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Using explainable machine 
learning to identify patients at risk 
of reattendance at discharge 
from emergency departments
F. P. Chmiel1*, D. K. Burns1, M. Azor2, F. Borca2,3, M. J. Boniface1, Z. D. Zlatev1, N. M. White1, 
T. W. V. Daniels4,5 & M. Kiuber6

Short-term reattendances to emergency departments are a key quality of care indicator. Identifying 
patients at increased risk of early reattendance could help reduce the number of missed critical 
illnesses and could reduce avoidable utilization of emergency departments by enabling targeted post-
discharge intervention. In this manuscript, we present a retrospective, single-centre study where we 
created and evaluated an extreme gradient boosting decision tree model trained to identify patients 
at risk of reattendance within 72 h of discharge from an emergency department (University Hospitals 
Southampton Foundation Trust, UK). Our model was trained using 35,447 attendances by 28,945 
patients and evaluated on a hold-out test set featuring 8847 attendances by 7237 patients. The set of 
attendances from a given patient appeared exclusively in either the training or the test set. Our model 
was trained using both visit level variables (e.g., vital signs, arrival mode, and chief complaint) and a 
set of variables available in a patients electronic patient record, such as age and any recorded medical 
conditions. On the hold-out test set, our highest performing model obtained an AUROC of 0.747 (95% 
CI 0.722–0.773) and an average precision of 0.233 (95% CI 0.194–0.277). These results demonstrate 
that machine-learning models can be used to classify patients, with moderate performance, into low 
and high-risk groups for reattendance. We explained our models predictions using SHAP values, a 
concept developed from coalitional game theory, capable of explaining predictions at an attendance 
level. We demonstrated how clustering techniques (the UMAP algorithm) can be used to investigate 
the different sub-groups of explanations present in our patient cohort.

The use of emergency departments (EDs) has been growing steadily over the last  decade1,2, which in turn has 
contributed to increased overcrowding and extended waiting times. These factors have been linked to increased 
rates of adverse  outcomes3,4. Therefore, it is important to investigate the most efficient ways of using the available 
resources and minimise their unnecessary use. One way this can be achieved is by minimizing short-term reat-
tendances, which describe a situation where a patient presents to an emergency department within 72 h of having 
been discharged. The number of short-term reattendances can be minimised by both delivering the highest levels 
of patient care, thereby reducing the chance of missed critical illness and injury at the initial attendance, and by 
mitigating reattendances for reasons at least partially unrelated to the initial ED attendance.

Research has shown there are several factors indicative of short-term reattendance risk, including social fac-
tors (e.g., living alone)5,  depression6, initial  diagnosis7, and historical emergency department  usage8. Knowledge 
of these risk factors is important to clinical staff when planning discharge, but this is unlikely the most optimal 
way of determining those at risk of suffering from a significant illness following erroneous discharge or patients 
in need of additional support in the community following discharge. Predictive models, available as a decision 
support tool at the point of discharge, able to identify patients at increased risk of short-term reattendance may 
be able to significantly reduce the number of reattendances. Predictions, and any associated explanations, could 
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be used by clinical staff to help inform intervention (e.g., further diagnostic tests) or enrich discussions about 
a patients discharge plan.

Machine learning models are a class of predictive models which are well positioned to add value to emergency 
department processes. They are particularily powerful because they can ingest a large number of variables and 
learn complex interactions and statisical trends between these variables and associated outcomes, ultimately 
making highly accurate predictions of patient outcomes. The potential in using machine learning models to 
inform clinical care and provide high levels of personalization, is evident from the large amount of research into 
the applications of machine learning in  healthcare9. Explainable machine learning, in particular, is attracting 
attention because of the strong assurance needs of  healthcare10,11. In the context of this work, research has shown 
that machine-learning models can use a large number of clinical and administrative variables to provide estimates 
of a patient’s short-term reattendance  risk12,13. Explanations are also important in this context, as they can help 
to inform the patients care trajectory and guide post-discharge intervention plans.

In this manuscript, we present a machine-learning model, utilizing historical (coded, inpatient) discharge 
summaries, alongside contemporary clinical data recorded during emergency department attendances to identify 
patients at increased risk of short-term reattendance following an ED attendance. We explain our predictions 
by calculating SHAP values for our model output and cluster these explanations using the UMAP algorithm to 
explore the different sub-groups at risk of reattendance in our cohort.

