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Temporal cavity solitons are optical pulses that propagate indefinitely in nonlinear resonators [1–
3]. They are currently attracting a lot of attention, both for their many potential applications and for
their connection to other fields of science. Cavity solitons are phase locked to a driving laser. This is
what distinguishes them from laser dissipative solitons [4] and the main reason why they are excellent
candidates for precision applications such as optical atomic clocks [5]. To date, the focus has been on
driving Kerr solitons close to their carrier frequency, in which case a single stable localised solution
exists for fixed parameters [1]. Here we experimentally demonstrate, for the first time, Kerr cavity
solitons excitation around twice their carrier frequency. In that configuration, called parametric
driving, two solitons of opposite phase may coexist [6]. We use a fibre resonator that incorporates
a quadratically nonlinear section and excite stable solitons by scanning the driving frequency. Our
experimental results are in excellent agreement with a seminal amplitude equation [7], highlighting
connections to hydrodynamic [8, 9] and mechanical systems [10], amongst others [11]. Furthermore,
we experimentally confirm that two different phase-locked solitons may be simultaneously excited
and harness this multiplicity to generate a string of random bits, thereby extending the pool of
applications of Kerr resonators to random number generators [12] and Ising machines [13].

The spontaneous formation of patterns is encountered
across many fields of science. Spatially extended non-
linear systems may be brought away from equilibrium,
where spatiotemporal patterns emerge [14]. Examples
include convection rolls in heated fluids [15], vegetation
patches in arid regions [16], as well as localised struc-
tures in vibrated layers of sand [17]. These complex pat-
terns can often be described by relatively simple reac-
tion/diffusion equations that capture most of the nonlin-
ear dynamics [14]. These so called amplitude equations
have been shown to be universal. Very different systems
in terms of microscopical physical laws can, under some
conditions, be governed by the same macroscopic equa-
tion, providing important connections between distinct
fields of science.

One such class of equations are the dissipative nonlin-
ear Schrödinger equations (NLSE) which describe pat-
tern formation in charge density condensates, driven
plasmas, surface waves and optical resonators amongst
others (see [11, 18] and references therein). The con-
servative NLSE admits exact solitary wave solutions [19]
and similar localised structures can be found when dissi-
pation and forcing are added to the system. As in one-
dimensional oscillators such as the driven pendulum, the
forcing can be external [18] or parametric [11]. In the
former, the energy is transferred by exciting the systems
close to its natural frequency. In the latter, the energy is
injected by periodically varying a parameter of the sys-
tem at twice the system’s response frequency. Parametric
forcing of spatially extended systems has been intensely
studied since the first reports, by Michael Faraday, of pat-
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terns on a vibrating surface [20]. Parametrically driven
NLSE solitons have been reported in hydrodynamics [8]
and in chains of oscillators [10], and have been predicted
to exist in optical resonators in 1995 [6]. They consti-
tute a subclass of optical dissipative solitons [4] along
with temporal cavity solitons of the externally forced
NLSE [1–3], which have been shown to underpin the for-
mation of ultra-coherent optical frequency combs [21, 22].
Note that temporal cavity solitons are commonly referred
to as dissipative Kerr solitons in the context of microres-
onators [23].

The main differences between externally forced cavity
solitons (CSs) and parametrically driven cavity solitons
(PCSs) are illustrated in Fig. 1. CSs are solutions of the
well known externally driven NLSE (1), often called the
Lugiato-Lefever equation [24, 25]. They sit on a homoge-
neous background and a single phase locked solution ex-
ists for fixed detuning and driving power [1, 26]. PCSs,
on the other hand, are solutions of the parametrically
driven NLSE (2). They lack a homogeneous background
and two stable solutions, of opposite phase, may coex-
ist [6, 9]. This multiplicity opens up several new avenues
for soliton coalescence [27, 28] as already demonstrated
in hydrodynamics [8]. Moreover, stable optical pulses
of opposite phases can be used to implement random
number generators [12] and Ising machines [13]. Here,
we report the first experimental characterisation of the
parametric Kerr cavity soliton. We implement an all-
fibre singly resonant degenerate optical parametric oscil-
lator (OPO), which is well described by the parametric
nonlinear Schrödinger equation (PNLSE). We measure
backgroundless sech-shaped optical waves and show that
solutions with different phases may coexist in the res-
onator. As a proof of principle experiment, we generate
a short series of random numbers using PCSs.
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FIG. 1: Illustration of the differences between external and parametric driving. a, Schematic of an optical
Kerr resonator pumped close to its natural response frequency. Solitons are solutions of externally driven nonlinear
Schrödinger equation (1). Akin to a externally driven damped pendulum, a single phase-locked solution exists.
b, Schematic of an optical Kerr resonator pumped close to twice its natural response frequency. Solitons are
solutions of the parametrically driven nonlinear Schrödinger equation (2). Akin to a parametrically driven damped
pendulum, two different phase-locked solutions exist.

