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ABSTRACT
Background  Therapies based on targeting immune 
checkpoints have revolutionized the treatment of 
metastatic melanoma in recent years. Still, biomarkers 
predicting long-term therapy responses are lacking.
Methods  A novel approach of reference-free 
deconvolution of large-scale DNA methylation data 
enabled us to develop a machine learning classifier based 
on CpG sites, specific for latent methylation components 
(LMC), that allowed for patient allocation to prognostic 
clusters. DNA methylation data were processed using 
reference-free analyses (MeDeCom) and reference-based 
computational tumor deconvolution (MethylCIBERSORT, 
LUMP).
Results  We provide evidence that DNA methylation 
signatures of tumor tissue from cutaneous metastases 
are predictive for therapy response to immune checkpoint 
inhibition in patients with stage IV metastatic melanoma.
Conclusions  These results demonstrate that LMC-based 
segregation of large-scale DNA methylation data is a 
promising tool for classifier development and treatment 
response estimation in cancer patients under targeted 
immunotherapy.

BACKGROUND
Malignant melanoma accounts for one of the 
most frequent cancer types and shows a rising 
incidence over the past years.1–3 Prognosis 
and treatment implications highly depend on 
the melanoma stage classified by the criteria 
of the American Joint Committee on Cancer 
(AJCC).4 5 The presence of distant metas-
tases defines stage IV and thus advanced 
melanoma4 with patients facing a consider-
ably poorer prognosis than in earlier mela-
noma stages. However, overall survival (OS) 
significantly improved due to novel therapy 
options.6 Among these, immune checkpoint 
inhibitors (ICI) modulating the anticancer 
immune response developed toward a prom-
ising treatment in tumors of various cancer 
entities.7 8 In metastatic melanoma, ICIs were 
approved as an effective therapy option. Of 
these, the combinatorial blockage of the 

immune checkpoints cytotoxic T-lymphocyte-
associated protein 4 (ipilimumab) and 
programmed cell death protein 1 (PD-1, 
nivolumab/pembrolizumab) displayed the 
highest objective response rate in a phase III 
randomized clinical trial with 58% in the ipili-
mumab plus nivolumab arm compared with 
19% in the ipilimumab monotherapy arm.9 
Furthermore, multicenter studies have shown 
that anti-PD1-monotherapy (nivolumab, 
pembrolizumab) achieves response rates of 
up to 40% in treatment naïve patients and 
about 27%–35% in pretreated melanoma 
patients.9–12 However, treatment resistance 
to ICIs remains a relevant issue. Equally 
important, serious immune-related adverse 
events (irAE) display a major challenge, 
particularly under combinatorial therapy 
which frequently lead to discontinuation of 
ICI treatment.13 14

Unfortunately, knowledge of biomarkers 
predicting response to ICI treatment15–17 or 
the occurrence of serious irAE is still limited. 
The expression of PD-1/PD-L1 (programmed 
death-ligand 1) as predictive biomarkers for 
treatment response to ICIs remains contro-
versial15 16 and lack of PD-L1 expression in 
melanoma is not necessarily associated with 
treatment failure.18 An innovative approach 
to investigate the relation between the immu-
nological tumor microenvironment and ICI 
treatment response is the development of 
computational methods. These methods 
aim at processing and implementing large-
scale proteomic, metabolomic, transcrip-
tomic, genetic and epigenetic data. As an 
example, the transcriptome-based algorithm 
Tumor Immune Dysfunction and Exclusion 
(TIDE) explores genes interfering with or 
promoting T-cell function.19 In this context, 
emerging genomic determinants of response 
to ICIs have been studied extensively.20 As a 
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unique feature, epigenetic signatures are subjected to 
slower and sustained transformations within the dynamic 
changes of the tumor microenvironment. Certain DNA 
methylation patterns are cell-type-specific and therefore 
deconvolution of DNA methylation data enables the anal-
ysis of cellular composition21 as well as a precise brain 
tumor classification.22 With regard to potential epigen-
etic biomarkers, a particular DNA methylation profile 
among non-small cell lung cancer tissue samples from 
patients receiving ICI treatment was associated with an 
improved outcome, whereas mere PD-L1 expression, 
levels of tumor-infiltrating lymphocytes or the mutational 
load had no prognostic effects.23 Global differential DNA 
methylation patterns between melanoma samples might 
correlate with biological behavior and immunological 
processes.24 Moreover, immune cell methylation patterns 
might serve as prognostic biomarkers in melanoma.25 
Taken together, there is still a lack of reliable biomarkers 
for the prediction of a successful therapy response after 
ICI treatment. DNA methylation profiling might be a 
robust approach for the development of prognostic or 
even predictive biomarkers in cancer, as so far, there is 
still a lack of reliable biomarkers for the prediction of a 
successful therapy response after ICI treatment.

In the current study, we investigated tumor DNA meth-
ylation patterns of two independent cohorts of melanoma 
patients using a novel computational approach of stepwise 
reference-free and reference-based tumor deconvolution 
with the aim to develop a machine learning classifier that 
allows for the prediction of a long-term therapy response 
in ICI-treated metastatic melanoma.

