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Decision-Feedback Equalization Using Multiple-Hyperplane Partitioning for
Detecting ISI-CorruptedM -ary PAM Signals

S. Chen, L. Hanzo, and B. Mulgrew

Abstract—A decision-feedback equalizer scheme is derived
based on multiple-hyperplane partitioning of signal space for
detectingM -ary pulse amplitude modulation symbols transmitted
through a noisy intersymbol interference channel. The proposed
scheme is based on the fact that the optimal Bayesian decision
boundary separating two neighboring signal classes is asymp-
totically piecewise linear and consists of several hyperplanes,
when the signal-to-noise ratio tends to infinity. An algorithm is
developed to determine these hyperplanes, which are then used
to partition the observation signal space. The resulting detector
can closely approximate the optimal Bayesian detector, at an
advantage of considerably reduced detector complexity.

Index Terms—Asymptotic decision boundary, Bayesian de-
cision-feedback equalizer, multiple-hyperplane detector, signal
space partitioning.

I. INTRODUCTION

T HE decision-feedback equalizer (DFE) is a powerful tech-
nique for combating distortion and interference in com-

munication links and high-density data storage systems. For the
class of DFE structures that employs symbol-by-symbol detec-
tion, the optimal solution is well understood to be the maximum
a posterioriprobability or Bayesian detector [1]–[5]. The com-
plexity of the optimal Bayesian DFE is determined by the factor
of , where being the size of the symbol constellation
and the channel-impulse response (CIR) length. As the com-
plexity of the optimal detector increases exponentially with the
size of symbol set , the conventional or linear-combiner DFE
[6]–[10] is often used in practice to provide a tradeoff between
performance and detector complexity.

For the binary case, the difference in performance between
the conventional and optimal Bayesian DFEs can be explained
geometrically: a linear-combiner DFE can only partition the ob-
servation space with a hyperplane while the optimal Bayesian
detector can do so with a hypersurface [4]. Asymptotically, the
optimal Bayesian hypersurface becomes piecewise linear and
is made up of a set of hyperplanes [11]. In practice, at large
signal-to-noise ratio (SNR) (usually 10–20 dB), the Bayesian
decision hypersurface can closely be approximated by a mul-
tiple-hyperplane form. Thus, a detector that partitions the ob-
servation space with multiple hyperplanes can approximate the
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optimal Bayesian detector more closely than the conventional
DFE.

Signal space partitioning techniques for binary intersymbol
interference (ISI) channels have been developed. Notably, Moon
and Jeon [12] developed a detector using the Voronoi diagram.
Kim and Moon [13], [14] improved on the design and developed
a new signal space partitioning technique. Their technique de-
termines a set of hyperplanes that separate clusters of noiseless
channel states. The convex regions associated with individual
states are constructed by intersecting hyperplanes. The overall
decision region is then formed from these convex regions. The
decision complexity and performance of the detector is con-
trolled during design by a specified minimum separating dis-
tance. The main drawback of their design is that a combinato-
rial search and optimization process is carried out to find those
hyperplanes, which requires extensive computational efforts. In
our previous work [15], we have shown that this design com-
plexity can be avoided and we have proposed a much simpler
alternative design to explicitly realize the asymptotic Bayesian
decision boundary for binary ISI channels.

In this letter, we extend this multiple-hyperplane detector
design to -ary pulse amplitude modulation (PAM) channels.
Based on a geometric translation property for thesets of
noiseless channel states, the asymptotic Bayesian boundary for
separating any two neighboring signal classes can be deduced,
and this allows us to extend the algorithm for the binary case
[15] to the general -ary PAM case. Similar to the binary
case, the design of our multiple-hyperplane detector for-ary
PAM channels is straightforward, and guarantees to realize the
asymptotic Bayesian DFE detector. Furthermore, the reduction
in detector complexity with signal space partitioning approach
is more significant for . A simulation example is
included to compare the performance and detection complexity
of the resulting multiple-hyperplane detector with those of the
optimal Bayesian DFE.

II. PROBLEM FORMULATION

We will assume that the real-valued channel generates the
received signal samples of

(1)

where are the CIR taps, the Gaussian white noise
has zero mean and variance, and the -ary PAM symbol

takes the value from the symbol set
. The SNR of the system is defined

as , where is the symbol vari-
ance. The generic DFE studied in this letter uses the informa-
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tion present in the noisy observation vector
and the past detected symbol vector

to produce an
estimate of , where and are the de-
cision delay, the feedforward and feedback orders, respectively.
We will choose and , as this
choice is sufficient to guarantee a desired linear separability for
different signal classes [8], [9].

The observation vector can be expressed as [5], [8]

(2)

where
, and

...
...

...
. . .

. . .
(3)

...
...

.. .
...

. ..
. . .

