removing units from a "parent" neural network, at random– which are trained for

only one gradient step. As opposed to traditional ensembling techniques, the individual models

are not independent due to parameter sharing. Finally, as explained in Srivastava et al. (2014),

scaling down the weights of the "parent" neural network at test time is equivalent to performing

an approximation of model averaging across the different random subnetworks.

In the remainder of the paper, we will consider ReLu DNNs for comparison with the rele-

vant literature (e.g., Hernández-Lobato and Adams (2015) that consider ReLu Bayesian neural

networks; and Farrell et al. (2021) that establish valid causal inference on finite-dimensional

parameters following a first-step estimation using deep ReLu neural networks). Under these

premises, universal approximation theorems developed for ReLu DNN models (Lu et al., 2017)

guarantee that f(xi;ω) approximates the true function f(xi) in (1) arbitrarily well. See also

Cybenko (1989), Leshno et al. (1993), Hornik (1991), Lu et al. (2017), and Mei et al. (2018)

for universal approximation theorems in similar contexts.

We should note the presence of an approximation error due to replacing f(xi) by f(xi;ω) in

model (1), where f(xi;ω) denotes a feasible version of the DNN model that can be estimated

from the data. The model that we consider in practice is

yi = f(xi;ω) + ui, (3)

where ui = εi + f(xi)− f(xi;ω). In the related literature the effect of the approximation error

is usually neglected, see Pearce et al. (2018) and Heskes (1997). In practice, we estimate model

(3) using a training sample to obtain parameter estimates ω̂, such that the relevant empirical

model is

yi = f(xi; ω̂) + ei, (4)

with f(xi; ω̂) a function that is estimated from the data and ω̂ the parameter estimates of the

matrices of weights Wn and bias parameters bn defining the DNN; ei is the residual of the

model. Combining expressions (1) to (4), the error term in (4) can be decomposed as

ei = f(xi;ω)− f(xi; ω̂)︸ ︷︷ ︸
estimation error

+ f(xi)− f(xi;ω)︸ ︷︷ ︸
bias effect

+ εi︸︷︷︸
aleatoric error

(5)

such that the conditional variance of the predicted output f(xi; ω̂) given the set of covariates

x satisfies σ2
e = σ2

ω̂(xi) + σ2
ε , with σ2

ω̂(xi) the epistemic uncertainty due to the estimation of

weights Wn is performed.
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the model parameters and hyperparameters (estimation effect) and σ2
ε the variance due to the

aleatoric error. The bias term does not have an effect on the variance of the predictor but

introduces an error in the model forecast. More formally, µi = f(xi) − f(xi;ω) is a constant

that captures the approximation error (bias) due to the deployed ReLu DNN being a universal

approximator asymptotically. In this paper we concentrate on estimating the uncertainty around

the predictions, given by σ2
e , however, when possible, we will also discuss the bias effect due to

the approximation of the ReLu DNN model.

The distinction between epistemic and aleatoric uncertainty is extremely relevant when DNNs

are considered. It has been shown that deep models, notwithstanding the high confidence

in their predictions, fail on specific instances due to parameter uncertainty (see Hüllermeier

and Waegeman, 2020). Additionally, deep learning models are subject to drastic changes in

their performance when minor changes to the dataset are engineered (well known problem of

adversarial examples in Papernot et al., 2017) implying variability in the parameter estimates.

For this reason, the literature focusing on deep learning and uncertainty quantification proposes

algorithms that allow capturing all sources of uncertainty (see Zhu and Laptev, 2017; Hüllermeier

and Waegeman, 2020; Senge et al., 2014; Kull and Flach, 2014; and Varshney and Alemzadeh,

2017).

Our main objective is to study the performance of ensembles of deep neural network models

and to propose a novel approach that is inspired by the extremely randomized trees method

originally developed for random forests. An ensemble of predictors in our context is then given

by:

ȳ(xi) =
1

T

T∑
t=1

ft(xi; ω̂
(t)), for i = 1, . . . , n, (6)

where ft(xi; ω̂(t)) denotes a set of T different prediction models based on deep neural network

models, and ω̂(t) denotes the estimates of the DNN model parameters. Second, we construct

interval forecasts for the ensemble model predictions.

3 Prediction intervals for DNN models

The current study is related to recent literature on prediction intervals for neural networks. A

pioneering contribution is provided by Hwang and Ding (1997) that construct asymptotically

valid prediction intervals for neural networks (delta method, see subsection A.1 for a complete

analysis and derivation). Despite providing asymptotically valid prediction intervals, the delta

method is not widely adopted by the literature focusing on uncertainty quantification and deep

learning due to problems associated with the computation of the Jacobian matrix (J). In

particular, due to the high number of parameters in ω, the complex calculation of J is prone

to error (Tibshirani, 1996); the near singularities in the model due to overfitting (Tibshirani,
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1996) or due to the small sample size (De vieaux et al., 1998) make the computation of the

gradient J unreliable or unfeasible. Additionally, being their research focused only on single layer

feedforward neural networks with sigmoidal activation function, it does not find applicability in

some widely adopted neural network structures (e.g. convolutional neural networks, recurrent

neural networks, and deep feedforward neural networks).

An alternative approach to asymptotic prediction intervals is to construct a finite-sample

approximation of the prediction interval. Bootstrap procedures have become increasingly pop-

ular, despite their computational requirements, as they provide a reliable solution to obtain the

predictive distribution of the output variable in both shallow and deep neural networks. As also

highlighted by Tibshirani (1996), bootstrapping prediction intervals provide a feasible alterna-

tive that does not suffer from the matrix inversion problem and does not depend on the existence

of derivatives (see subsection A.2 for a complete analysis and derivation). The literature has

developed many different forms of bootstrapping methods. One of its simplest and most popular

forms is the percentile or naive bootstrap proposed by Efron (1979). Under this method, ob-

servations are drawn from an independent and identically distributed sample with replacement,

and each observation has the same probability of being extracted (see, for example, Carney et

al., 1999; and Errouissi et al., 2015 for implementation of the naive bootstrap methodology for

uncertainty estimation). However, recent advances in the neural network literature (Pearce et

al., 2018; Lee et al., 2015; and Lakshminarayanan et al., 2017) have also shown how resampling

with replacement has a negative impact not only on the prediction accuracy but also on the cor-

rect quantification of the predictive uncertainty of the ensemble itself. Additionally, El Karoui

and Purdom (2018) show how naive bootstrapping becomes completely unreliable in estimating

confidence intervals in low and mid-dimensional settings.

Thus, the literature focusing on uncertainty estimation has proposed alternatives to the

bootstrap approach that allow estimating the uncertainty around DNNs predictions without

performing data resampling. Levasseur et al. (2017) notice that one of the main obstacles for

assessing uncertainty around the outputs of neural network models is the fact that the weights

characterizing the predictions are usually fixed, implying that the output is deterministic. In

contrast, Bayesian neural networks (Denker and LeCun, 1991) - instead of defining deterministic

weights - allow the network weights to be defined by a given probability distribution and can

capture the posterior distribution of the output, providing a probabilistic measure of uncertainty

around the model predictions. Being the approximation of the posterior distribution a difficult

task, the literature focusing on deep Bayesian neural networks has proposed different alternatives

for the estimation of such distribution. These alternatives center around the Bayesian interpre-

tation of dropout methods to estimate the uncertainty in the model predictions. A noteworthy

example is Gal and Ghahramani (2016a); these authors develop a Monte Carlo (MC) dropout
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to model both parameter and data uncertainty by fitting a deep neural network with dropout

implemented not only at training but also during test phase. During test time, each forward

pass is multiplied by a random variable to generate a random sample of the approximated pos-

terior distribution. Levasseur et al. (2017) analyze the PICP of the procedure proposed by Gal

and Ghahramani (2016a) and conclude that the construction of prediction intervals with correct

empirical PICP is highly dependent on the adequate tuning of the dropout rate.

Applying dropout during the test phase can also be regarded as an approach to estimate

the uncertainty around the predicted outputs from deep neural networks that works outside

the Bayesian framework (see subsection A.3 for a complete analysis and derivation). As one

could notice, using dropout also at test phase allows randomizing the output of the DNN at

each forward pass and thus, by performing T stochastic forward passes, it is possible to obtain

the sample {ŷ(xi; ω̂
(t))}Tt=1. Recent literature focusing on the approximation of the predictive

distribution of DNNs has proposed several algorithms - based on the MC dropout of Gal and

Ghahramani (2016a) - for the estimation of the predictive uncertainty in deep learning outside

a Bayesian framework. As an example, Serpell et al. (2019) augment the MC dropout by

implementing the Mean Variance Estimation (MVE)6 and stochastic forward passes. If the

MVE approach allows modeling the data uncertainty - accommodating a varying e, the Monte

Carlo dropout captures the uncertainty in the model parameters. The two procedures together

allow the correct estimation of σ2
e . Zhu and Laptev (2017) improve over the original Monte

Carlo dropout by estimating the noise level using the residual sum of squares evaluated on a

hold-out set7 - Equation A.14; Kendall and Gal (2017) propose a new loss function that allows

estimating the aleatoric uncertainty from the input data. Finally, Lakshminarayanan et al.

(2017) explain how tuning the dropout rate on the training data implies interpreting dropout

as a tool for Bayesian inference (any Bayesian posterior should be approximated starting only

from the training data).

However, as also highlighted by the simulation results of Levasseur et al. (2017), the present

paper shows how the estimation of the σ2
e depends on the choice of p. As the epistemic un-

certainty in the MC dropout is determined solely by the choice of p, if p is set equal to 1, the

epistemic uncertainty will be zero, returning narrower prediction intervals. We improve over the

results by Levasseur et al. (2017) as we show that choosing the dropout rate that minimizes

the out-of-sample prediction error ensures returning prediction intervals with empirical PICPs

approximately equal to their nominal levels.

6The Mean Variance Estimation method - introduced by Nix and Weigend (1994) - involves fitting a neural
network with two output nodes capturing the mean and the variance, respectively, of a Normal distribution.

7These authors precise that the approach of Gal and Ghahramani (2016a) relies on the implausible as-
sumption of knowing the correct noise level a priori.
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4 Extra-neural networks (Fixed Bernoulli Mask)

In this section we introduce a novel ensemble predictor within deep neural network models. This

methodology also allows us to construct prediction intervals based upon the work of Srivastava et

al. (2014) adopting the original concept of an ensemble of subnetworks, from which the dropout

training is built upon. The Bernoulli mask r? introduces an additional randomization scheme

to the predictions obtained from the ensemble of neural networks that ensures independence of

the individual predictor models.

