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Abstract

Conformational analysis is of paramount importance in drug design: it is crucial

to determine pharmacological properties, understand molecular recognition processes,

and characterize the conformations of ligands when unbound. Molecular Mechanics

(MM) simulation methods, such as Monte Carlo (MC) and molecular dynamics (MD),

are usually employed to generate ensembles of structures due to their ability to exten-

sively sample the conformational space of molecules. The accuracy of these MM-based

schemes strongly depends on the functional form of the force field (FF) and its pa-

rameterization, components that often hinder their performance. High-level methods,

such as ab initio MD, provide reliable structural information but are still too com-

putationally expensive to allow for extensive sampling. Therefore, to overcome these

limitations, we present a multi-level MC method that is capable of generating quan-

tum configurational ensembles while keeping the computational cost at a minimum.
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We show that FF reparameterization is an efficient route to generate FFs that re-

produce QM results more closely, which in turn can be used as low-cost models to

achieve the gold standard QM accuracy. We demonstrate that the MC acceptance

rate is strongly correlated with various phase space overlap measurements and that it

constitutes a robust metric to evaluate the similarity between the MM and QM levels

of theory. As more advanced applications, we present a self-parameterizing version of

the algorithm, which combines sampling and FF parameterization in one scheme, and

apply the methodology to generate the QM/MM distribution of a ligand in aqueous

solution.

1 Introduction

The study of the conformational dynamics of molecules free in solution is essential for pre-

dicting molecular properties and to guide the rational development of new pharmaceutical

compounds. The latter application is of utmost importance for the pharmaceutical industry

since knowledge of the unbound state is vital to understand the fundamentals of molecular

recognition.1–5 Besides the displacement of water from protein binding sites,6–8 one of the

main phenomena that impacts binding affinity is the reorganization of the unbound state

ligand upon binding to its target, a process that is influenced by the change in intramolec-

ular energy of the ligand in adopting the bioactive conformer, as well as the associated loss

of entropy.4 Minimization of the free energy penalty associated with this structural change

is vital to optimizing ligand potency, requiring knowledge of the physical interactions that

control conformational preferences and methods for conformational analysis if a rational

strategy is to be employed.9 There is a wide range of experimental structural information

of pharmaceutical compounds bound to their protein targets.10,11 However, as it has been

emphasized in various studies, the conformations of unbound compounds are still poorly

characterized.2,3,5,12 Therefore, the scientific community must put effort into developing tools

that allow fast and reliable characterization of unbound molecular conformers as these can
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potentially provide the so-called ”missing link” in structure-based drug discovery.2,12

The most widely used experimental method to elucidate unbound conformational en-

sembles is NMR spectroscopy, which is often utilized in drug design to complement X-ray

protein–ligand structural information.9,12,13 Additionally, molecular mechanics (MM) simula-

tion methods, such as molecular dynamics (MD) and Monte Carlo (MC), are also commonly

employed to predict thermophysical molecular properties and generate structures for con-

formational analysis.3,14 In particular, static properties, such as, e.g., optical spectra, NMR

spectra, and solvation free energies, can be determined from the relative populations of the

free state conformers,15 which are usually possible to estimate in MM-based simulations

since, in many instances, these permit ergodic sampling.16–21 Although these methods al-

low extensive sampling of the configurational space of molecules, the functional form used

by the FF affects the sampling quality, and parameterization must be adequate to ensure

accurate results. High-level simulation schemes, such as, e.g., ab initio MD, have become

the gold standard for simulation purposes as they provide reliable structural information at

the quantum level, but are still too computationally expensive to allow achieving the time

scales typically required for convergence of the simulations.22–26 Hence, to attain extensive

and reliable sampling, it is necessary to find a compromise between the efficiency of the

MM-based methods and the accuracy of the quantum mechanics (QM) level of theory.

Several approaches have already been proposed to sample molecular conformations with

QM accuracy at a nearly MM cost. In this context, Rosa et al 15 proposed a post-processing

method wherein, through the use of conformational clustering and thermodynamic pertur-

bation theory, it is possible to estimate the QM populations by correcting MM populations.

Others have attempted to explore the conformational landscape of bioactive small molecules

by using a combination of classical Hamiltonian replica exchange with high-level QM calcu-

lations.27 In this work, we attempt to bridge the gap between the MM efficiency and the QM

accuracy by presenting a methodology that is based on an ab initio MC algorithm. This

approach enables recovery of the correct QM ensembles while keeping the computational
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cost at a minimum. It is also capable of self-parameterizing FFs to a target level of theory

in an iterative and on-the-fly fashion, a feature that can be applied whenever generation of

high-quality FFs is required.

The method we propose in this paper uses a nested Markov chain Monte Carlo (nMC-

MC) algorithm that combines sampling at the MM level with periodic switching attempts to

the QM level. This nMC-MC algorithm works by firstly resorting to the hybrid Monte Carlo

(hMC) scheme to rigorously generate configurations that belong to a target MM ensem-

ble.28–30 These are subsequently used as trial states for a second Markov chain, wherein they

are accepted or rejected according to a correction step based on the difference between the

MM and QM potentials.31,32 In this way, it is possible to generate quantum configurational

ensembles using approximate potentials (MM FFs). This multi-level ab initio MC algorithm

has already been applied in various contexts, such as in the fitting of FF dihedral angles,33 in

a ”stepping stone” approach for obtaining quantum free energies of hydration,34 in a MC re-

sampling approach for the calculation of hybrid classical/quantum free energies,35 to improve

the efficiency of Born models in MC simulations,36 to model reactivity in small molecules,37

and to enhance the conformational sampling of disordered regions of proteins.38,39

It is widely known that the key factor for convergence of multi-level approaches is en-

suring a favorable overlap between the energy distributions of different levels of theory.40–42

Otherwise, as FFs often predict conformations and energies that substantially deviate from

the QM level, low acceptance rates are obtained when attempting to sample from the MM to

the QM chain. Ultimately, the mismatch between the MM and QM descriptions becomes a

bottleneck as it prevents a thorough exploration of the relevant QM potential energy surfaces

(PES) and slows convergence of the sampling of the target quantum configurational distri-

butions. Different strategies have already been proposed to improve the overlap between the

probability distributions of the energies associated with different levels of theory.40 One pos-

sibility is to artificially broaden the MM distribution by manipulating the thermodynamic

variables (e.g., pressure and temperature) characterizing the reference system43–46 or using
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Tsallis statistics.47 It is also possible to introduce an intermediate level of theory (e.g., a

semi-empirical QM method) to bridge the gap between the MM and QM chains or employ

an arbitrary number of intermediate potential energy layers with sufficient overlap between

their probability distributions.48 Another option is to increase the overlap between the dis-

tributions by improving the MM description so that it becomes more QM-like, which is the

approach followed in this study. It can be achieved through either FF reparameterization

(typically by force-matching41,42,49), by using machine-learning potentials,50,51 or through

fitting of ad hoc potentials.43,52–54

As application examples, we test the proposed methodology on a set of small organic

molecules of increasing complexity which are representative fragments of molecules found

in drug discovery programs. Specifically, we attempt to generate quantum configurational

ensembles of aniline, acetanilide, biphenyl, diphenyl ether, and sulfanilamide. As a relevant

druglike example, we investigate a fragment of cpd 26, which is the core of an efficacious

low nM antagonist of the inhibitor of apoptosis proteins cIAP1 and XIAP.55 Furthermore,

as proof of principle, we use octahydrotetracene to demonstrate that the nMC-MC algo-

rithm can be coupled with a reparameterization step, allowing for iterative optimization

of the molecule’s FF parameters using the on-the-fly QM-generated ensemble. This self-

parameterization nMC-MC algorithm is similar in philosophy to the methods presented

in some past applications,50,52–54,56 though these studies did not use MM FFs or druglike

molecules. Finally, as a more advanced application, we apply the nMC-MC algorithm to

generate the QM/MM57 distribution of aniline in aqueous solution.