(4)

are the and CIR matrices, respectively.
Assuming correct past decisions, we have and

(5)

Thus, the decision feedback translates the original space
into a new space

(6)

Let the possible sequences of be
. The set of the noiseless channel states in the translated

signal space, namely

(7)

can be partitioned into subsets conditioned on

(8)

The optimal Bayesian DFE [5] can now be summarized. The
decision variables are given by

(9)

and the minimum-error-probability decision is defined by

with (10)

The complexity of this optimal detector is given in Table I.

TABLE I
COMPARISON OFDECISION COMPLEXITY FOR THE FULL BAYESIAN

AND MULTIPLE-HYPERPLANEDETECTORS

Fig. 1. Illustration of shift property for subsets of channel states.

III. M ULTIPLE-HYPERPLANEDETECTOR

We first establish a geometric translation property for any two
neighboring subsets of channel states.

Lemma 1: For , the subset is a trans-
lation of by the amount

(11)

where . Furthermore, and
are linearly separable.

Proof: From the definitions of and , for any
, there exists a such that

, which implies (11). To prove the linear
separability, consider the hyperplane

(12)

with . For any and any
, we have and

. Fig. 1 illustrates this lemma graphically.

A. Asymptotic Optimal Boundary for Two Neighboring Classes

Although it is always possible to construct a hyperplane
to correctly separate from , the optimal decision
boundary that separates from cannot generally
be approximated by a single hyperplane. Without the loss of
generality, consider , the optimal decision boundary

for separating and . Because of
Lemma 1, when (or ), the influence from
all the other for and vanishes
much more quickly, and it effectively becomes a two-class
problem. We have the following definition, similar to the one
given in [15].

Definition 1: A pair of opposite-class channel states
is said to bedominantif

and

(13)
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where denotes the union operator and

(14)

The following properties of are useful in the derivation of
a multiple-hyperplane detector (see [11]). A necessary condition
for a point is

(15)

where denotes an arbitrary vector in the subspace orthog-
onal to and are a pair of dominant states, and the
sufficient conditions for are

(16)

(17)

(18)

The following lemma describing in the asymptotic case of
is a direct consequence of the necessary and sufficient

conditions (15)–(18).
Lemma 2: Asymptotically, the optimal decision boundary

separating and is piecewise linear
and made up of a set of hyperplanes. Each of these hyper-
planes is defined by a pair of dominant states, the hyperplane
is orthogonal to the line connecting the pair of dominant states
and passes through the midpoint of the line.

B. Multiple-Hyperplane Detector for Two Neighboring
Classes

According to Lemma 2, a multiple-hyperplane detector can
be constructed to partition the signal space into the two re-
gions of and , respectively. The
detector will consist of linear discriminant functions and a
many-to-one Boolean mapper, similar to the binary case given
in [15]. For completeness, the following design procedure for
this multiple-hyperplane detector is produced here with the nec-
essary modifications.

Step 1) Select all the pairs of dominant channel states from
the two subsets and . For each
pair, compute a hyperplane that separates these two
opposite-class states.

Step 2) A Boolean logic function is obtained to make a deci-
sion based on the location of the observation vector

relative to each hyperplane. This is achieved by
first defining a convex region associated with each
state in a given class, e.g., the class , and
then forming a union of these regions.

From (15)–(18), it is easily seen that pairs of dominant states
that define the asymptotic boundary can be selected using the
following algorithm.

L = 0;
FORr

(+)
q 2 R((M=2)+1)

FORr
(�)
j 2 R(M=2)

x = (r
(+)
q + r

(�)
j )=2; � = kr

(+)
q � xk2;

IF (kr
(+)
l � xk2 > �; 8r

(+)
l 2 R((M=2)+1); l 6= q) AND

(kr
(�)
l � xk2 > �;8r

(�)
l 2 R(M=2); l 6= j)

L += 1;
RAsym  (r

(+)
L ; r

(�)
L )

4

= (r
(+)
q ; r

(�)
j );

END IF
NEXT r

(�)
j

NEXT r
(+)
q

Each pair determines a hyperplane

(19)

that is a part of the asymptotic optimal decision boundary. The
weight vector and bias of the hyperplane can be computed
straightforwardly as

(20)

and

(21)

The hyperplane defined by (20) and (21) is acanonicalhyper-
plane with as its two support vectors [16], and has
the property that and . The fol-
lowing definition is useful in the optimal multiple-hyperplane
partitioning.

Definition 2: A state is said to be
sufficiently separableby the hyperplane if can separate

correctly with a “canonical distance” .
Notice that is sufficiently separable by
if and only if . Similarly,

is sufficiently separable by if and only if
. Number the states in as to and those in

as to , where . All the states
in are tested to see if they can be separated
sufficiently by . This generates the following
“separability” matrix:

...
...

...
...

...
...

where . The rule in generating this matrix is as
follows: if a state cansufficientlybe separated by , the corre-
sponding binary index ; otherwise .