For notation purposes, we will identify the fixed Bernoulli mask as r̄? as opposed to r?

used in dropout training. In other words, T sets of vectors {r̄?(t)}Tt=1 are sampled from the

Bernoulli distribution prior to training (instead of at test time with Monte Carlo dropout) and

they are kept constant during both train and test phases. This approach reduces to train and

independently fit T random subnetworks on the same dataset. In this setting, generating the

predictive distribution is similar, in spirit, to an ensemble approach that trains different sub-

neural networks on the same dataset. The proposed algorithm - being based on the extremely

randomized trees proposed by Geurts et al. (2006) - is called extra-neural networks.

Let f̄EN (xi) denote the ensemble predictor obtained from the extra-neural networks approach

that is constructed as

f̄EN (xi) =
1

T

T∑
t=1

ft(xi; ω̂
(t)), for i = 1, . . . , n. (7)

We consider T fitted subnetworks defined as ft(xi; ω̂(t)) with t = 1, . . . , T . We use ft to note

that each prediction belongs to a potentially different neural network model; ω̂(t) denotes the

parameter estimates obtained from fitting each subnetwork independently.

Before analyzing the prediction intervals for the extra-neural network, it is convenient to

analyze the factors that influence the prediction accuracy of the model. To do this, we compute

the mean square prediction error (MSPE) of the prediction conditional on the input vector xi.

Then,

MSPE(f̄EN (xi)) ≡ E[(f̄EN (xi)− yi)2] = Bias2(f̄EN (xi)) + V (f̄EN (xi)). (8)

We compute the conditional bias and variance of f̄EN (xi) as

Bias(f̄EN (xi)) ≡ E[f̄EN (xi)− yi] =
1

T

T∑
t=1

E[ft(xi; ω̂
(t))]− f(xi), (9)

and

V (f̄EN (xi)) ≡ E
(
f̄EN (xi)− E[f̄EN (xi)]

)2
= E

[
f̄2
EN (xi)

]
− E2[f̄EN (xi)],
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such that

V (f̄EN (xi)) =
1

T 2

T∑
t=1

T∑
t′=1

(
E[ft(xi; ω̂

(t))ft′(xi; ω̂
(t′))]− E[ft(xi; ω̂

(t))]E[ft′(xi; ω̂
(t′))]

)
.

Furthermore, assuming that the first two statistical moments of all the individual predictors

indexed by t = 1, . . . , T are equal, with E
[
ft(xi; ω̂

(t))
]

= f(xi) + µi, where µi is the bias term,

V
[
ft(xi; ω̂

(t))
]

= σ2
ω̂(xi), and Cov

[
ft(xi; ω̂

(t))ft′(xi; ω̂
(t′))
]

= ci, we obtain

MSPE(f̄EN (xi)) = µ2
i +

1

T
σ2
ω̂(xi) +

T − 1

T
ci. (10)

This expression extends Zhou (2012) by showing that the MSPE of the ensembler (7) depends

on the variance of the individual ensemblers, their covariance and the approximation bias. The

smaller the covariance, the smaller the generalization error of the ensemble. In contrast, if the

different predictors are perfectly correlated (as for the MC dropout) we know that ci = σ2
ω̂(xi)

and thus MSPE(f̄EN (xi)) = σ2
ω̂(xi) +µ2

i - effectively reducing to zero the effect of ensembling.

Similarly, the MSPE is minimized when the errors are perfectly uncorrelated and thus when

ci = 0.

This result has important implications when analyzing the epistemic uncertainty of an extra-

neural network. If it is assumed that the correlation among the predictions from the subnetworks

is equal to zero, then as T → ∞, the MSPE(f̄EN (xi)) converges to zero, assuming that the

approximation bias is negligible. Therefore, a suitable prediction interval is

f̄EN (xi)± z1−α/2

(
σ̂2
ω̂(xi)

T
+ σ̂2

ε

)1/2

, (11)

with σ̂2
ω̂(xi) = 1

T

∑T
t=1(ft(xi; ω̂

(t)) − f̄EN (xi))
2 and σ̂2

ε = 1
n

∑n
i=1

(
yi − f̄EN (xi)

)2, where n is

the size of the test sample.8

As explained in Zhou (2012), the covariance term in equation (10) captures the diversity

existing among the T different subnetworks identifying the extra-neural network. The aim of

the extra-neural network approach proposed in this paper is to construct individual predictors

that are mutually independent such that the prediction interval (11) is valid. The diversity in

the model predictions depends on the variance of the Bernoulli masks generated by the random

sample {r̄?(t)}Tt=1. It is well known that the variance of a Bernoulli distribution is defined as

ς2 = p(1− p); therefore, it can be easily shown that the solution to ∂ς2/∂p = 0 is p = 1/2 and

that ∂2ς2/∂p2 = −2 showing that ς2 is maximized at p = q = 0.5. Therefore, one could conclude

that the covariance in Equation 8 is minimized for p = 0.5 and maximized for p = 0 and p = 1.

8Note that for obtaining a consistent estimator of σ̂2
ε we have imposed homoscedasticity of the error terms

εi over the test sample.
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However, a complete analysis of the covariance of an ensemble of neural networks must

consider the relation existing between the number of hidden nodes and the particular data

generating process analyzed. Based on the literature on approximation theory and DNNs, the

number of hidden nodes defines the approximation power (or flexibility) of the neural networks

(for a summary on the topic, see Calvo-Pardo et al., 2020). Farrell et al. (2021) - by comparing

DNN structures to different nonparametric techniques for approximating unknown continuous

functions - also make explicit the dependence between the number of hidden nodes in the DNN

(Ztot) and the approximation power. Therefore, if the size of the networks is such that the

ambiguity –measure of disagreement among the different networks on a specific input– is too

low, the assumption of c = 0 becomes unrealistic.

Algorithm 1 Extra-neural networks

INPUT: Training Data {xxi ≡ (xi, yi)}Mi=1

OUTPUT: Prediction Interval f̂(x;ω).

1: procedure T learners
2:
3: Define depth and width of original neural network.

4: while (t < T) do
5: Generate a Bernoulli mask r̄? prior to training.
6: Apply Bernoulli mask r̄? to the original neural network.
7: Train random thinned network on xx with random initialization of {Wn

0}Nn=1

8: Trained thinned network → Deterministic forward pass on test data.
9: Store ft(xi; ω̂(t)).

10: Compute the ensemble estimate:

f̄EN (xi) =
1

T

T∑
t=1

ft(xi; ω̂
(t)) (12)

11: Compute the epistemic and aleatoric variance:{
σ̂2
ω̂(xi) = 1

T

∑T
t=1[ft(xi; ω̂

(t))− f̄EN (xi)]
2

σ̂2
ε = 1

n

∑n
i=1

(
yi − f̄EN (xi)

)2 (13)

12: Define Prediction Interval:
f̄EN (xi)± z1−α/2σ̂e, (14)

with σ̂e =
(
σ̂2
ω̂

(xi)

T + σ̂2
ε

)1/2
.

return Prediction interval (14)

Based on the above paragraph, one could conclude that the analysis of the covariance in an

extra-neural network must consider not only that p determines the variance of {r̄?(t)}Tt=1 but
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also that the particular data generating process under study, as Zdropout is also determined by

p. As the two effects must be considered together when choosing the probability p, one must

consider that p converging to 0.5 from above or from below may have a similar impact in terms

of the reduction in c but an opposite effect on the dimension of Zdropout. As p converges to 0.5

from below, the dimensions of the subnetworks will increase (higher probability for each neuron

to be 1 and thus to be retained in the subnetwork). Conversely, p converging to 0.5 from above

will ensure a reduction of the number of hidden nodes in the T subnetworks (higher probability

of being ”dropped out” - q = 1− p).

Algorithm 1 reports the procedure to be used for implementing the extra-neural network.

In order to generate {ft(x; ω̂(t))}Tt=1, we sample T vectors {r̄?(t)}Tt=1 prior to training. Each

fixed Bernoulli mask is applied independently to the original network returning T independent

subnetworks of size Z(t)
dropout ≤ Ztot. Each subnetwork is then trained independently on xx, and

T deterministic forward passes are performed at test phase. Thus, even if the novel algorithm

is based upon the original idea of dropout proposed by Srivastava et al. (2014) and introduces

randomness by means of a random sample {r̄?(t)}Tt=1, it is closer to classical ensemble methods

than to training with dropout. This has important implications while training. In this case,

performing weight scaling at test phase (or train phase if the algorithm is implemented in

Keras) is not required as the Bernoulli mask is applied before training. Training T independent

subnetworks identified by {r̄?(t)}Tt=1 makes no longer necessary to ensure that the expected total

input to the units of a DNN at test time is approximately the same as the expected value at

training (see Goodfellow et al., 2016).

The procedure reported in Algorithm 1 shows that an extra-neural network is an ensemble

of T neural networks with randomized weights (the interested reader is referred to Appendix

B for a brief analysis on random weight initialization) and structures and no data resampling.

Based on the results reported by Pearce et al. (2018), Lee et al. (2015) and Lakshminarayanan

et al. (2017) regarding deep ensembles9 it is expected that the extra-neural network algorithm

will improve over a bootstrapping ensemble approach. More precisely, Lee et al. (2015) show

how parameter resampling without bootstrap resampling - equivalent to training T different

f(xi; ω̂
(t)) on xx - outperforms a bootstrap approach (analyzed in subsection A.2) in terms of

predictive accuracy; Lakshminarayanan et al. (2017) complement the results of Lee et al. (2015)

by showing that data resampling in deep ensembles deteriorates not only the prediction accuracy

but also the definition of the predictive uncertainty of the ensemble itself.

Therefore, the extra-neural networks by randomizing not only the weights of the T subnet-

works but also their structure, and by fitting the networks on the entire training set {xi}Mi=1,

are expected to outperform the bootstrap approach in terms of both out-of-sample prediction

9Deep ensembles and ensembles of DNNs are considered synonym for the rest of the paper.
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accuracy (Lee et al., 2015) and uncertainty quantification (Lakshminarayanan et al., 2017)10.

The main drawback of the extra-neural network algorithm is associated to the computing

power required (see Section 5). In particular, if the computational requirements of the pro-

posed methodology are equivalent to existing bootstrapping procedures (with and without data

resampling), they are significantly greater than the ones of the MC dropout methodology. How-

ever, due to the parameter sharing in the MC dropout, the extra-neural networks will ensure a

lower MSPE (see equation (10)). Additionally, it is expected an improvement also in terms of

hyperspace: the novel methodology allows reaching a good estimation performance without the

pivotal fine-tuning that is required by the other procedures. As in the case of bootstrap based

procedures, the independence among the different learners in the extra-neural networks allows

parallel computing, ensuring savings in computational time. Last but not least, the extra-neural

network improves over a bootstrap based approach in terms of applicability: if the bootstrap

approach relies on the assumption of i.i.d observations, the extra-neural network does not.

