1	Title
T	Ime

2	Among simple non-invasive scores, Pro-C3 and ADAPT best exclude
3	advanced fibrosis in Asian patients with MAFLD
4	Short Title: Serum PRO-C3, ADAPT and fibrosis staging
5	
6	Authors:
7	Liang-Jie Tang ¹ , Hong-Lei Ma ¹ , Mohammed Eslam ² , Grace Lai-Hung Wong ^{3,4} ,
8	Pei-Wu Zhu ⁵ , Sui-Dan Chen ⁶ , Diana Julie Leeming ⁷ , Morten Karsdal ⁷ , Gang Li ¹ ,
9	Ou-Yang Huang ¹ , Howard Ho-Wai Leung ⁸ , Yu-Jie Zhou ⁹ , Qian Feng ¹⁰ , Pei Jiang ¹¹ ,
10	Li-Mei Gao ¹¹ , Christopher D. Byrne ¹² , Giovanni Targher ¹³ , Jacob George ² , Vincent
11	Wai-Sun Wong ^{3, 4, *} , Ming-Hua Zheng ^{1, 14, 15, *}
12	
13	Affiliations:
14	¹ MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of
15	Wenzhou Medical University, Wenzhou, China;
16	² Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital,
17	Westmead, and University of Sydney, Sydney, Australia;
18	³ Department of Medicine and Therapeutics, The Chinese University of Hong Kong,
19	Hong Kong, China;
20	⁴ State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong,
21	Hong Kong, China;
22	⁵ Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou

	23	Medical	University,	Wenzhou,	China
--	----	---------	-------------	----------	-------

- ⁶Department of Pathology, the First Affiliated Hospital of Wenzhou Medical
- 25 University, Wenzhou, China;
- ²⁶ ⁷Nordic Bioscience Biomarkers and Research A/S, Herlev, Denmark;
- ⁸Department of Anatomical and Cellular Pathology, The Chinese University of Hong
- 28 Kong, Hong Kong, China;
- ⁹Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology
- 30 and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai
- Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China;
- ³² ¹⁰Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical
- 33 University, Wenzhou, China;
- ³⁴ ¹¹Fosun Diagnostics (Shanghai) Co., Ltd, Shanghai, China;
- ³⁵ ¹²Southampton National Institute for Health Research Biomedical Research Centre,
- 36 University Hospital Southampton, Southampton General Hospital, Southampton, UK;
- ³⁷ ¹³Section of Endocrinology, Diabetes and Metabolism, Department of Medicine,
- 38 University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy;
- ³⁹ ¹⁴Institute of Hepatology, Wenzhou Medical University, Wenzhou, China;
- 40 ¹⁵Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver
- 41 Disease in Zhejiang Province, Wenzhou, China
- 42

43 ***Corresponding author:**

44 Ming-Hua Zheng, MD, PhD

45	MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of
46	Wenzhou Medical University; No. 2 Fuxue Lane, Wenzhou 325000, China.
47	E-mail: zhengmh@wmu.edu.cn; fax: (86) 577-55578522; tel: (86) 577-55579622.
48	
49	Vincent Wai-Sun Wong, MD
50	Department of Medicine and Therapeutics, 9/F Prince of Wales Hospital, 30-32 Ngan
51	Shing Street, Shatin, Hong Kong, China.
52	E-mail: wongv@cuhk.edu.hk; fax: (852) 2637 3852; tel: (852) 3505 1205.
53	
54	Abbreviation list:
55	ALT, alanine aminotransferase; AST, aspartate aminotransferase; AAR, aspartate
56	aminotransferase to alanine aminotransferase ratio; APRI, aspartate aminotransferase-
57	platelet ratio index; AUROC, area under the receiver operating characteristic curve;
58	BMI, body mass index; CI, 95% confidence interval; DCA, decision curve analysis;
59	FIB-4, fibrosis-4; MAFLD, metabolic dysfunction-associated fatty liver disease;
60	NAFLD, nonalcoholic fatty liver disease; NFS, NAFLD fibrosis score; NPV, negative
61	predictive value; OR, odds ratio; OR, odds ratio; PRO-C3, N-terminal propeptide of
62	type 3 collagen; PPV, positive predictive value;
63	
64	Total word count: 2536 words
65	Number of tables/supplementary tables: 3/3
66	Number of figures/supplementary figures: 3/1
67	

```
3
```