This paper is structured as follows: we first present the basic theory underlying the pro-

posed approach, viz. the hMC method, the nMC-MC algorithm, the FF reparameterization

approach, the phase space overlap metrics, and the numerical experiments protocol. We then

present applications of the algorithms to the previously mentioned test cases and conclude

with final remarks.
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2 Theory and Methods

2.1 Hybrid Monte Carlo

hMC is an exact sampling approach that combines the features of the MC and MD simulation

methods in such a way that the trial steps of the MC algorithm are short MD runs. Therefore,

hMC inherits the advantages of both algorithms, such as the tendency of MD to move

the system towards regions of configuration space that are energetically favorable, and the

possibility to relax the restriction on the size of the MD time step, dt, through the application

of a MC step.58 hMC also prevents the numerical instabilities that arise due to the finite

time step size of MD algorithms.59

At the start of every iteration, hMC draws new velocities from the Maxwell-Boltzmann

distribution at a chosen temperature TK , a step which is performed using the Marsaglia

polar method;34,60 then, a short MD simulation in the microcanonical ensemble (NVE) is

run using a sympletic integrator that preserves detailed balance61 (e.g. the velocity-Verlet

algorithm,62,63 the integrator used in this study) during M steps; finally, the final configu-

ration of the system is accepted or rejected according to a given acceptance criterion, which

for the canonical ensemble (NVT) at temperature TU reads28

φ(qi → qf ) = min
{

1, exp
[
−βK∆K − βU∆UMM(qi, qf )

]}
(1)

where ∆K = Kf − Ki is the difference of the kinetic energy between the final and

initial states of the short MD run, ∆UMM = UMM(qf )−UMM(qi) is the difference between

the potential energy of the system at configurations qf and qi, and βK and βU are the

thermodynamics betas corresponding to the temperatures TK and TU , respectively. The

latter do not need have the same value, a feature that can be used as a means of increasing

the conformational sampling efficiency by, for example, using high TK values for the kinetic

energy component. It is worth mentioning that M and dt are hyperparameters that have to

be chosen properly in order to ensure sampling of uncorrelated snapshots while keeping the
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wall time required for each MD manageable.34 These hyperparameters may have an impact

on the acceptance rates.30,34,64

The disadvantage of hMC is that its acceptance probability decays exponentially with the

system size because the root-mean-square error in the energy increases with N
1/2
a ,30,65 where

Na is the number of atoms of the system. There have been many attempts to circumvent

this bottleneck, the most widely studied being sampling from shadow Hamiltonians.30,66

Nevertheless, owing to the relatively small size of the molecular systems covered in this study,

this issue does not pose a problem for the current purposes. As will be next discussed, hMC

can also be embedded in a nMC-MC algorithm, wherein the hMC moves are used as the

trial steps of an ab initio MC algorithm.

2.2 Sampling From Approximate Potentials

As it was formalized by Gelb in his seminal work about sampling from approximate po-

tentials, it is possible to create a nMC-MC simulation by coupling hMC with a correction

step based on the difference between the MM and QM potentials.31,32 The expression of this

correction step reads

θ(qi → qf ) = min
{

1, exp
[
−β′U∆UQM(qi, qf ) + βU∆UMM(qi, qf )

]}
(2)

where ∆UMM = UMM(qf ) − UMM(qi), ∆UQM = UQM(qf ) − UQM(qi), and βU and β′U

are the thermodynamic betas of the MM and QM ensembles, respectively. Note that, as in

the hMC algorithm, the beta thermodynamic parameters also do not need to be the same

in both Markov chains, something that can be exploited as a way of increasing the overlap

between the MM and QM theory levels.43,44

The nMC-MC algorithm works by firstly generating a trial structure through the hMC

algorithm, which is then attempted to be sampled into the QM level of theory by applying

the acceptance criterion of equation (2). If the structure is accepted, the next hMC run starts
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from this configuration; otherwise, the hMC run starts from the last accepted configuration.

A detailed diagram of the workflow of this algorithm is shown in figure 1.
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Start

Has an ensemble of 
Ns QM structures 
been generated? 

Generate new
velocities

Starting from last accepted
QM structure run classical

MD simulation during M
steps

Calculate 
ΔUMM(qi,qf) = UMM(qf)-UMM(qi) 

ΔK = Kf -Ki

λ=exp[-βKΔK-
βUΔUMM(qi,qf)]

min[1,λ] > U(0,1)

Calculate 
ΔUQM(qi,qf) = UQM(qf)-UQM(qi) 

Λ=exp[-β'UΔUQM(qi,qf)+
βUΔUMM(qi,qf)]

min[1,Λ] > U(0,1)

Include the new structure,
qf,

in the QM ensemble

End

Hybrid Monte Carlo MM NVT → QM NVT

Include the last accepted
structure, qi, again in the 

QM ensemble

Figure 1: Diagram describing the workflow of nMC-MC algorithm as implemented in
ParaMol.67 The hMC part of the algorithm is used to generate an exact NVT ensemble
(left), while the sampling from approximate potentials part is used as a switching step be-
tween the MM and QM levels of theory (right). U(0, 1) means a random number between
0 and 1 sampled from a uniform distribution, and the i and f subscripts refer to the initial
and final states of a given iteration.
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2.3 Force Field Reparameterization

The key requirement for convergence of the nMC-MC algorithm is ensuring a favorable dis-

tribution overlap between the MM FF and the QM level of theory. To fulfill this condition,

we generate low-level models that are closer to the target high-level of theory than the gen-

eral AMBER force field (GAFF)68 energy function, in such a way that the overlap between

the MM and QM energy difference distributions is improved. This is attained through repa-

rameterization of GAFF-like MM FFs, a step that is performed to make the MM models

more QM-like. To perform the optimization of the FF parameters, we resort to the method-

ologies implemented in ParaMol, wherein a FF is fitted to a target level of theory through

minimization of the following objective function

X(p) = XF (p) +XU(p) + Θ(p) (3)

where p is the vector of parameters entering the optimization. XF corresponds to the

term of the objective function in which every component of the MM atomic forces is fitted

to QM data and is given by

XF (p) =
1

3Na

Ns∑
i

ωi

Na∑
j

[
∆Fi,j(p)T 〈FQM

i,j ⊗ F
QM
i,j 〉−1∆Fi,j(p)

]
(4)

where ωi is the weight of the i-th conformation, ∆Fi,j = FMM
i,j (p) − FQM

i,j , FQM
ij and

FMM
ij are the QM and MM force vectors, respectively, of atom j in conformation i, Ns is the

number of structures provided and Na the number of atoms of the system. It is worthwhile

mentioning that 〈FQM
i,j ⊗ FQM

i,j 〉 is the covariance of the atomic forces, herein used as a

normalization factor so that the residuals of the forces are dimensionless and maximally of

unit magnitude. Furthermore, XE amounts for the fitting of energies to reference QM data,

and the expression used for this term reads
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XU(p) =
Ns∑
i

ωi

(
UMM
i (p)− UQM

i − 〈∆U〉
)2

Var(UQM)
(5)

where UQM
i and UMM

i are the QM and MM potential energies, Var(UQM) is the variance of

the QM energies, here used as the normalization factor, and 〈∆U〉 = 1
Ns

∑
i

(
UQM
i − UMM

i

)
is a term that brings the two distributions together by subtracting the average difference

between the QM and MM potential energies from the energy residuals. Finally, Θ(p) is a

regularization term that can be optionally included to prevent overfitting. In this study, we

use a harmonic penalty function (L2 regularization) that assumes that the prior distribution

of the m-th parameter, pm, is a Gaussian centered at the initial guess p0m with width γm.

The expression of this harmonic regularization term reads

Θ(p) = α

Np∑
m

(pm − p0m)2

γ2m
(6)

where α is an adjustable scaling factor that controls the strength of the regularization.

2.4 Phase Space Overlap Metrics

As a means of establishing the similarity between the MM and QM levels of theory, we

evaluate the phase space overlap using two different metrics. The first metric resorts to

the idea that the phase space overlap can be calculated as the overlap of the total energy

difference distributions between the two considered levels of theory.42 These distributions

are obtained by performing MD simulations using both the MM and the QM Hamiltonians,

whereupon the differences ∆EMM→QM
MM = EQM

MM −EMM
MM and ∆EQM→MM

QM = EMM
QM −E

QM
QM are

evaluated for the trajectories obtained utilizing the MM and QM Hamiltonians, respectively,

where the subscript indicates the level of theory used for sampling, and the superscript the

level of theory used to evaluate the potential energy. The corresponding histograms of the

calculated ∆Es are then approximated by assuming Gaussian-shaped distributions, in such

a way that the energy difference distribution of the QM Hamiltonian is given by
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NQM(∆EQM→MM
QM ) =

