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Abstract: With the increase of ship size, the stiffness of the hull structure becomes smaller. This means
that the frequency of wave excitation tends to be closer to the natural frequency of the hull vibration,
which in turn makes the hydroelastic responses more significant. An accurate assessment of the
wave loads and motion responses of hulls is the key to ship design and safety assessment. In this
paper, the coupled CFD (Computational Fluid Dynamics)-FEM (Finite Element Method) method is
used to investigate the non-linear hydroelasticity effect of a 6750-TEU (Twenty-foot Equivalent Unit)
container ship. First, by comparing the heave, pitch, and vertical bending moment at midship section
(VBM4) against experimental results reported in the literature, the validity of the numerical method
in this paper is illustrated. Secondly, the ship responses under different wave length–ship length
ratio, wave frequency-structure natural frequency, wave steepness, and ship speeds are studied. It
is found that the wave length–ship length ratio has a more important influence on the hydroelastic
response than that from wave frequency-structure natural frequency ratio, and the effect of wave
non-linearity will behave differently under different wave length–ship length ratio. The increase of
rigid body motion caused by forward speed will not correspondingly increase the non-linearity of
the hydroelastic response.

Keywords: hydroelasticity; CFD-FEM; non-linear; container ship

1. Introduction

The increase of the scale of modern ships and marine structures means their structure
stiffness tends to become smaller. Therefore, the reduction of the natural frequency of
the vertical vibration of ship and offshore structure makes the hydroelastic responses
such as Spring and Whipping more likely to occur. Thus, the influence of hydroelastic
response must be considered. In recent years, some major accidents have occurred due
to the failure of the structure linked to the hydroelastic effect. For example, two serious
accidents occurred on large container ships, MSC NAPOLI in 2007, and MOL COMFORT
in 2013, as shown in Figure 1. It was reported that both vessels were broken due to the
large hogging of the hull structure.

The experiment methods considered as an irreplaceable way to study the physics of
hydroelasticity and to validate different numerical models. Jiao [1] made a detailed review
on the experimental study of ship hydroelasticity. The segmented ship model experiment
has become the main method to study the ship hydroelasticity [2–4].

On the other hand, the rapid development of different numerical models has made
numerical simulation, which has the advantages of relatively low cost and easy for sys-
tematically parameter studies, as equally important as experimental approaches. The
theory of ship hydroelasticity has seen a process from potential flow to viscous flow, from
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two-dimensional (2D) to three-dimensional (3D), and from linear to nonlinear [5]. The
2D hydroelasticity theory consists of 2D strip theory for the fluid dynamics and mode
superposition method for structure dynamics [6–8]. The work by Bishop and Price [9] is one
of the milestones of the 2D hydroelasticity theory. Wu [10] pioneered the 3D linear hydroe-
lasticity theory, which can be used to solve arbitrary variable bodies in waves. Price [11]
modified this theory so that the viscous resistance of fluid could be taken into account
in the calculation. Based on the original 2D and 3D linear hydroelasticity theory, many
scholars proposed 2D and 3D nonlinear hydroelasticity theories by considering a series of
nonlinear factors. Some typical works include Yamamoto’s nonlinear 2D strip model [12]
and the systematic works of Wu [13–15] that combines linear model and impulse type
theory for high-speed ships. There are also many works on Boundary Element Method
(BEM) based models for hydroelasticity problems [16–18].

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 2 of 18  

 

 

(a) (b) 

Figure 1. Severe accidents of large container ships. (a) MSC NAPOLI Accidents; (b) MOL COMFORT Accidents. 
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directly simulate the non-linear factors such as wave breaking or large body motions. On 
the other hand, the CFD (Computational Fluid Dynamics) technology, which is based on 
solving RANS (Reynolds-Averaged Navier-Stokes) equation, can easily take all these 
non-linear factors into account. By further coupling it with Finite Element Method, the 
CFD-FEM method such as the work by Lakshmynarayanana [19] can theoretically cap-
ture all the non-linear factors in the fluid and structure interaction process. According to 
whether the structure deformation feedback is taken into account for flow computation, 
the fluid structure interaction problem is divided into one-way and two-way coupling. 
Dhavalikar [20] compared the results calculated by one-way coupling with experimental 
results and found the results are larger than the experimental results, Paik [21] calculated 
the hydroelasticity of container ships by two methods and found that the results of 
two-way coupling calculation were closer to the experimental results. These works all 
indicate the necessity of two-way coupling, i.e., taking the structure deformation into 
account for hydroelasticity computation. 