00	E P	
68	Funding:	

69	This paper was funded by grants from the National Natural Science Foundation of
70	China (82070588), High Level Creative Talents from Department of Public Health in
71	Zhejiang Province (S2032102600032) and Project of New Century 551 Talent
72	Nurturing in Wenzhou. GT is supported in part by grants from the School of
73	Medicine, University of Verona, Verona, Italy. CDB is supported in part by the
74	Southampton NIHR Biomedical Research Centre (IS-BRC-20004), UK. Vincent
75	Wong is supported in part by a Direct Grant from The Chinese University of Hong
76	Kong (2020.045). ME and JG are supported by the Robert W. Storr Bequest to the
77	Sydney Medical Foundation, University of Sydney; a National Health and Medical
78	Research Council of Australia (NHMRC) Program Grant (APP1053206), a
79	Investigator Grant (APP1196492) and Project and ideas grants (APP2001692,
80	APP1107178 and APP1108422).
81	
82	CRediT authorship contribution statement
83	Liang-Jie Tang: Conceptualization, Investigation, Data curation, Writing - original
84	draft. Hong-Lei Ma: Conceptualization, Writing - original draft. Mohammed Eslam:
85	Investigation, Writing - review & editing. Grace Lai-Hung Wong: Investigation,
86	Writing - review & editing. Pei-Wu Zhu: Data curation, Writing - review & editing.
87	Sui-Dan Chen: Data curation, Writing - review & editing. Diana Julie Leeming:
88	Investigation, Writing - review & editing. Morten Karsdal: Investigation, Writing -
89	review & editing. Gang Li: Data curation, Writing - review & editing. Ou-Yang

90	Huang: Data curation, Writing - review & editing. Howard Ho-Wai Leung: Data
91	curation, Writing - review & editing. Yu-Jie Zhou: Investigation, Writing - review &
92	editing. Qian Feng: Data curation, Writing - review & editing. Pei Jiang:
93	Investigation, Writing - review & editing. Li-Mei Gao: Investigation, Writing -
94	review & editing. Christopher D. Byrne: Investigation, Writing - review & editing.
95	Giovanni Targher: Investigation, Writing - review & editing. Jacob George:
96	Conceptualization, Methodology, Writing - review & editing. Vincent Wai-Sun
97	Wong: Conceptualization, Methodology, Investigation, Writing - review & editing,
98	Project administration. Ming-Hua Zheng: Conceptualization, Methodology,
99	Investigation, Data curation, Writing - review & editing, Project administration.
100	All authors contributed to the manuscript for important intellectual content and
101	approved the final submission of the manuscript.
102	
103	Potential competing interests:

Although the PRO-C3 ELISA was carried out at Nordic Biosciences under a research 104 collaboration, we confirm that cohort generation, research conceptualization, analysis, 105 and manuscript drafting were carried out independent of the Nordic Biosciences team. 106 ADAPT is not developed as a proprietary test. The PRO-C3 ELISA is not currently 107 commercially available, but can be obtained as a Nordic Bioscience research test for 108 research use only. Diana Julie Leeming is employed by, and owns stock in Nordic 109 Bioscience. Pei Jiang and Li-Mei Gao are employed by Fosun Diagnostics 110 (Shanghai). Grace Lai-Hung Wong and Vincent Wai-Sun Wong have served as 111

speakers and/or consultants for Echosens. Other authors have no conflicts of interest.

Background: With metabolic dysfunction-associated fatty liver disease (MAFLD) 115 incidence and prevalence increasing, it is necessary to identify patients with advanced 116 fibrosis (F3-F4 stages). We evaluated the performance of new biomarkers and 117 algorithms for diagnosing advanced fibrosis in an Asian population. 118 Methods: Data from two Asian cohorts (including 851 biopsy-proven MAFLD [578] 119 from Wenzhou, 273 from Hong Kong]) were studied. The association between N-120 terminal propeptide of type 3 collagen (PRO-C3) and the histologic stage of liver 121 122 fibrosis was analyzed by multivariable linear regression. The area under the receiver operating characteristic curve (AUROC) was used to test the diagnostic performance 123 of serum PRO-C3 and the ADAPT score for advanced fibrosis and compared them to 124 125 other established non-invasive tests. **Results:** Serum PRO-C3 levels increased progressively across liver fibrosis stages 126 and correlated with advanced fibrosis (P<0.001). The ADAPT score had an AUROC 127 128 of 0.865 (95% confidence interval 0.829-0.901) for advanced fibrosis; the accuracy, sensitivity and negative predictive values were 81.4%, 82.2% and 96.1%, 129 respectively. This result was better compared to that of PRO-C3 alone or other non-130 invasive fibrosis biomarkers (aspartate aminotransferase-to-platelet ratio index, 131 Fibrosis-4, BARD, and NAFLD fibrosis score). In subgroup analyses (including sex, 132 age, diabetes, NAFLD activity score, body mass index or serum alanine 133 aminotransferase levels), the ADAPT score had good diagnostic performance. 134 Conclusion: PRO-C3 and the ADAPT score reliably exclude advanced fibrosis in 135

MAFLD patients and reduce the need for liver biopsy.