√
1

2πσ2
QM

exp

−
(

∆EQM→MM
QM − 〈∆EQM→MM

QM 〉
)2

σ2
QM

 (7)

where σQM is the standard deviation of the ∆EQM→MM
QM values. The Gaussian represen-

tation of the energy difference distribution of the MM Hamiltonian, NMM , can be written

analogously. It is finally possible to measure the overlap, Ω, between the NQM and NMM

distributions according to the following equation

Ω =
〈NQM ,NMM〉

max [〈NQM ,NQM〉, 〈NMM ,NMM〉]
(8)

where 〈f, g〉 =
∫
dx f(x) ·g(x) is the inner product or overlap integral between the f and

g functions. The integration of this overlap integral is performed numerically using SciPy’s

integrate.quad function with default settings.69

We also use the descriptors of the phase space overlap between two states that were

developed by Wu and Kofke.42,70,71 In particular, we use a metric based on the overlap of

total energy distributions that reads

ΣMM,QM = 2

∫ +∞

−∞
dEQM ρQMQM(EQM)

∫ EQM

−∞
dE ′QM ρQMMM(E ′QM) (9)

where ρAA and ρAB are the probability distributions of state A energies observed within

simulations of states A and B, respectively. Similarly, the expression for ΣQM,MM can be

written as

ΣQM,MM = 2

∫ +∞

−∞
dEMM ρMM

MM(EMM)

∫ UMM

−∞
dE ′MM ρMM

QM (E ′MM) (10)

The value of ΣB,A varies from 0 to 2 and indicates the offset of ρAB relative to ρAA. If ρAB

is centered left with respect to ρAA, then 1 < ΣB,A ≤ 2. Otherwise, if ρAB is centered right

with respect to ρAA, then 0 ≤ ΣB,A < 1. The integration of the double integrals of equations

(9) and (10) is performed numerically using SciPy’s integrate.dblquad function with default
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settings.

2.5 Numerical Experiments Protocol

The numerical experiments presented in this study rely on using refined low-level models

that attempt to approximate a high level of theory. Specifically, the high level of theory

used throughout this work is the DFTB+72,73 implementation of SCC-DFTB including the

D3 dispersion correction74 with Becke-Johnson damping.75 This choice is based on the ev-

idence that SCC-DFTB-D3 performs quite well in determining conformations of druglike

molecules and respective energies,76–78 as well as being computationally cheap, which al-

lows for extensive testing of various compounds. The low-level models used to improve the

overlap between the energy difference distributions of the low and high levels of theory are

bespoke FFs, reparameterized to reproduce the SCC-DFTB-D3 level of theory. Specifically,

the reparameterized FFs consist of refined versions of GAFF, for which the functional form

reads68

U =
∑
bonds

Kb

2
(r − req)2 +

∑
angles

Kθ

2
(θ − θeq)2 +

∑
dihedrals

Vn [1 + cos (nφ− γn)]

+
∑
i<j

4εij

[(
σij
Rij

)12

−
(
σij
rij

)6
]

+
∑
i<j

qiqj
4πεrij

(11)

where req and θeq are equilibrium structural parameters; Kb, Kθ and Vn are the bond,

angle and dihedral force constants, respectively; n is the dihedral multiplicity, and γn is the

dihedral phase; εij is the well depth of the Leannard-Jones interaction between atoms i and

j, σij the distance at which said interaction vanishes, rij is the distance between atoms i

and j, and q is the atomic charge. These refined MM models are designed systematically

such that, for every molecule shown in figure 2, the following set of reparameterized FFs is

generated
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• B FF - bond force constants (Kb) and equilibrium values (req) are optimized.

• BA FF - bond and angle force constants (Kθ) and equilibrium values (θeq) are opti-

mized.

• BAT FF - bond, angle and dihedral force constants (Kb, Kθ, and Vn), bond and angle

equilibrium values (req, and θeq), and dihedral phase constants (γn) are optimized.

• BAT-LJ FF - in addition to the parameters optimized in the BAT FF, the σ and ε

Lennard-Jones 12-6 parameters are also optimized.

• BAT-Q FF - in addition to the parameters optimized in the BAT FF, the atomic charges

(q) are also optimized (under the constraint of total molecular charge conservation).

• The BAT-LJQ FF - in addition to the parameters optimized in the BAT FF, the σ

and ε Lennard-Jones 12-6 parameters are also optimized, as well as the atomic charges

(q) under the constraint of total molecular charge conservation.

The optimization of the parameters is performed using ParaMol with the SciPy’s SLSQP

optimizer.79 All optimizations are deemed to be converged whenever the objective function

between two successive iterations does not change by more than 10−6, i.e., Xn+1−Xn < 10−6.

The original GAFF parameters are used as the initial guess for the optimizations. These

are obtained by initially parameterizing the druglike molecules using Antechamber packages,

which are part of AmberTools.80 AM1-BCC charges81,82 are calculated after the geometry

is optimized at the SCC-DFTB-D3 level of theory. The topology and coordinates files used

as inputs to ParaMol are created using LEaP. All FF modifications given by the frcmod

file created by parmchk2 are included. No atom-type symmetries are preserved during the

reparameterization, which means that the presented results are close to the limits of accuracy

that the GAFF functional form can achieve.
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Figure 2: Molecular structures of the test molecules used in this paper.

The objective function minimized during the optimization procedure includes as targets

both forces and energies, as shown in equation (3). We test reparameterizing the FFs

using both the uniform and non-Boltzmann weighting (weighting temperature of 300 K)

schemes available in ParaMol (see description of the weighting methods in the Supporting

Information), as well as applying either no regularization or L2 regularization. Regarding

the latter, the prior widths used throughout this study are those reported in the Supporting

Information, and their choice is inspired by the values reported in refs 67 and 83. The

value of the scaling factor used in regularization term is α = 1/Np. The training data

sets consist of ensembles of configurations generated at the SCC-DFTB-D3 level of theory.
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These are obtained by performing gas-phase Langevin dynamics (time step of 1 fs, and

friction coefficient of 2 ps-1) at a temperature of 500 K. We choose to simulate at a high

temperature to ensure a thorough exploration of the SCC-DFTB-D3 conformational space.

Snapshots of the simulations are collected every 1 ps, resulting in a final data set of 10000

configurations.

The nMC-MC calculations performed to estimate the acceptance rates use a time step

of 1 (100 MD steps per hMC run). Velocities are sampled from the Maxwell-Boltzmann

distribution at 300 K, which is also the temperature used for the MM and QM chains. No

fine-tuning of these hyperparameters is attempted as these tend to be molecule-specific. A

total of 4 independent samplers are run for each molecule, all starting from the same initial

structure but using different random seeds.

3 Results and Discussion

3.1 nMC-MC Acceptance Rates

The most direct metric we can obtain from nMC-MC simulations are the acceptance rates.

There are two of these: the hMC acceptance rate shown in equation (1), which gives infor-

mation about the stability of the NVE MD runs and is useful to identify putative energy

conservation issues; and the MM to QM switching step acceptance rate shown in equation

(2), which gives information about the similarity between the MM and QM levels of theory.

The latter is the focus of this work because, as will be discussed later, it is highly correlated

with phase space overlap metrics. Therefore, it is a valuable metric of how close to the

QM level of theory the MM FFs are sampling, i.e, it measures the MM → QM overlap. It

should be noted, however, that this is a unidirectional relation since the acceptance rate does

not give details about how close to the MM level of theory the QM Hamiltonian samples.

Measuring the QM → MM overlap would require performing nMC-MC calculations using

the QM Hamiltonian in the lower chain, which is computationally expensive and, in many
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cases, unfeasible due to the requirement of performing ab initio MD. Hence, there is the pos-

sibility of predicting high acceptance rates that may misleadingly lead one to assume that a

given MM FF is highly QM-like when, in reality, it only explores a subset of configurations

included in the QM configurational distribution, leaving others unexplored. Nevertheless,

as the phase space overlap metrics reveal, the MM configurational distributions at a given

temperature are of a similar extent to, or broader, than their QM counterparts, supporting

that the switching step acceptance rate is a robust metric of the similarity between the MM

and QM levels of theory.
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Figure 3: nMC-MC acceptance rates for the set of molecules represented in figure 2. The
FFs used to calculate the acceptance rates are derived employing non-Boltzmann weighting
with (dark blue) or without (light blue) L2 regularization. The training data set contains
configurations sampled at 500 K. The errors bars correspond to the standard deviation of the
results of 4 different nMC-MC samplers. Each sampler performs a total of 2× 105 nMC-MC
sweeps.