FIG. 2: Bifurcation structure of the PNLSE.
a, Phase diagram in the (∆, µ)-parameter space showing
the main dynamical regions of the system. The
bifurcation lines are the pitchfork bifurcations (PB±)
corresponding to the degenerate OPO threshold (green
solid line) and the Hopf bifurcation (HB) line. The
black line at µ = 1 corresponds to the saddle-node
bifurcation of both the non-trivial homogeneous state
SNh and the soliton state SNs for ∆ > 0, and to
modulation instability for ∆ < 0. b, Bifurcation
diagram showing the soliton branches (red line) as well
as the homogeneous states (black line) as a function of
µ for ∆ = 1.2. The solid lines corresponds to stable
states, dashed lines to homogeneously unstable states
and the dotted line to modulationnaly unstable states.
c, Bifurcation diagram as a function of ∆ for µ = 1.37.
The soliton develops breathing behaviour in-between
the HBs (see dotted-dashed line).

OPOs are staples of nonlinear optics but the bulk
of their usage has been in the homogeneous regime for
frequency translation [29]. Recently, in the context of
frequency comb formation, there has been interest in
pattern formation in continuous wave pumped OPOs
through cascaded three wave mixing [30, 31]. Our work
extends the applications of OPOs by showing that they
may host phase-locked Kerr solitons.

Bifurcation analysis
We start by theoretically examining the dynamics of

soliton formation in degenerate OPOs incorporating
a Kerr section [6]. We consider the dimensionless
PNLSE (2). The derivation of the equation and
its normalization are detailed in the Supplementary
Information. In this equation, there are only two
independent parameters: the phase detuning ∆ and
pump amplitude µ. They determine the 2-dimensional
parameter space, plotted in Fig. 2a, where we show
the different nonlinear attractors of the system. The
degenerate OPO threshold is located at µ =

√
1 + ∆2

and correspond to a pitchfork bifurcation (PB) of the
trivial state. For negative detunings, that bifurcation
is supercritical and the trivial state is modulationally
unstable beyond µ = 1 [30]. The patterns emerging
beyond this instability correspond to non degenerate
oscillations, which hence has a lower threshold than
degenerate emission in that region. For positive detun-
ings, the trivial solution is stable up to µ =

√
1 + ∆2

and the pitchfork bifurcation is subcritical. An unstable
homogeneous state emerges from the trivial solution
and folds at the saddle node bifurcation SNh located at
µ = 1 (see Fig. 2b). Beyond the fold, the upper branch
is modulationally unstable, creating a region where a
trivial solution and a modulated pattern coexist. In
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FIG. 3: Experimental set-up. Temporal solitons are excited in an all-fibre degenerate optical parametric
oscillator (OPO). It includes a periodically poled fibre (PPF) to provide the parametric gain, a short erbium doped
fibre (EDF) pumped by a 1480 nm laser (P in

g ) for loss compensation and standard single-mode fibre. The cavity is
driven by a 775 nm pump (Pp), obtained by doubling the driving laser frequency in a free-space periodically poled
lithium niobate (PPLN). Prior to its conversion, the driving laser is amplitude modulated (AM) and amplified
through an erbium doped fibre amplifier (EDFA). A lens (CL) is used to couple the light to the fibre. Two phase
plates and a mode scrambler (MS) are used to limit polarization and modal losses. An output coupler (OC) is
included for soliton analysis, using an optical spectrum analyzer (OSA), a fast photodiode (PD) and an oscilloscope
(OSC). The cavity is actively stabilised using a proportional-integral-derivative (PID) controller and a
counter-propagating beam, frequency shifted (FS) from the driving laser. PC: polarization controller; BPF:
bandpass filter; WDM: wavelength division multiplexers; VOA: variable optical attenuator; PM: phase modulator.

that region (µ > 1), the PNLSE admits exact solitary

waves of the form u =
√

2βsech(βt) exp(iφ) where
cos(2φ) = µ−1 and β2 = ∆ + µ sin(2φ) [6, 9, 11, 32].
There are two solitons of different amplitude and each
can have one of two opposite phases. Both branches,
defined as the soliton peak power, are shown in Fig. 2b
as a function of the driving power. They connect at
the saddle node bifurcation SNs (µ = 1). The solutions
corresponding to sin(2φ) > 0 are always unstable. These
soliton branches are remininiscent of the ones describing
CSs [33]. Conversely, when plotted as a function of the
detuning, see Fig. 2c, both the homogeneous and soliton
branches significantly differ from those of CSs [34]. Un-
like tilted resonances, the stable and saddle PCSs do not
connect making the branches infinitely long. In practice,
they will be limited by higher order effects (see Supple-
mentary Information). Along the main soliton branch,
there are a couple of Hopf bifurcations (HB). Between
these bifurcations, the PCSs are unstable and localised
oscillatory behaviour as well as complex spatiotemporal
dynamics can be found [11]. In what follows, we focus
on the region where stable soliton formation is predicted.