Key words:

- Metabolic dysfunction-associated fatty liver disease; N-terminal propeptide of type 3
- collagen; ADAPT; Fibrosis staging.

158 Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a highly prevalent 159 160 condition worldwide and represents the most common cause of chronic liver disease in the United States, Europe and Asia [1-3]. It is estimated that the future burden of 161 MAFLD will approximate 314 million cases by 2030 [4, 5], thereby becoming the 162 commonest cause of cirrhosis, hepatocellular carcinoma and liver transplantation in 163 China and other Asian countries over the coming decades [6, 7]. 164 165 166 The newly proposed definition of MAFLD has been endorsed by various professional societies [3, 8-10], and MAFLD better identifies patients with significant fibrosis [11-167

and extra-hepatic morbidity and mortality in people with MAFLD [14-16]. In Asia,

13]. The severity of liver fibrosis is the strongest histologic predictor of liver-related

170 individuals with MAFLD pay little attention to their liver disease [17], so there

171 remains a large number of undiagnosed persons with MAFLD in clinical practice

172 [18]. Liver biopsy is the 'gold standard' method for staging the severity of MAFLD

173 [19, 20], however the potential limitations of this invasive method make liver biopsy

174 unsuitable for its wider clinical use. Thus, currently the assessment of liver fibrosis in

the MAFLD population lacks an effective, accurate, and non-invasive detection tool

176 [21, 22].

177

168

178 Recently, a hospital-based biopsy-confirmed MAFLD cohort from Australia showed
179 that the N-terminal propeptide of type 3 collagen (PRO-C3) can be reliably used as a

180	serum marker of liver fibrosis [23, 24]. The ADAPT score (including age, diabetes,
181	PRO-C3 and platelet count) is a derived algorithm that may accurately identify
182	patients with significant or advanced fibrosis [24, 25]. However, before its mass
183	adoption, this score needs to be validated in other cohorts and countries. In this large
184	cross-sectional study, we combined two independent Asian cohorts of individuals with
185	biopsy-proven MAFLD, and tested the diagnostic accuracy of serum PRO-C3 and the
186	ADAPT score and compared them to other widely available non-invasive scores of
187	advanced fibrosis.

189 Materials and methods

190 *Study population*

191 We included two Asian cohorts of adults with biopsy-proven MAFLD (i.e., Wenzhou and Hong Kong). Data from the Wenzhou cohort were collected from January 2017 to 192 December 2020. The Hong Kong cohort included patients from a previously 193 published study as well as additional subjects [25]. In both cohorts, MAFLD was 194 diagnosed by the presence of hepatic steatosis on histology with at least one of the 195 following three coexisting conditions, i.e., overweight/obesity, type 2 diabetes, or 196 metabolic dysregulation [2, 26, 27]. All patients with MAFLD included in this study 197 did not have hepatitis B virus or hepatitis C virus infection, excessive alcohol 198 consumption, drug-induced liver injury, as well as known active malignancies or other 199 causes of chronic liver disease. 200

201

202	whill one day of fiver blopsy, fasting venous blood samples for measurement of
203	serum liver enzymes, total bilirubin, albumin, lipids and other blood biochemical tests
204	were obtained. Height and weight were measured for the calculation of body mass
205	index (BMI = weight [kg]/height ² [m ²]). Diabetes was defined as fasting glucose level
206	$\geq 7.0~mmol/L~(\geq 126~mg/dL)$ or hemoglobin $A_{1c} \geq 6.5\%~(\geq 48~mmol/mol),$ a previous
207	diagnosis of diabetes, or treatment with any anti-hyperglycemic drugs [28].
208	

Within one day of liver bionsy fasting years blood samples for measurement of

209 The study was approved by the institutional review boards of both centers and all210 participants gave written informed consent.

211

000

212 Pathological assessment of MAFLD

213 Ultrasound-guided percutaneous liver biopsy was performed using 16G or 18G needles and stained with hematoxylin-eosin and Masson trichrome. The reading and 214 scoring of biopsy specimens were performed by an experienced pathologist in each 215 center blinded to the clinical and biochemical data of participants. The histologic 216 NAFLD activity score (NAS) was calculated as the sum of hepatic steatosis, lobular 217 inflammation and hepatocyte ballooning [29-31]. The histologic stages of liver 218 fibrosis were defined as: stage 0, no fibrosis; stage 1, peri-sinusoidal or portal venular 219 fibrosis; stage 2, peri-sinusoidal and portal vein/periportal fibrosis; stage 3, bridging 220 fibrosis; and stage 4, cirrhosis [28]. Advanced fibrosis was defined as stage $F \ge 3$. 221 222

223 Serum PRO-C3 and ADAPT score

224 Type III collagen formation was assessed in serum using the PRO-C3 competitive

ELISA kit from Nordic Bioscience, Herlev, Denmark, as previously described [24].