Methods
Dataset curation. Our dataset featured an pseudonymized version of all attendances by adults to South-
ampton’s Emergency Department (University Hospitals Southampton Foundation Trust) occurring between the 
01/04/2019 and the 30/04/2020. The dataset included attendance level information such as the results of any 
near-patient observations and high-level information included in the standard UK Emergency Care Data Set 
(e.g., outcome, arrival mode, duration of visit, and chief complaint). In addition to attendance-level variables, 
our dataset included variables extracted from a patients electronic health record maintained by the University 
Hospitals Southampton Foundation Trust. These variables included any recorded medical complaints, which 
were obtained by extracting ICD10 coded conditions included in historical discharge summaries. An example 
of the most frequently observed medical conditions are presented in Table 2, alongside a breakdown of patient 
ages in our cohort. In total, our dataset included 14 variable sets which are displayed in Table 1 alongside key 
quantitative descriptors of them. Additional descriptions of variables are presented in Supplementary Table 1.

Our study cohort featured 54,015 attendances which resulted in discharge directly from the ED. Of these 
attendances we discarded those that resulted in planned reattendance (N = 328) and those occurring after 
01/02/2020, removing attendances which occurred during the COVID-19 pandemic. Remaining attendances 
(N = 44,294) were randomly split at the patient level to create a hold-out test set (N = 8847) containing attend-
ances from 20% of patients and the remaining attendances (N = 35,447) were used as the training set (Fig. 1).

Table 1.  Variables used in our modelling and quantitative descriptors of them. For a full description of 
variables please see Supplementary Table 1. 66 % of attendances did not have associated vital signs recorded. 
This could of been because it was not deemed necessary by clinical staff, their condition was particularly 
severe, or because they were not recorded.

Variable Data type Encoding Mean (std. dev.) Mode Missing fraction

Age (years) Integer – 46.5 (20.4) 21 years 0.0

Attendance complaint Categorical Target – – 0.0

Triage complaint Categorical Target – Limb problem 0.0

Diagnosis Categorical Target – No abnormality detected 0.0

Discriminator Categorical Target – Recent problem 0.0

Manchester Triage System score Integer – 3.3 (0.66) 3 0.0

Pain score Integer – 2.6 (2.2) 0 0.0

Arrival mode Categorical Target – Patient walk-in 0.0

Condition count Integer – 1.3 (2.2) 0 0.0

Condition indicators Categorical One-hot – – –

30-day visit count Integer – 0.3 (1.3) 0 0.0

Temperature, vital signs (°C) Continuous – 36.7 (18.1) – 66%

Systolic blood pressure, vital signs 
(mmHg) Continuous – 139.4 (25.6) – 66%

Respiration rate, vital signs (Bpm) Continuous – 18.3 (4.2) – 66%

Pulse rate, vital signs (Bpm) Continuous – 82.8 (18.2) – 66%

Blood oxygen saturation, vital signs 
(%) Continuous – 97.2 (5.0) – 66%

Hour of day (temporal) Integer – 13.4 (6.0) 11 0.0

Day of week (temporal) Categorical Nominal – Monday 0.0
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Ethics and data governance. Data was pseudonymized (and where appropriate linked) before being 
passed to the research team. The research team did not have access to the pseudonymisation key. Since the data 
was de-identified, Confidentiality Advisory Group approval was not needed and the study was approved by 
the NHS Health Research Authority (20/HRA/1102) without the need for informed consent because of the de-
identified nature of the data. This study was approved by the University of Southampton’s Ethics and Research 
governance committee (ERGO/FEPS/53164). Research was performed in the manner described in the protocol 
(v1) approved by the NHS Health Research Authority and conducted in accordance with relevant guidelines.

Reattendance identification. Reattendances were identified by using the patient pseudo identifier to cal-
culate the time to a patient’s next ED attendance. All reattendances (with the exception of planned reattendances, 
Fig. 1) were considered, even if the reattendance was for a different reason to the original attendance. We then 
dichotomized the time to next attendance (return within 72 h from the point of discharge), annotating each 
attendance with a binary indicator denoting whether it was followed by another attendance within 72 h. This 
formulation allowed us to frame the predictive task as a binary classification problem.