The acceptance rates obtained when using non-Boltzmann weighting in the reparame-

terizations are shown in figure 3. Through its analysis, it is possible to conclude that the

variations observed in the acceptance rates are in line with what we expect from a systemat-
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ical reparameterization of FFs. That is, for the non-regularized FFs, the more classes of FF

parameters optimized, the higher the acceptance rates obtained, such that, in general, they

follow the trend B < BA < BAT < BAT-Q < BAT-LJ < BAT-LJQ. The only disparity in

this trend is observed for aniline and sulfanilamide, for which the BAT-Q FF performs better

than the BAT-LJ, revealing that the optimization of charges is more important to accurate

modeling of the aniline scaffold, which both molecules share, than the optimization of the

Lennard-Jones parameters. It is worthwhile mentioning that the optimization of the non-

bonded part of the FFs (charges, and 12-6 Lennard-Jones parameters) is here used as an ad

hoc workaround to accelerate the convergence of the sampling of the target SCC-DFTB-D3

distribution, as well as to test the limits of the functional form of GAFF. However, it should

be stressed that this approach is only viable for gas-phase situations like those presented in

these examples because these parameters affect the intermolecular interactions. Therefore,

the BAT-LJ, BAT-Q, BAT-LJQ parameters may have a limited applicability when applied to

solutes in solution. Since solute-solvent interactions can influence the solute’s configurational

ensemble, and the nonbonded parameters influence the energetics of intermolecular interac-

tions, a training data set including interactions with solvent needs to be considered if the

Lennard-Jones parameters and partial atomic charges are to be optimized. Furthermore, the

improvements seen in comparison to the original GAFF are substantial and indicate that the

derived FFs increase their similarity with respect to the SCC-DFTB-D3 Hamiltonian. For

all test cases, except aniline and biphenyl for which GAFF acceptance rates of ca. 13-15%

are obtained, the GAFF acceptance rates are lower than 3%, being 0% for sulfanilamide,

thus supporting the difficulty of MM FFs to correctly model sulfonamides.84

The properties of non-Boltzmann weighting support the previous observations because,

during the FF optimization, this weighting scheme gives larger weights to conformations

in which the MM energy is underestimated (UMM − UQM < 0) than to conformations in

which the MM energy is overestimated (UMM − UQM > 0) with respect to the QM energy.

Consequently, non-Boltzmann weighting mitigates the creation of spurious minima and drives
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the errors towards high-energy regions, thus overestimating transition-state energies and

underestimating fluctuations.67,83 This is a desirable property because, if a perfect fit to

the QM PES is impossible, it is preferable to have a mismatch that tends to make ∆UMM

greater than ∆UQM , hence maximizing acceptance into the QM chain (see equation (2))

and, consequently, leading to the stable, systematic improvements that are observed.

Concerning the results obtained for the L2-regularized FFs, they follow similar trends

to their non-regularized counterparts, except for some specific situations worth noting. For

example, for the FFs wherein bonded parameters (B, BA, and BAT) are optimized, the

acceptance rates of the regularized and non-regularized FFs are identical, presenting some

variations that are not statistically significant. For the regularized FFs where parameters

modeling the nonbonded interactions are also optimized (BAT-LJ, BAT-Q, and BAT-LJ),

there is a noticeable decrease in the acceptance rates for some test cases such as, e.g.,

aniline and sulfanilamide, in comparison to the non-regularized FFs. This may be entirely

attributed to the prior widths that are used to constraint the charges and 12-6 Lennard-

Jones parameters, which do not allow these parameters to stray too far away from their initial

guesses and, as a result, lead to lower acceptance rates. For the remaining molecules, the

regularized FFs perform equally or slightly better than the non-regularized ones, presenting

differences that, in most cases, are also not statistically significant.
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Figure 4: nMC-MC acceptance rates for the set of molecules represented in figure 2. The FFs
used to calculate the acceptance rates are derived employing uniform weighting with (dark
blue) or without (light blue) L2 regularization. The training data set contains configurations
sampled at 500 K. The errors bars correspond to the standard deviation of the results of 4
different nMC-MC samplers. Each sampler performs a total of 2× 105 nMC-MC sweeps.

A more interesting, yet somewhat more unpredictable, set of results are the acceptance

rates obtained when employing uniform weighting in the reparameterizations (figure 4).

Before analyzing the results obtained, it is important to discuss the consequences of the

asymmetries that might be imposed on the MM PES by equally allowing positive and

negative errors in the fittings, a feature of uniform weighting reported in previous stud-

ies.67,83 To do this, let us consider the diagrams of figure 5, which show hypothetical MM

PES fittings that can be obtained when employing uniform weighting. Assuming that the

data set used in the reparameterizations comprises only the structures at configurations qi

and qf , all the represented uniform-weighted fittings have equal squared errors of the en-

ergy with respect to the QM PES, viz.
∑

i

(
UQM
i − UMM

i

)2
= 2U2. Despite this, each

case would lead to a different behavior if the corresponding FF were used in the nMC-
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MC algorithm. Firstly, it is important to note that case A truly corresponds to a per-

fect fitting because the uniform-weighted MM PES can be superimposed with QM PES

by a simple translation, as the difference between them is only a constant. Therefore,

in what follows, we exclude this situation from the discussion. Furthermore, for case B,

∆∆U(qi → qf ) = ∆UQM(qi → qf ) − ∆UMM(qi → qf ) = −2U for uniform weight-

ing, which leads to a fitting that maximizes acceptance into the QM chain. On the other

hand, case C minimizes the likelihood of accepting structures into the QM chain since

∆∆U(qi → qf ) = 2U . Hence, the uniform weighting scheme is prone to creating se-

ries of FFs that show unpredictable, non-systematic behavior since positive and negative

UMM − UQM differences are equally probable. This leads us to advocate for the use of the

non-Boltzmann weighting if the aim is to use FFs in the nMC-MC algorithm because, as

previously discussed, it tends to overestimate transition-state energies. As a result, non-

Boltzmann-weighted fittings consistently show a skewing of the UMM − UQM differences

towards positive values, thus leading to the stable, predictable behavior observed between

different FFs of the same series. Incidentally, non-Boltzmann weighting also proves to be

superior to uniform weighting for general-purpose applications.67,83 Note that the squared

error of the energy with respect to the QM for the non-Boltzmann-weighted fitting is not

equal to 2U2 as it is in the uniform-weighted fittings. Nevertheless, the point is to illustrate

the possible asymmetries that uniform weighting may impose that can negatively impact the

acceptance rates.
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Figure 5: Diagram illustrating typical possible fittings that can be obtained when employing
either the uniform and non-Boltzmann weighting schemes. All the represented uniform-
weighted fittings have equal squared errors of the energy with respect to the QM PES,

viz.
∑

i

(
UQM
i − UMM

i

)2
= 2U2, but they behave differently when used in the nMC-MC

algorithm.

Through the analysis of figure 4, it is possible to conclude that for the FFs that are

optimized employing uniform weighting, the systematic improvement in the FFs only leads

to systematically higher acceptance rates for aniline, diphenyl ether, and the fragment of

cpd 26. This is observed for both the L2 and non-regularized versions of the FFs. On the

other hand, for biphenyl and acetanilide, the BA FF results in lower acceptance rates than

the B FF, and the BAT FF only performs slightly better than the latter. Furthermore, a set

of results that is also unexpected are the acceptance rates for sulfanilamide, for which the

non-regularized FFs perform equally for the BA and BAT FFs, even though the acceptance

into the QM chain is very low (ca. 2% ). Interestingly, higher acceptance rates are obtained

in their L2-regularized counterparts, namely an increase from ca. 2% to ca. for 7-8% and

13% for the BA and BAT FFs, respectively. These unexpected results can be understood

by inspecting the optimized angle force constants, Kθ, and angle equilibrium values, θeq, of
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the non-regularized BA and BAT FFs of sulfanilamide (see figure 6). From these plots, it

is clear that the non-regularized optimizations drive the parameters towards non-physical

values such as close to zero or even negative Kθ, as well as θeq close to 0◦ or 360◦, meaning

that bent angles become practically linear. These artifacts, created by the optimization to

minimize the objective function, ultimately have a strong impact on the acceptance rates

due to poor dynamics and energy prediction of these FFs. These large, unphysical variations

are lessened by applying L2 regularization, resulting in FFs that not only have optimized

parameters with values in physically-sensible ranges but also are superior in terms of QM

similarity in regards to their non-regularized analogues, thus leading to higher acceptance

rates. Besides sulfanilamide, the only test case for which similar behavior is observed is

acetanilide, in which the non-regularized uniform-weighted BA and BAT FFs also contain

unphysical parameter values. This does not occur for any non-Boltzmann-weighted or L2-

regularized FF.
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Figure 6: Sulfanilamide parameters before (GAFF; x axis) and after reparameterization
(uniform-weighted BA/BAT FFs; y axis). The parameters represented are angle force con-
stants (top panels) and angle equilibrium values (lower panels).