Experimental setup
For our experimental investigation of the PCS, we
introduce an all-fibre degenerate OPO (see Fig. 3),
specifically designed so as to be governed by the PNLSE.
It is composed of three main sections made of different
fibres. A 27 cm long periodically poled fibre (PPF) [35],
a standard single mode fibre (21 m), and 52 cm of

erbium doped fibre (EDF). The first two fibres provide,
separately, the quadratic and cubic nonlinearities while
the EDF is used to compensate the intracavity loss [36].
The OPO is synchronously pumped with highly coherent
650 ps long, flat top, pulses at 775 nm. We use short
pulses to keep the gain saturation low. In the region
where solitons exist, our system mimicks a high finesse
resonator [36]. The EDF is pumped with 2 W at
1480 nm. The corresponding single pass gain is 35 %,
leading to an effective finesse of 122 around 1550 nm.
The 775 nm driving signal is generated by frequency
doubling a highly coherent 1550 nm laser. It is sent in
the cavity through a WDM and removed after the PPF.
This single pass configurations ensures that the temporal
profile at the driving frequency remains nearly constant,
which is crucial when aiming to observe solutions of the
PNLSE (see Supplementary Information).

Characterization of the PCS
In a first experiment, we set the driving power to 10 W
(peak), corresponding to µ = 1.37, and scan the laser fre-
quency (230 kHz/ms). Our results are shown in Fig. 4.
The signal resonance, measured around 1550 nm, is rem-
iniscent of that observed in externally pumped Kerr res-
onators [3]. The signal average power gradually increases
until it reaches the bistable region where it suddenly
drops, indicating the formation of localised structures.
The small plateau emerging at that point corresponds
to the soliton branch shown in Fig. 2c. In the context
of externally driven Kerr resonators, it is often called the
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FIG. 4: Characterisation of the Parametric
Cavity Soliton. a, Forward scan (black line) through a
resonance for Pp = 10 W. The dot highlights the
stabilisation setpoint (∆ = 1.2). The blue line
corresponds to the output power when the cavity is
actively stabilised around that level. b, Oscilloscope
recording – taken several seconds after the excitation
process – showing a stable, resolution limited, pulse
exiting the cavity. c, Experimental (blue line) and
theoretical (red line) autocorrelations traces. The inset
shows the theoretical profile of the corresponding
background-free soliton. d, Experimental (blue line) and
theoretical (red line) spectra at the cavity output. The
narrow peak corresponds to back reflections of the
control signal.

soliton step as pulses tend to merge one by one, leading to
a stairs-shaped transmission curve [3]. Additional higher
resolution measurements of the nonlinear transmission of
the cavity, including multi soliton steps, are shown in the
Supplementary Information. We readily note an impor-
tant difference between our experimental scans and the
analytical branch shown in Fig. 2c. The soliton step in
our experiments has a finite extension while the theoreti-
cal branch grows indefinitely with increasing ∆. First, we
stress that frequency scans are inherently dynamical such
that the measured output power is not necessarily repre-
sentative of steady state solutions at the corresponding
detuning. Second, higher order effects limit the branch in
optical parametric oscillators (see Supplementary Infor-
mation). In our experiment, however, the soliton collapse
is due to the 5-nm, flat top, intracavity filter we use to
prevent lasing at shorter wavelengths [36]. As the detun-
ing is ramped up, so is the soliton’s spectral width, such

that the filter eventually prevents stable soliton forma-
tion.

Next, we use a control signal to stabilise the system
in the soliton region (see Methods). The average output
power when the detuning is set to ∆ = 1.2 (δ0 = 0.03)
is shown in Fig. 4a. A high-resolution (80 ps) recording
of the corresponding cavity output is shown in Fig. 4b.
A resolution limited pulse can be seen exiting the cavity
every rountrip time. Further temporal (Fig. 4c) and
spectral (Fig. 4d) characterisations confirm that a short
(3.6 ps) pulse is circulating in the cavity. The agree-
ment with the analytic soliton solution of the PNLSE
is excellent. The experimental spectral background
corresponds to the ASE emitted by the intracavity
amplifier [36]. These measurements confirm that our
novel system is governed by the PNLSE in that region
and constitute, to the best of our knowledge, the first ex-
perimental observation of its well known soliton in optics.

Random bits generation
Parametrically driven Kerr cavity solitons are phase
locked to a driving laser, as are externally driven CSs
which attract a lot of attention because of their inherent
stability. The additional advantage of the PCS is its mul-
tiplicity. Owing to the Z2-symmetry of the PNLSE, two
attractors, which have the same amplitude but opposite
phase, may coexist in the cavity, adding a degree of free-
dom to Kerr resonators. In particular, it opens the possi-
bility to use Kerr solitons in applications, such as random
bit generators [12] and Ising machines [13], which require
two different attractors. To confirm this potential, we
design a proof of principle experiment of random num-
ber generation. The concept is simple. When a soliton is
spontaneously excited, it has a 50% chance of locking to
the pump with one of the two possible phase relations.
By exciting multiple solitons, and extracting the phase,
we can generate a random sequence of bits. For this
demonstration, we phase modulate the pump beam so as
to excite a series of equally spaced single solitons. The
physics behind soliton attraction to phase maxima is sim-
ilar to that of CSs [37] and is detailed in the Supplemen-
tary Information. A low modulation frequency (4.6 GHz)
is chosen to be able to resolve individual solitons on the
oscilloscope. We extract a portion of the 1550 nm driv-
ing laser, prior to its frequency doubling, and use it as a
local oscillator for coherent detection (see Fig. 5a). We
excite two solitons in the cavity and send both the ref-
erence and the combined beams to a fast photodetector.
The results are shown in Fig. 5b-c. As expected, the
reference, corresponding to the intensity, displays iden-
tical traces separated by 220 ps. After interfering with
the local oscillator however, two different amplitudes are
measured. These measurements confirm that solitons of
different phases are excited in the cavity. In a second
series of experiments, we expand the pulse width to host
four solitons and perform three distinct resonance scans.
Our results are shown in Fig. 5d-f. By assigning a binary
value to each soliton, our results correspond to a series