All the results analyzed in Section 3 and 4 will be formally evaluated in an extensive simu-

lation study focused on assessing if the reported procedures return correct prediction intervals

(empirical PICP close to the nominal one) for different significance levels and data generating

processes. Finally, the empirical experimental setting of Hernández-Lobato and Adams (2015)

is implemented to compare the performance (in terms of RMSPE) of the different algorithms.

5 Monte Carlo simulation

The aim of this simulation section is twofold. First, we assess the accuracy of the pointwise

predictions of the above ensemble prediction models, and we study the empirical PICPs asso-

ciated to each prediction model. Second, using the same experimental settings, we evaluate,

empirically, that the covariances between the individual learners in the extra-neural network

approach are close to zero (ci = 0 in expression 10).

We analyze the empirical PICPs obtained using the bootstrap approach (expression A.9),

the MC dropout (expression A.15), and the extra-neural network (expression 11)11. For each

prediction interval, the empirical PICPs (ᾱ) for three different significance levels (0.01, 0.05, and

0.10) are computed. This allows evaluating the correctness of the constructed prediction intervals

for different significance levels. All three procedures are analyzed for increasing T = [30, 50, 70],

and for a sample size M + n = 1200 + 300. When the small-dimensional linear process is

10By considering deep ensembles the equivalent of a random forest (Breiman, 2001) where the single learn-
ers are neural networks and where the parameter uncertainty is captured not by the random subset selection
of features at each node (trees) but by random weight initialization, the extra randomization introduced by
extra-neural networks is comparable to the extremely randomized trees in Geurts et al. (2006). In this case,
randomizing also the structure is equivalent to randomizing the cut-point at each node in a tree.

11The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated
support services at the University of Southampton, in the completion of this work.
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considered - in order to evaluate the impact that different ps may have on the correct definition

of the prediction intervals - we will consider p = [0.995, 0.990, 0.950, 0.900, 0.800]12. Subsection

5.1 reports the setting for the simulation of the small dimensional linear and nonlinear data

generating processes; subsection 5.2 summarizes the results. Subsection 5.3 confirms empirically

the absence of correlation between the different individual predictors in the extra-neural network

approach using the same simulation settings as subsection 5.1.

5.1 Data Generating Processes

When the nonlinear data generating process (DGP) is considered, the dataset x ∈ R5 is defined

by a multivariate normal distribution. The desired pairwise correlation matrix of the series in

x is defined as:

C =


1 0.5 0.6 0.7 0.5

0.5 1 0.7 0.8 0.5
0.6 0.7 1 0.7 0.5
0.7 0.8 0.7 1 0.8
0.5 0.5 0.5 0.8 1

 (15)

The choice of the pairwise correlations in C is random but such that the matrix is guaranteed

to be positive definite. Given these conditions, the simulated multivariate normal distribution

will have µ = [−4, 2, 2, 2, 1]13, and Σ = C. The nonlinear DGP is defined by a ReLu DNN with

two hidden layers of width 3 and 2 respectively, and bias equal to 1 across all hidden layers

T1 = θ(1− 3x1 − 2x2 + 1x3 + 5x4 − 3x5)︸ ︷︷ ︸
h11

+ θ(1 + 4x1 + 5x2 + 2x3 + 2x4 − 5x5)︸ ︷︷ ︸
h21

+ θ(1− 3x1 − 4x2 + 2x3 − 2x4 + 3x5)︸ ︷︷ ︸
h31

T2 = θ(1− 1h11 + 3h21 + 5h31)︸ ︷︷ ︸
h12

+ θ(1− 2h11 + 3h21 + 5h31)︸ ︷︷ ︸
h22

y = 1 + h12 + 2h22 + ε (16)

with ε ∼ N(0, 0.7), θ(x) = max{0,x}, and the coefficients (network weights) randomly sampled

with replacement from [−5, 5]. The standard deviation of the error term is set equal to 0.7

in order to reduce the nuisance in the system by differentiating the stochastic behavior of the
12The choice of the dropout rate q = 1 − p is dictated by a really small network size and also a fairly small

simulated dataset.
13The means are randomly sampled with replacement from a domain defined in [−5, 5].
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regressors x and of the error term14. Figure 2 provides a visual representation of the underlying

DGP and the obtained dependent variable y:
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Figure 2: Data Generating Process

Next, a linear DGP that allows for interactions among the variables is also simulated. Also

in this case x ∈ R5, with x1 ∼ N(−4, 1), x2 ∼ N(1, 1), x3 ∼ N(1, 1), x4 ∼ N(1, 1), and

x5 ∼ N(5, 1)15. The cross-correlation matrix is defined in 15. The analyzed DGP is16

y = −8x1 + 2x2 + 2x3 + 2x4 + 7x5 + 3x1x2 − x3x5 + 2x1x4 + ε (17)

14A similar DGP is also simulated in Tibshirani (1996) with x ∈ R4, and a shallow network with sigmoid
activation functions and two hidden nodes; the Gaussian error ε follows the same distribution.

15The vector of means is generated from U [−5, 5] and then rounded to the closest digit.
16The interaction terms are introduced in order to have an unknown network structure. In fact, if no inter-

actions are assumed, the true network structure is a shallow network with one hidden node.
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The parameters chosen for the vector of coefficients are generated from a U [−10, 10] and then

rounded to the closest digit; the error term is ε ∼ N(0, 1) and it is uncorrelated with the input

variables.

For both linear and nonlinear DGPs, a total of 1500 observations are generated, 1200 obser-

vations are used for the training set and 300 for the test set. The datasets are normalized so

that x has zero mean and unit variance.

When fitting the neural networks, no optimal tuning of the neural network hyper-parameters

and structure is conducted17. The reasons for imposing the network hyper-parameters as opposed

to fine-tuning them are: (i) it is ensured that the simulation results obtained are not dependent

on fine-tuning; (ii) it allows conducting a comparison of the empirical PICPs across the three

different methodologies analyzed, and (iii) it allows analyzing the impact that different ps may

have on the empirical coverage probabilities.

When the nonlinear DGP is simulated, it is assumed that the neural network structure is

known (Z1 = 3 and Z2 = 2). Conversely, when the linear DGP is analyzed - as the true network

structure is unknown, and due to the simplicity of the DGP - a shallow network with 5 hidden

nodes is considered. When a nonlinear DGP is analyzed a p = 0.995 is applied (the true network

structure is known and thus a low dropout rate is required); conversely, when a linear DGP is

fitted - by imposing p = [0.995, 0.990, 0.950, 0.900, 0.800] - it is possible to analyze the impact

that different ps may have on the empirical PICPs. A sensible choice of the network parameters

for the linear process is to use the Adam optimizer with learning rate 0.1 and 10 epochs; for

the nonlinear process, the Adam optimizer with learning rate 0.01 and 80 epochs is considered

instead.

5.2 Simulation Results

Table 1 reports the out-of-sample performance, and the empirical coverages of the three pro-

cedures analyzed. When the nonlinear DGP is considered, one could notice that the three

methodologies return - for the three different significance levels - prediction intervals with em-

pirical PICPs approximately equal to the theoretical ones. Focusing on the linear DGP, one

could notice that the bootstrap approach returns prediction intervals with empirical coverages

approximately equal to the significance level at which they are constructed; when the extra-

neural network is considered, all prediction intervals - for the different ps considered - have an

empirical PICP approximately equal to the nominal one; yet, the MC dropout returns correct

prediction intervals only for given values of p.

17For the correct choice of the network hyper-parameters, the analyst should ensure that the test set used
for parameter tuning and for the aleatoric uncertainty computation is distinct - that is, a hold-out set should
also be generated - otherwise, the resulting under-estimation of the aleatoric uncertainty could lead to narrower
prediction intervals.
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As explained in the previous sections, the epistemic uncertainty in the MC dropout is cap-

tured exclusively by dropout at test time (and thus by the dropout rate q = 1− p). Conversely,

when the extra-neural network is analyzed, the epistemic uncertainty depends not only on the

dropout rate considered, but also on the random weight initialization used for fitting the T sub-

networks. As a result, the correct construction of the prediction intervals using the MC dropout

approach requires identifying the optimal dropout rate as opposed to the extra-neural network

algorithm proposed in the present paper.

Table 1: The table reports the out-of-sample mean average prediction error (MAPE) and mean
squared prediction error (MSPE) for the analyzed procedures. Additionally, the PICPs at the corre-
sponding significance levels (0.99, 0.95, and 0.90) are also reported. EN1 (EN2) refers to the extra-
neural network fitted to a nonlinear (linear) DGP. MC1 (MC2) refers to the MC dropout fitted to a
nonlinear (linear) DGP. Finally, BOOT1 (BOOT2) reports the results for the bootstrap approach to a
nonlinear (linear) DGP.

Nonlinear Linear

EN1 MC1 BOOT1 EN2 MC2 BOOT2

p 0.995 0.995 - 0.995 0.990 0.950 0.900 0.800 0.995 0.990 0.950 0.900 0.800 -

T = 30

MAPE 1.4979 3.5218 1.8476 1.0322 1.0493 1.1113 1.1196 1.2383 1.2993 1.3152 1.5834 1.6290 2.0478 1.0451
MSPE 3.8232 19.8904 5.4190 1.7208 1.7544 2.0327 2.0315 2.6099 2.9998 2.9527 4.1508 4.0322 7.0050 1.7037
PICP99 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.00 0.01
PICP95 0.05 0.04 0.04 0.03 0.03 0.05 0.04 0.06 0.04 0.04 0.01 0.01 0.00 0.03
PICP90 0.07 0.08 0.06 0.09 0.09 0.08 0.10 0.08 0.07 0.07 0.02 0.02 0.00 0.09

T = 50

MAPE 1.5068 3.5404 1.4480 1.0419 1.0808 1.0668 1.0940 1.2034 1.3044 1.3124 1.5337 1.5842 2.0583 1.0671
MSPE 3.6592 20.0717 3.4133 1.7332 1.8930 1.7991 1.9732 2.4329 3.0670 2.8893 3.8274 3.9688 6.7150 1.8043
PICP99 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01
PICP95 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.01 0.01 0.00 0.04
PICP90 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.10 0.08 0.08 0.01 0.02 0.00 0.08

T = 70

MAPE 1.4756 3.5200 1.6426 1.0423 1.0467 1.1051 1.1611 1.1980 1.3026 1.3042 1.5277 1.5603 2.0060 1.0522
MSPE 3.5096 20.1656 4.3616 1.7131 1.7315 1.9444 2.2202 2.4559 3.0330 2.9104 3.8339 3.8921 6.6385 1.7290
PICP99 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01
PICP95 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.00 0.01 0.00 0.04
PICP90 0.09 0.08 0.08 0.10 0.10 0.09 0.09 0.10 0.07 0.08 0.01 0.02 0.00 0.08

The present research extends the results of Levasseur et al. (2017). Similarly, these authors

state that the construction of prediction intervals with empirical PICPs approximately equal to

the theoretical ones - using the MC dropout approach - depends on the correct choice of the

dropout rate. These authors therefore suggest to tune the dropout rate to return the correct

prediction intervals. The theoretical analysis in Section 3 coupled with the results in Table 1

clearly show that the prediction intervals computed from the MC dropout rely significantly on

the correct choice of the dropout rate. These results also suggest that choosing the dropout rate

that maximizes the out-of-sample accuracy guarantees prediction intervals with the correct ᾱ

(the out-of-sample error is minimized for the p that returns correct prediction intervals).