Two synergistic factors may contribute to the observed deviations from physically-sensible

values in the non-regularized uniform-weighted FFs. First, some of the angle terms may have

been used to compensate for deficiencies in other parts of the FF because when nonbonded

parameters are concomitantly optimized these large deviations are not observed. In fact,

as mentioned previously, the optimization of the nonbonded terms performed in this study

is, in some sense, a workaround to make up for possible limitations in the FF functional
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form. Second, the fact that the training data sets consist of NVT ensembles sampled at a

temperature of 500 K also contributes to non-physical parameters. This can be observed

by comparing the acceptance rates obtained for the training data sets generated at 500 K

with the acceptance rates obtained for the training data sets generated at 300 K (figure

7; no regularization, uniform weighting). At the QM level, especially when sampling at

very high temperatures, bonds and angles oscillate anharmonically, a phenomenon that may

impact the FF reparameterization owing to limitations of the GAFF functional form that, by

design, imposes harmonicity in these DOFs (see equation 11). The consequence is that the

FF optimizers tend to pull the angle force constants towards lower values to generate wider

potentials that better fit the sampled anharmonicities. Incidentally, this is the response

observed in figure 6. Angles are particularly prone to straying away from physical-sensible

values because they have the lowest force constants of the hard DOFs and, therefore, they

may suffer more from using data sets containing configurations in the anharmonic regime.

Although the training data sets at 500 K do not lead to non-physical bond parameters,

it is clear in figure 6 that, for some molecules, they lead to lower average acceptance rates

in comparison to the FFs derived using data sets at 300 K. Interestingly, the differences in

acceptance rates, which initially become apparent in the B or BA FF, are then propagated

up to some degree into the FFs for which parameters of nonbonded terms are also optimized

(BAT-LJ, BAT-Q, and BAT-LJQ). Optimization of nonbonded parameters either mitigates

these contrasts or worsens them due to the presence of high-energy structures in the high-

temperature ensemble that are unimportant to the low-temperature ensemble. Despite these

observations, we still opt to use the high-temperature data sets for most of the reparameter-

izatons in this study, as they ensure a thorough exploration of the conformational space of

the test cases being studied. Ideally, one would employ enhanced-sampling methods to have

the best of both ensembles: the extensive conformational sampling of the high-temperature

data set, and the harmonic behavior of the low-temperature data set.
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Figure 7: Comparison between the nMC-MC acceptance rates obtained for FFs reparame-
terized using data sets containing structure sampled at either 300 K or 500 K. The FFs used
to calculate the acceptance rates are derived employing uniform weighting without any reg-
ularization. The error bars correspond to the standard deviation of the results of 4 different
nMC-MC samplers. Each sampler performs a total of 2× 105 nMC-MC sweeps.

Overall, FF reparameterization proves to be an efficient strategy to increase the accep-

tance rate of the switching step from the MM to the QM level of theory. This permits acceler-

ating convergence of the sampling of the target QM configurational distribution, which would

otherwise be impractical due to the very low acceptance rates that are obtained when using

the original GAFF. The best acceptance rates are obtained for aniline (ca. 65%), whereas

the molecule with lowest acceptance rate is the fragment of cpd 26. This is expected given

that it is the largest and most complex molecule of the test set. It is expected that both

molecular size and chemical complexity have an impact on the acceptance rates, the former

because small differences between the MM and QM Hamiltonians sum up as the number of

DOFs increases, and the latter due to the challenge that some functional groups pose to the

functional form of GAFF. Furthermore, uniform-weighted FFs, especially without regular-
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ization, are to be avoided as they are more prone to generate non-physical parameters to

obtain the best possible fit. On the other hand, L2-regularized and non-Boltzmann-weighted

FFs perform the best, especially given their stable behavior. Also noteworthy is that hard

DOFs, such as bonds and angles, are crucial to reparameterize to increase the acceptance

rates since they have large force constants. Therefore, small differences in their values lead

to large changes in energy which may considerably impact the switching efficiency from the

MM into the QM chain.

3.2 NH2 Inversion in Aniline

As a first example of how nMC-MC allows recovering the exact quantum configurational

distribution using an approximate FF, let us consider the inversion of the NH2 group in

aniline. It is well established, both experimentally85,86 and theoretically,87,88 that the pri-

mary amine of aniline has a pyramidal geometry, and that inter-conversion between two

equally stable conformations occurs through nitrogen inversion. Nevertheless, although sim-

ple, this is a clear instance of a functional group for which GAFF fails to predict the correct

conformational dynamics.

Through the analysis of the configurational distributions represented in figure 8, it can be

seen that GAFF generates NVT configurational distributions at 300 K that differ substan-

tially from those generated by SCC-DFTB-D3. Specifically, we can see that GAFF (lower

panel) predicts that the NH2 group assumes a trigonal planar geometry, hence failing to

reproduce the inter-conversion between the two local minima, while SCC-DFTB-D3 (top

panel) predicts the expected conformational behavior. Furthermore, the reparameterized

BAT FF distribution is much closer to the SCC-DFTB-D3 distribution than the original

GAFF, and the nMC-MC distribution successfully reproduces the SCC-DFTB-D3 distribu-

tion when sampling is performed using the BAT FF. The agreement obtained is excellent as

there is negligible loss of accuracy.

It is noteworthy that the fast recovery of the target SCC-DFTB-D3 distribution through
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the nMC-MC algorithm is only possible due to the increased acceptance rates that are

achieved after reparameterization of the original FF. GAFF gave acceptance rates of ca.

12-13%, which, even though high in comparison with other test cases, are still much lower

than the acceptance rates of ca. 49-50% that are obtained for the non-Boltzmann-weighted

L2-regularized BAT FF. This high acceptance rate enables recovery of the target SCC-

DFTB-D3 in only 2× 105 nMC-MC sweeps (hMC runs of 100 steps with a 1 fs time step).

No attempt is made to optimize the length of these calculations, as our main goal is to prove

the implementation and principles of the methodology and not to optimize the protocol in

itself.
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Figure 8: Top panel: Distribution of the C6-H9-N7-H8 improper dihedral of aniline as
obtained in SCC-DFTB-D3 MD and nMC-MC simulations. Lower panel: Distribution of
the C6-H9-N7-H8 improper dihedral of aniline as obtained in MD simulations using the
original GAFF and the non-Boltzmann-weighted L2-regularized BAT FF. The SCC-DFTB-
D3, GAFF, and BAT MD calculations were performed during 10 ns (snapshots collected
every 1 ps), and the nMC-MC sampler performed a total of 2 × 105 MC sweeps. The
simulations’ temperature was 300 K.

3.3 Fragment of cpd 26

Let us now discuss the results obtained when applying the nMC-MC algorithm to the frag-

ment of cpd 26 shown in figure 2, the largest molecule of our test set. Cpd 26 is a non-

peptidic, orally bioavailable, and efficacious low nM antagonist of the inhibitor of apoptosis

proteins cIAP1 and XIAP.55 Therefore, this test case aims to mimic the application of the
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presented methods to a recently designed and relevant druglike molecule.

By analyzing the SCC-DFTB-D3 configurational distribution represented in figure 9, we

are able to identify 8 conformations for this molecule. Their molecular structures, which

map to the red stars in the plot, are represented in figure 10. They arise essentially from

the different relative positions that the phenyl group can assume relatively to the azaindo-

line ring. This conformational dynamics is in line with what is observed experimentally.55

Surprisingly, although GAFF gives very low nMC-MC acceptance rates (close to 1%) and

predicts incorrect relative abundances, it still fairly describes the global features of the con-

figurational distribution. The BAT (L2-regularized, non-Boltzmann-weighted) optimization

of GAFF leads to a much closer distribution to the target SCC-DFTB-D3, demonstrating

the quality of this FF. This observation is further supported by the increase in acceptance

rate to 23-24% that is obtained. Finally, as expected, the nMC-MC flawlessly reproduces the

SCC-DFTB-D3 when using the BAT (L2-regularized, non-Boltzmann-weighted) FF in the

low-level Markov chain, allowing convergence and thus recovery of the target distribution

in 3 × 106 nMC-MC sweeps (hMC runs of 250 steps with a 1 fs time step). To accelerate

sampling in the MM chain, a temperature of 400 K is used for the TK and TU values entering

in equation (1), while the temperature of the target quantum NVT ensemble is kept at 300

K.