Predictive modelling. We used an extreme gradient boosting decision tree, as implemented in the 
XGBoost framework (version 1.3.3)16, as our machine-learning model. Models were trained using five-fold 
cross validation of the training set, with patients in the training folds not being present in the validation folds 
(Fig. 1). Final predictions were the mean prediction of the fives models trained during the cross-validation pro-
cess. Model hyperparameters were optimized by selecting the hyperparameters which maximized the validation 
AUROC (the mean performance of model on the five sets of out-of-fold samples). Hyperparameter search was 
performed using Bayesian optimization utilizing the Tree Parzen Estimator algorithm as implemented in the 

Figure 1.  Partition of the study data into the training and hold-out test set. Attendances which resulted in 
planned reattendances (328 attendances) were removed. All attendances (9393 attendances) occurring after 
01/02/2020 were also discarded to remove attendances which coincided with the COVID-19 pandemic. 
Reattendance rates (bottom row of rectangles representing training and test sets) display the observed 72-h 
reattendance rate for each cohort. Models were trained using (grouped) five-fold cross validation of the 
training set with patients in the train set not present in the validation set during the training phase. Model 
hyperparameters were selected such that the validation AUROC (mean out-of-fold AUROC across the five 
folds) was maximized. The final model was a mean ensemble of the five models (the average prediction of the 
five models) trained in the cross-validation process, which was then evaluated on the hold-out test set.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21513  | https://doi.org/10.1038/s41598-021-00937-9

www.nature.com/scientificreports/

hyperopt Python library (version 0.2.5)17,18. Bayesian optimization was used because it is empirically more effi-
cient than grid or randomized search  methods19. Medical conditions associated with a patient were included as 
a one-hot-encoded feature vector, the day of the week encoded using ordinal encoding, and all other categorical 
variables were encoded using target  encoding20. The full encoding scheme is outlined in Table 1. Source code for 
our modelling is available  online21.

To investigate the predictive ability of individual variables, under an independent variable assumption, we 
trained models using each distinct variable and evaluated them using five-fold cross validation on the training 
set. Models were trained (including hyperparameter tuning) using the previously described process. Next, we 
trained and evaluated a model using the three most predictive variables identified in this process and a model 
using all variables available at the point of discharge. During this analysis the standard error (95% confidence) of 
the models performance across the five-folds was calculated. The final model (including all variables available at 
discharge) was then evaluated on the hold-out test set, with 95% confidence intervals calculated using bootstrap-
ping (n = 1000) of the hold-out test set. Models performance was evaluated using the Area Under the Receiving 
Operating Curve (AUROC) and the average precision under the precision-recall curve. Hyperparameters of our 
final model are presented in Supplementary Table 2.

We also evaluated the final model against patients readmission status (readmissions are a subset of reattend-
ances for which the outcome was admission to hospital). This was performed without re-training the model and 
by evaluating the classifier with the ground truth outcome set to a patients readmission status.

Model explainability. To explain the predictions of our final model we made use of the TreeExplainer 
algorithm implemented in the SHAP Python library (version 0.37.0)22–24. TreeExplainer is an algorithm which 
calculates SHAP values (i.e, Shapley values), in an optimized manner for decision trees. SHAP values are a 
concept from coalitional game theory which treats predictive variables as players in a game and distributes 
their contribution to the predicted probability. SHAP values are particularly powerful as they meet the four 
desirable theoretical conditions of an explanation algorithm and can provide instance (i.e., attendance) level 
 explanations24. Practically, for each attendance we have a scalar value for each variable used by the model which 
quantifies the contribution that variable had on the predicted reattendance risk. SHAP values of larger magni-
tudes indicate that a variable is of increased importance in determining the predicted reattendance risk. SHAP 
values can be negative (adding the variable reduces predicted reattendance risk) or positive (adding the variable 
increases the predicted reattendance risk).

To investigate the different explanations across the hold-out test set, we projected the SHAP values for all 
attendances in the hold-out test set into a two-dimensional (‘explanation’) space using Uniform Manifold Approx-
imation and Projection (UMAP, version 0.5.1)25. UMAP is a dimensionality reduction technique regularly used 
to visualise high-dimensional spaces in a low-dimensional embedding, such that global and local structure 
of the space can be  explored26,27. Attendances which are closer in proximity in this space share a more similar 
explanation for their predicted reattendance risk. To investigate the characteristics of different sub-groups in 
the explanation space, we assigned each attendance to a cluster in this space using the DBScan  algorithm28. 

Table 2.  Breakdown of patient age and most frequently occurring conditions in the training and test sets. 
Conditions were extracted from their ICD10 codes. A given condition is only associated with a small fraction 
of attendances, but in total 40.0% of attendances resulting in discharge have at least one associated condition. 
Patient age and conditions are extracted from their last attendance in the respective data set.