5

of 4-bits random numbers, highlighting the potential of
PCSs for applications. Moreover, our measurements con-
firm that the solitons are phase-locked, as only 2 distinct
amplitudes are measured across the different scans.

FIG. 5: Random bits generation. a, Experimental
set-up for coherent detection. b, Direct detection of two
PCSs. c, Coherent detection of two PCSs, highlighting
the two different phases. d-e, Sequences of four random
bits generated through PCS formation.

Discussion
In summary, we investigated Kerr soliton formation in
singly resonant optical parametric oscillators. We built a
novel system that is well described by the seminal para-
metric nonlinear Schrödinger equation when driven with
a frequency close to twice that of a longitudinal mode.
We theoretically showed that a couple of stable solitons
exist in a broad region of experimental parameters. Our
measurements confirm the existence of a backgroundless,
sech-shaped and phase locked optical pulse in that region.
Its temporal and spectral profiles are in excellent agree-
ment with the soliton solution of the PNLSE. The same
profile corresponds to the well known non propagating
hydrodynamic soliton [8, 9]. Here, the soliton propagates
along the resonator and forms an ultra-stable pulse train
at the output. The phase-locking ensures minimal jitter
and the output spectrum consists in an ultra-coherent
frequency comb. Importantly, the large central peak in-
herent to external driving is absent. Moreover, we showed
that applications of PCSs go beyond frequency comb gen-
eration. The two different phases can be leveraged for
random number generation, as demonstrated above, or
physical Ising machines. The latter has already been
implemented using a synchronously pumped degenerate
OPO [13], but the number of individual spins is limited
by the repetition rate of the pump laser. Our results show
that a grid of individual spins, as dense the input phase
modulation, can be generated in a long fibre cavity. Be-

cause the number of potential connections scales as N2,
a 40 GHz phase modulation would lead to a 3 orders of
magnitude increase in the number of spin-spin couplings
as compared to the state of the art [13].

Methods

Linear stability analysis
The temporal linear stability of the steady-state solutions,
shown in Fig. 2, has been computed by solving the eigen-
value problem Lψ = σψ, obtained from the linearization of
Eq. (2) around a given steady state, where L the linear opera-
tor evaluated at such state, and σ and ψ are, respectively, the
eigenvalues and eigenfunctions of L. This problem can be eas-
ily solved analytically for the homogeneous uh state as shown
in the Supplementary Information. For the soliton state sta-
bility, we have adopted a numerical approach. We compute
the eigenvalues of the Jacobian matrix obtained from L after
spatial discretization in a N = 1024 points grid.

Experimental set-up
The all-fibre optical parametric oscillator (OPO) is made of a
section (L1 = 27 cm) of periodically poled silica fibre (PPF),
a section (L2 = 21 m) of standard telecommunication single-
mode silica fibre (SMF-28) and a section (L3 = 52 cm) of er-
bium doped fibre (EDF). The PPF has a second-order nonlin-

ear parameter of κ = 0.04 W−1/2m−1 and a phase-matching
wavelength of 1548.8 nm at room temperature. This wave-
length is increased up to 1549.72 nm to be in the tuning range
of the driving laser by placing the fibre in a stabilised oven
at 36 ◦C. Two wavelength division multiplexers (WDMs) are
used to combine the 775 nm pump with the intracavity sig-
nal, and to reject the remaining pump power at the fibre out-
put. Two different polarization controllers are used. One to
align the pump polarization with the phase-matched eigen-
mode of the PPF and the other to align the signal polar-
ization with one of the two eigenmodes of the cavity. The
EDF (Liekki® ER16-8/125) provides the optical gain. Two
wavelength division multiplexers (WDMs) are inserted in the
cavity to combine the 1480 nm pump with the intracavity sig-
nal, and to reject the unabsorbed power at the amplifier out-
put. Its length is empirically set so that the gain is slightly
larger than the intrinsic cavity loss. We then use a variable
optical attenuator to increase the loss and ensure the cav-
ity is below the lasing threshold. An optical bandpass filter
(5 nm at 0.5 dB, centred on 1550 nm) hinders laser emission
at shorter wavelengths. The cavity contains a 99/1 coupler
used either to inject the control signal into the cavity or to
extract part of the intracavity power. The total intracavity
loss, excluding the doped fibre, is 40%. The driving contin-
uous wave (CW) laser is a Koheras AdjustikTM E15 with a
sub-100 Hz linewidth. Its wavelength is set to 1549.72 nm, on
the edge of the tuning range (1 nm) to coincide with the PPF
phase-matching wavelength. The laser output is first modu-
lated with a Mach-Zehnder amplitude modulator (bandwidth:
12 GHz, extinction ratio: 30 dB), driven by a pattern gener-
ator connected to an RF clock. The pulsed beam is then
amplified with an erbium doped fibre amplifier (EDFA) and
converted to its second harmonic through a 4 cm long period-
ically poled lithium niobate (Covesion® MSHG1550-0.5-40,