Notice that in every row there are at least two nonzero ele-
ments (associated with a dominant pair), and in every column
there is at least one nonzero element.
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TABLE II
SEPARABILITY MATRIX FOR THE TWO SUBSETS OFCHANNEL STATES

The half-space defined by a hyperplane is given by

. To construct a convex region
covering a state , select those hyperplanes

which can sufficiently separate and denote
. Then is obtained by the intersection

of all the with

(22)

In fact, a subset of the hyperplanes defined by is enough
to construct , provided that every state in can suf-
ficiently be separated by at least one hyperplane in the subset.
The overall decision region associated with the decision

is simply formed as the union of all the

(23)

The Boolean logic function for the multiple-hyperplane detector
is now completely defined. Define the threshold detector output

for a linear discriminant function to be

(24)

A Boolean logic value indicating whether
or not is obtained via a logicAND operation of

(25)

A Boolean logic value indicating whether
(that is, ) or not is obtained via a logicORoperation
of for all

(26)

C. Multiple-Hyperplane Detector for Classes

According to Lemma 1, if is a hyperplane that forms a
part of the asymptotic decision boundary for separating
and is a hyperplane that is a part of
the asymptotic boundary for separating and , where

. In fact, the asymptotic decision boundary
for separating and is the translation of the asymp-
totic decision boundary for separating and by an
amount . Notice that

(27)

where . To indicate which asymptotic decision
boundary, the index , is used. The half-space

defined by the hyperplane is
, the convex region covering is

, and the decision region for is .
The corresponding Boolean logic value for the linear discrimi-
nant function is denoted by ,
the Boolean logic value indicating whether or not
is denoted by , and the Boolean logic
value indicating whether or not is denoted by

.
The resulting multiple-hyperplane detector can now be sum-

marized. At sample

FOR l = 1 to L
COMPUTE �Hl(k) = w

T
l r(k);

NEXT l

FOR i = 1 to M � 1

FOR l = 1 to L
COMPUTE �Hl(k) + �bl;i;

NEXT l

COMPUTE Boolean logic value�i(k);
IF (NOT �i(k)) f
ŝ(k � d) = si;
BREAK;

g ELSE IF ((i == M � 1) f
ŝ(k � d) = sM ;
BREAK;

g

NEXT i

As all the values of are precomputed at the design stage,
the detector complexity is what is required to compute the
linear discriminant functions, as listed at Table I. Thus the com-
plexity of this multiple-hyperplane detector is times of the
linear-combiner DFE. As long as , this multiple-hy-
perplane detector requires less computation than the optimal
Bayesian detector. The pairs of dominant states are selected
from two subsets, which have states. Empirically, we
have found usually .

IV. A SIMULATION EXAMPLE

An example was used to test the proposed multiple-hy-
perplane detector, in which 4-ary PAM symbols were
transmitted over a three-tap channel specified by the CIR

. The structure parameters of the DFE were
accordingly set to and . The channel
state set had states. Five pairs of dominant states
were found from the subsets and , giving rise to
five separating hyperplanes. The separating matrix for this
example is listed in Table II, from which a required Boolean
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Fig. 2. Performance comparison of the classical MMSE DFE (MMSE),
the multiple-hyperplane detector (AB), and the full Bayesian DFE (FB) with
detected symbols being fed back.

logic function can be obtained. For instance, the states
to in require the two hyperplanes and for
separation from and are separated from

by and ; finally, separates to from
the opposite-class . Thus, given the five values of linear
discriminant functions , the detector
requires two logicAND and two logicORoperations to complete
the Boolean logic value .

The symbol-error rate (SER) performance of this multiple-
hyperplane detector is compared with those of the full Bayesian
and conventional minimum mean-square-error (MMSE) DFEs
in Fig. 2, where it can be seen that there is hardly any SER per-
formance difference between the multiple-hyperplane and full
Bayesian detectors. For this example, the full Bayesian DFE re-
quires 380 additions, 256 multiplications, and 64 func-
tion evaluations to detect a symbol. The multiple-hyperplane de-
tector, however, needs only 25 additions and 15 multiplications
to make a decision, which is less than 6% of the complexity
required by the full Bayesian DFE. The linear MMSE DFE re-
quires only five additions and three multiplications to make a
decision, as it contains a single hyperplane, but its performance
is much inferior.

V. CONCLUSION

We have extended a signal space partitioning technique, orig-
inally developed for binary channels, to-ary PAM channels.
A design scheme is presented to automatically construct a mul-
tiple-hyperplane partitioning that is asymptotically optimal. The

resulting detector consists of a set of linear discriminant func-
tions and associated Boolean logic values, and it has much lower
decision complexity compared with the optimal Bayesian de-
tector. Although this multiple-hyperplane detector achieves the
optimal Bayesian performance only at the asymptotic case of
infinite SNR, in practice, it can close approximate the optimal
performance under finite SNR conditions.
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