Number of patients

Train set (N = 28,945) Test set (N = 7237)

Age groups

18–24 5039 1244

25–34 5867 1500

35–44 4310 1108

45–54 3957 1024

55–64 3514 822

65–74 2876 701

75+ 3382 838

Condition

Hypertension 2911 681

History of smoking 1805 442

Asthma 1633 392

Depression 1544 393

Current Smoker 1436 359

Type 2 diabetes 1081 278

Hypercholesterolaemia 895 201

Osteoarthritis 775 189

COPD 706 157
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Assignment was chosen by visual inspection and finer grained cluster assignment can be achieved by tuning the 
hyperparameters of the DBScan algorithm.

Results
The results of our variable importance investigation are displayed in Table 3. The day of the week an attendance 
occurred was found not to be predictive of a patient’s reattendance risk (model a, Table 3). Six variables (age, 
Manchester Triage System score, hour of day, vital signs, pain score, and arrival mode) were found to be weakly 
predictive of a patient’s 72-h reattendance risk in isolation (AUROCs between 0.5 and 0.6, Table 3 models b-g). 
All other variables (Table 3 models h-n) were found to be moderately predictive (AUROC between 0.6 and 0.7) 
of 72-h reattendance risk in isolation.

Medical condition history was included in two representations. The count of the number of historical condi-
tions (model m, Table 3) obtained a validation AUROC of 0.692 (95% CI: 0.675-0.709), reflecting that patients 
with a recorded medical history are more likely to reattend (8.3%, 95% CI 7.8–8.7%, reattendance rate) than 
those who do not (2.3%, 95% CI 2.1–2.5%, reattendance rate). When we included the full one-hot encoded 
matrix denoting whether the patient had a history of a specific condition, our model (model n, Table 3) obtained 
a validation AUROC of 0.708 (95% CI 0.694–0.723). The higher validation AUROC of the latter model suggests 
that different (medical) conditions are associated with differing degrees of reattendance risk.

The model that used the number of times a patient attended the emergency department in the 30-day prior to 
their current attendance (model l, Table 3) exhibited a validation AUROC of 0.669 (95% CI 0.653–0.684), agree-
ing with other studies that a patients previous emergency department usage is an important consideration when 
considering their reattendance  risk8. Three models (models i, j, and k, Table 3) make use of coded information 
describing the primary reason for the emergency department attendance, recorded at three distinct points in time 
and by potentially different members of clinical and non-clinical staff. Making use of the chief complaint col-
lected at either the point of registration or Triage, respective validation AUROCs of 0.645 (95% CI 0.621–0.670) 
and 0.640 (95% CI 0.615–0.665) could be achieved. At the point of discharge, the recorded diagnosis obtained 
a validation AUROC of 0.641 (95% CI 0.618–0.665). This demonstrates that different diagnoses are associated 
with differing degrees of reattendance risk and indicates that a high-level, coded description of the patients chief 
complaint is moderately predictive of reattendance risk, regardless of when it is recorded during the attendance.

Finally, models o and p in Table 3 present validation metrics for models trained using multiple variables. The 
model (model o in Table 3) using the three most predictive variables identified in our univariate importance study 
(Table 2) used the condition indicators, the condition count, and the number of times the patient visited the ED 
in the previous 30 days. We observed a validation AUROC of 0.736 (95% CI 0.720–0.751), demonstrating that 
models using multiple variables are more predictive of reattendance than a single variable. The model trained 
using all variables available at the point of discharge (model p in Table 3) increased the validation AUROC to 
0.761 (95% CI 0.746–0.774).

The evaluation of our final model (model p) on the hold-out test set is presented in Fig. 2. This model obtained 
an AUROC and average precision of 0.747 (95% CI 0.722–0.773) and 0.233 (95% CI 0.194–0.277) respectively 
on the hold-out test set. This indicates that while the model retained its moderate performance, there was a 
reduction in model performance between the validation and the hold-out test set. This is likely the result of the 

Table 3.  Performance on the validation set for models using individual variables (models a–n) and sets 
of variables (models o and p). Bold text indicates models trained using multiple variable sets. Metrics are 
evaluated on the training set using grouped 5-fold CV at the patient level and we report the mean of the metric 
across the five validation folds. All models hyperparameters were tuned as described in the methods section to 
optimize the CV AUROC.