κ = 2.5 W−1/2m−1) in a free-space section. Using dichroic
mirrors, the unconverted field is attenuated by 125 dB such
that only the pump is injected into the fibre. To minimize
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both polarization and modal losses at the first WDM, a half-
and quarter-wave plate (free-space) and a mode scrambler
are used. The cavity resonances are measured by scanning
the frequency of the driving laser and recording the average
power at the output coupler, P out

s , with a 200 kHz photo-
diode (see e.g. Figure 4a). To stabilise the cavity, a control
signal is generated by extracting a portion of the driving laser
power through a 95/5 coupler and shifting its frequency with
a tunable frequency-shifter (110 ± 5 MHz). Using a circu-
lator and a polarization controller, the counter-propagative
control signal, with a power of P in

c , is sent to the cavity on
the orthogonal polarization eigenmode to avoid seeding the
OPO. The cavity detuning is stabilised by slightly changing
the driving laser wavelength to maintain a constant control
signal output power P out

c . The feedback signal is generated
by a proportional-integral-derivative (PID) controller (Top-
tica DigiLock 110), driven by a photodiode. The system is
stabilised on the slope of the linear resonance of the control
signal. Knowing the cavity birefringence, the detuning of the
signal can be extracted. It can then be modified by chang-
ing the control signal frequency [38]. Part of the intracavity
power is extracted at the output coupler to characterize the
solitons. The spectrum of the parametric cavity soliton (PCS)
is recorded on an optical spectrum analyser (0.1 nm resolution
bandwidth). Time measurements are carried out with a fast
photodiode (45 GHz bandwidth) and an oscilloscope (10 GHz
bandwidth, 10 Gsample.s−1). The intensity autocorrelation
trace is directly acquired at the cavity output. For this mea-
surement, a commercial EDFA is used to increase the average
output power to ∼70 mW.

PPF fabrication
The PPF is a 125µm outside diameter cladding fibre with a
Germania-doped glass core of 4µm diameter and a numerical
aperture NA = 0.17. Two 27µm diameter channels run ad-
jacent to the fibre core at a distance of respectively 13.6µm
and 7.2µm from the core’s edges. The fibre is first thermally
poled in single anode configuration at 265◦C with an electric
potential of +8 kV applied to the embedded electrode, for
2 hours [39]. The second order nonlinearity created via
thermal poling is then erased periodically by means of a CW
argon ion laser frequency doubled to 244 nm, equipped with
an acousto-optic modulator (AOM) used to modulate the
laser output. The laser is focused to a circular spot, 20µm in
diameter, while the poled fibre is clamped onto a linear stage
by two fibre rotator clamps. The laser is modulated using
the AOM while translating the fibre core through the spot to
achieve a grating of the desired duty cycle and period. For
the grating a fluence of 14 J/cm2 and a duty cycle of 5% was
used to periodically erase the nonlinearity. The period of the
grating was chosen to be 55µm in order to have quasi-phase
matching at a wavelength around 1550 nm.

PCS excitation and stabilisation
For all measurements depicted in Fig 4, the cavity is syn-
chronously pumped with 650 ps flat-top pulses whose repeti-
tion frequency matches the cavity free-spectral range (FSR).
The cavity detuning is stabilised by locking the control sig-
nal through-port transmission at 90% (i.e. P out

c /P in
c = 0.9).

Once stabilised, the control signal frequency is increased with
the frequency-shifter (FS) until the signal output power drops
to the soliton-step power (Fig. 4a, red). This coincides with

the emergence of a background-free sech squared-like spec-
trum, corresponding to the generation of a single PCS. Tem-
poral and spectral measurements are then carried out.

Coherent detection measurement
To demonstrate the existence of PCS with opposite phases,
the cavity is synchronously pumped with 1 ns or 1.9 ns
flat-top pulses. On these pump pulses, we also imprint a
4.6 GHz phase modulation (PM) using a phase-modulator.
As for CSs [37, 40], PCS are attracted by PM maxima (see
Supplementary Information). When scanning the resonance,
we generate up to four PCSs, separated by 220 ps. Using a
90/10 coupler, most of the cavity output power P out

s is sent
to a 10 GHz photodiode [i.e. reference beam on Fig. 5a]. The
remaining power is combined with part of the driving laser
power, obtained by bypassing the frequency-shifter, through
another 90/10 coupler. The result of the interference is sent
to a 45 GHz photodiode for coherent detection.
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50 Avenue F. D. Roosevelt, CP 194/5, B-1050 Brussels, Belgium

2Optoelectronics Research Centre, University of Southampton, SO17 1BJ, United Kingdom

This article contains the Supplementary Information for the manuscript entitled ”Parametrically
driven Kerr cavity solitons”. We derive the parametrically driven nonlinear Schrödinger equation
and perform a stability analysis of its stationary states. We also theoretically describe how paramet-
ric cavity solitons behave when the driving field is phase-modulated. Finally, additional experimental
results are given.