226 The ADAPT algorithm was calculated as follows [24]:

227
$$ADAPT = \exp\left(\log_{10}\left(\frac{Age \times PRO - C3}{\sqrt{Platelets}}\right)\right) + Diabetes$$

228 Other widely used non-invasive scores of advanced fibrosis, namely aspartate

- aminotransferase-platelet ratio index (APRI), fibrosis-4 (FIB-4), NAFLD fibrosis
- 230 score (NFS), and BARD (BMI, aspartate aminotransferase to alanine

aminotransferase ratio (AAR), diabetes) score were calculated using available clinical

and laboratory variables [22, 32-34].

233

234 Statistical analysis

235 According to their normal or skewed distributions, continuous data were reported as means and standard deviation or medians (interquartile ranges), while categorical data 236 were reported as a number (percentages). Univariable and multivariable linear 237 238 regression analyses were performed to examine factors that significantly associated with serum PRO-C3, the ADAPT score or the other widely used non-invasive fibrosis 239 scores. The overall diagnostic accuracy of these non-invasive scores was evaluated by 240 receiver characteristic curve analysis and expressed as the area under the receiver 241 operating characteristic curve (AUROC). The diagnostic accuracies of serum PRO-242 C3, the ADAPT score and other non-invasive fibrosis scores were determined by 243 calculating the sensitivity, specificity, positive predictive value (PPV), negative 244 predictive value (NPV), as well as positive and negative likelihood ratios (LRs). The 245

246	optimal cut-off points for each non-invasive fibrosis score were selected using the
247	Youden's index, which attributes equal value to sensitivity and specificity. The
248	DeLong test was performed on ROC curves by a bootstrap re-sampling method with
249	500 repetitions. Logistic regression analyses were performed to estimate the odds
250	ratio (OR) and 95% confidence interval (CI). We also performed a decision curve
251	analysis (DCA) to evaluate the new advantage, that is, whether the new model was
252	better at identifying significant fibrosis rather than harmful (leading to unnecessary
253	biopsy). The probability threshold reflects the diagnostic certainty of choice of liver
254	biopsy. The curve with the greatest probability represents the best decision strategy to
255	maximize the new advantage. All statistical analyses were performed by R version
256	3.6.1 (https://www.r-project.org/). Graphs were designed using GraphPad Prism
257	version 7 (GraphPad Software, Inc., CA, USA).

259 **Results**

260 Patient Characteristics

261 We recruited 851 middle-aged Asian patients with biopsy-proven MAFLD, 578 from

262 Wenzhou, and 273 from Hong Kong. The clinical and biochemical characteristics of

- the whole population are shown in **Supplemental Table 1**; the median age of patients
- was 43 years and 570 (67%) were men. There were 322 (38%) patients with known
- type 2 diabetes, 103 (12%) with advanced fibrosis (F3 or F4 stages) and
- 266 approximately half of these patients had $NAS \ge 4$.

267

PRO-C3 is related to the severity of liver fibrosis

269	We stratified patients based on the severity of liver fibrosis into two groups, F0-2 (no
270	fibrosis to moderate fibrosis) and F3-4 stages (advanced fibrosis) (Figure 1A). As
271	shown in Table 1, compared to those with F0-2 fibrosis, patients with advanced
272	fibrosis had higher serum PRO-C3 levels (p< 0.001) and ADAPT score (p< 0.001). In
273	addition, those with advanced fibrosis were older, more likely to be male and diabetic,
274	and had greater adiposity measures, higher levels of serum AST, fasting glucose, and
275	HDL-cholesterol, and lower levels of total cholesterol, LDL-cholesterol and platelets.
276	
277	As shown in Figure 1B, serum PRO-C3 levels increased sharply across the stages of
278	fibrosis, F0 vs. F4 (P<0.001), F2 vs. F3 (P<0.001), F1 vs. F3 (P<0.001) and F3 vs. F4
279	(P=0.008).
280	
281	Table 2 shows the associations of serum PRO-C3 levels with clinical and biochemical
282	parameters. Age (β=0.001, 95% CI: -0.001-0.003, P=0.01) and BMI (β=0.008, 95%
283	CI: 0.003-0.013, P<0.001) were correlated with PRO-C3 levels; among the
284	biochemical parameters HDL-cholesterol (β=0.16, 95% CI: 0.117-0.204, P<0.001)
285	and fasting glucose (β =0.012, 95% CI: 0.001-0.023, P=0.036) were correlated with
286	serum PRO-C3. The histologic parameters steatosis (β =0.033, 95% CI: 0.013-0.053,
287	P=0.001), lobular inflammation (β=-0.077, 95% CI: -0.113, -0.040, P<0.001) and
288	fibrosis (β =0.082, 95% CI: 0.062-0.103, P<0.001) were also positively correlated with
289	PRO-C3 levels.

