760 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 5, MAY 2001

Decision-Feedback Equalization Using Multiple-Hyperplane Partitioning for
Detecting ISI-Corrupted/-ary PAM Signals

S. Chen, L. Hanzo, and B. Mulgrew

Abstract—A decision-feedback equalizer scheme is derived optimal Bayesian detector more closely than the conventional
based_ on multiple-hyperplane partitioni_ng of signal space for DFE.
detecting M -ary pulse amplitude modulation symbols transmitted Signal space partitioning techniques for binary intersymbol

through a noisy intersymbol interference channel. The proposed .
scheme is based on the fact that the optimal Bayesian decisioninterference (ISI) channels have been developed. Notably, Moon

boundary separating two neighboring signal classes is asymp- and Jeon [12] developed a detector using the Voronoi diagram.
totically piecewise linear and consists of several hyperplanes, Kim and Moon [13], [14] improved on the design and developed

when the signal-to-npise ratio tends to infinity. _An algorithm is g new signal space partitioning technique. Their technique de-
developed to determine these hyperplanes, which are then usedigrines a set of hyperplanes that separate clusters of noiseless
to partition the observation signal space. The resulting detector . - o
can closely approximate the optimal Bayesian detector, at an Cha@nnel states. The convex regions associated with individual
advantage of considerably reduced detector complexity. states are constructed by intersecting hyperplanes. The overall
. . : decision region is then formed from these convex regions. The
. Index Terms—Asym.ptotlc deqsmn boundary, Baye3|an. de- decisi lexit d f f the detector i i
cision-feedback equalizer, multiple-hyperplane detector, signal G€CISION complexity and performance or the aetector 1S con
space partitioning. trolled during design by a specified minimum separating dis-
tance. The main drawback of their design is that a combinato-
rial search and optimization process is carried out to find those
hyperplanes, which requires extensive computational efforts. In
HE decision-feedback equalizer (DFE) is a powerful teclour previous work [15], we have shown that this design com-
nique for combating distortion and interference in conplexity can be avoided and we have proposed a much simpler
munication links and high-density data storage systems. For thternative design to explicitly realize the asymptotic Bayesian
class of DFE structures that employs symbol-by-symbol detetecision boundary for binary ISI channels.
tion, the optimal solution is well understood to be the maximum In this letter, we extend this multiple-hyperplane detector
a posterioriprobability or Bayesian detector [1]-[5]. The com-design toM -ary pulse amplitude modulation (PAM) channels.
plexity of the optimal Bayesian DFE is determined by the factddased on a geometric translation property for fifesets of
of M™=, whereM being the size of the symbol constellatiomoiseless channel states, the asymptotic Bayesian boundary for
andn, the channel-impulse response (CIR) length. As the corseparating any two neighboring signal classes can be deduced,
plexity of the optimal detector increases exponentially with trgnd this allows us to extend the algorithm for the binary case
size of symbol seb?, the conventional or linear-combiner DFE[15] to the generald-ary PAM case. Similar to the binary
[6]-[10] is often used in practice to provide a tradeoff betweetaise, the design of our multiple-hyperplane detectoMeary
performance and detector complexity. PAM channels is straightforward, and guarantees to realize the
For the binary case, the difference in performance betweasymptotic Bayesian DFE detector. Furthermore, the reduction
the conventional and optimal Bayesian DFEs can be explainedietector complexity with signal space partitioning approach
geometrically: a linear-combiner DFE can only partition the otis more significant forA > 2. A simulation example is
servation space with a hyperplane while the optimal Bayesitirtluded to compare the performance and detection complexity
detector can do so with a hypersurface [4]. Asymptotically, trf the resulting multiple-hyperplane detector with those of the
optimal Bayesian hypersurface becomes piecewise linear @pdimal Bayesian DFE.
is made up of a set of hyperplanes [11]. In practice, at large
signal-to-noise ratio (SNR) (usually 10-20 dB), the Bayesian Il. PROBLEM FORMULATION

decision hypersurface can closely be approximated by a muIWe will assume that the real-valued channel generates the

tiple-hyperplane form. Thus, a detector that partitions the of;.qieq signal samples of

servation space with multiple hyperplanes can approximate the

. INTRODUCTION
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tion present in the noisy observation vegidk) = [y(k) y(k—
1) -
sp(k) = [8(k —d—1) --- 3(k — d — n)]* to produce an
estimates(k — d) of s(k — d), whered, m, andn are the de-

cision delay, the feedforward and feedback orders, respectively.