In the last few decades, many scholars have studied the nonlinearity of ships’ ver-
tical motions and the wave load. Paik [21] made a detailed review of this. Watanabe's 
experiments show that the ship's flare shape has influence on the vertical bending mo-
ment peak and pitch motion [22]. Fonseca and Soares also demonstrated by model ex-
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The abovementioned potential flow-based theories have been widely used for hydroe-
lasticity computations, but the basic assumptions of the theory make it difficult to directly
simulate the non-linear factors such as wave breaking or large body motions. On the other
hand, the CFD (Computational Fluid Dynamics) technology, which is based on solving
RANS (Reynolds-Averaged Navier-Stokes) equation, can easily take all these non-linear
factors into account. By further coupling it with Finite Element Method, the CFD-FEM
method such as the work by Lakshmynarayanana [19] can theoretically capture all the
non-linear factors in the fluid and structure interaction process. According to whether
the structure deformation feedback is taken into account for flow computation, the fluid
structure interaction problem is divided into one-way and two-way coupling. Dhava-
likar [20] compared the results calculated by one-way coupling with experimental results
and found the results are larger than the experimental results, Paik [21] calculated the
hydroelasticity of container ships by two methods and found that the results of two-way
coupling calculation were closer to the experimental results. These works all indicate
the necessity of two-way coupling, i.e., taking the structure deformation into account for
hydroelasticity computation.

In the last few decades, many scholars have studied the nonlinearity of ships’ vertical
motions and the wave load. Paik [21] made a detailed review of this. Watanabe’s experi-
ments show that the ship’s flare shape has influence on the vertical bending moment peak
and pitch motion [22]. Fonseca and Soares also demonstrated by model experiments that
the nonlinearity of wave loads is much more significant than that of motion due to the
geometry with a large flare at the bow [23]. Some scholars have studied the effects of wave
nonlinearity and speed on hydroelastic response. Lakshmynarayanana [19] studied the
influence of wave steepness on the structural response of barges under the condition of
no speed. Then, Lakshmynarayanana [24] calculated the effect of wave steepness on the
structural response of ships with speed at different encounter frequencies. Tian studied the
effect of ship speed on the hydroelastic calculation of wave loads on large bulk carriers [25].
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Ni studied the effects of wave nonlinearity and speed on the hydroelastic response of large
bulk carriers [26]. Yang [27] used a 3D nonlinear hydroelastic method in the time domain
to study the nonlinear springing and whipping of a 6750 TEU container ship. Jiao [28] ana-
lyzed the hydroelastic response and slamming loads of ships in real waves by large-scale
model measurement. From the literature, we found that most of the previous scholars only
studied the influence of ship speed and wave nonlinearity on the hydroelastic response,
respectively. As an important factor for ship and wave interaction, the wave length–ship
length ratio can potentially have a significant influence on the hydroelasticity response,
which has not thoroughly investigated in the literature. In this paper, the two-way cou-
pling CFD-FEM method is used to calculate the hydroelastic response of a container ship
under the combined influences of various factors, including wave length–ship length ratio,
forward speed, and wave steepness.

The following sections are arranged as follows: the basics of the numerical models
used in this study is briefly stated and validated in Sections 2 and 3, respectively. Then, in
Section 4, the hydroelastic responses with and without forward speed are investigated in
more details; and finally, the conclusion is drawn in Section 5.

2. The Numerical Method
2.1. CFD Model

The governing equations of the flow field are continuity equation and Reynolds
Averaged Navier Stokes (RANS) equation, which is expressed as follows.

∂ui
∂xi

= 0 (1)

ρ

[
∂ui
∂t

+
∂
(
uiuj

)
∂xj

]
= − ∂p

∂xi
+ µ∇2ui +

∂

∂xj

(
−ρui′uj′

)
(2)

where ρ is density, µ is turbulent viscosity. u is the time average of velocity, p is the time
average of pressure, −ρu′iu

′
j is the turbulent stress term.