Model reference Variables Validation AUROC (95% CI ) Validation average precision (95% CI)

a Day of week 0.501 (0.489–0.513) 0.047 (0.044–0.050)

b Age 0.534 (0.516–0.552) 0.051 (0.046–0.057)

c Manchester Triage System score 0.568 (0.558–0.578) 0.055 (0.050–0.059)

d Vital signs 0.568 (0.565–0.572) 0.061 (0.057–0.065)

e Hour of day 0.569 (0.563–0.575) 0.058 (0.054–0.062)

f Pain score 0.572 (0.559–0.586) 0.058 (0.051–0.064)

g Arrival mode 0.592 (0.576–0.608) 0.060 (0.055–0.064)

h Triage discriminator 0.608 (0.583–0.633) 0.086 (0.062–0.110)

i Triage complaint 0.640 (0.615–0.665) 0.091 (0.065–0.118)

j Discharge diagnosis 0.641 (0.618–0.665) 0.090 (0.070–0.109)

k Attendance complaint 0.645 (0.621–0.670) 0.092 (0.068–0.117)

l 30-day visit count 0.669 (0.653–0.684) 0.207 (0.149–0.264)

m Condition count 0.692 (0.675–0.709) 0.107 (0.085–0.129)

n Condition indicators 0.708 (0.694–0.723) 0.175 (0.134–0.216)

o Top three features model (i, j, n) 0.736 (0.720–0.751) 0.242 (0.204–0.280)

p Discharge model (b–n) 0.760 (0.746–0.774) 0.270 (0.207–0.332)
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model overfitting the validation data (e.g., via the selection of hyperparameters to maximize model performance 
on the validation set), and is expected. In panel c of Fig. 2 we display a confusion matrix of our model at a single 
configuration, where the threshold for dichotomization of the continuous predictions output by our model was 
chosen such that a recall of 0.15 was obtained. This graphic presents the performance of our model on the hold-
out test set when used as a binary decision support tool with a low-recall configuration.

Figure 3 summarizes the SHAP values of all attendances in the hold-out test set. In Fig. 3a the SHAP values for 
the ten most important variables (as determined by mean absolute SHAP values) are shown for each attendance. 
Visual inspection of this graphic provides insight into the trends our model has learned: the model associates any-
one with a recorded medical condition as being at increased risk of reattendance and learned that some medical 
conditions represent a greater reattendance risk than others. For example, the model generally associates living 
alone with a higher reattendance risk than having a history of depression (the mean SHAP value is greater for 
those who live alone). In Fig. 3b,c, we plot the SHAP values across all attendances for two variables, the hour of 
day the attendance occurred and 30 day visit count. Visual inspection of panel b shows that the model associated 
the patients risk of reattendance with a periodic dependence on the hour of day the attendance occurred. By 
inspection of Fig.3c, we can see that the model learned an approximately linear dependence between a patients 
reattendance risk and the number of times they have attended the emergency department in the last 30 days. It 
is important to note that these insights do not necessarily reflect actual risk factors for reattendance (since the 
model is an imperfect classifier) but only reflect the trends the model has learned to make its decisions.

The projection of all SHAP values for attendances in the hold-out test set into the two dimensional explanation 
space (see Methods) is displayed in Fig. 4. In Fig. 4a we colour attendances by the reattendance risk predicted by 
our machine-learning model. The reattendance risk (colour) is relatively uniform, reflecting that the majority of 
attendances do not result in reattendance (the observed reattendance rate across the test set is 4.9%). However, 
there are clear subgroups of the population identified to be at heightened risk of reattendance. In Fig. 4b we 
colour the attendances by the high-level cluster assignment obtained using the DBScan clustering algorithm. The 
characteristics of attendances in each clusters is displayed in Table 4. Visual inspection of Table 4 provides high-
level insight into the logic of the machine-learning model. For example, for attendances assigned to cluster seven, 
on average, the most important variable for determining a patients reattendance risk is their 30-day visit count.

When evaluated on the readmission status (whether a patient reattended within 72 h and was subsequently 
admitted to hospital) of attendances in the hold-out test set our model achieved an AUROC of 0.804 (95% CI 
0.774–0.832) and an average precision of 0.044 (95% CI 0.030–0.063); reflecting that the model demonstrated 
moderate discriminative ability in identifying the subset of reattendances which resulted in admission.

Discussion
Our final 72-h reattendance risk model achieved an AUROC of 0.747 (95% CI 0.722–0.773) and an average preci-
sion of 0.233 (95% CI 0.194–0.277) on the hold-out test set. Qualitatively, our model can use variables describing 
an emergency department attendance and a view of a patient’s medical history to predict their reattendance 
risk with moderate performance. We calculated SHAP values to provide an explanation of our predictions at 
an attendance level (Fig. 3 and Supplementary Fig. 2) and projected these explanations into a two-dimensional 
space (Fig. 4). We used this low-dimensional embeddings to identify different patient sub-groups at risk of 
reattendance.