Although the results in Table 1 show that all three procedures return prediction intervals

with empirical PICPs close to the theoretical ones for both linear and nonlinear DGPs, the
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performance of the extra-neural network approach is clearly superior in terms of PICPs and also

MAPE and MSPE errors. This is particularly the case for α = 0.10. This outperformance is

especially remarkable for the linear process for which we do not impose or know a priori the true

structure of the network. Focusing on the out-of-sample performance, one could notice that: (i)

the out-of-sample errors decrease as T increases, and (ii) for given dropout rates, the ensemble

of neural networks outperforms the bootstrap approach. When focusing on both bootstrap and

extra-neural network algorithms, due to the independence among the single learners, the out-of-

sample MAPE and MSPE decrease as T increases (especially for the nonlinear case); the same is

not true for the Monte Carlo dropout due to the perfect correlation between model predictions.

Thus, when the number of learners increases, due to the randomness introduced into the system,

the reduction in variance ensures gains in the out-of-sample prediction accuracy. Similarly, the

empirical PICP of the proposed algorithm, especially for α = 0.10, improves as T increases.

It is also important to mention that the width of the prediction intervals is defined as

2z(1−α/2)σ
2
e . This measure provides another important metric for the evaluation and compar-

ison of the prediction intervals. Given the aforementioned assumption of unbiasedness of the

pointwise model predictions, the MSPEs reported in Table 1 are consistent estimates of the con-

ditional variance of the predicted output given the set of covariates, denoted as σ2
e in expression

(5). Thus, by comparing the out-of-sample accuracy of the different methodologies in terms

of MSPE, we are implicitly comparing the widths of the prediction intervals (i.e., lower MSPE

implies a narrower prediction interval). As a result, it is also possible to conclude that the

newly proposed methodology returns prediction intervals narrower than both MC dropout and

bootstrap approaches when the nonlinear DGP is considered. The same is true when the linear

underlying data generating process is considered and the optimal dropout rate q is selected for

the extra-neural network.

As previously mentioned, both the bootstrap and the extra-neural network approaches allow

distributing in parallel the fitting of the single learners. Therefore, by distributing the imple-

mentation of the algorithms across a number of cores equal to T , the execution time of the

three algorithms would be equivalent. But even if the execution time can be considered as com-

parable, the computational load varies significantly, with the Monte Carlo dropout being the

most efficient methodology. Therefore, to further compare the performance of the three different

approaches analyzed in the present simulation, the average time of execution (across 10 different

runs) of the extra neural network, Monte Carlo dropout, and bootstrap approaches –with a

sequential job implementation– on a Kaggle notebook, is collected for increasing T = 30, 50, 70,

reporting also the relative time of execution with respect to Monte Carlo dropout. Implementing

the following analysis on a Kaggle notebook allows providing results based on system require-

ments that can be considered "standard" and publicly available (and thus, it provides also an
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objective measure of the computational load of the single algorithms publicly accessible).

When the nonlinear data generating process is considered, the ratios of the average time of

execution of the extra-neural network with respect to the Monte Carlo dropout, for T = 30, 50

and 70, are 23.09, 34.81, and 42.47. For the bootstrap approach the ratios are 22.54, 34.34, and

41.61. When the linear data generating process and a dropout rate of 0.005 are considered, the

relative execution times of the extra-neural network are 14.29, 17.55, and 19.27; for the bootstrap

approach, we obtain 13.44, 16.72, and 18.84. Therefore, one can conclude that for increasing

T , the gains in computational time from using the Monte Carlo dropout approach increase at

a slower rate than the increase in the ensemble dimension. One also should notice that the

difference, in terms of the average time of execution, between the newly proposed extra-neural

network and the bootstrap approach is expected to increase for increasing neural network sizes.

5.3 Analysis of the correlation among learners

An additional exercise is carried out to test if the assumption of independence among the single

learners used in implementing the extra-neural network algorithm is correct, and thus if Equation

11 is valid. The same simulation settings as described in subsection 5.1 are implemented: to

approximate the nonlinear DGP defined in (16), a neural network with two hidden layers, Adam

optimizer with learning rate 0.01, 80 epochs and p = 0.995 is trained on a sample of M = 1200

observations.

While studying if ci in Equation 10 can be rightly assumed equal to zero, one should notice

that it is important to respect the heteroscedasticity assumption used in computing the epistemic

uncertainty, σ̂2
ω̂(xi). That is, the correlation among predictors should be computed for a given

xi, returning n correlations among the T learners with n = 300 being the length of the test

sample.

In order to do so, it is necessary to introduce variability in the ensemble predictions, while

preserving the extra-neural network estimates. The strategy adopted in the present paper is to

introduce uncertainty through bootstrap methods. The bootstrap procedure for T learners is as

follows: given {xi}Mi=1 the set of covariates and {yi}Mi=1 the target variable with M the length of

the training set and {xi}ni=1 the set of covariates in the test sample, each subnetwork ft with t =

1, . . . , T is trained on {xi, yi}Mi=1 and the trained weights ω̂(t) = {W1,(t), . . . ,WN,(t), b
(t)
1 , . . . , b

(t)
N }

are stored. Then, {xi}ni=1 is resampled with replacement B times to obtain B bootstrapped

replica {x?,bi , . . . ,x?,Bi }ni=1 with b = 1, . . . , B. From the resampled datasets, B out-of-sample

predictions {ŷ?,bi , . . . , ŷi
?,B}ni=1 are obtained for each ft for a fixed set of weights ω̂(t), with

t = 1, . . . , T . Starting from the bootstrapped predictions, the covariance among the T learners

is computed as follows: for each observation xi with i = 1, . . . , n, B predictions from each

subnetwork ft are stored. As a result, n variance-covariance matrices (T × T ) are obtained
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and for each xi it is possible to compute the average covariance between the ft subnetworks

(thus satisfying Equation 10). Below, the average covariance (average across the n obtained

covariances) is reported.

Table 2: The table reports the summary statistics (mean, standard deviation, skewness, Kurtosis, and
the p-value from the Shapiro test for normality) for the bootstrap replica for each of the T learners.
Additionally, it also reports the true mean prediction (prior to resampling) for each subnetwork.

True Mean Pred. Mean Boot. Stand. Dev Kurtosis Skewness Shapiro

1 71.5608 71.7642 4.5904 3.2397 0.3521 0.0739
2 71.9841 71.7823 4.4271 3.0619 -0.0639 0.8900
3 71.6901 71.8064 4.6287 2.6389 0.0480 0.6274
4 71.4629 71.7165 4.7014 2.4896 0.1851 0.0229
5 71.7296 71.9098 4.7610 2.8031 -0.0253 0.6893
6 72.1818 72.4281 4.2307 3.3075 0.0607 0.2826
7 71.5742 71.2419 4.5291 3.0823 0.0541 0.7663
8 71.6073 71.6189 4.4282 2.8779 -0.0019 0.3129
9 71.5663 71.4349 4.7200 2.5119 0.1792 0.0484

10 71.4790 71.7649 4.9590 3.2489 0.3611 0.0143
11 71.6780 71.9073 4.8519 3.1276 0.1247 0.9003
12 72.0937 72.0630 4.4939 3.4614 0.5351 0.0007
13 71.6108 71.8293 4.4362 2.6581 -0.0052 0.2343
14 71.5063 71.3657 4.2569 2.5846 0.2001 0.1142
15 71.6539 71.5459 4.9013 3.6469 0.1230 0.0749
16 71.5550 71.7832 4.7242 3.0683 0.1915 0.6314
17 71.7348 71.5783 4.8394 2.7690 0.0973 0.5168
18 71.7149 71.3114 4.4329 2.9711 0.0177 0.8693
19 71.4578 71.6132 4.2455 2.4722 0.1635 0.0650
20 71.6526 71.5065 4.6349 3.0424 0.1277 0.2733
21 71.7326 72.2212 4.6082 3.0612 -0.0401 0.8511
22 71.5498 71.6016 4.9611 3.2911 0.3268 0.0115
23 71.6915 71.7282 4.5501 3.0412 0.1021 0.4382
24 71.4712 71.3337 4.8462 3.4061 0.1846 0.1460
25 71.7813 72.1153 4.7040 3.2497 -0.0248 0.8850
26 71.5938 71.7936 4.6807 2.9165 0.1540 0.7936
27 71.5279 71.3395 4.5650 2.5916 -0.2339 0.0585
28 71.5668 71.7543 4.6246 3.0035 0.2647 0.0993

The above bootstrap exercise is conducted imposing B = 100 and T = 3018, when the

underlying data generating process is nonlinear. To control for the validity of the bootstrap

exercise, it is necessary to study if the bootstrap predictions of each ft learner are unbiased

and, similarly, if the ensemble of the bootstrap predictions is an unbiased estimate of the out-of-

sample target variable. For each of the T = 30 learners, the mean, the standard deviation, the

kurtosis, the skewness, and the p-value from the Shapiro test are collected. The results reported

in Table 2 show how the bootstrapped means are approximately equal to the mean prediction

obtained on the test set {xi}ni=1, and that the null hypothesis of normality is rejected at 0.05

18Unreported results, available upon request, confirm the obtained results for T = 50, 70.
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significance level only five times19.

The average covariance obtained with the procedure above is 0.0093. Thus, these results

show how the bootstrap samples from the extra-neural network predictions are independent and

unbiased, with the average prediction over the test sample approximately normal. The average

prediction is approximately equal to the average of the observed target variable, and we fail to

reject the null hypothesis of normality from the Shapiro-Wilk test at 0.05 significance level. It

is then possible to conclude that also the ensemble of the bootstrap predictions is an unbiased

estimate of the out-of-sample target variable. To further corroborate the assumption of inde-

pendence, the average correlation (and absolute correlation) across the T average bootstrapped

predictions is computed. The average absolute correlation among the T learners is 0.0498, and

the average correlation is 0.0124.