I. MEAN-FIELD MODEL

Pattern formation in our system can be described by
a single mean-field equation at the signal frequency ω0.
We here detail its derivation starting from the full lumped
model. We start with a description of a passive singly res-
onant optical parametric oscillator incorporating a Kerr
section. The cavity boundary conditions for both the
signal field A at ω0 and the pump field B at 2ω0 read [1]

Am+1(0, τ) =
√
T Am(L, τ) eiϕ, (S1)

Bm+1(0, τ) = Bin, (S2)

where m is the roundtrip number, T =
∏
k Tk denotes the

total insertion loss of all cavity components (polarization
controllers, coupler, WDMs, . . . ) and ϕ0 is the linear
phase accumulated by the signal (ω0) over one roundtrip.
The evolution of these fields in the periodically poled
fibre (PPF) is given by the two following equations [2]

∂Am
∂z

= −
(
α

(1)
s

2
+ i

β
(1)
2,s

2

∂2

∂τ2

)
Am + iκBmA

∗
m e−i∆βz,

(S3)

∂Bm
∂z

= −
(
α

(1)
p

2
+ ∆β

(1)
1

∂

∂τ
+ i

β
(1)
2,p

2

∂2

∂τ2

)
Am

+iκA2
m ei∆βz,

(S4)
where the subscript s (resp. p) stands for signal (resp.
pump). We introduce the superscript (1) for the param-
eters of the PPF. We will later use (2) for the SMF.
For clarity, we drop the superscripts when defining the
parameters in what follows. z is the position along the
fibre, τ = t−β1,sz with β1,s = [dβ(ω)/dω]|ω0

where β(ω)
is the propagation constant, ∆β = 2β(ω0)−β(2ω0) is the
phase mismatch, ∆β1 = β1,s−β1,p is the temporal walk-

off where β1,p = [dβ(ω)/dω]|2ω0
. β2,s = [d2β(ω)/dω2]|ω0

and β2,p = [d2β(ω)/dω2]|2ω0
are the group velocity dis-

persion coefficients. αs,p are the loss coefficient and κ is

∗Electronic address: nicolas.englebert@ulb.ac.be

the second-order nonlinear parameter of the fibre. The
third order nonlinearity is neglected because the PPF is
much shorter than the total cavity length.

On the other hand, the signal evolution in the
single-mode fibre (SMF) is described by the nonlinear
Schrödinger equation (NLSE) [3]

∂Am
∂z

= −
(
α

(2)
s

2
+ i

β
(2)
2,s

2

∂2

∂τ2
− iγ|Am|2

)
Am, (S5)

where γ is the third-order nonlinear parameter of the fi-
bre. The set of equations (S1)-(S5) constitute the full
lumped model of the system. It is often referred to as a
generalised Ikeda map [4]. This map can be reduced to
a single mean-field equation following the approach de-
scribed in [1, 2]. We consider that Am remains constant
over one roundtrip and integrate (S4) over the length of
the PPF. We find

Bm ≈ Bin e−
α
(1)
p z

2 + κ

∫ ∞

−∞
F [A2

m]
ei∆βz − ek̂z

∆β + ik̂
e−iΩτ dΩ,

(S6)
where F [ · ] stands for the Fourier transform operator and

k̂ = −α(1)
p /2+i(∆β1Ω+(β

(1)
2,pΩ2)/2). By substituting the

latter expression in (S3) and integrating the result over
the PPF length L1 while keeping Am(z, τ) constant, we
find

Am(L1) ≈ Am(0)−
(
α
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s

2
+ i

β
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2,s

2
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∂τ2
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L1Am(0)
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∗
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(S7)

where ξ = L1(α
(1)
p + i∆β)/2, ρ = κL1, I(τ) = F−1[Î(Ω)]

is the kernel where F−1[ · ] stands for the inverse Fourier

transform operator, Î(Ω) = (1 − ix − e−ix)/x2 with

x(Ω) = (∆β + ik̂)L1. The NLSE (S5) can also be inte-
grated over the SMF length L2, from L1 to L1 +L2 = L



2

while Am(z, τ) is kept constant [5, 6]. We find

Am(L) ≈ Am(L1)−
(
α

(2)
s

2
+ i

β
(2)
2,s

2
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− iγ|Am|2

)
L1Am.