291	Diagnostic capabilities of the ADAPT score against widely used non-invasive
292	fibrosis scores
293	We have tested the associations of advanced fibrosis (F3-F4) with various clinical and
294	biochemical factors. Age (OR= 1.048, 95% CI: 1.021-1.075, P<0.001) and type 2
295	diabetes (OR= 2.826, 95% CI: 1.557-5.129, P<0.001) were positively associated with
296	advanced fibrosis; other biochemical parameters, such as platelet count (OR= 0.995,
297	95% CI: 0.991-0.999, P=0.024) and LDL-cholesterol (OR= 0.635, 95% CI: 0.388-
298	1.040, P=0.071) were inversely associated with advanced fibrosis (Supplemental
299	Table 2). Based on the strong association between serum PRO-C3 (OR= 1.132, 95%)
300	CI: 1.092-1.174, P<0.001) and the severity of liver fibrosis, we also tested the
301	diagnostic performance of the ADAPT score for identifying advanced fibrosis and
302	compared it with serum PRO-C3 alone or other widely used serum-based non-
303	invasive fibrosis scores (i.e., APRI, FIB-4, BARD and NFS).
304	
305	Figure 2A shows the diagnostic performances of the different non-invasive scores for
306	diagnosing advanced fibrosis. The AUROC of the ADAPT score was 0.865 (95% CI:
307	0.829-0.901) for advanced fibrosis, higher than that of PRO-C3 alone
308	(AUROC=0.797, 95% CI: 0.753-0.842, P=0.0013) and the other widely used non-
309	invasive fibrosis scores: 0.61 (95% CI: 0.55-0.676, P<0.001) for APRI, 0.689 (95%
310	CI: 0.625-0.753, P<0.001) for FIB-4, 0.746 (95% CI: 0.687-0.805, P<0.001) for NFS,

and 0.654 (95% CI: 0.596-0.713, P<0.001) for BARD, respectively. Compared to

312	serum PRO-C3 alone, the ADAPT score had higher sensitivity (82.2% vs. 81.6%),
313	specificity (75.8% vs. 63.7%) and concordance index (0.868, 95% CI: 0.797,0.939).
314	Similarly, the ADAPT score had higher PPV (37% vs. 23.6%). The ADAPT score
315	showed much higher performance compared to other non-invasive fibrosis scores
316	(APRI, FIB-4, NFS, and BARD) as shown in Table 3. Finally, the ADAPT score
317	showed similar diagnostic performance in the Wenzhou (AUROC=0.810, 95% CI:
318	0.742-0.877) and the Hong Kong (AUROC=0.809, 95% CI: 0.752-0.865) cohorts (see
319	Supplementary Figure 1).
320	
321	The decision curve analysis (DCA) we used for assessing the ADAPT is presented in
322	Figure 2B. This figure analyzes the clinical utility of the ADAPT score compared
323	with APRI, FIB-4, NFS and BARD scores in identifying patients with advanced
324	fibrosis. DCA showed that from a threshold probability >10%, we could obtain more
325	net benefit by using a variance graph. In particular, if a patient's threshold probability
326	was >10% and <80%, the use of the ADAPT score for predicting the risk of advanced
327	fibrosis had more benefits than the reference strategy (using APRI, FIB-4, NFS, or
328	BARD scores).
329	
330	Diagnostic performances of the ADAPT score and serum PRO-C3 in different
331	patient subgroups

- We found that the ADAPT score had good performance for diagnosing advanced 332
- fibrosis among different MAFLD subgroups. The AUROC of the ADAPT score was 333

0.841 (95% CI: 0.789-0.893) in men, and 0.889 (95% CI: 0.840-0.938) in women,

respectively. Similarly, in other patient subgroups such as age < 45 years

336 (AUROC=0.794, 95% CI: 0.716-0.873), age ≥ 45 years (AUROC=0.853, 95% CI:

337 0.809-0.897), NAS < 4 (AUROC=0.856, 95% CI: 0.795-0.918), NAS ≥ 4

338 (AUROC=0.871, 95% CI: 0.827-0.915), BMI < 25 kg/m² (AUROC=0.894, 95% CI:

339 0.816-0.972), BMI \geq 25 kg/m² (AUROC=0.854, 95% CI: 0.813-0.896), ALT < 40 U/L

340 (AUROC=0.819, 95% CI: 0.741-0.896), ALT \geq 40 U/L (AUROC=0.886, 95% CI:

- 341 0.847-0.925), presence of diabetes (AUROC=0.806, 95% CI: 0.748-0.864) and
- absence of diabetes (AUROC=0.838, 95% CI: 0.766-0.910), we found comparable

343 performances of the ADAPT score for predicting advanced fibrosis (Figure 3).

344

```
345 Circulating levels of hyaluronic acid, type III procollagen, type IV collagen, and
```

laminin were also used as routine liver fibrosis tests in the Wenzhou biopsy cohort.

347 Supplemental Table 3 shows the results of univariable and multivariable logistic

- 348 regression analyses preformed in the Wenzhou cohort. Interestingly, serum PRO-C3
- 349 had a better risk assessment effect on advanced fibrosis than the four aforementioned
- circulating parameters of liver fibrosis (adjusted OR: 1.217; 95% CI: 1.115-1.329,

351 P<0.001).

352

```
353 Discussion
```

354 In this large validation study in Asian individuals, serum PRO-C3 concentration and

355 the ADAPT score demonstrated excellent diagnostic performance for identifying

356	advanced fibrosis in adults with biopsy-confirmed MAFLD. The diagnostic
357	accuracies of both tests for advanced fibrosis (F \ge 3 stage) were significantly better
358	than those of other widely used non-invasive scoring systems. PRO-C3 and the
359	ADAPT algorithm reliably excluded MAFLD patients with advanced fibrosis, thereby
360	avoiding unnecessary liver biopsies. These results suggest that serum PRO-C3 levels
361	could be used as a routine blood biochemical indicator for liver fibrosis detection
362	while ADAPT could further improve the accuracy of diagnosis.
363	
364	The severity of liver fibrosis is the strongest prognostic factor in patients with
365	MAFLD for adverse hepatic and extra-hepatic clinical outcomes [35]. As the
366	prevalence of MAFLD is rapidly increasing globally, it is important to identify high-
367	risk patient patients for specialist referral and treatment. The similar diagnostic
368	performance of the ADAPT score in the China Wenzhou (AUROC=0.81) and China
369	Hong Kong cohorts (AUROC=0.809) in identifying advanced fibrosis, together with
370	prior validation in Caucasian cohorts [24], strongly supports the external validity of
371	this score.

PRO-C3 is more sensitive to the formation of active collagen fibers than static

collagen accumulation [23]. Our results showed that there was no significant

difference in the distribution of PRO-C3 in patients with mild to moderate fibrosis

377 (F0-2), while in the Wenzhou cohort PRO-C3 had better performance for patients with

378	advanced fibrosis. In particular, we found that PRO-C3 had good diagnostic
379	applicability even after adjustment for potentially confounding factors (the
380	introduction of covariates in the basic model or the elimination of covariates from the
381	complete model had an impact on the regression coefficient of PRO-C3 >10%,
382	adjusted for matching factors including age, sex, albumin, alkaline phosphatase and
383	fasting glucose levels). An interesting result of our study is that serum PRO-C3
384	remained independently associated with fibrosis stage even after adjusting for other
385	potential confounding factors, and steatosis and lobular inflammation were
386	independently related to PRO-C3. The use of PRO-C3 alone in the assessment of
387	advanced fibrosis had high sensitivity (81.6%) and high NPV (96.2%). Therefore,
388	serum PRO-C3 levels appear to be able to replace four other serum fibrosis
389	biomarkers (such as hyaluronic acid, type III procollagen, type IV collagen, and
390	laminin) as the best non-invasive blood marker of advanced fibrosis in patients with
391	MAFLD, while the ADAPT score (which includes PRO-C3) has the best
392	performance.
393	

Our study has some important limitations that should be mentioned. Firstly, the two
cohorts could be affected by bias because the results of liver biopsies may be affected
by sampling variability, intra-observer and inter-observer variability. Secondly, this is
a post-hoc analysis, because the samples of the two cohorts were not selected
specifically for the aim of this study. Thirdly, the applicability of these data to other
ethnic groups is not known. In addition, we focused on advanced fibrosis in this study

400	and only patients with available stored serum samples for serum PRO-C3
401	measurement were included in the whole cohort. Any non-invasive fibrosis score is
402	always a trade-off between measurement accuracy (i.e., NPV and PPV) and the 'gray'
403	areas that require further clarification with liver biopsy. The advantage of the ADAPT
404	score is that patients with advanced fibrosis may be appropriately referred to tertiary
405	care, while its high accuracy also means that the number of patients in the 'gray' area
406	may increase.