30



200

100

0

100

200

A

B

C

D

E

F

G

H

SCC-DFTB-D3 GAFF

200 100 0 100 200
200

100

0

100

200
nMC-MC

200 100 0 100 200

BAT (L2 reg., non-Boltzmann)

 C5-C4-C1-C3 dihedral angle ( )

C6
-C

5-
C4

-C
1 

di
he

dr
al

 a
ng

le
 (

)

Figure 9: Configurational distributions of the C5-C4-C1-C3 vs. C6-C5-C4-C1 dihedrals for
the fragment of cpd 26. The SCC-DFTB-D3 MD was simulated during 10 ns (snapshots
collected every 1 ps), and the GAFF and BAT MD were simulated during 1 µs (snapshots
collected every 100 ps). The nMC-MC sampler performed a total of 3 × 106 MC sweeps.
The simulations’ temperature was 300 K. The conformations identified on the top left plot
are shown in figure 10.

Despite the success of the results obtained when applying the nMC-MC algorithm to the

fragment of cpd 26, the main pitfall of this methodology becomes apparent in this test case.

As mentioned before, the larger and more complex the molecule, the more difficult it is to

reparameterize to the QM level of theory due to accumulations of errors that are unavoidable

and usually related to FF functional form constraints. There are two possible solutions to
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this bottleneck if a two-chain nMC-MC algorithm is to be kept. The simpler approach

consists of artificially broadening the MM distribution by manipulating the thermodynamic

variables of the MM chain. This would involve, e.g., increasing the temperature of the

MM chain such that its energy distribution becomes wider and overlaps to a greater extent

with the QM energy distribution. This strategy was successfully applied in past studies,43,44

though success is not guaranteed if mismatch between the energy distributions is too large.

On the other hand, a more complex but perhaps more reliable method involves developing

and employing more accurate low-level models. In this regard, there are different classes

of FFs of increasing complexity that can be applied and are still computationally cheap in

comparison with the QM calculations. Machine-learning potentials are also an attractive

option, especially owing to their blindness to functional forms, which make them potentially

more accurate than MM FFs.89,90 Nevertheless, in principle, in a nMC-MC context they

would have to be used alongside a high-level of theory similar to that they were trained

to reproduce. Currently, we are performing further studies along these lines to address the

performance of other low-level models in the nMC-MC algorithm. It is also possible to use

intermediate levels of theory to bridge the gap between the low-level and high-level models.

Unfortunately, this solution becomes computationally expensive, especially if hybrid energy

models such as λiU
MM+(1−λi)UQM , where λi controls the weight of each energy component

in the i-th chain, are used, as they still require high-level calculations to be performed.
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Figure 10: Main conformations of the fragment of cpd 26 identified in figure 9.
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3.4 Analysis of Phase Space Overlap

To verify the variations in the acceptance rates observed when systematically reparameter-

izing the FFs, let us now turn our discussion to the evaluation of the phase space overlap

between the ensembles generated using the MM FFs and the SCC-DFTB-D3 level of theory.

In the following results, all the testing data sets contain 10000 configurations sampled from

MM and QM MD simulations. These are performed with the same settings applied when

generating the training data sets, except for the temperature which is here set to 300 K to

make the results directly comparable to the nMC-MC acceptance rates. Furthermore, note

that phase space is here employed as a synonym of configuration space as we only consider

situations that compare total energy distributions at the same temperature, thus making

the momentum coordinates irrelevant (see proof in the Supporting Information). Owing to

this, even though these metrics were initially presented as depending on the total energy, in

practical terms only the potential energy is used in their calculation.

The most direct and robust metric to measure the phase space overlap between en-

sembles obtained using different levels of theory is given by equation (8). It requires

performing dynamics with the MM and QM Hamiltonians and, subsequently, evaluating

the energies of each ensemble at both the MM and QM levels of theory. The potential

energy difference between the QM and MM levels for structures sampled from a SCC-

DFTB-D3 MD, ∆UQM→MM
QM = UMM

QM − UQM
QM , and minus the potential energy difference

between the MM FF and the QM level of theory for structures sampled using the MM FF,

−∆UMM→QM
MM = −

(
UQM
MM − UMM

MM

)
, are then calculated, and the corresponding histograms

determined. The resulting probability distributions are translated along the ∆U axis such

that ∆U = 0 is the midpoint between the two distribution means. Each histogram is fitted

to a Gaussian function, and the overlap obtained between the Gaussians is evaluated nu-

merically and used as an estimation of the phase space overlap. Any structure for which the

absolute difference of its energy relative to the average energy of the respective distribution

is larger than 100 kJ mol-1, i.e. |U − 〈U〉 | > 100, is removed from the data set.
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Figure 11: Energy difference histograms of MM→QM and QM→MM for aniline (left) and
the fragment of cpd 26 (right). The distributions are translated along the ∆U axis such that
∆U = 0 is the midpoint between the means of the two distributions.

The energy difference histograms and phase space overlaps for the two molecules in which

we have primarily focused our discussion, viz. aniline and the fragment of cpd 26, are shown

in figure 11 (non-Boltzmann weighting, L2 regularization). In these plots, it can be seen

that the energy difference distributions are well approximated by Gaussian functions, and

that the phase space overlap increases from the B FF to the BAT-LJQ FF, as observed in

the acceptance rates of figure 3.

Using the nMC-MC switching step acceptance rate as a metric of the similarity between

the MM and QM levels of theory necessarily requires a strong correlation between the accep-

tance rates of equation (2), θ, and the phase space overlap of equation (8), Ω. Hence, to assess

the degree of correlation between both measurements, we compute the linear regressions of

four sets of data: uniform-weighted data, non-Boltzmann-weighted data, non-Boltzmann-

weighted L2-regularized data, and all data. From the results shown in figure 12, it is clear

that there is a high degree of correlation between θ and Ω. Therefore, although these linear

fittings are only an approximation of the true correlation between both measurements, we
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consider that the observed correlations are close enough to linear behaviour to be considered

as so. Due to this, a direct comparison between R2 of different fittings is avoided. Nev-

ertheless, it is worth point out that for the uniform-weighted data set, there is an outlier

located at (θ ≈ 0.20,Ω ≈ 0), for which the nMC-MC acceptance rate is significant, but the

phase space overlap is estimated to be practically 0. A close inspection reveals that this data

point corresponds to the BAT-Q uniform-weighted L2-regularized FF of acetanilide. This

observation is in line with results of a past publication, which reports situations wherein

reparameterization of charges using uniform weighting also led to a decrease in the FF qual-

ity.42 Interestingly, the nMC-MC algorithm still allows obtaining high acceptance rates for

problematic FFs with non-physical parameters if the hMC runs are short enough to prevent

the molecules from converting to the spuriously stable, non-physical geometries in which

they get trapped in regular MD simulations. Overall, the results show that the nMC-MC

acceptance rate is a robust metric of the phase space overlap and can be employed to evaluate

the similarity between the levels of theory used in the nMC-MC low and high-level chains.
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Figure 12: Correlation between the nMC-MC acceptance rate, θ, as given by equation (2),
and the phase space overlap, Ω, as given by equation (8), for 4 different data sets: all
data (top left), not-regularized data (top right), L2-regularized data (lower left), and non-
Boltzmann-weighted L2-regularized data (lower right). The GAFF data points are included
in the ”all data” data set.

Before analyzing the results obtained for the Wu and Kofke metrics shown in equations

(9) and (10), it is useful to explain their physical meaning. Since these metrics are a measure

of the offset of an energy distribution with respect to another, they provide insights about

how much the FF-sampled phase space lies inside the QM-sampled phase space. First, it is

important to notice that when 0 ≤ ΣQM,MM < 1, the probability distribution of the MM
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energies observed for a simulation performed using the QM Hamiltonian, ρMM
QM , is centered

right relative to the probability distribution of the MM energies observed for a simulation

performed using the MM FF, ρMM
MM , meaning that the QM high-energy structures that lie

above ρMM
MM are unimportant to the the MM FF, or that the MM FF low-energy structures

that lie below ρMM
QM are undersampled by the QM Hamiltonian. On the other hand, when

1 < ΣQM,MM ≤ 2, the probability distribution of the MM energies observed for a simula-

tion performed using the QM Hamiltonian, ρMM
QM , is centered left relative to the probability

distribution of the MM energies observed for a simulation performed using the MM FF,

ρMM
MM , meaning that the QM Hamiltonian preferentially accesses a small set structures that

are either not sampled by the MM FF or, if energetically favorable, are entropically disfa-

vored, or that the MM FF samples high-energy structures that are unimportant to the QM

Hamiltonian. Identical reasoning can be applied to ΣMM,QM .
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Figure 13: Violin plots showing the distribution of the Wu and Kofke overlap metrics between
the MM and QM levels of theory, as given by equations (9) and (10), for all molecules repre-
sented in figure 2. The solid lines indicate the mean and the extrema of the distribution for
each type of reparameterized FF, and the dashed lines connect their mean values. 4 data sets
are represented: non-Boltzmann-weighted not-regularized data (top left), uniform-weighted
not-regularized data (top right), non-Boltzmann-weighted L2-regularized data (lower left),
uniform-weighted L2-regularized data (lower right).