We will choosed = n, — 1, m = n,, andn = n, — 1, as this

choice is sufficient to guarantee a desired linear separability for

different signal classes [8], [9].
The observation vectgr(k) can be expressed as [5], [8]

y(k) = Flsf(k) + FQSb(k) + e(/%) (2)

wheres;(k) = [s(k) -+ s(k — d)¥,sp(k) = [s(k —d —
1) - s(k—d—n)]", e(k) =[e(k) --- e(k—m+1)]¥, and
[0 a1 On,—1
R=|% ® (3)
o T ay
L0 - 0 ag
r0 0 0
Ap, —1 0 ' :
by = an,—2 Qn,—1 . 0 (4)
0
L a1 Un,—2 Qn,—1

are them x (d + 1) andm x n CIR matrices, respectively.

Assuming correct past decisions, we hayg:) = s,(k) and

®)

Thus, the decision feedback translates the original spéke
into a new space(k)

y(]{}) = Flsf(k) —|— Fgéb(k}) —|— e(k)

r(k) £ y(k) — Foby (k). (6)

Let the Ny = M“*! possible sequences sf(k) besy;,1 <

J < Ny. The set of the noiseless channel states in the translafe' ¥

signal space, namely

RE{r; = Fisy;,1 < j < Ny} @)
can be partitioned intd/ subsets conditioned otk — d)
RO&(r,eR:s(k—d)=s}, 1<i<M. (8

The optimal Bayesian DFE [5] can how be summarized. ¥he
decision variables are given by

3 e <_
©

r; cR()
and the minimume-error-probability decision is defined by

= (k) —x;1°

pi(r(k)) 553 ) . 1<i<M

$(k —d) = sy, with ¢* = arg 122}}(\4{&(1‘(/@))} (10)

The complexity of this optimal detector is given in Table I.

y(k —m + 1)]7 and the past detected symbol vector
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TABLE |
COMPARISON OFDECISION COMPLEXITY FOR THE FULL BAYESIAN
AND MULTIPLE-HYPERPLANE DETECTORS

Full Bayesian | Multiple-hyperplane
detector detector
Additions 2ngM™ — M (n,+M—2)L
Multiplications | (ng + 1)M™ n,L
exp() M —

asymptotic Bayesian boundary

2arev

™. separating A
hyperplane W

",
“,

Fig. 1. lllustration of shift property for subsets of channel states.

I1l. M ULTIPLE-HYPERPLANE DETECTOR

We first establish a geometric translation property for any two
neighboring subsets of channel states.

Lemmal: Forl < i < M — 1, the subseR(*D) js a trans-
lation of R(") by the amounga,..,

RUHY = RO 4 24, (11)
wherea,e, = [a,, 1 --- a1 ao]’. Furthermore,R® and
RU+1) are linearly separable.

Proof: From the definitions oR( and £}, for anyr; €
R, there exists a; € ROtV such thatr; = r; + (541 —
$i)Arey = I'1 + 28y, Which implies (11). To prove the linear
separability, consider the hyperplane

wl <r + 2 <% — L) arev> =0 (12)

=00 - 0 (1/ap)]*. For anyr; € R“ and any
r; € R(H—l), we haveH(rl +Ci) =-1<0 andH(rj + Ci)
1 > 0. Fig. 1 illustrates this lemma graphically.

(1>

H(r+c¢;)

O

A. Asymptotic Optimal Boundary for Two Neighboring Classes

Although it is always possible to construct a hyperplane
to correctly separat&®® from Rt the optimal decision
boundaryD; that separate®® from R+l cannot generally
be approximated by a single hyperplane. Without the loss of
generality, consider = (M /2), the optimal decision boundary
D2 for separatingR*/2) and R(M/2+D . Because of
Lemma 1, whersNR — oo (or 2 — 0), the influence from
all the otherR™ for i # M/2 andi # (M/2) + 1 vanishes
much more quickly, and it effectively becomes a two-class
problem. We have the following definition, similar to the one
given in [15].