Our final model (model p in Table 3) makes use of all variables in our dataset available at the point of dis-
charge. This set of variables is not necessarily the optimal set of variables for a reattendance predictor, it is plau-
sible the variable set contains obselete information because of correlations between variables. High correlation 

Figure 2.  Performance of our model (model p in Table 3) evaluated on the hold-out test set. (a) Receiver 
operating characteristic curve for model’s predictions. (b) Precision recall curve, the dashed grey line shows the 
configuration evaluated in the confusion matrix in panel (c). (c) Confusion matrix for predictions dichotomized 
using a threshold chosen such that the recall is equal to 0.15 (dashed grey line in panel (b)). A class of ‘1’ 
indicates the patient reattended the emergency department within 72 h of discharge. Diagonal elements 
represent correct classifications and off-diagonal elements either False positives or negatives.
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Figure 3.  SHAP values for each attendance in the hold-out test set. (a) Plot summarizing the SHAP values 
for the ten most important variables (by mean absolute SHAP value) for each attendance in the test set. They 
are ordered by the global impact the feature has on the explanation (equal to the mean absolute SHAP value of 
the feature across all attendances). For the binary variables (i.e., the condition indicators) this favours variables 
with a high number of occurrences (i.e., more common conditions), not necessarily those associated with the 
high reattendance risk. (b) SHAP value against recorded hour of day of attendance registration (dots). (c) SHAP 
value against number of emergency department visits in the 30 days prior to the given attendance (dots). In 
panels (b) and (c) vertical dispersion is the result of interaction with other variables. All panels are coloured by 
the magnitude of the respective variable for the given data point, with lighter colours indicating higher values 
(e.g., inspect panels (b) and (c)). Grey data points correspond to non-binary, nominal categorical variables and 
therefore have no natural ordering which could be used to colour the data points.

Figure 4.  Embedding of the hold-out test set into a two-dimensional ‘explanation’ space using the UMAP 
algorithm. (a) All attendances in the hold-out test set visualised in the explanation space, colour indicates the 
predicted reattendance risk for the respective attendance. (b) Attendances in the explanation space coloured by 
cluster assignment. Cluster assignment was performed with the DBScan  algorithm28. Assignment was chosen 
by visual inspection and finer grained cluster assignment can be achieved by tuning the hyperparameters of 
the DBScan algorithm. The explanation embedding was created by clustering the SHAP values (explanations) 
for each attendance using the UMAP algorithm. Closer data points share a more similar explanation for their 
predicted reattendance risk. Descriptive properties of each cluster are displayed in Table 4.
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between variables is expected for clinical data. For example, it is likely that patient age, arrival mode, and vital 
signs all latently encode patient frailty, which is known to be related to a patients reattendance  risk29. Despite 
this, our predictive algorithm of choice, extreme gradient boosting decision trees, is relatively robust against 
correlations between variables and high variable redundancy is unlikely to be significantly detrimental to model 
performance.

In our exploratory analysis, we found that the hour of day the attendance began correlates to the reattend-
ance rate, with higher reattendance rates observed during the night (Supplementary Fig. 1). By inspection of 
the observed SHAP values for the hour of day (Fig. 3b), we observe that our model has learned a similar trend, 
associating attendance registration during the night with an increased (between zero and one percent increase) 
reattendance risk. This trend could have several different origins. Firstly, we have found that the hour of day 
displays correlation with the reason for attendance, with either complaints associated with a higher (lower) risk 
of 72-h reattendance more (less) likely to present during the night (not shown). Secondly, it is plausible that 
staff fatigue and lower staffing levels may contribute to the increased reattendance rate for attendances occurring 
during the night, although we have no way of testing this hypothesis in our dataset.

Our analysis (e.g., Fig. 2 and model e in Table 3) shows that certain complaints are associated with a higher 
risk of 72-h reattendance. For example, attendances whose chief complaint at registration was ‘abdominal pain’ 
had a mean 72-h reattendance rate of 6.8% (95% CI 6.0–7.7%), compared to the mean reattendance rate of 
4.8% (95% CI 4.6-5.0%) in the training set. Coding compliance was not evaluated in our dataset, which may 
effect this observation. For example, the most common chief complaint at registration was ‘unwell adult’ (with 
20.5% of attendances listing this as the chief complaint in the training set) which is utilized when either the 
chief complaint is not clear at registration, when the patient presents with multiple complaints or as a result of 
inappropriate coding.