To summarize, the simulation results prove that the predictions across the T learners in the

extra-neural network are independent and thus, that Equation 11 is valid. Additionally, the

simulated results show that the proposed extra-neural network methodology not only returns

correct prediction intervals but it also improves the forecast accuracy for both deep and shallow

ensembles. Based on Equation 10, one could also notice that the PICP improves not only by

correctly estimating the variance but also by providing more accurate pointwise predictions of

the true observations. The following section, by using the experimental settings of Hernández-

Lobato and Adams (2015), evaluates the out-of-sample accuracy in terms of root mean square

prediction error (RMSPE) of the novel approach for real world datasets.

6 Empirical Analysis

Hernández-Lobato and Adams (2015) after proposing a novel scalable method for learning

Bayesian neural networks - called probabilistic backpropagation (PBP) - evaluate the perfor-

mance of their novel methodology on real world datasets. The experimental settings used in

their evaluation are widely adopted by the literature focusing on deep learning (see, for exam-

ple, Gal and Ghahramani 2016a; and Lakshminarayanan et al., 2017) when evaluating novel

algorithms. Using their experimental setup ensures comparability of the results with the vari-

ational inference method by Graves (2011), their novel probabilistic backpropagation, the MC

dropout in Gal and Ghahramani (2016a), and the deep ensemble approach developed by Laksh-

minarayanan et al. (2017). Therefore, we implement the extra-neural nets approach proposed

herein to the different datasets discussed by these authors and compare their performance in

terms of RMSPE.20 Furthermore, the present empirical application (focused on shallow struc-

19Two subnetworks are missing as the random fixed Bernoulli mask returned the null model.
20The original experiment of Hernández-Lobato and Adams (2015) evaluates the models not only in terms

of RMSPE but also in terms of predictive log-likelihood (the latter being extremely relevant in Bayesian learn-
ing). Being the present paper focused on evaluating the accuracy of different procedures in constructing predic-
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tures in order to allow for cross-comparability) complements the results reported in Table 1 by

analyzing the RMSPE of the extra-neural network in large dimensional settings. The obtained

RMSPEs (see also Equation 10), by capturing both bias and variance of the predictions, provide

an additional indication regarding the accuracy of the prediction intervals obtained from the

extra-neural network algorithm.

The experimental setup is as follows: 10 datasets are analyzed. Each dataset is split into

random training (0.90 of the observations) and test (0.10 of the observations) sets B = 20 times,

and the average test set performance (RMSPE) and relative standard error are reported. As

an exception, the Protein and Year Prediction MSD datasets are split only 5 and 1 times into

train and test sets. The datasets are normalized to guarantee that the regressors have zero mean

and unit standard deviation. The same network architecture is considered: one hidden layer

ReLu neural network with Z1 = 50 for the small datasets and Z1 = 100 for the larger Protein

and Year Prediction MSD datasets. Each neural network is trained for 40 epochs. Following

Gal and Ghahramani (2016a), we use a dropout rate of 0.05, Adam optimizer and a batch

size of 32. We decided to use the same dropout rate as in Gal and Ghahramani (2016a) for

comparability reasons. When implementing the Adam optimizer, the parameters of interest are:

a) the learning rate, b) β1, capturing the exponential decay for the first moment estimates,

c) β2, representing the exponential decay for the second moment estimates, d) the learning

decay over each update, e) whether or not to apply the AMSGrad variant of the algorithm

(Reddi et al., 2019), f) whether or not to clip the gradients when their L2 norm exceeds a pre-

specified value, and g) whether or not to clip the gradients when their absolute value exceeds

a pre-specified value. When performing the empirical analysis, the learning rate adopted is

0.01, β1 = 0.9, and β2 = 0.999, the learning decay is set equal to 0, the AMSGrad variant

and both options of gradients clipping are not implemented (defaults in the Adam optimizer

of Keras for RStudio). For the implementation of the competing methods, we refer the reader

to Gal and Ghahramani (2016a), Hernández-Lobato and Adams (2015), and Lakshminarayanan

et al. (2017). Lakshminarayanan et al. (2017) use 5 networks in their ensemble and Gal

and Ghahramani (2016a) perform 10000 stochastic forward passes21. In order to allow for a

fair comparison between the deep ensemble of Lakshminarayanan et al. (2017) and the novel

algorithm proposed in the present paper, we fit an extra-neural network with 5 subnetworks.

Furthermore, in order to compare the predictive performance of Algorithm 1 with the MC

dropout of Gal and Ghahramani (2016a), we also consider an extra-neural network with 70

subnetworks.

tion intervals for regression tasks, only the former performance metric is reported.
21This is not directly reported by the authors and it is inferred from the code reported in their Github page

(Gal and Ghahramani, 2016c).
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Table 3: The table reports the average test RMSPE and relative standard error (SE) for the varia-
tional inference method (VI) of Graves (2011); the probabilistic backpropagation (PBP) of Hernández-
Lobato and Adams (2015); the MC dropout of Gal and Ghahramani (2016a); and the deep ensemble
proposed by Lakshminarayanan et al. (2017). Extra-net1 uses T = 70, while Extra-net2 uses T = 5.
The number of observations is reported as M + n, and the dimension of the input as d. In bold the
lowest average RMSPE is highlighted.

Dataset (M+n) d VI PBP MC-Dropout Deep Ens. Extra-net1 Extra-net2

Boston Housing 506 13 4.32±0.29 3.01±0.18 2.97±0.19 3.28±1.00 2.80±0.15 3.22±0.21
Concrete Strength 1030 8 7.19±0.12 5.67±0.09 5.23±0.12 6.03±0.58 5.26±0.15 5.09±0.10
Energy Efficiency 768 8 2.65±0.08 1.80±0.05 1.66±0.04 2.09±0.29 0.59±0.01 0.72±0.02
Kin8nm 8192 8 0.10±0.00 0.10+0.00 0.10±0.00 0.09±0.00 0.08±0.00 0.08±0.00
Naval Propulsion 11934 16 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.03±0.00
Power Plant 9568 4 4.33±0.04 4.12±0.03 4.02±0.04 4.11±0.17 4.12±0.05 4.24±0.04
Protein Structure 45730 9 4.84±0.03 4.73±0.01 4.36±0.01 4.71±0.06 4.32±0.01 4.36±0.02
Wine Quality Red 1599 11 0.65±0.01 0.64±0.01 0.62±0.01 0.64±0.04 0.63±0.01 0.64±0.01
Yacht Hydrodynamics 308 6 6.89±0.67 1.02±0.05 1.11±0.09 1.58±0.48 0.72±0.06 0.97±0.06
Year Protection MSD 515345 90 9.03±NA22 8.88±NA 8.85±NA 8.89±NA 8.84±NA23 8.97±NA

Table 3 reports the average RMSPE and standard errors; in bold are reported the lowest

average RMSPEs. From the results reported in Table 3, it is possible to compute the 1 − α

confidence intervals around the average RMSPE (for those cases for which the simulated standard

errors are different from zero and well defined) as µRMSPE ± z1−α/2 ∗ σ/
√
B, with σ/

√
B the

simulated standard errors over B simulated samples. More importantly, it is possible to test the

null hypothesis: H0 : µaRMSPE = µbRMSPE that assesses statistically the relative magnitudes of

the average RMSPEs in pairwise comparisons. The extra-neural network is considered as model

b(aseline) and the competing models in Table 3 as model a(lternative). We test this pairwise

null hypothesis by constructing the following confidence intervals:

(µaRMSPE − µbRMSPE)± z1−α/2
σa + σb√

B
(18)

The usual interpretation of confidence intervals for two-sided tests applies. If the zero is included

in the confidence interval (18), one cannot reject the null hypothesis of equal average RMSPEs

across competing models at an α significance level. If the confidence interval is inside the negative

real line, model b underperforms model a, and if the confidence interval is inside the positive

real line, we conclude that model b outperforms model a, at 0.05 significance level. It is worth

noting that the confidence interval (18) is constructed under the assumption that the RMSPE

are independent across models. It is also plausible to assume that these statistics are positively

correlated. In the latter case we are not able to compute the correct confidence intervals as we

do not have specific information on the RMSPEs of each simulation for the competing models.

Nevertheless, the positive correlation between the models guarantees a smaller confidence interval

than (18) but centred at the same point. Therefore, rejecting the null hypothesis of equal average

22For the last dataset, it is not possible to compute the SE as only 1 split is performed.
23If the predictions are rounded to the closest digit, or the floor operator is used, the RMSPE is 8.85.
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RMSPEs using the above expression guarantees the rejection of the null hypothesis also in case

of positive correlation, due to narrower confidence intervals.24 As an illustrative example we

discuss the results for the Energy Efficiency dataset. In this case the confidence intervals for

the difference between the RMSPEs of the variational inference method (Graves, 2011), of

the probabilistic backpropagation (Hernández-Lobato and Adams, 2015), of the MC Dropout

(Gal and Ghahramani, 2016a), of the Deep ensemble (Lakshminarayanan et al., 2017), with

the extra-neural network are: [1.88; 2.24], [1.09; 1.33], [0.97; 1.17], and [0.91; 2.09], respectively.

Clearly, these intervals provide empirical evidence rejecting the null hypothesis and in favour

of the extra-neural network approach. Unreported results, available from the authors upon

request, show that at a 95% confidence level, the extra neural network approach outperforms

the variational inference method (Graves, 2011) in all cases except for the Wine Quality Red

dataset. The method also outperforms the probabilistic backpropagation (Hernández-Lobato

and Adams, 2015) and the Monte Carlo dropout (Gal and Ghahramani, 2016a) for the Protein

Structure and Yacht Hydrodynamics datasets. It also outperforms the deep ensemble approach

of Lakshminarayanan et al. (2017)25 at a 0.05 significance level for the Protein Structure datasets

and, importantly, the reported standard errors are considerably lower than under this approach.

The above null hypothesis to test the equality of RMSPEs can be also extended to multiple

comparisons across models. In particular, we are interested in testing the composite null hypoth-

esis H0 : µ
aj
RMSPE = µbRMSPE , for all j = 1, . . . , 4, with aj denoting the four competing models.

The alternative hypothesis is given by the RMSPE of model b being different from at least one

of the competitors. In this case it is well known that the critical values need to be adjusted to

guarantee an overall significance level equal to 0.05 for the composite null hypothesis. Following

the same strategy, we test this hypothesis using confidence intervals as in (18) but adjusting the

critical value. More precisely, based on 0.05 = 1− (1−α)4, computing the individual confidence

intervals at 0.013 significance level will ensure reaching conclusions at an overall 0.05 signifi-

cance level. The corresponding critical value from the Normal distibution is z1−0.013/2 = 2.49.