Definition 1: A pair of opposite-class channel statest) ¢
RWM/D+1) v(-) ¢ R(M/2)) s said to bedominantif Vr; €
RO RM/DHD po £ v andr; # r()

2
lr; — r0||2 > (¢ —r

(13)
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whereu denotes the union operator and L =0;
FORr{" € R(M/2+1
. r(H) o p() (14) FORr(j—) c RM/2)
’ 2 x = (1" 057 /2 = e —

IF (e — x||? > n.veli™ e ROY/DHD 1 2 ) AND

The following properties oD,,,, are useful in the derivation of (||r§_) Cx|? > n,VrE_) € RO 1 2 )

amultiple-hyperplane detector (see [11]). A necessary condition

L+=1;
for a pointrg € D is ' NN y (=
pointrg M2 Rawym — (2P, 20) & (r(q+)7r§ )y
n END IF
r . r(+) + r(_) + r(+) — r(_) (15) NEXT I_(j*)
b= 2 2 NEXT "

wherex' denotes an arbitrary vector in the subspace orthog-
onal tox, r*) andr(~) are a pair of dominant states, and the
sufficient conditions forg € D/, are Hi(rt)=wlr+b5=0 (19)

Each pai(r{", r{™)) € Raqym determines a hyperplane

that is a part of the asymptotic optimal decision boundary. The
weight vectomw; and biag; of the hyperplane can be computed
(16) straightforwardly as

2 M
rg - < lrs —ri||? Vr; € R(%'H), r; # r(H

o7 2 (& )
rp—r <|frp—r;|®  Vrje =’ rj#r 9 (r§+) _ r;,))
17) W= % (20)
2 2 NCON I.(—)H
rg—rP| = HrB—r( )H . (18) ! !
and

The following lemma describing,, /- in the asymptotic case of (r§+> _ r§—>)T (r§+> + r<—>>
o2 — 0is a direct consequence of the necessary and sufficient by = — . (21)

conditions (15)—(18).

Lemma 2: Asymptotically, the optimal decision boundary
D2 separatingR™/2 and R(M/2+D) is piecewise linear The hyperplane defined by (20) and (21) isanonicalhyper-
and made up of a set df hyperplanes. Each of these hyperplane with(r§+), r§—>) as its two support vectors [16], and has
planes is defined by a pair of dominant states, the hyperplahe property thaﬂl(rgﬂ) -1 andHl(rg’)) — —1. The fol-
is orthogonal to the line connecting the pair of dominant statRfving definition is useful in the optimal multiple-hyperplane

2
r§+) _ r;—)H

and passes through the midpoint of the line. partitioning.

Definition 2: Astater; € RM/2 yR(M/D+1) s said to be
B. Multiple-Hyperplane Detector for Two Neighboring sufficiently separabléy the hyperplandd, if H, can separate
Classes r; correctly with a “canonical distancéw; r; + b;| > 1.

According to Lemma 2, a multiple-hyperplane detector can Notice thatr; € R(M/2+1 is sufficiently separable by
be constructed to partition the signal space into the two rz if and only if wiTi + b > 1. Similarly, r; € RO/
gions of§(k — d) < —1 andé(k — d) > 1, respectively. The IS sufficiently separable byd; if and only if wir; + b, <
detector will consist of. linear discriminant functions and a—1. Number the states iR*/2 asr{™ to 1”5\2) and those in
many-to-one Boolean mapper, similar to the binary case giv&i(*/2+1) a3r§+) to r§\+ , whereN, = N, /M. All the states
in [15]. For completeness, the following design procedure f@i R(M/2)y R((M/2)+1) gre tested to see if they can be separated

this multiple-hyperplane detector is produced here with the negisfficiently by H;,1 < [ < L. This generates the following

essary modifications. “separability” matrix:
Step 1) Selectall thé pairs of dominant channel states from —) (=) (=) +) +)
the two subsetgt(*/?) and R(*/2)+1)_ For each I T b Iy
pair, compute a hyperplane that separates these twf/; hi1 hiz2 -+ hin, hin,.g1 - hion,