From the results presented in figure 13, which shows the average behavior of ΣQM,MM

and ΣMM,QM for all molecules in the test set, it can be seen that when the non-Boltzmann
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weighting scheme is applied, ΣQM,MM starts with a value close to 0.4 (B FF), likely meaning

that the energy of high-energy QM structures are overestimated in the MM FF or the MM FF

is sampling spurious minima. Nevertheless, this mismatch is progressively diminished as more

classes of FF parameters are reparameterized because ΣQM,MM is getting closer to 1, showing

how well the MM FF can predict the energy of structures generated through a dynamics

performed using the QM Hamiltonian. A similar trend is observed for ΣMM,QM , though

it reaches a plateau at ΣMM,QM ≈ 0.8 for the most-refined FFs (BAT, BAT-LJ, BAT-Q,

and BAT-LJQ). This combination of ΣQM,MM and ΣMM,QM values indicates that systematic

reparameterization of the FFs turns an overlap relation into a subset relation between the

phase space distributions explored by the MM and QM levels of theory, supporting the idea

that the MM distributions of the most-refined FFs are somewhat broader than their QM

counterparts since the former sample high-energy structures that are unimportant to the

QM FF.

An identical interpretation follows for the plots concerning the uniform-weighted FFs.

Worthy of note are the BAT-LJ and BAT-LJQ FFs, for which 1 < ΣQM,MM ≤ 2 and

0 ≤ ΣMM,QM < 1. This is a case of special concern because it means that these FFs

either sample spurious high-energy structures or undersample the QM minima. Finally,

even though not observed in this study, 0 ≤ ΣQM,MM < 1 and 1 < ΣMM,QM ≤ 2 is a

hugely undesirable case as it may indicate that a FF is either sampling spurious minima

or overstabilizing the QM minima, situations that can potentially lead to trapping of MM

simulations in overstabilized basins. Likewise, the case in which 1 < ΣQM,MM ≤ 2 and

1 < ΣMM,QM ≤ 2 also poses concerns as it often suggests that a FF is not only undersampling

the true QM minima, but also sampling other spurious minimina.

3.5 Self-parameterizing nMC-MC

As proof of principle, we test the self-parameterizing methodology that iteratively couples the

nMC-MC algorithm with a parameterization step. This algorithm allows on-the-fly deriva-
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tion of bespoke FFs owing to its capability of performing sampling of relevant configurations

and subsequent optimization of the FF parameters, all in one scheme. Specifically, we use

the nMC-MC algorithm to sample QM configurations in such a way that a configuration be-

longing to the QM ensemble is added to the FF training data set for every 5 configurations

accepted into this high-level ensemble. Configurations belonging to the MM ensemble or

rejected configurations of any kind are discarded for reparameterization purposes. Despite

this choice, in some situations they can be informative for the optimizations and, inclusively,

accelerate the convergence of the self-parameterizing procedure.50 Furthermore, every time

500 new QM structures are added to the existing training data set, a new reparameteri-

zation of the FF parameters is performed using the total training data. The temperature

used for the Markov chains and the Maxwell-Boltzmann distribution is 300 K. The self-

parameterizing nMC-MC procedure is deemed to be converged when the root-mean-square

deviation (RMSD) of the FF parameters between two successive iterations is less than 10−4.

The molecule used in this application is octahydrotetracene (see molecular structure in

figure 14). This choice relies on the fact that this scaffold was previously identified as a chal-

lenging case for FFs, which struggle in reproducing its QM energies.84 All bonded parameters

are optimized in every optimization, such that the vector of optimizable parameters is given

by p = {Kb, req,Kθ,θeq,Vn,γn}. The total number of optimizable parameters is 72. Using

the nomenclature of the previous examples, this corresponds to generating a BAT-type FF.

The objective function includes energy, force and regularization terms, as given by equations

(4), (5) and (6). Uniform weighting is applied to weight the conformations. In contrast

to the previous applications, AMBER atom-type symmetries are preserved, and the prior

widths used in the regularization are estimated from the arithmetic mean for each class of

parameters, a feature included in ParaMol.

The results obtained for the self-parameterizing nMC-MC calculation of octahydrote-

tracene are shown in figure 14. The algorithm takes in total 11 iterations of nMC-MC

sampling and reparameterization to converge, resulting in a final training data set of 5500
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QM structures. The convergence of the procedure can also be tracked and confirmed by

looking at the components of the objective function as a function of the iteration number

(see figure S1 in the SI). Moreover, the acceptance rate increased smoothly and monotoni-

cally, progressively stabilizing as the nMC-MC sweeps increase. Nonetheless, the behavior

of the RMSD plot is somewhat more irregular, with sudden jumps that can be explained

by the necessity of the optimization to adapt the parameters to a new set of configurations.

Although this is not problematic for this example, in other applications large variations of

the RMSD may lead to a premature ending of the self-parameterizing procedure, which is

something that may be resolved by employing tighter thresholds.

To test the quality of the derived FF, we also generate a BAT-type FF using a training

data set containing a total of 10000 QM structures. This FF is generated following the

same philosophy applied in the previous examples, such that firstly we build the data set

using Langevin dynamics at a temperature of 300 K, and afterward we optimize the FF.

By comparing the blue and green lines of the top panel of figure 14, both approaches lead

to identical acceptance rates of ca. 15-16%, strongly indicating the robustness of the self-

parameterizing nMC-MC procedure. Overall, this self-parameterizing algorithm is quite

appealing since, by combining sampling and parameterization in one scheme, it does not

require a priori generation of a training data set of unknown size, therefore limiting the

computational work to that which is strictly necessary.
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Figure 14: Top panel: acceptance rates of the self-parameterizing nMC-MC procedure as
a function of the nMC-MC sweep for octahydrotetracene. The nMC-MC acceptance rate
and standard deviation of the FF derived following the same philosophy applied for the test
cases of figure 2 is also shown. The background shading indicates different iterations of the
procedure. Bottom panel: plot of the RMSD of the FF parameters (left axis) and of the
total number of structures in the training data set (right axis) as a function of the nMC-MC
sweep.
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3.6 nMC-MC Sampling into a QM/MM Hamiltonian

Figure 15: Left: Snapshot of the nMC-MC simulation of aniline in water. Right: Comparison
of the hMC and switching step acceptance rates obtained for aniline in the gas phase and
aqueous solution.

For a final test case, we immerse the aniline molecule in a TIP3P water box (the total sys-

tem has 5327 atoms) and equilibrate the system in the NPT ensemble for 1 ns at 300 K

using the Langevin integrator91 (time step of 1 fs and friction coefficient of 2 ps-1). The

pressure of the system is maintained at 1 bar using the Monte Carlo barostat92,93 imple-

mented in OpenMM. Periodic boundary conditions are applied and long-range electrostatics

are handled employing the Particle Mesh Ewald (PME) method.94,95 The cutoff applied to

all nonbonded interactions is 12 Å. The final configuration of the equilibration run, which

has a box size of 37.38 × 37.26 × 38.55 Å3, is subsequently used as the starting point for a

set of 4 NVT nMC-MC simulations in which the MM system is used in the low-level chain

and a QM/MM model is employed in the high-level chain. The MM model used for aniline

is the previously derived non-Boltzmann-weighted L2-regularized BAT FF.