(S8)
We substitute (S7) in (S8) and keep only the first order
terms, obtaining

Am(L)−Am(0) ≈ −
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(S9)
At first order, under the hypothesis of high finesse and
by introducing the detuning δ0 = 2kπ−ϕ0 where k is an
integer, the boundary condition (S1) can be written

Am+1(0) ≈
(

1− R
2
− iδ0

)
Am(L), (S10)

where R = 1−T . By substituting (S9) in (S10), we find
the mean-field equation

tR
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(S11)
where we have introduced the slow-time T = ntR with

tR the rountripe time, Λ = α
(1)
s L1 + α

(2)
s L2 + R and

β2L = β
(1)
2,sL1 + β

(2)
2,sL2. Equation (S11) describes pat-

tern formation in a singly resonant optical parametric
oscillator with a Kerr section. It is a generalisation of
the model introduced in [1]. Next, we further generalise
the model to account for an intracavity amplifier at the
signal frequency. Equation (S11) becomes [7]:
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(S12)
where g is the gain per meter and L3 the amplifier length.
As the erbium ions relaxation time (τg = 10 ms) is much
longer than the roundtrip time (tR = 100 ns) and provid-
ing that tR〈|A(T, τ)|2〉 � τgPsat, the gain evolution over
one roundtrip is given by [8, 9]

tR
∂g

∂T
= −tR

(
1

τg
+
〈|u(T, τ)|2〉
τgPsat

)
g +

tRg0

τg
, (S13)

where 〈|u(T, τ)|2〉 =
1

tR

∫ tR

0

|u(T, τ)|2 dτ , g0 is the un-

saturated gain and and Psat is the saturation power. This
equation and (S12) describe the dynamics of our system.
Because the gain dynamics is slow in our case, we make
the approximation ∂T g = 0 which yields

g =
g0L3/2

1 +
〈|u(T, τ)|2〉

Psat

. (S14)

In this paper, we focus on the detuning region (0 <
δ0 < 0.3) where the intracavity filter does not impact the
solitons. In that region, the average intracavity power
〈|u(T, τ)|2〉 is low and the gain stays close to its unsat-
urated value (i.e. g ≈ g0). The resonator intrinsic loss
α can then be replaced by the effective loss Λe, defined
as [9]

Λe = Λ− gL3 ≈ Λ− g0L3. (S15)

Moreover, the delayed third order term (describing up-
conversion) is also negligible in that region, leading to
the following simplified mean-field equation, known as
the parametrically driven nonlinear Schrödinger equation
(PDNLSE) [10–12]

tR
∂A

∂T
=

(
−Λe

2
− i

β2L

2

∂2

∂τ2
− iδ0

)
A

+ κBinL1A
∗ + iγL2|A|2A (S16)

By introducing the parameters T ′ = (ΛeT )/tR, ∆ =

δ0/Λe, τ
′ =

√
2Λe
|β2L| , u =

√
γL2

Λe
A and µ = κBinL1/Λe,

we obtain the normalized, dimensionless version

∂u

∂T ′
=

(
−1 + i(|u|2 −∆) + i

∂2

∂τ ′2

)
u+ µu∗. (S17)

II. LINEAR STABILITY ANALYSIS

To compute the linear stability of the homogeneous state
solutions uh against generic perturbations ξ(τ, T ), we
first linearize the system around uh by introducing the
ansatz u(τ, T ) = uh+εξ(τ, T )+c.c. (|ε| � 1) in Eq. (S17).
Keeping all the terms at first order in ε, we obtain the
linear equation

∂T

[
ξ
ξ∗

]
=

[
A B
B∗ A∗

] [
ξ
ξ∗

]
, (S18)

where

A ≡ −(1 + i∆) + i∂2
τ + 2i|uh|2, B ≡ iu2

h + µ. (S19)

To solve this equation, we consider modulated perturba-
tion modes of the form ξ(τ, T ) = aΩe

σT+iΩτ+c.c., with Ω
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and σ being the frequency and growth rate of the pertur-
bation, respectively. This ansatz then leads to the linear
system

[
AΩ − σ B
B∗ A∗Ω − σ

] [
aΩ

a∗Ω

]
=

[
0
0

]
, (S20)

with AΩ ≡ −(1 + i∆) − iΩ2 + 2i|uh|2, which has a non-
trivial solution if

σ2 + 2σ + f(Ω) = 0, f(Ω) = |AΩ|2 − |B|2, (S21)

is satisfied. This condition yields to the dispersion rela-
tion

σ(Ω) = −1 +
√

1− f(Ω), (S22)

which relates the growth of the perturbation ξ with its
frequency. If Re[σ] is negative, the modulated pertur-
bation ξ decays, and uh is stable. However, when the
contrary holds, the perturbation grows exponentially and
uh is unstable. The transition occurs at the critical fre-
quency Ωc which satisfies simultaneously the conditions
(i) σ(Ω)|Ωc = 0 and (ii) σ′(Ω)|Ωc = 0, with (′) denoting
derivation with respect to Ω.

A. Stability of the trivial state

For the trivial state uh = 0, f(Ω) = 1−µ2 +(∆+Ω2)2,
and the conditions (i)-(ii) lead respectively to

µ2 = 1 + (∆ + Ω2
c)

2, (∆ + Ω2
c)Ωc = 0, (S23)

which define the onset of the instability and the critical
frequency Ωc of the growing perturbation at the insta-
bility. Depending on Ωc, two different instabilities take
place. For Ωc = 0, a pitchfork bifurcation, occurs at
µ = µp ≡

√
1 + ∆2, such that for µ < µp, uh = 0 is

stable against homogeneous perturbations and unstable
otherwise. This instability corresponds to the degenerate
OPO threshold.