The CFD software STAR-CCM+ is used for the simulation. The spatial discretization
method of flow field is finite volume method. In the discrete flow space, the “Separated
Flow Solver” is used in the coupling calculation, which uses SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations) algorithm to solve the velocity and pressure of the flow
field [29,30]. Euler multiphase flow is used to model the air and water phases. Then, the
VOF (Volume of Fluid) method is used to capture the free surface between two phases [31].
The k-ε model is used for modeling the flow turbulence. The fifth order Stokes waves
is adopted by specifying velocity conditions on the flow inlet boundary [30,32]. Besides,
the “VOF Wave Forcing” is used on the outlet boundary of the computation domain,
which added a source term to the transport (momentum) equations of a zone outside the
computation zone to eliminate the reflections of surface waves at boundaries. Kim [33]
gives a more detailed theoretical explanation of this method. A “Pressure Outlet” boundary
condition is used for the top of the computational domain. The detailed size of the
computational domain is shown in Figure 2. The flow field is discretized by trimmed grid.
The overset mesh and mesh deformation called “morpher” are used in the domain covering
the hull (As shown in Figure 3). The overset mesh allows the ship to move freely with large
amplitude. The overset mesh method has high computational efficiency and accuracy in
solving the problem of the structure having a large amplitude of motion. Therefore, it has
been widely used in the numerical calculation of many engineering problems [34–38]. The
mesh deformation is updated according to the displacement feedback from the structure.
The area near the free surface is divided into 80 grids per wave length and 20 grids along
wave height direction [30]. The overall meshing is shown in Figure 3.
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2.2. FEM Model

The governing equation for structure dynamics is shown as follows:

M
..
u + C

.
u + K u = F (3)

where M is the mass of the structure, C is the damping of the structure, K is the stiffness
of the structure, u is the displacement of the structure,

.
u and

..
u are the velocity and

acceleration of the structure, and F is the external force on the structure. It should be noted
that the damping of the structure is not considered in this paper [19].

The FEM software ABAQUS [19,39] is used to solve the motion of the structure. A total
of 144 B31 type elements are used to model the beam of the container ship, 12,618 three node
triangular membrane elements SFM3D3 are used to model the hull [19]. The concentrated
mass points are distributed along the longitudinal direction of the hull girder, the mass
distribution of the finite element model is consistent with the model of the experiment in
Kim’s article [3]. Membrane elements can only transfer the fluid force to beam elements.
The beam will deform according to the hydrodynamic force acting on the structure and the
membrane elements do not carry any load, i.e., the membrane element and beam element
are connected by kinematic coupling constraints [39], which means the displacement of the
membrane element is the same as that of the control nodes of the beam element. The finite
element calculation model is shown in Figure 4.
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2.3. Coupling between Fluid and Structure Solvers

The pressure data in flow field and displacement data in structure solver are exchanged
through the coupling surface. Fluid pressure and shear force, which are exported from flow
field, are enforced as boundary conditions for structure solver. The structure displacement,
which is exported from structure solver, is used as boundary condition for fluid solver.
The implicit coupling is adopted, which allows multiple data exchange between flow
and structure solver in a fixed time step. The time step ∆t = Te

2.4×80 (where Te is the
encounter period).

3. Numerical Model Validation

The results of the hydroelastic model test of the 6750-TEU container ship in KRISO
Institute are used to verify the numerical calculation results in this paper. The experimental
model of container ship is made by elastic beam and segmented hull. Kim has given a
very detailed introduction to the information of the model experiment [3,27]. The three-
dimensional geometric model of 6750-TEU container ship is shown in Figure 5. The
body plan of the 6750-TEU containership can be found in reference [3,27]. The principal
dimensions of the 6750-TEU containership are shown in Table 1.
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Table 1. Principal dimensions of the 6750-TEU container ship.

Item Real Scale Model Scale

Scale 1/1 1/70
LBP:L(m) 286.6 4.094

Breadth (m) 40 0.571
Height (m) 24.2 0.346

The numerical model used in this paper has been validated against experimental
results [3] in our previous work [40]. For the sake of simplicity, only a brief review of the
comparison between numerical and experimental results is given in this section.

The rigid body responses such as heave, pitch and hydroelastic response, i.e., vertical
bending moment at Section 4 (VBM4) near the amidship are compared. The results under
one of the typical non-linear wave conditions, which is called NL1, is shown in Table 2 (H
is the wave height, λ is the wave length, β is the heading angle).