In a system composed of a ligand in solution, the energy of the total MM system is given

by

UMM(qs, ql, qs−l) = UMM
sol (qs) + UMM

lig (ql) + UMM
lig−sol(q

s−l) (12)
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where UMM
sol is the energy of the solvent (TIP3P waters), UMM

lig the energy of the ligand

(aniline), UMM
lig−sol is the ligand-solvent (aniline-TIP3P waters) interaction energy, and qs,

ql and qs−l are the DOFs of the solvent, ligand, and the interaction between them. The

QM/MM energy of a system in which only the ligand is included in the QM region and there

are no covalent bonds between the ligand and solvent reads96,97

UQM/MM(qs, ql, qs−l) = UMM
sol (qs) + UQM

lig (ql) + UMM
lig−sol(q

s−l) (13)

where the only difference with respect to equation (12) is that now the potential energy

of the ligand, Ulig, is calculated at the QM level. Note that the interaction between the MM

and QM regions, UMM
lig−sol, is still calculated at the MM level. For the present test case, the

point charges used to calculate this interaction term do not change along with the simulation

in the QM/MM Hamiltonian of equation (13). This corresponds to a mechanical embedding

model with fixed-point charges in the QM region.98 Consequently, by combining equations

(12) and (13) we obtain that the ∆∆U that has to be introduced in the nMC-MC acceptance

rate of equation (2) is given by

∆∆U(qi, qf ) =
[
UQM/MM(qf )− UMM(qf )

]
−
[
UQM/MM(qi)− UMM(qi)

]
=
[
UQM
lig (qlf )− UMM

lig (qlf )
]
−
[
UQM
lig (qli)− UMM

lig (qli)
] (14)

from which we conclude that the switching step from the MM to the QM/MM Hamilto-

nian only requires the calculation of the energies of the ligand at the MM and QM levels.

Equation (14) is employed in this example to sample the QM/MM distribution of aniline in

a box of TIP3P waters.

The acceptance rates are shown in figure 15. As expected, the hMC acceptance rate

decreases when going from gas phase to water solvent because of the increase in system size.

There is also a small but significant decrease of ca. 4% in the switching step acceptance rate.
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The successful application of the gas-phase-derived BAT FF is attributed to the fact that

the conformational preferences of aniline in aqueous solution (see figure 16) are well captured

by the nonbonded interactions. If this were not the case, a possible solution would involve

reparameterizing GAFF using a training data set consisting of conformations extracted from

explicit solution simulations. This is possible in ParaMol.
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Figure 16: Comparison of the nMC-MC-sampled configurational distributions of aniline in
gas phase and in aqueous solution.

In this application example, we use a fixed set of charges for the QM region, which not only

simplifies the acceptance rate equation but also increases the similarity between the MM and

the QM/MM models. Nevertheless, in QM/MM calculations it is also common to consider

a QM region with varying partial charges, usually derived using a least-squares fitting to

the QM electrostatic potential.99–101 Although ParaMol provides the tools to parameterize

nonbonded parameters in solution, from our experience, even in a mechanical embedding
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context, in which the electrostatic coupling between the MM and QM regions is calculated

at the MM level, a ligand with a varying set of MM partial charges is already a challenging

case for the nMC-MC algorithm because the term UMM ′

lig−sol(q
s−l)−UMM

lig−sol(q
s−l), where MM’

is the FF with on-the-fly-fitted charges and MM the FF with original charges, does not

vanish as it does in equation (14). Unfortunately, since energy is an extensive property, the

larger the simulation box, the larger the mismatch between the QM/MM and MM levels of

theory. Therefore, this QM/MM framework commonly leads to large energy differences in

the ligand-solvent interaction energy that make the nMC-MC algorithm unviable for all but

the simplest cases.

It is also important to stress that, besides conformational changes, there are important

non-additive electrostatic effects that cannot be properly described by using a single set of

charges. For example, the electrostatic embedding scheme, in which the electrostatic contri-

bution from MM subsystem is included in the QM Hamiltonian, poses additional difficulties

that worsen the mismatch between the MM and QM representations of the ligand due to

polarization by the solvent. Hence, owing to the dynamic nature of the electrostatic cloud,

these are typical applications for which fixed point-charges FFs are unsuitable, and where

FF models that include descriptions of polarization and hyperconjugation, such as, e.g.,

AMOEBA,102,103 polarizable CHARMM104,105 or fluc-q,106–108 may prove their usefulness.

The ”electron spill-out” problem109,110 is also a well-known pitfall of the electrostatic em-

bedding scheme that may artificially distort the electron density of the QM region, thus

increasing the mismatch between the energy of the QM/MM and MM models. So far, our

research has set the mechanical-embedding fixed-point charge QM/MM model used above as

the limiting case for successful sampling using the nMC-MC algorithm. In general, further

complexity of the high-level models seems to be unsuitable to be reproduced by simple fixed

point-charge FFs.
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4 Conclusions

We present a multi-level procedure that allows estimation of the quantum configurational

ensembles while keeping the computational cost at a minimum. This work is of paramount

importance for conformational analysis because it combines the feasibility of computationally

cheap methods, such as MM FFs, with the accuracy of the usually more expensive QM level

of theory. The algorithms presented are implemented and made available in the ParaMol, free

software that we develop and aims to ease the process of parameterization of MM FFs.67 The

code can be found at https://github.com/JMorado/ParaMol, and examples of how to use

it are available through ParaMol’s website https://paramol.readthedocs.io. We believe

that the applications and results presented in this study may have implications in different

areas of chemistry with biological relevance, especially for the drug design community.

The presented methodology involves coupling the hMC algorithm with a switching step

between two Markov chains, the latter as formalized by Gelb. In the context of this work,

the low-level Markov chain corresponds to a GAFF-like MM FF wherein sampling of con-

figurations is performed, whereas the high-level Markov chain is the SCC-DFTB-D3 level of

theory to which conformations are periodically attempted to be sampled. Owing to the low

energetics similarity between GAFF and SCC-DFTB-D3, a straightforward application of

the methodology leads to very slow convergence of the target configurational distributions

due to low acceptance rates. Therefore, we resort to FF reparameterization as a means of

ensuring sufficient overlap between the MM and QM levels of theory. We demonstrate this

to be a successful strategy of generating more QM-like FFs and, consequently, increasing the

nMC-MC switching step acceptance rates, thus accelerating the convergence of the sampling

of the target quantum configurational distribution.

Overall, systematic reparameterization of FFs proves to be an efficient strategy to increase

the acceptance rates of the switching step from the MM to the QM level of theory. The best

acceptance rates are obtained for aniline (ca. 65%), whereas the molecule with the lowest

possible acceptance rate is the fragment of cpd 26. This is expect since both molecular size
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and chemical complexity have an impact on the acceptance rates. Moreover, we determine

that the optimal reparameterization recipe involves employing non-Boltzmann weighting

alongside L2 regularization. Uniform-weighted FFs, especially without regularization, are to

be avoided as they easily sacrifice physicality in the FF parameters to obtain the best possible

fit. These observations are in line with conclusions from a previous study.67 The systematic

parameterization also shows that hard DOFs, such as bonds and angles, are crucial to be

reparameterized to increase the acceptance rates, mainly due to their large force constants.

Reparameterization of charges with the uniform weighting scheme seems to be deleterious

to the quality of the FFs. The acceptance rate data are supported by information obtained

from various phase space overlap metrics. The latter reveal further insights into the features

of the weighting methods and also lead us to suggest the switching step acceptance rates as

a robust metric of phase space overlap.

We also present a self-parameterizing algorithm that combines sampling and FF param-

eterization in one scheme. This method does not require a priori generation of a training

data set of unknown size, thus limiting the computational work to the strictly necessary.

We illustrate its modus operandi and show that it gives identical results to the standard

approach.

Finally, we also apply the nMC-MC algorithm to generate the QM/MM distribution of

a ligand in an aqueous solution. We prove that, within a fixed-point charge mechanical em-

bedding framework, the nMC-MC algorithm is a viable methodology that permits recovering

the target QM/MM configurational ensemble. This application example also provides useful

guidelines for future research efforts because it illustrates the limitations of using a GAFF-

like MM FF as the low-level model. Since this FF type has fixed-point charges, it appears

to be generally unsuitable for application in contexts involving varying solute charges, which

may occur either due to conformational changes or polarization originating from electrostatic

embedding. A possible solution for this bottleneck may involve resorting to polarizable FFs

or machine-learning models.
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Lee, I. S.; Lutsker, V.; Maurer, R. J.; Min, S. K.; Mitchell, I.; Negre, C.; Niehaus, T. A.;

Niklasson, A. M. N.; Page, A. J.; Pecchia, A.; Penazzi, G.; Persson, M. P.; Řezáč, J.;
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ing Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application

to Materials and Biological Systems. J. Chem. Theory Comput. 2020, 16, 4757–4775.

(90) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: An Extensible Neural Network Po-

tential With DFT Accuracy at Force Field Computational Cost. Chem. Sci. 2017, 8,

3192–3203.

(91) Izaguirre, J. A.; Sweet, C. R.; Pande, V. S. Biocomputing 2010 ; World Scientific, 2009;

p 240–251.
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