408	In conclusion, serum PRO-C3 and the ADAPT score reliably exclude advanced
409	fibrosis and reduce the need for liver biopsy in Asian adults with MAFLD. The
410	ADAPT score, which requires the performance of a single biochemical test and
411	routinely collected clinical variables, should be considered for the clinical use in
412	primary care as a risk stratification and referral tool. Additional research to evaluate
413	the cost-effectiveness of such a diagnostic approach is warranted.
414	

415 **Reference**

- 416 [1] Liu J, Ayada I, Zhang X, Wang L, Li Y, Wen T, et al. Estimating Global Prevalence of Metabolic
- 417 Dysfunction-Associated Fatty Liver Disease in Overweight or Obese Adults. Clinical
- 418 gastroenterology and hepatology : the official clinical practice journal of the American
- 419 Gastroenterological Association. 2021.
- 420 [2] Eslam M, Sarin SK, Wong VW, Fan JG, Kawaguchi T, Ahn SH, et al. The Asian Pacific
- 421 Association for the Study of the Liver clinical practice guidelines for the diagnosis and
- 422 management of metabolic associated fatty liver disease. Hepatology international. 2020;14:889-423 919.
- 424 [3] Zheng KI, Fan JG, Shi JP, Wong VW, Eslam M, George J, et al. From NAFLD to MAFLD: a
- 425 "redefining" moment for fatty liver disease. Chinese medical journal. 2020;133:2271-3.
- 426 [4] Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, et al. Modeling
- 427 NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and
- 428 United States for the period 2016-2030. Journal of hepatology. 2018;69:896-904.
- 429 [5] Kaya E, Yılmaz Y. Non-alcoholic fatty liver disease: A growing public health problem in
- 430 Turkey. The Turkish journal of gastroenterology : the official journal of Turkish Society of
- 431 Gastroenterology. 2019;30:865-71.
- 432 [6] Zheng KI, Eslam M, George J, Zheng MH. When a new definition overhauls perceptions of
- 433 MAFLD related cirrhosis care. Hepatobiliary surgery and nutrition. 2020;9:801-4.
- [7] Bertot LC, Jeffrey GP, Wallace M, MacQuillan G, Garas G, Ching HL, et al. Nonalcoholic fatty
 liver disease-related cirrhosis is commonly unrecognized and associated with hepatocellular
 carcinoma. Hepatology communications. 2017;1:53-60.
- 437 [8] Fouad Y, Gomaa A, Semida N, Ghany WA, Attia D. Change from NAFLD to MAFLD increases

the awareness of fatty liver disease in primary care physicians and specialists. Journal ofhepatology. 2021;74:1254-6.

- 440 [9] Méndez-Sánchez N, Díaz-Orozco L, Córdova-Gallardo J. Redefinition of fatty liver disease
- 441 from NAFLD to MAFLD raised disease awareness: Mexican experience. Journal of hepatology.442 2021;75:221-2.
- [10] Ciardullo S, Perseghin G. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in
- the contemporary United States population. Liver international : official journal of the
- 445 International Association for the Study of the Liver. 2021;41:1290-3.
- [11] Sun DQ, Jin Y, Wang TY, Zheng KI, Rios RS, Zhang HY, et al. MAFLD and risk of CKD.
- 447 Metabolism: clinical and experimental. 2021;115:154433.
- 448 [12] Yamamura S, Eslam M, Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, et al. MAFLD
- 449 identifies patients with significant hepatic fibrosis better than NAFLD. Liver international : official
- journal of the International Association for the Study of the Liver. 2020;40:3018-30.
- [13] Zheng KI, Sun DQ, Jin Y, Zhu PW, Zheng MH. Clinical utility of the MAFLD definition. Journal
 of hepatology. 2021;74:989-91.
- 453 [14] Piscaglia F, Svegliati-Baroni G, Barchetti A, Pecorelli A, Marinelli S, Tiribelli C, et al. Clinical
- 454 patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter
- 455 prospective study. Hepatology (Baltimore, Md). 2016;63:827-38.
- 456 [15] Mittal S, Sada YH, El-Serag HB, Kanwal F, Duan Z, Temple S, et al. Temporal trends of
- 457 nonalcoholic fatty liver disease-related hepatocellular carcinoma in the veteran affairs