Table 2. Parameter information of NL1 calculation.

ID H (m) λ (m) λ/L H/λ β (deg)

NL1 0.088 4.381 1.07 1/50 180

In order to check the grid convergence performance, three sets of meshes, which are
shown in Table 3, are generated for the same condition mentioned above.
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Table 3. Base size of three different grids and the total grid number.

Grid Type Base Size Number of Grids

a 0.061 m 2.1 million
b 0.086 m 4.6 million
c 0.122 m 11 million

As shown in Figure 6, the results from three sets of meshes are very close to each
other, which shows good mesh convergence property of the numerical model. The type
b (4.6 million mesh) is selected in this paper considering the accuracy and efficiency of
calculation. Moreover, the results marked by “Max”, “Min”, and “Mean” (which means
maximum, minimum, and mean values, respectively) are obtained by analyzing several
different types of numerical methods (most of them are potential flow based methods) as
reported in Kim’s article [3]. “Exp” represents the experimental value. It is worth noting
that the various numerical models mentioned in ref [3] show a large variation between
different models (most of which are potential flow based methods), which deviate from the
experimental values by a relatively large amount. The current CFD-FEM coupled model
shows a comparable level of accuracy as the “mean” value of the other numerical models
(compared with experimental values). In terms of the most concerned hydroleasticity
results, i.e., vertical bending moment time series at midship (Figure 6c) and spatical
distribution along the ship length (Figure 6d), the current CFD-FEM results show better
accuracy. More specifically, compared with experimental results, the maximum relative
error of the VBM4 time series by the current CFD-FEM model is about 2.5% (type b grid),
whereas the mean value of other models in ref [3] is about 4.3%. For the vertical bending
moment spatical distribution, the current model shows maximum 5% difference with
experimental values, whereas the maximum relative error of mean value of other models
in ref is more than 10%.

It is clear that the current numerical model match very well with experimental results
and close to the mean value of the results from other numerical models. This confirms the
accuracy and reliability of the current numerical model.
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4. Results and Discussion
4.1. Hydroelastic Response without Ship Forward Speed

The non-linear hydroelasticity effects under different wave length–ship length ratio,
wave frequency-structure natural frequency ratio, wave steepness under no forward speed
condition are investigated in this section.

The wave parameters are shown in Table 4, in which ω0 is the wave frequency. It
is worth mentioning that the wave steepness of these three wave conditions are kept the
same, which is designed to isolate and investigate the effects from the wave length–ship
length ratio and wave frequency–structure natural frequency ratio. The vertical bending
moment response of the hull structure with different wave frequency-structure natural
frequency (2 node bending, the same below) ratios were realized by changing the stiffness
of the hull structure as shown in Table 5. (the elastic modulus in the model test mentioned
in Section 3 is E = 200 GPa). The natural frequency of hull structures with E = 103.5 GPa,
E = 83 GPa and E = 72 GPa were designed to be almost equal to the wave frequencies of
cases F, K and M respectively.

Table 4. The simulation conditions for case F, K and M.

ID H (m) λ (m) λ/L H/λ ω0 (rad/s) β (deg)

F 0.125 3.510 0.857 1/28 4.189 180
K 0.156 4.381 1.070 1/28 3.750 180
M 0.179 5.029 1.228 1/28 3.500 180
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Table 5. Natural frequency of two-node vertical bending of different stiffness hull grides.

E (GPa) ωbeam (rad/s)

200 5.827
103.5 4.191

83 3.754
72 3.496
50 2.913

4.1.1. Constant Wave Steepness

The non-dimensional vertical bending moment responses of hull structures under
three wave conditions are shown in Figure 7. It is found that when λ/L is less than 1
(λ/L = 0.857), the non-dimensional vertical bending moment under low structure stiffness
(E = 50 GPa) shows strong non-linearity (Figure 7a). The responses under resonance con-
dition (E = 103.5 GPa) and stiffer case (E = 200 GPa) are very similar. Both are about 9%
smaller than that of softer ship hull structure (E = 50 GPa).
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When λ/L is close to or larger than 1, the non-dimensional vertical bending moment
of the midship section does not show significant difference for different wave frequency-
structure natural frequency ratios. More specifically, as shown in Figure 7b, for the case
where λ/L = 1.07, the largest non-dimensional vertical bending moment indeed occurs
under resonance condition (E = 83 Gpa), but the difference between three cases is only
about 5%. When the λ/L is larger than 1, Figure 7c shows that the stiffness of the hull
structure has little effect on the non-dimensional vertical bending moment of the midship
section as well. The difference between three rigidities is less than 3%.