In addition to identifying complaints associated with a heightened short-term reattendance risk, our model 
also makes use of ICD10 coded conditions extracted from a patients electronic health record. These variables 
allow the model to identify medical conditions, comorbidities, and risks which are associated with increased 
reattendance risk and enables models to achieve moderate predictive performance (Table 3). Excluding the 
medical condition indicators, the most important feature is the 30-day visit count which, in part, reflects the 
disproportionate use of EDs by frequent  users30. In the visualisation of the attendances in the patient hold-out test 
set in the two-dimensional explanation space (Fig. 4), the most frequent attenders (30 day visit count of two or 
more) are clearly segregated (cluster 7 in Fig. 4b and Table 4). Visual inspection of the properties of each cluster 
in Fig. 4 could be used to help guide the design of interventional strategies. For example, the reattendance risk of 
patients within cluster 7 (i.e., frequent attenders) could be reduced by increased provision of community support. 
Conversely, such support is unlikely to be the most appropriate intervention strategy for patients suffering from 
an acute injury (such as a severe burn) associated with increased reattendance risk.

From a clinical perspective it is interesting to investigate the subset of reattendances which are also readmis-
sions (i.e., reattendances to the emergency department which result in subsequent admission to an inpatient 
ward). In these cases, there is increased risk that there was missed critical illness or injury at the initial attendance 
and these readmissions are important to evaluate for clinical assurance purposes. Overall, 37.1% of reattendances 
end in readmission, resulting in a 72-h readmission rate of 2.0%. Evaluating our models predictions with a target 
equal to whether the patient readmitted in 72 h, we find it has an AUROC of 0.804 (95% CI 0.774–0.832) and 
an average precision of 0.044 (95% CI 0.030–0.063) on the hold-out test set. The high AUROC means the model 
displays high discernibility between attendances which result in readmission and those that do not. The low aver-
age precision reflects that readmissions only make up a minority fraction of reattendances and the false positive 
rate increases as a result of the large class imbalance. Overall, these results demonstrate our model can identify 
the subset of reattendances which are also readmissions with a similar predictive performance as reattendances 

Table 4.  Properties of the attendances assigned to each of the explanation clusters (Fig. 4). The count 
column displays the number of attendances in a given cluster. The age (in years), reattendance rate, predicted 
reattendance rate, condition count, and 30-day visit count column display the mean of the respective variable 
for all attendances in the cluster. Values in brackets in the age column display the standard deviation patient 
age in the respective cluster. The final three columns display the most important variables in making a decision, 
averaged across all attendances in a given cluster.

Cluster Count Age (SD)
Reattendance rate 
(95% CI)

Predicted 
reattendance rate 
(95% CI) Condition count 30-day visit count

Most important variables (mean absolute SHAP values)

1st 2nd 3rd

0 2723 55.4 (22.6) 5.9 (5.1–6.9) 6.8 (5.0–8.7) 2.9 0.0 30-day visit count Triage complaint Condition count

1 446 52.8 (21.4) 8.5 (6.3–11.5) 10.6 (7.1–14.0) 3.5 1.0 30-day visit count Medical history Triage complaint

2 1363 42.5 (19.2) 2.6 (1.9–3.6) 4.6 (4.4–5.0) 0.0 0.0 Condition count 30-day visit count Triage complaint

3 671 40.9 (18.5) 4.0 (2.8–5.79) 5.6 (5.0–6.3) 0.0 0.0 Condition count Diagnosis 30-day visit count

4 2761 41.5 (16.9) 1.8 (1.3–2.3) 3.8 (3.6–4.0) 0.0 0.0 Condition count 30 day visit count Triage complaint

5 221 40.5 (15.9) 0.0 (0.0–1.7) 3.6 (3.4–3.7) 0.0 0.0 Condition count 30-day visit count Triage complaint

6 321 39.7 (18.1) 5.6 (3.6–0.9) 5.9 (4.7–7.0) 0.0 1.0 Condition count 30-day visit count Triage complaint

7 341 42.3 (17.4) 31.1 (26.4–36.2) 27.2 (13.6–40.7) 3.3 3.75 30-day visit count Medical history Condition count
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which do not result in admission, an important result since these two different outcomes will require different 
interventional strategies to reduce the risk of reattendance/readmission.