- 458 population. Clinical gastroenterology and hepatology : the official clinical practice journal of the
- 459 American Gastroenterological Association. 2015;13:594-601.e1.
- 460 [16] Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, Castellanos M, Aller-de la Fuente R,
- 461 Metwally M, et al. Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients With
- 462 Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study. Gastroenterology. 463 2018;155:443-57.e17.
- 464 [17] Mofrad P, Contos MJ, Haque M, Sargeant C, Fisher RA, Luketic VA, et al. Clinical and
- 465 histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. 466 Hepatology (Baltimore, Md). 2003;37:1286-92.
- 467 [18] Maximos M, Bril F, Portillo Sanchez P, Lomonaco R, Orsak B, Biernacki D, et al. The role of
- 468 liver fat and insulin resistance as determinants of plasma aminotransferase elevation in
- 469 nonalcoholic fatty liver disease. Hepatology (Baltimore, Md). 2015;61:153-60.
- 470 [19] Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, et al. Sampling variability of
- 471 liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128:1898-906.
- 472 [20] Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients
- 473 With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;156:1264-81.e4.
- 474 [21] Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease:
- 475 Clinical prediction rules and blood-based biomarkers. Journal of hepatology. 2018;68:305-15.
- 476 [22] Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A
- 477 simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with 478
- chronic hepatitis C. Hepatology (Baltimore, Md). 2003;38:518-26.
- 479 [23] Nielsen MJ, Veidal SS, Karsdal MA, Ørsnes-Leeming DJ, Vainer B, Gardner SD, et al. Plasma
- 480 Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with
- 481 chronic hepatitis C. Liver international : official journal of the International Association for the 482 Study of the Liver. 2015;35:429-37.
- 483 [24] Daniels SJ, Leeming DJ, Eslam M, Hashem AM, Nielsen MJ, Krag A, et al. ADAPT: An
- 484 Algorithm Incorporating PRO-C3 Accurately Identifies Patients With NAFLD and Advanced 485 Fibrosis. Hepatology (Baltimore, Md). 2019;69:1075-86.
- 486 [25] Eslam M, Wong GL, Hashem AM, Chan HL, Nielsen MJ, Leeming DJ, et al. A Sequential
- 487 Algorithm Combining ADAPT and Liver Stiffness Can Stage Metabolic-Associated Fatty Liver 488 Disease in Hospital-Based and Primary Care Patients. The American journal of gastroenterology. 489 2021;116:984-93.
- 490 [26] Eslam M, Sanyal AJ, George J. MAFLD: A Consensus-Driven Proposed Nomenclature for
- 491 Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158:1999-2014.e1.
- 492 [27] Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new
- 493 definition for metabolic dysfunction-associated fatty liver disease: An international expert
- 494 consensus statement. Journal of hepatology. 2020;73:202-9.
- [28] EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty 495 496 liver disease. Journal of hepatology. 2016;64:1388-402.
- 497 [29] Fukusato T, Fukushima J, Shiga J, Takahashi Y, Nakano T, Maeyama S, et al. Interobserver
- 498 variation in the histopathological assessment of nonalcoholic steatohepatitis. Hepatology
- 499 research : the official journal of the Japan Society of Hepatology. 2005;33:122-7.
- 500 [30] Younossi ZM, Gramlich T, Liu YC, Matteoni C, Petrelli M, Goldblum J, et al. Nonalcoholic fatty
- 501 liver disease: assessment of variability in pathologic interpretations. Modern pathology : an

- 502 official journal of the United States and Canadian Academy of Pathology, Inc. 1998;11:560-5.
- 503 [31] Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and
- validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology
 (Baltimore, Md). 2005;41:1313-21.
- 506 [32] Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ. Comparison of noninvasive
- 507 markers of fibrosis in patients with nonalcoholic fatty liver disease. Clinical gastroenterology and
- hepatology : the official clinical practice journal of the American Gastroenterological Association.2009;7:1104-12.
- 510 [33] Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis
- score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology
 (Baltimore, Md). 2007;45:846-54.
- 513 [34] Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a
- 514 simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection.
- 515 Hepatology (Baltimore, Md). 2006;43:1317-25.
- 516 [35] Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, et
- al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of
- 518 Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2015;149:389-97.e10.

521 Figure Legends

522Figure 1. (A) Comparison of baseline data between MAFLD patients with mild to523moderate fibrosis (F0-2 stages) and those with advanced fibrosis (F3-4 stages). (B)524Serum PRO-C3 levels increased in parallel with the histological severity of liver525fibrosis. Each subgroup was compared using the nonparametric Kruskal–Wallis test526(*P < 0.001; **P < 0.01).</td>

527