For the Energy Efficiency dataset discussed above, when adjusted for multiple comparison, the

corresponding confidence intervals of the competing models against the extra-neural network

model are [1.84; 2.28], [1.06; 1.36], [0.95; 1.19], and [0.75; 2.25], which provide ample evidence of

the superiority of the latter method in terms of RMSPE. Unreported results also show that the

extra-neural network outperforms the variational inference and the probabilistic backpropaga-

tion in the Protein Structure and Yacht Hydrodynamics datasets. It outperforms the Monte

Carlo dropout in the Yacht Hydrodynamics datasets, and the deep ensemble approach in the

24More specifically, the amplitude of the confidence interval under positive correlation between the observa-
tions is ((σa)2+(σb)2−2cov(a,b))1/2√

B
, that is strictly smaller than σa+σb

√
B

if cov(a, b) > 0.
25The deep ensemble proposed by Lakshminarayanan et al. (2017) is a novel algorithm that it is shown to

consistently outperform classic bootstrap based approaches.
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Protein Structure dataset.

As an aside comment, we also note that, with the exception of the Concrete Strength dataset,

increasing the number of learners leads to an increase in the out-of-sample accuracy, further

validating the independence among the different predictors.

As an additional robustness exercise, the extra-network algorithm is also implemented using

deep structures: when the small datasets are considered, deep neural networks with 5 hidden

layers and 10 hidden nodes each are trained; when the large datasets are analyzed, the depth of

the subnetworks is 5 with equal width of 20 hidden nodes per layer. The results suggest that the

outperformance of the extra-neural network approach over state-of-art deep learning algorithm

is robust also for deep structures26.

7 Conclusions

This article proposes a novel model based on an ensemble of deep neural networks. Our novel

approach builds upon the work of Geurts et al. (2006) by extending the extremely randomized

trees approach to ensembles of neural networks. The introduction of a Bernoulli mask allows for

an additional randomization scheme in the prediction of the individual learners that ensures not

only the correct construction of the prediction intervals, but also training the neural networks

on the entire training set, better generalization performance due to randomized architecture

structures, and accuracy gains due to an increase in the diversity among the members of the

ensemble. The randomization across individual learners guarantees mutual independence across

individual prediction models reducing the variance of the ensemble predictor by 1/T , with T

the number of models comprising the ensemble prediction.

The performance of the proposed algorithms is assessed in a comprehensive Monte Carlo

exercise. The simulation results show the excellent performance of the proposed approach in

terms of mean square prediction error. Similarly, the empirical PICPs obtained from the three

competing ensemble methods assessed in this study (MC dropout, bootstrap approach, and

extra-neural network) are close to the nominal significance levels when tested using out-of-sample

data. Nevertheless, the extra-neural network introduced in this paper is shown to outperform the

competing models in most cases but more significantly at a 10% significance level. Additionally,

the simulation results also show the robustness of the extra-neural network approach to the

choice of the dropout rate, as opposed to the MC dropout approach. In fact, in order to return

correct prediction intervals with MC dropout, it is necessary to fine-tune the dropout rate that

minimizes the out-of-sample error. This is not necessary for the extra-net approach.

These methods for prediction using ensembles of neural networks are further evaluated on

26The results –available upon request– are not reported in Table 3 as they require changes in the experi-
mental settings (network structure) of the original experiment of Hernández-Lobato and Adams (2015).
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real world datasets using the experimental settings of Hernández-Lobato and Adams (2015).

The results suggest that the extra-neural network approach outperforms state-of-the-art deep

learning algorithms in terms of out-of-sample mean square prediction error.

29



References

[1] Breiman, L. (2001) ”Random forests” Machine learning ; 45(1), pp. 5 - 32.

[2] Calvo-Pardo, H. F., Mancini, T. and Olmo, J. (2020) ”Optimal Deep Neural Networks

by Maximization of the Approximation Power”. Available at SSRN: https://ssrn.com/

abstract=3578850 or http://dx.doi.org/10.2139/ssrn.3578850.

[3] Carney, J.G., Cunningham, P. and Bhagwan, U. (1999) ”Confidence and prediction inter-

vals for neural network ensembles”. In IJCNN’99 International Joint Conference on Neural

Networks. Proceedings (Cat. No. 99CH36339); 2, pp. 1215 - 1218.

[4] Claeskens, G., Croux, C. and Van Kerckhoven, J. (2006) ”Variable selection for logistic

regression using a prediction focused information criterion” Biometrics; 62(4), pp.972 -

979.

[5] Cortes-Ciriano, I. and Bender, A. (2019) ”Reliable prediction errors for deep neural networks

using test-time dropout” Journal of Chemical Information and Modeling ; 59(7), pp. 3330 -

3339.

[6] Cybenko, G. (1989) ”Approximation by superpositions of a sigmoidal function” Mathematics

of control, signals and systems; 2(4), pp. 303 - 314.

[7] Denker, J.S. and LeCun, Y. (1991) ”Transforming neural-net output levels to probability

distributions”. In Advances in neural information processing systems; pp. 853 - 859.

[8] De vieaux, R.D., Schumi, J., Schweinsberg, J. and Ungar, L.H. (1998) ”Prediction intervals

for neural networks via nonlinear regression” Technometrics; 40(4), pp. 273 - 282.

[9] Dipu Kabir, H.D., Khosravi, A., Hosen, M.A. and Nahavandi, S. (2018) ”Neural network-

based uncertainty quantification: A survey of methodologies and applications” IEEE access;

6, pp. 36218 - 36234.

[10] Dormann, C.F., Calabrese, J.M., Guillera-Arroita, G., Matechou, E., Bahn, V., Barton, K.,

Beale, C.M., Ciuti, S., Elith, J., Gerstner, K. and Guelat, J. (2018) ”Model averaging in

ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive

inference” Ecological Monographs; 88(4), pp.485 - 504.

[11] Efron, B. (1979) ”Bootstrap methods: another look at the jackknife”. In Annals of Statis-

tics;7(1); pp. 1 - 26.

[12] El Karoui, N. and Purdom, E. (2018) "Can we trust the bootstrap in high-dimensions? the

case of linear models" The Journal of Machine Learning Research; 19(1), pp.170 - 235.

30

https://ssrn.com/abstract=3578850
https://ssrn.com/abstract=3578850
http://dx.doi.org/10.2139/ssrn.3578850


[13] Errouissi, R., Cardenas-Barrera, J., Meng, J., Castillo-Guerra, E., Gong, X. and Chang, L.

(2015) ”Bootstrap prediction interval estimation for wind speed forecasting”. In 2015 IEEE

Energy Conversion Congress and Exposition (ECCE); pp. 1919 - 1924.

[14] Farrell, M.H., Liang, T. and Misra, S. (2021) "Deep neural networks for estimation and

inference" Econometrica; 89(1), pp. 181 - 213.

[15] Fernandez, C., Ley, E. and Steel, M.F. (2001) ”Model uncertainty in cross-country growth

regressions” Journal of applied Econometrics; 16(5), pp.563 - 576.

[16] Gal, Y. and Ghahramani, Z. (2016a) ”Dropout as a bayesian approximation: Representing

model uncertainty in deep learning”. In international conference on machine learning ; pp.

1050 - 1059.

[17] Gal, Y. and Ghahramani, Z. (2016b) ”Bayesian convolutional neural networks with Bernoulli

approximate variational inference” arXiv preprint arXiv:1506.02158

[18] Gal, Y. and Ghahramani, Z. (2016c) ”Dropout as a bayesian approximation: Representing

model uncertainty in deep learning”. Github repository:https://github.com/yaringal/

DropoutUncertaintyExps. Accessed [Online]: 02/10/2020.

[19] Géron, A. (2019) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.

[20] Geurts, P., Ernst, D. and Wehenkel, L. (2006) ”Extremely randomized trees. Machine learn-

ing”; 63(1), pp. 3 - 42.

[21] Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep learning. MIT press.

[22] Graves, A. (2011) ”Practical variational inference for neural networks”. In Advances in neural

information processing systems; pp. 2348 - 2356.

[23] Hernández-Lobato, J.M. and Adams, R. (2015) ”Probabilistic backpropagation for scalable

learning of bayesian neural networks”. In International Conference on Machine Learning ;

pp. 1861 - 1869.

[24] Heskes, T. (1997) ”Practical confidence and prediction intervals”. In Advances in neural

information processing systems; pp. 176 - 182.

[25] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R. (2012)

”Improving neural networks by preventing co-adaptation of feature detectors” arXiv preprint

arXiv:1207.0580.

31

https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/yaringal/DropoutUncertaintyExps


[26] Hornik, K. (1991) ”Approximation capabilities of multilayer feedforward networks” Neural

networks; 4(2), pp. 251 - 257.

[27] Hüllermeier, E. and Waegeman, W. (2020) ”Aleatoric and epistemic uncertainty in machine

learning: A tutorial introduction” arXiv preprint arXiv:1910.09457.

[28] Hwang, J.G. and Ding, A.A. (1997) ”Prediction intervals for artificial neural networks”

Journal of the American Statistical Association; 92(438), pp. 748 - 757.

[29] Kendall, A. and Gal, Y. (2017) ”What uncertainties do we need in bayesian deep learning

for computer vision?”. In Advances in neural information processing systems; pp. 5574 -

5584.

[30] Kingma, D.P., Salimans, T. and Welling, M. (2015) ”Variational dropout and the local

reparameterization trick”. In Advances in neural information processing systems; pp. 2575

- 2583.

[31] Krogh, A. and Vedelsby, J. (1995) ”Neural network ensembles, cross validation, and active

learning”. In Advances in neural information processing systems; pp. 231 - 238.

[32] Kull, M., and Flach, P. (2014) ”Reliability maps: A tool to enhance probability estimates

and improve classification accuracy”. In: Proc. ECML/PKDD, European Conference on

Machine Learning and Principles and Practice of Knowledge Discovery in Databases; pp.

18 - 33.

[33] Lakshminarayanan, B., Pritzel, A. and Blundell, C. (2017) ”Simple and scalable predictive

uncertainty estimation using deep ensembles”. In Advances in neural information processing

systems; pp. 6402 - 6413.

[34] Lambrou, A., Papadopoulos, H. and Gammerman, A. (2011) ”Reliable confidence measures

for medical diagnosis with evolutionary algorithms” IEEE Transactions on Information

Technology in Biomedicine 15(1), pp.93 - 99.

[35] Leamer, E.E. (2016) ”S-values: Conventional context-minimal measures of the sturdiness of

regression coefficients” Journal of Econometrics; 193(1), pp.147 - 161.