Overall, the non-linearity of the hydroelastic response is not sensitive to the ratio
between wave frequency and structure natural frequency, but affected by the ratio between
the wave length and ship length λ/L.

4.1.2. Different Wave Steepness

In this section, the effect of wave nonlinearity (i.e., wave steepness) on the ship hull
responses is further investigated under different structure stiffness and wave length–ship
length ratios. The wave steepness is changed from 1/28 (as in Table 3) to 1/50 as shown
in Table 6. The non-dimensional vertical bending moment of midship section under two
different wave steepness for structures with E = 50 Gpa and E = 200 Gpa are analyzed.

Table 6. Wave parameter information for F1, K1, and M1.

ID H (m) λ (m) λ/L H/λ ω0 (rad/s) β (deg)

F1 0.070 3.510 0.857 1/50 4.189 180
K1 0.088 4.381 1.070 1/50 3.750 180
M1 0.101 5.029 1.228 1/50 3.500 180

When the elastic modulus of hull structure is E = 50 Gpa, the wave frequencies of the
cases in Tables 4 and 6 are all larger than the structure natural frequency. As shown in
Figure 8, the significant wave non-linear effect can only be observed for the case with λ/L
is less than 1, i.e., 14% difference as shown in Figure 8a. In addition, the vertical bending
moment time-history curve of midship section under wave load F presents significant
non-linear characteristics. However, when the wave length–ship length ratio is close to or
larger than 1, the wave non-linearity has very little effect on the non-linearity of vertical
bending moment. The difference between the amplitude of the non-dimensional vertical
bending moment of the midship section between wave load K and K1 is less than 2% and
the difference between M and M1 is less than 4%, as shown in Figure 8b,c.

The wave non-linear effect has minor influence on the structure response for cases
with relatively high rigidity. More specifically, as shown in Figure 9, for the cases with
elastic modulus E = 200 Gpa, in which the structure natural frequency is larger than the
wave frequencies, the largest vertical bending moment difference occurs for the cases with
λ/L = 0.857 (Figure 9a), but the difference between the cases of wave steepness 1/50 (i.e.,
F1) and 1/28 (i.e., F) is only about 6%. For the cases with other wave length–ship length
ratio as shown in Figure 9b,c, the vertical bending moments difference between different
wave steepness (i.e. K and K1, M and M1) are less than 1% and 4% respectively.

It is clear that the effect from wave non-linearity will be more significant when λ/L < 1
under zero forward speed condition. The discussion on cases with forward speeds will be
further conducted in Section 4.2.
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4.2. Hydroelastic Response with Ship Forward Speed

As discussed in Section 4.1, the hydroelastic response is not sensitive to the ratio of
wave frequency and structure natural frequency, i.e., the non-dimensional vertical bending
moment shows no significant difference at resonate frequency, however, the non-linear
wave effect under different wave length–ship length ratios will behave differently. In this
section, the influence of forward speed on the non-linear hydroelasticity response with
λ/L = 0.857~1.228 (the same range in Section 4) is further investigated. The elastic modulus
E = 200 Gpa of the hull structure is selected for the simulation in this section.

4.2.1. Response with Same Wave Conditions but Different Forward Speeds

The simulation parameters of different waves are shown in Table 7, in which V is the
ship forward speed, the wave steepness is set to be 1/28. The wave conditions in cases P1,
P2 and P3 are the same as the conditions of F, K, and M, respectively.

Table 7. The simulation conditions for case P1, P2, and P3.