opposite-class states. Ho ho1 hog -+ han, hon,.g1 - hoon,
Step 2) A Boolean logic function is obtained to make a deci- - . . . .
sion based on the location of the observation vector ) ' )
r(k) relative to each hyperplane. This is achieved by * heo hego oo hone honar o hrow,
first defining a convex region associated with eacfyhereh, ; € {0,1}. The rule in generating this matrix is as
state in a given class, e.g., the cl&&6/2+1) and follows: if a state casufficientlybe separated b#f;, the corre-
then forming a union of these regions. sponding binary indek; ; = 1; otherwiseh; ; = 0.
From (15)—(18), it is easily seen that pairs of dominant statesNotice that in every row there are at least two nonzero ele-
that define the asymptotic boundary can be selected using thents (associated with a dominant pair), and in every column
following algorithm. there is at least one nonzero element.
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TABLE I
SEPARABILITY MATRIX FOR THE TWO SUBSETS OFCHANNEL STATES
R(? RO
i ¢ 1 1 1 1 1 1 o o 0 0 o0 o0 o0 oO0[]1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o o o 1 o o0 1 1 1 1 1 ¥ 1 1 1 1]1 1 1 1 1 1 o0 O 1 O O O O O O O
i1 ¢+ ¥ 1 1 1 1 1 1t 1t 1t 1 o o o o0fo o o ¢ 1 1 1 1 1 1 1 1 1 1 1 1
o o o o o o ¢ 1 o o 1 1 1 1 1 1]1 1 1 1 1 1 1 1 1 1 O O 1 O O O
i ¢ 1 1 1 1 1t 1 1 ¢ 1 1 1 1 1 1]/]0 o O O O O O O 1 1 1 1 1 1 1 1

The half-space defined by a hyperplah is given by defined by the hyperplane?r + b;; = 0 is HHD 2 {r :
HI(J’) 2 {r : Hy(r) > 0}. To construct a convex regidﬁff) wlr+b; > 0}, the convex region coverimjﬁ:i € RU+D jg
covering a state(") € R((M/2+1) | select those hyperplanesr$™"  and the decision region fak — d) > s;4, is R,
which can sufficiently separateEIJr) and denoterIJ’) £ The corresponding Boolean logic value for the linear discrimi-

{1 : higen, = 1}. ThenR{) is obtained by the intersectionnant functionf; (k) +b; is denoted by ;(k) = Bi(r(k)+ec;),

of all theH§+) with je GEI+) _the Boolean Iogitév)alue in((ji((:a;ing W;Iethék) € Rff’i) or not
B +) is denoted by, ;(k) = 6,(r(k) + ¢;), and the Boolean logic
RGP = [ 7. (22)  value indicating whether(k) € R+ or not is denoted by
jeayt a;(k) = a(r(k) + c;).

The resulting multiple-hyperplane detector can now be sum-

In fact, a subset of the hyperplanes defined&’fj) is enough i
marized. At samplé:

to constructR{", provided that every state iR*/2) can suf-
ficiently be separated by at least one hyperplane in the subset.
The overall decision regioR(+) associated with the decisionfOR! = 110 L

4(k — d) > 1is simply formed as the union of all tife’™ NE??";DUTEF[’("") = wir(k);

N,
’R(+) — ’R(+) 23 FOR: =1toM — 1
qL:Jl ! @3 " ori - l1to L )
The Boolean logic function for the multiple-hyperplane detector COMPUTEH; (k) + br.i;
is now completely defined. Define the threshold detector outpu't\IEXT ! _ -
B,(x(k)) for a linear discriminant functiod; (r(%)) to be COMPUTE Boolean logic value; (k);
A (1 H(x(k) > 0 IF (NOT «;(k)) {
Bi(r(k)) =9 o J = (24) d(k—d) = si;
0. Hjlr(k)) <0. BREAK;
A Boolean logic value 8,(r(k)) indicating whether VELSEIF (f == M — 1) {

r(k) € R§+) or not is obtained via a logisND operation of ik —d) = su;