[36] LeCun, Y., Bengio, Y. and Hinton, G. (2015) ”Deep learning”, nature; 521(7553), pp. 436 -

444.

[37] Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D. and Batra, D. (2015) ”Why M

heads are better than one: Training a diverse ensemble of deep networks” arXiv preprint

arXiv:1511.06314.

32



[38] Leshno, M., Lin, V.Y., Pinkus, A. and Schocken, S. (1993) ”Multilayer feedforward networks

with a nonpolynomial activation function can approximate any function” Neural networks;

6(6), pp. 861 - 867.

[39] Levasseur, L.P., Hezaveh, Y.D. and Wechsler, R.H. (2017) ”Uncertainties in parameters esti-

mated with neural networks: Application to strong gravitational lensing” The Astrophysical

Journal Letters; 850(1), p.L7.

[40] Li, Y. and Clyde, M.A. (2018). "Mixtures of g-priors in generalized linear models." Journal

of the American Statistical Association; 113, pp. 1828-1845.

[41] Lu, Z., Pu, H., Wang, F., Hu, Z. and Wang, L. (2017) ”The expressive power of neural

networks: A view from the width” In Advances in neural information processing systems;

pp. 6231 - 6239.

[42] Maeda, S.I. (2014) ”A Bayesian encourages dropout” arXiv preprint arXiv:1412.7003.

[43] Mei, S., Montanari, A. and Nguyen, P.M. (2018) ”A mean field view of the landscape of

two-layer neural networks” Proceedings of the National Academy of Sciences; 115(33), pp.

7665 - 7671.

[44] Min, C.K. and Zellner, A. (1993) ”Bayesian and non-Bayesian methods for combining mod-

els and forecasts with applications to forecasting international growth rates” Journal of

Econometrics; 56(1-2), pp.89 - 118.

[45] Neal, R.M. (2012) Bayesian learning for neural networks; Vol. 118. Springer Science &

Business Media.

[46] Nix, D.A. and Weigend, A.S. (1994) ”Estimating the mean and variance of the target

probability distribution”. In Proceedings of 1994 ieee international conference on neural

networks (ICNN’94); 1, pp. 55 - 60.

[47] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B. and Swami, A. (2017)

”Practical black-box attacks against machine learning”. In Proceedings of the 2017 ACM on

Asia conference on computer and communications security ; pp. 506 - 519.

[48] Pearce, T., Brintrup, A., Zaki, M. and Neely, A. (2018) ”High-quality prediction intervals

for deep learning: A distribution-free, ensembled approach”. In International Conference

on Machine Learning ; pp. 4075 - 4084.

[49] Raftery, A.E., Madigan, D. and Hoeting, J.A. (1997) ”Bayesian model averaging for linear

regression models” Journal of the American Statistical Association; 92(437), pp.179 - 191.

33



[50] Reddi, S.J., Kale, S. and Kumar, S. (2019) "On the convergence of adam and beyond"

arXiv preprint arXiv:1904.09237.

[51] Schmidhuber, J. (2015) ”Deep learning in neural networks: An overview” Neural networks;

61, pp. 85 - 117.

[52] Seber, G.A.F. and C.J. Wild (1989) Nonlinear regression. New York, Wiley.

[53] Senge, R., Bösner, S., Dembczynski, K., Haasenritter, J., Hirsch, O., Donner-Banzhohh, N.,

and Hüllermeier, E. (2014) ”Reliable classification that distinguish aleatoric and epsitemic

uncertainty” Information Sciences; 255, pp. 16-19.

[54] Serpell, C., Araya, I., Valle, C. and Allende, H. (2019) ”Probabilistic Forecasting Using

Monte Carlo Dropout Neural Networks”. In Iberoamerican Congress on Pattern Recognition;

pp. 387 - 397. Springer, Cham.

[55] Smith, J. and Wallis, K.F. (2009) ”A simple explanation of the forecast combination puzzle”

Oxford Bulletin of Economics and Statistics; 71(3), pp.331 - 355.

[56] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014)

”Dropout: a simple way to prevent neural networks from overfitting” The journal of machine

learning research; 15(1), pp. 1929 - 1958.

[57] Steel, M.F. (2020) ”Model averaging and its use in economics” Journal of Economic Liter-

ature; 58(3), pp.644 - 719.

[58] Stock, J.H. and Watson, M.W. (2004) ”Combination forecasts of output growth in a seven-

country data set” Journal of forecasting ; 23(6), pp.405 - 430.

[59] Tibshirani, R. (1996) ”A comparison of some error estimates for neural network models”

Neural Computation; 8(1), pp. 152 - 163.

[60] Ungar, L.H., De Veaux, R.D. and Rosengarten, E. (1996) ”Estimating prediction intervals

for artificial neural networks”. In Proc. of the 9th Yale Workshop on Adaptive and Learning

Systems.

[61] Varshney, K.R. and Alemzadeh, H. (2017) ”On the safety of machine learning: Cyber-

physical systems, decision sciences, and data products” Big data; 5(3), pp.246-255.

[62] Wang, H., Zhang, X. and Zou, G. (2009) ”Frequentist model averaging estimation: a review”

Journal of Systems Science and Complexity ; 22(4), p.732.

[63] Warde-Farley, D., Goodfellow, I.J., Courville, A. and Bengio, Y. (2014) ”An empirical

analysis of dropout in piecewise linear networks” arXiv preprint arXiv:1312.6197.

34



[64] Yang, F., Wang, H.Z., Mi, H. and Cai, W.W. (2009) ”Using random forest for reliable

classification and cost-sensitive learning for medical diagnosis” BMC bioinformatics; 10(S1),

p.S22.

[65] Zhang, X., Lu, Z. and Zou, G. (2013) ”Adaptively combined forecasting for discrete response

time series” Journal of Econometrics; 176(1), pp.80 - 91.

[66] Zhang, X., Yu, D., Zou, G. and Liang, H. (2016) ”Optimal model averaging estimation

for generalized linear models and generalized linear mixed-effects models” Journal of the

American Statistical Association; 111(516), pp.1775 - 1790.

[67] Zhou, Z.H. (2012) Ensemble methods: foundations and algorithms. CRC press.

[68] Zhu, L. and Laptev, N. (2017) ”Deep and confident prediction for time series at uber”. In

2017 IEEE International Conference on Data Mining Workshops (ICDMW); pp. 103 - 110.

[69] Zou, D., Cao, Y., Zhou, D. and Gu, Q. (2018) ”Stochastic Gradient Descent Optimizes

Over-parameterized Deep ReLU Networks” arXiv preprint arXiv:1811.08888.

35



A Review of models for prediction intervals

The prediction intervals for the output of a ReLu DNN are derived from its predictive distri-

bution. This distribution can be approximated asymptotically using a Normal distribution; by

resampling methods using bootstrap procedures; and by simulation methods using Monte Carlo

dropout. In this section we review the prediction intervals obtained from these procedures.

A.1 Asymptotic prediction intervals (Delta Method)

In a neural network setting we estimate the predictive variance σ2
e using the test sample, of

size n, such that σ̂2
e = σ̂2

ω̂(xi) + σ̂2
ε . Under the assumption of homoscedasticity of the error

term over the test sample, we can estimate consistently the aleatoric uncertainty such that

σ̂2
ε = 1

n

∑n
i=1(yi − f(xi; ω̂))2. However, estimating the variance due to parameter estimation is

cumbersome unless the specific form of the function f(xi;ω) is known to the modeler. Under this

stringent assumption, the only uncertainty in the proposed model specification is in the choice

of the model parameters ω and hyperparameters. In this case the literature proposes the delta

method to approximate the estimated function f(xi; ω̂) under a first order Taylor expansion

around the true parameter vector ω. More specifically, given a data point xi, and assuming that

the number of observations M is sufficiently large to ensure that ω̂ is a local approximation of

the true parameter vector ω, Ungar et al. (1996) show that it is possible to linearize the neural

network around the data point as:

f(xi; ω̂) = f(xi;ω) + fᵀωi(ω̂ − ω) + oP (|ω̂ − ω|), (A.1)

with fᵀωi a vector with entries ∂f(xi;ω)/∂wN , with N the number of parameters in ω, defined

as (see also De vieaux et al., 1998):

fᵀωi =

[
∂f(xi;ω)

∂w1
,
∂f(xi;ω)

∂w2
, . . . ,

∂f(xi;ω)

∂wN

]
= ∇ωf(xi;ω) (A.2)

Following Seber and Wild (1989), the literature focusing on the delta method (see Hwang

and Ding, 1997; Ungar et al., 1996; De vieaux et al., 1998) proposes the following estimator of

the asymptotic variance of f(xi; ω̂) evaluated at the true parameter vector ω:

σ̂2
ω̂(xi) ≈ σ̂2

ε [f
ᵀ
ωi(J

ᵀ
ωJω)−1fωi], (A.3)

with Jω the Jacobian matrix evaluated at ω, defined as

Jω =

[
∂f(x;ω)

∂ω

]
ω

(A.4)

36



Therefore, using the delta method, the corresponding asymptotic predictive variance of yi is

estimated as σ̂2
e = σ̂2

ε (1 + S(ω̂)), with S(ω̂) = fᵀω̂i(J
ᵀ
ω̂Jω̂)−1fω̂i and under the central limit

theorem, we obtain the following asymptotic prediction interval for yi:

f(xi; ω̂)± z1−α/2σ̂ε
√

1 + S(ω̂), (A.5)

with z1−α/2 the relevant critical value from the standard Normal distribution at an α significance

level.

Hwang and Ding (1997) showed that, regardless the not identifiability of the weights in a

neural network, the prediction interval in (A.5) is asymptotically valid when the feedforward

neural network is trained to convergence.

A.2 Bootstrap predictive distribution

Let {xi}Mi=1 be a sample ofM observations of the set of covariates, with xi ∈ Rd andM the length

of the train sample. Let {yi}Mi=1 ∈ R be the output variable, and define xx
i = (xi, yi) ∈ Rd+1.

Applying the naive bootstrap proposed by Efron (1979) to this multivariate dataset, we generate

the bootstrapped dataset xx,? = {xx,?
i }Mi=1 = {x?i , y?i }Mi=1 by sampling with replacement from

the original dataset xx.

We define P (xx
i ∈ {xx

i}Mi ) = 1 − [(M − 1)/M ]M as the probability of sampling a unique

observation xx
i . By defining the probability P (xx

i ∈ {xx
i}Mi ), it is possible to understand the

results reported in Lee et al. (2015) and El Karoui and Purdom (2018). In particular, as

M → ∞, the probability of sampling a unique observation will tend to a Poisson distribution

with λ = 1, and thus to P (xx
i ∈ {xx

i}Mi ) = 1 − 1/e ≈ 0.63. This implies that for large M ,

only 63% of unique observations will be used to train the ReLu DNNs having a negative impact

on the predictive accuracy (Lee et al., 2015), and on the correct estimation of the variance

(El Karoui and Purdom, 2018) for the construction of confidence intervals in mid-dimensional

settings (M/d→ 0.63).