A limitation of our study, shared with other investigations of machine-learning use in  EDs31, is that its primary 
data source is structured past medical histories. A medical history is not available for all patients and this could 
lead to our model discriminating against these patients. An example of this bias can be observed for cluster two 
(Table 3), where the two most important variables for determining a patients reattendance rate is the absence of 
any visit to the emergency department in the last 30 days and the absence of any recorded medical conditions. 
Unless implemented with consideration, using such a model could have adverse impact on patient care, because 
the model may not have sufficient descriptive information about a patient to make a reliable prediction of their 
reattendance risk. Patients who have several long-term health conditions, but have no past medical history with 
the hospital are particularly likely to be disadvantaged by this. We partially mitigate this bias by providing our 
model with visit-level information. In the future this bias could be reduced further by linking to community 
datasets (e.g., GP records) to obtain a view of a patients medical history, by providing confidence intervals along-
side risk scores, and by educating clinicians on the limitations of the machine-learning model. In a deployment 
scenario, additional improvements could be achieved by using the model as an alert tool. In this setting, model 
predictions would only be presented to clinical staff for a small subset of patients; those the model predicts to 
be at particularly high risk of reattendance and for whom a decision to discharge has been made. Otherwise, 
the model would be invisible to clinical staff who would be free to carry out standard clinical practice in cases 
where an alarm is not raised.

Since our model only uses information available to clinicians at the time of the emergency department attend-
ances it has a relatively low barrier to implementation. Despite this, it will be essential to perform prospective, 
randomized clinical trials of any implementation, investigating the efficacy of the model and the associated 
interventions. Ultimately, deployment of a machine-learning model could eventually invalidate the model by 
changing the behaviours and descriptors of reattendances by altering the clinical decisions made. In the short 
term, a relatively low-risk implementation of a model trained to identify patients at risk of reattendance would 
be in the implementation of a low-recall and high-precision alert system (for example, the configuration pre-
sented in Fig. 2c). This would only raise alarms for the cases the model believes are at the highest risk of reat-
tendance and highlight the need for additional clinical review. On average, using the configuration displayed in 
Fig. 2c, this would have raised an alarm for only 1.7% of attendances in which a decision to discharge was made 
(approximately 2 times per day) and would expect to be correct approximately 44% of the time—mitigating the 
risk of alarm fatigue. A model deployed in this manner would be of limited impact (because of its low recall), 
but the configuration could be re-evaluated if model performance improves. Performance could be improved by 
the inclusion of free-text notes recorded by clinical staff, which previous studies have shown can be predictive 
of patient outcomes across the broader hospital  network14,15.

It is important to discuss the context in which our model could be prospectively deployed. Our model was 
trained and retrospectively evaluated using data available to clinicians during standard clinical practice at the 
emergency department in Southampton. This is an advantage if the model was to be used at this location because 
the characteristics of future attendances will likely reflect the attendances the model was trained on. Conversely, 
this means that the model will not necessarily generalize to other EDs without first training on their local data. 
Poor model generalization will be particularly prominent in EDs with a catchment zone with different demo-
graphics to Southampton and, therefore, different disease and illness prevalences. Because our model contains 
variables either in the standard UK emergency care dataset or regularly available to EDs nationally, it would be 
possible to evaluate this model directly in other EDs. External validation of our model is essential before pro-
spective deployment beyond the department at which the training data was sourced.

Conclusion
In conclusion, we have constructed and retrospectively evaluated an extreme gradient boosting decision tree 
model capable of predicting the 72-h reattendance risk for a patient at the point of discharge from an emergency 
department. The highest performing model achieved an AUROC of 0.747 (95% CI 0.722–0.773) and an average 
precision of 0.233 (95% CI 0.194–0.277) on a hold-out test set. We investigated the variables most indicative 
of risk and showed these were patient level factors (medical history) rather than visit level variables such as 
recorded vital signs. We calculated SHAP values to explain our predictions (Fig. 3) and used these to investigate 
the trends our model learned. We projected explanations into a (2D) explantion space using the UMAP algorithm 
and used this to explore the different sub-groups at risk of reattendance. We suggested an implementation of the 
algorithm in a low-recall, high-precision configuration such that alarms are only raised for patients predicted 
to be at a (clinically defined) heightened risk of reattendance. External validation and prospective clinical trials 
of our models is essential, with considerable consideration given to the planned interventions and the impact 
this would have on clinical decisions.

Data availability
Due to patient privacy concerns the dataset used in this study is not publicly available. However, it will be made 
available upon reasonable request.
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