{8;(x(k)) : j € G{P} BREAK;
3 2 (p(ks }
b (x(k) = () Bir(k). (25) \Lers
jec{h
A Boolean logic valuex(r(k)) indicating whether (k) € R(_ﬂ As all the values ob; ; are precomputed at the design stage,
(thatis,3(k —d) > 1) or notis obtained via a logioR operation  the getector complexity is what is required to compute he
of {6, (r(k))} for all ¢ N linear discriminant functions, as listed at Table I. Thus the com-
A plexity of this multiple-hyperplane detector Is times of the
ofr(k)) = qL=J1 Oa(x(k)). (26) linear-combiner DFE. As long ak < AM™«, this multiple-hy-

[0 perplane detector requires less computation than the optimal
Bayesian detector. The pairs of dominant states are selected
C. Multiple-Hyperplane Detector fak/ Classes from two subsets, which ha&\/"=—1 states. Empirically, we

According to Lemma 1, if;(r) is a hyperplane that forms ahave found usually, < 2071,
part of the asymptotic decision boundary for separakfitf/
and RUM/2+D H(r 4 ¢;) is a hyperplane that is a part of IV. A SIMULATION EXAMPLE
the asymptotic boundary for separatiRff’ and R(*+1), where  An example was used to test the proposed multiple-hy-
¢; = (M — 2i)aey- In fact, the asymptotic decision boundanperplane detector, in which 4-ary PAM symbols were
for separating?*1) andR(+?) is the translation of the asymp-transmitted over a three-tap channel specified by the CIR
totic decision boundary for separatidgf”) and R by an a = [0.4 1.0 0.6]T. The structure parameters of the DFE were
amount2a,.,. Notice that accordingly set ton = 3, d = 2, andn = 2. The channel
] N TR = TP state set? had N; = 64 states. Five pairs of dominant states

H(x(k) + ;) = wir(k) + b = Hi(k) + bui (27) " were found fronj; the subset8B® and R®), giving rise to
whereb; ; = wi ¢; + b;. To indicate which asymptotic decisionfive separating hyperplanes. The separating matrix for this
boundary, the index 1 < ¢ < M — 1, is used. The half-spaceexample is listed in Table I, from which a required Boolean
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Fig. 2. Performance comparison of the classical MMSE DFE (MMSE),
the multiple-hyperplane detector (AB), and the full Bayesian DFE (FB) with 2]
detected symbols being fed back.

. . . . 3]
logic function can be obtained. For instance, the staiés”
to rs"? in R® require the two hyperplanel; and H, for 4
separation fromR®;ri™? and r{"? are separated from x
R® by Hs andHy; finally, Hs separates|™? tor{}? from
the opposite-clas®(®. Thus, given the five values of linear Bl
discriminant functionsH;(k) + b;;,1 < I < 5, the detector "

requires two logiaND and two logicorR operations to complete
the Boolean logic valuey; (k).

The symbol-error rate (SER) performance of this multiple- [7]
hyperplane detector is compared with those of the full Bayesian[S]
and conventional minimum mean-square-error (MMSE) DFEs
in Fig. 2, where it can be seen that there is hardly any SER per-
formance difference between the multiple-hyperplane and full[®]
Bayesian detectors. For this example, the full Bayesian DFE re-
quires 380 additions, 256 multiplications, andé#(-) func-  [10]
tion evaluations to detect a symbol. The multiple-hyperplane de-
tector, however, needs only 25 additions and 15 multiplications, ;
to make a decision, which is less than 6% of the complexity
required by the full Bayesian DFE. The linear MMSE DFE re-

; . " S [12]
quires only five additions and three multiplications to make a
decision, as it contains a single hyperplane, but its performance
is much inferior. [13]

V. CONCLUSION 4]
We have extended a signal space partitioning technique, origss)

inally developed for binary channels, 3d-ary PAM channels.

A design scheme is presented to automatically construct a m

tiple-hyperplane partitioning that is asymptotically optimal. The

16]
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Iting detector consists of a set of linear discriminant func-

tions and associated Boolean logic values, and it has much lower
decision complexity compared with the optimal Bayesian de-
tector. Although this multiple-hyperplane detector achieves the
optimal Bayesian performance only at the asymptotic case of
infinite SNR, in practice, it can close approximate the optimal
performance under finite SNR conditions.
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