By repeating this procedure T times, it is possible to obtain T bootstrapped samples defined

as {xx,?(t)}Tt=1. Each bootstrap sample is fitted to a single neural network to obtain an empirical

distribution of bootstrap predictions f(x?(t); ω̂?(t)), with ω̂?(t) = {W1,?(t), . . . ,WN,?(t), b
?(t)
1 , . . . , b

?(t)
N },

for t = 1, . . . , T . In this context, a suitable bootstrap prediction interval for yi at an α signif-

icance level is
[
q̂α/2, q̂1−α/2

]
, with q̂α the empirical α−quantile obtained from the bootstrap

distribution of f(xi; ω̂
?(t)), for t = 1, . . . , T .

Alternatively, we can refine the empirical predictive interval by using the critical value from

the Normal distribution. A suitable prediction interval for xi from the test sample, with i =

1, . . . , n, is

f(xi; ω̂)± z1−α/2σ̂
?
e , (A.6)
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with f(xi; ω̂) the pointwise prediction of model (4) and σ̂?2e = σ̂?2ω̂ (xi) + σ̂2
ε . Under homoscedas-

ticity of the error term εi, the aleatoric uncertainty σ2
ε is estimated from the test sample as

σ̂2
ε = 1

n

∑n
i=1 (yi − f(xi; ω̂))2, with ω̂ the set of parameter estimates obtained from the orig-

inal sample {xx
i}Mi=1. The epistemic uncertainty is estimated from the bootstrap samples as

σ̂?2ω̂ (xi) = 1
T

∑T
t=1[f(xi; ω̂

?(t))− f̄(xi)]
2, with

f̄(xi) =
1

T

T∑
t=1

f(xi; ω̂
∗(t)). (A.7)

Unlike for the delta method, the use of bootstrap methods allows us to ameliorate the effect

of the bias in the prediction of the ReLu DNN model. The bias in model (4) is defined as

E[f(xi;ω)] − f(xi). Therefore, a suitable estimator of this quantity is f̄(xi) − f(xi; ω̂), with

f̄(xi) defined in (A.7), such that the above prediction interval can be refined as

f(xi; ω̂)− (f̄(xi)− f(xi; ω̂))︸ ︷︷ ︸
bias correction

±z1−α/2σ̂
?
e = (2f(xi; ω̂)− f̄(xi))± z1−α/2σ̂

?
e . (A.8)

This bootstrap prediction interval can be further refined by exploiting the average prediction in

(A.7). In this case the variance of the predictor is σ?2ω̂ (xi) = 1
T σ̂

?2
ω̂ (xi) and the relevant prediction

interval is obtained from substituting f(xi; ω̂) in (A.8) with the average prediction f̄(xi), such

that

f̄(xi)± z1−α/2σ̂
?
e , (A.9)

with σ̂?2e = σ?2ω̂ (xi) + σ2
ε , where σ2

ε = 1
n

∑n
i=1

(
yi − f̄(xi)

)2. This expression assumes that the

covariance between the predictions from the different bootstrap samples is zero. Interestingly,

in this case the bias correction is not necessary unless T is small. This is so because the bias

term for the average predictor is negligible and given by 1
T µi.

As highlighted by Dipu Kabir et al. (2018), the variation in the outputs of the different

networks will be driven by the different random initialization of the weights (parameter uncer-

tainty) and the different bootstrap samples (data uncertainty). Being the bootstrap procedure

able to capture both the aleatoric and epistemic uncertainties, it provides more accurate predic-

tion intervals than other methods (i.e., delta method) as also shown in an extensive simulation

study in Tibshirani (1996).

A.3 Monte Carlo Dropout (Stochastic Forward Passes)

This subsection introduces an alternative to bootstrap methods to construct prediction intervals

in a ReLU DNN setting. In this case we introduce randomness into the DNN prediction by

applying Monte Carlo dropout.
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A natural interpretation of this methodology follows from the seminal contribution of Gal

and Ghahramani (2016a). These authors develop a new theoretical framework casting dropout

training in DNNs as approximate Bayesian inference for deep Gaussian processes. As a byprod-

uct of this theory, Gal and Ghahramani (2016a) provide the tools to model prediction uncertainty

with dropout in DNNs. A growing branch of the literature has been focusing on the Bayesian

interpretation of dropout27 (see among others, Gal and Ghahramani (2016a, 2016b) and Kingma

et al. (2015)). Maeda (2014) explains how dropout training can be considered an approximate

learning method of the model parameters that optimizes a weighted sum of the likelihoods of

all possible models.

Starting from this interpretation, one could consider dropout as a tool for the estimation

of the posterior of a Bayesian neural network. More specifically, let p(ŷ |x,X,Y) denote the

distribution of the predictive output ŷ conditional on the set of observations X = {x1, . . . ,xn}

and Y = {y1, . . . , yn}. The predictive probability distribution of the DNN model is

p(ŷ |x,X,Y) =

∫
Ω
p(ŷ |x,ω)p(ω | X,Y)dω, (A.10)

with p(ŷ |x,ω) the likelihood function of the observations, and ω ∈ Ω where Ω denotes the

parameter space. The posterior probability distribution p(ω | X,Y) is intractable.

Gal and Ghahramani (2016a) propose DNN dropout to approximate this distribution. More

formally, under model dropout, we consider a distribution function q(ω) that follows a Bernoulli

distribution, Ber(p). The above predictive distribution in this Bayesian neural network setting

can be approximated by

p(ŷ |x,X,Y) =

∫
Ω
p(ŷ |x,ω)q(ω)dω. (A.11)

In practice this predictive distribution can be approximated using Monte Carlo methods.

Thus, by sampling T sets of vectors from the Bernoulli distribution {r?(t)}Tt=1, one can approx-

imate the above predictive distribution from the random sample ŷ(xi; ω̂
(t)), for i = 1, . . . , n,

where ω̂(t) = {Ŵ1(t), . . . ,ŴN(t), b̂
(t)
1 , . . . , b̂

(t)
N } denotes the sequence of weights associated to the

different nodes and layers of the neural network and the associated bias parameters for a given

pass t for t = 1, . . . , T .

Using this Monte Carlo dropout technique, Gal and Ghahramani (2016a) propose the first

moment from the MC predicted outputs as the model prediction:

f̄MC(xi) =
1

T

T∑
t=1

ŷ(xi; ω̂
(t)), for i = 1, . . . , n. (A.12)

These authors show that, in practice, this is equivalent to performing T stochastic forward passes

through the network and averaging the results. This result has been presented in the literature

27Hinton et al. (2012) in their seminal paper associate dropout training to a form of Bayesian learning.
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before as model averaging. Srivastava et al. (2014) have reasoned empirically that MC dropout

can be approximated by averaging the weights of the network (multiplying each weight Wn by

p at test time, and referred to as standard dropout).

Importantly, the model parameters ω are fixed across random samples implying that the

cross-correlation between the predictions ŷ(xi; ω̂
(t)) and ŷ(xi; ω̂

(t′)) for t, t′ = 1, . . . , T is perfect.

Then, the predictive variance is defined as

σ2
MC = σ̂2

ε +
1

T 2

T∑
t=1

T∑
t′=1

E
[(
ŷ(xi; ω̂

(t))− E[ŷ(xi; ω̂
(t))]

)(
ŷ(xi; ω̂

(t′))− E[ŷ(xi; ω̂
(t′))]

)]
,

(A.13)

The first component on the right hand side expression of (A.13) captures the aleatoric un-

certainty whereas the second term captures the epistemic uncertainty associated to parameter

estimation. The second term includes the estimation of the variance and covariance terms be-

tween the different random samples obtained from using dropout. Thus, under the assumption

that the approximation error is negligible, the above predictive variance can be estimated as

σ̂2
MC = σ̂2

ε +
1

T

T∑
t=1

(
ŷ(xi; ω̂

(t))− f̄MC(xi)
)2
, (A.14)

with σ̂2
ε = 1

n

∑n
i=1

(
yi − f̄MC(xi)

)2 a consistent estimator of σ2
ε under homoscedasticity of the

error term, see also Gal and Ghahramani (2016a) and Kendall and Gal (2017). A suitable

prediction interval for yi under the assumption that p(ŷ |x,ω) is normally distributed is

f̄MC(xi)± z1−α/2σ̂MC . (A.15)

B Random weight initialization

Shallow and deep neural network are usually trained via the gradient descent (GD) algorithm

that - being an iterative algorithm - requires an initial value for the parameter to be estimated.

Goodfellow et al. (2016) explain how - due to the difficulty in training neural networks (in

particular DNNs) - training algorithms and their convergence depend heavily on the choice of

the initialization: different initial points can determine if the algorithm converges or not, if

it converges to a global or local minimum, or the speed of convergence. Consequentially, it

follows that different weight initializations will lead to different parameter (ω) estimates. More

formally, consider Gaussian initialization and define {W1
0, . . . ,W

N
0 } as the weights generated at

the beginning of the GD algorithm; by considering e = 1, . . . , E epochs, it is possible to define

the GD update rule as:

Wn
e = Wn

e−1 − η∇WnL(Wn
e−1), n = 1, . . . , N (B.1)

40



with η being the learning rate and ∇WnL(Wn
e−1) being the partial gradient of the training loss

L(Wn
e−1) with repsect to Wn defined as:

L(Wn
e−1) =

1

M

M∑
i=1

L(f(xi; ω̂); yi), n = 1, . . . , N (B.2)

with M the number of observation in the train set.

From Equation (B.1) and (B.2), one could notice how the estimated {Wn
E}Nn=1 depends on

{Wn
0}Nn=1, η, and the optimization algorithm implemented. Therefore, following the aforemen-

tioned literature and by assuming that both learning rate and optimization algorithm are equal

across the different bootstrap realizations, the σ̂?2ω̂ (xi) can be captured by allowing random

weight initialization28.

28The present analysis does not consider recent advances analyzing the relation between neural networks’
dimensions (Ztot) and weight initialization that ensures the preservation of the initialization properties during
training. As an example, Zou et al. (2018) provide the condition under which Gaussian random initialization
and (stochastic) GD produce a set of iterated estimated weights that centers around {Wn

0 }Nn=1 with a pertur-
bation small enough to guarantee the global convergence of the algorithm, ultimately impacting on the approx-
imation of the σ̂?2ω̂ (xi) via random weight initialization.
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