In contrast, when Ωc = ΩT ≡
√
−∆ and ∆ < 0, a

Turing or modulation instability crops up at µ = µT ≡ 1,
where uh = 0 becomes unstable against modulated per-
turbations of frequency ΩT . This instability corresponds
to the non-degenerate OPO threshold.

B. Stability of the non-trivial state

The non-trivial homogeneous state can be written as
uh =

√
Xeiφ, where X satisfies µ2 = 1 + (X − ∆)2,

and cos(2φ) = µ−1. For ∆ > 0, two non-trivial states
u±h exist, corresponding to the intensities X± ≡ ∆ ±√
µ2 − 1. However, for ∆ < 0 the only nontrivial state

corresponds to u+
h (i.e., to X+ ≡ ∆ +

√
µ2 − 1).

In this case, f = (2X − (∆ + Ω2))2 − ∆2, and the
dispersion relation reads [13]

σ± = −1 +

√
∆2 + 1− (∆± 2

√
µ2 − 1− Ω2)2. (S24)

Here, the conditions (i)-(ii) become

X±c =
1

2
(Ω2

c + ∆±∆), (∆ + Ω2
c − 2X)Ωc = 0. (S25)

The condition Ωc = 0 leads to two instabilities. The
first one occurs at (µ,X) = (µp, 0) and corresponds to
the pitchfork bifurcation. For ∆ < 0, u+

h bifurcates from
(µ, uh) = (µp, 0) towards µ > µp, and the pitchfork bi-
furcation is called supercritical. In contrast, for ∆ > 0,
u−h bifurcates towards µ < µp, and the pitchfork bifur-
cation is subcritical. The second instability occurs at
(µ,X) = (1,∆) for ∆ > 0, and corresponds to the saddle-
node bifurcation SNh where u+

h and u−h meet one another
(i.e., X+ = X−).

For Ωc 6= 0, the conditions (i)-(ii) define the Turing
instability, that in this case occurs at ∆ = ∆T ≡ 0 for a

critical frequency Ω2
T = 2

√
µ2 − 1. Below and above this

line, the non-trivial state uh is modulationally unstable.
For ∆ < 0, u+

h is modulationally unstable, and
the most unstable perturbation frequency is Ω+

c =√
∆ + 2

√
µ2 − 1, which leads to σ+

max = −1 +
√

∆2 + 1.

For ∆ > 0, u+
h preserves its modulationally un-

stable nature, and u−h is modulationally unstable for

1 < µ <
√

∆2/4 + 1, with a most unstable frequency

Ω−c =
√

∆− 2
√
µ2 − 1. In contrast, when

√
∆2/4 + 1 <

µ < µp, the most unstable mode corresponds to Ω = 0,
therefore u−h is unstable to homogeneous perturbations.

III. PHASE MODULATION

Cavity solitons (CS) are known to be attracted to
phase maxima of the driving beam [14]. In our exper-
iment, we use a similar technique to lock the paramet-
ric cavity solitons (PCSs) on a 4.6 GHz grid. We im-
print a periodic phase modulation φ(τ) onto the driving
laser prior to its frequency doubling. The resulting beam
is phase modulated at twice the initial modulation fre-
quency (see Fig. 3). Writing µ(τ) = µ0e

i2φ(τ), the mean-
field equation (S17) becomes

∂u

∂T
=

(
−1 + i(|u|2 −∆) + i

∂2

∂τ2

)
u+ µ0e

i2φ(τ)u∗.

(S26)
By substituting u = ūeiφ(τ) into equation (S26), we find

∂ū

∂T
=

(
− (1 + φ′′) + i(|ū|2 − (∆ + φ′2)) + i

∂2

∂τ2
−

−2φ′
∂

∂τ

)
ū+ µ0ū

∗,

(S27)

where φ′ = dφ
dτ and φ′′ = d2φ

dτ2 . The impact of φ′′ (resp.

φ′2) over the total losses (resp. detuning) is small [14].
The term 2φ′∂τ provides a local τ -dependent variation of
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the group velocity. When φ′ > 0 (resp. φ′ < 0), the soli-
ton suffers a delay (resp. advancement) with respect to
the carrier frequency reference frame. This implies that
individual PCS will lock to a phase modulation maxi-
mum.
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Fig. S1. Spontaneous Parametric Cavity Solitons generation. a, Cavity resonance measured with a 200 kHz
photodiode. The scan leads to the generation of a multiple soliton-step, i.e. the spontaneous generation of multiple
PCSs. b, Similar scan performed with a 12 GHz detection system. The oscillation is initiated on the edges of the
driving pulse, after which the signal broadens to reach the same duration as the pump pulse and eventually collapses
on the soliton state. c, Corresponding pump pulse profile. It remains unchanged throughout the scan which
validates the constant pump approximation used in our model. d, Pump spectrum below and above (e) the
oscillation threshold. The absence of spectral broadening further confirms that cascaded nonlinearites do not play a
significant role in our system.
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