ID H (m) λ (m) λ/L H/λ V (m/s) ω0
(rad/s) β (deg)

P1 0.125 3.510 0.857 1/28 0.118 4.189 180
P2 0.156 4.381 1.070 1/28 0.307 3.750 180
P3 0.179 5.029 1.228 1/28 0.553 3.500 180

Figures 10–12 shows the comparison of structural responses with or without speed for
the same wave conditions. The response period is consistent with the excitation period
(i.e., the encountered wave frequency) as expected. For the amplitude of the responses,
compared with the zero speed cases, it is clear that the ship speed will significantly
increase the non-dimensional rigid body motion responses of the ship, i.e., heave and
pitch. However, the speed effect on the hydroelastic response is not as much as that on
rigid body motion, i.e, the amplitude of the non-dimensional vertical bending moment
with forward speed is almost the same with zero speed scenarios results. This indicates that
the relatively large rigid body motion caused by forward speed does not correspondingly
increase the non-linearity of the hydroelastic response. The wave steepness factor under
different λ/L conditions are further discussed below.

4.2.2. Quantitative Comparison of the Nonlinear Factors’ Effects

The non-linearity of the hydroelastic response due to the wave non-linearity, i.e., the
wave steepness, are quantitatively investigated in this section. The parameters of the
simulations are shown in Table 8.

Table 8. The simulation conditions for case L1–L3 and H1–H3.

ID H (m) λ (m) λ/L H/λ V (m/s) ω0 (rad/s) β (deg)

L1 0.088 3.510 0.857 1/40 0.118 4.189 180
H1 0.156 3.510 0.857 2/45 0.118 4.189 180
L2 0.088 4.381 1.070 1/50 0.307 3.750 180
H2 0.156 4.381 1.070 1/28 0.307 3.750 180
L3 0.088 5.029 1.228 1/57 0.553 3.500 180
H3 0.156 5.029 1.228 1/32 0.553 3.500 180

From case L1, L2, L3 to H1 H2, H3, the wave steepness is doubled. As shown in
Figures 13–15, the non-dimensional heave motion is more sensitive to wave steepness than
non-dimensional pitch motion, i.e., with the increase of wave steepness, the non-dimensional
heave motion decreases by about 16% (see Figure 13a) and 7% (see Figures 14a and 15a); the
non-dimensional pitch motion is almost not changed (see Figures 13b, 14b and 15b).
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For the hydroelastic response, the cases of L1/H1 and L2/H2 in which λ/L = 0.857 and
1.07 show significant difference for different wave steepness. The non-dimensional vertical
bending moment of the midship section increases by about 10% (see Figures 13c and 14c).
But for the cases of L3 and H3, the difference is small (Figure 15c). This implies that the
influence of wave non-linearity is also affected by λ/L under forward speed condition, i.e.,
the hydroelastic response is more sensitive to wave steepness when λ/L is smaller or close
to 1.

It is found that when the wave steepness increases, the amplitude of the non-dimensional
vertical bending moment of Sections 4 and 5 calculated by H1 increases significantly com-
pared with that of L1, and Section 5 increases by about 7.6% (Figure 13d). The amplitude
of the non-dimensional vertical moment of Section 5 calculated by H2 and H3 are about
11.8% and 7.4% larger than those calculated by L2 and L3, respectively. In addition, the
increase rate of the amplitudes of the non-dimensional vertical bending moment of the
sections near the bow calculated by H2 and H3 is larger (Figures 14d and 15d).

5. Conclusions

In this paper, the coupled CFD-FEM computational method is used for the ship
hydroelastic response simulation. The numerical method is firstly validated against the
model test results reported in the literature [3]. Then, the hydroelastic response of the
model without and with forward speed are calculated, respectively.

For the cases without forward speed, the wave length–ship length ratio has a consid-
erable influence on the hydroelastic responses. For the cases where λ/L is smaller than 1
(0.857 in this case), the non-dimensional vertical bending moments under low structure
stiffness (E = 50 GPa in this case) show strong non-linearity instead of the resonance or
high rigidity conditions. For the cases where λ/L is equal or larger than 1 (1.07 and 1.228
in this case), the non-dimensional vertical bending moments show no significant difference
with different wave frequency-structure natural frequency ratios. The wave non-linearity,
i.e., wave steepness, also shows more significant influence under low structure stiffness
and λ/L < 1 condition (0.857 in this case).

For the cases with forward speed, the non-dimensional rigid body motions (heave and
pitch) will be considerably increased by forward speed under the same wave conditions,
but the non-dimensional vertical bending moments are not correspondingly affected by
the larger rigid body motion. The non-linearity of waves, i.e., wave steepness, will have
a more significant influence on hydroelastic response under the conditions when λ/L is
smaller or close to 1 (0.857 and 1.07 in this case).
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