METHODS
Sample selection and data acquisition of the ICI melanoma 
cohort
The ICI cohort comprised cutaneous metastases of AJCC 
stage IV (eighth edition) melanoma patients treated in 
three different dermato-oncology centers (sites I–III) 
in Germany. Formalin-fixed and paraffin-embedded 
(FFPE) tissue samples (deriving from the biobank of the 
Department of Dermatology, Goethe-University, Frank-
furt am Main, Germany, from the Institute of Pathology, 
Charité—Universitätsmedizin Berlin, Berlin, Germany 
and from the Department of Dermatology, University 
Hospital Würzburg, Würzburg, Germany) treated with 
ICIs between October 2010 and December 2020 were 
included. Clinical outcome was measured as survival 
under ICI therapy (defined as the time from start of ICI 
treatment to date of decease) and OS (defined as the time 
from primary diagnosis of melanoma to date of decease). 
Additionally, radiological response to ICI treatment 
was classified by Response Evaluation Criteria in Solid 
Tumours for immune-based therapies (iRECIST: iCPD, 
confirmed progressive disease; iUPD, unconfirmed PD; 
iSD, stable disease; iPR, partial response and iCR, complete 
response). Hereby, patients with disease control (DC, 
defined as iCR, iPR or iSD in at least one ICI treatment 

approach) were discriminated from patients with progres-
sive disease (PD, defined as iUPD or iCPD). We addition-
ally included the following parameters for each patient: 
epidemiological characteristics (sex, age), BRAF and 
NRAS mutation status and brain metastases status (yes 
vs no) (detailed information on the patient cohort and 
study workflow is depicted in figure 1 and online supple-
mental table 1). Data not passing well-established quality 
controls were excluded. In case of multiple samples per 
patient at site I, we selected the representative sample per 
patient according to the minimum euclidean distance of 
its methylation profile to the median profile (figure 1). 
Finally, the ICI cohort consisted of 65 samples from 65 
patients (from sites I–III) of which 61 patients received 
complete radiological workup according to iRECIST 
(figure 1). The study protocol was endorsed by the local 
ethical committee (SNO-5-2019).

Data acquisition of the TCGA melanoma cohort
Clinical data of initially 470 patients suffering from mela-
noma were retrieved from The Cancer Genome Atlas 
(TCGA) data archive (TCGA SKCM). Clinical annota-
tions included sex, age, AJCC tumor stages and site of 
tumor resection/biopsy. As the information on exact 
AJCC tumor stages (A, B, C and D) was missing in 98 
cases, we annotated the simplified AJCC stages I–IV. 
Comprehensive data on ICI treatment or radiological 
therapy response were not eligible for this cohort. Corre-
sponding raw intensity data (IDAT) files generated by use 
of the 450 k Human Methylation Array (Illumina, San 
Diego, USA) were retrieved using the TCGA Genomic 
Data Commons tool. Data not passing well-established 
quality controls, patients with incomplete clinical annota-
tions as well as melanoma in situ patients of AJCC stage 0 
were excluded from the study resulting in 396 patients to 
set up the so-called TCGA melanoma cohort.

Human methylation EPIC array of the ICI melanoma cohort
While TCGA data were available as 450 k Human Methyla-
tion array IDATs, for the ICI cohort of stage IV melanoma 
cutaneous metastases, we used the Human Methylation 
EPIC array (Illumina, San Diego, USA) comprising over 
850 000 CpG sites by analysis of representative tissue 
punches or macrodissected 10 µm thick tumor slides from 
FFPE blocks. We followed standard protocols for tissue 
and DNA processing. Further processing of the microar-
rays and hybridization as well EPIC beadchip scanning 
were performed as indicated by the manufacturer.

DNA methylation data processing
DNA methylation data was obtained as IDAT files, which 
were used as input to the RnBeads software package. 
Quality control was performed using the built-in 
control probes on the EPIC array, and the data showed 
high overall quality. Furthermore, CpGs were filtered 
according to detection p-values, and annotated single 
nucleotide polymorphisms, sites on the sex chromosomes 
and potentially cross-reactive sites were discarded from 
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Figure 1  Consort diagram and study workflow. (A) Consort flow diagram of the retrospective study process resulting in 
the TCGA melanoma cohort (in silico data analyses) and the ICI cohort (acquisition of FFPE cutaneous metastases samples 
from melanoma stage IV patients treated with ICI at the study sites I–III). (B) Study workflow. Schematics were created using 
bioRENDER software (https://biorender.com/). FFPE, formalin-fixed and paraffin-embedded; ICI, immune checkpoint inhibitor; 
LMC, latent methylation components; TCGA, The Cancer Genome Atlas.
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the analysis.26 Methylation data were normalized using 
the “dasen” method from the wateRmelon R-package.26 
TCGA methylation data were processed analogously.

Global DNA methylation analyses
In a first approach, all eligible CpG sites passing quality 
controls in 65 tumor bulk samples were enrolled in prin-
cipal component analysis (PCA). In addition, differen-
tial methylation analysis for all eligible CpG sites using 
RnBeads was performed comparing patient groups 
with different clinical characteristics like the melanoma 
subtype, BRAF or NRAS mutation status, absence or 
presence of brain metastases or radiological DC versus 
PD according to iRECIST. Raw data IDAT files as well as 
processed data of the ICI cohort are accessible via Gene 
Expression Omnibus (https://www.​ncbi.​nlm.​nih.​gov/​
geo/; GSE175699).

Reference-free MeDeCom analysis
DNA methylation data of the bulk tumor samples of the 
TCGA melanoma cohort and the ICI cohort were investi-
gated using the reference-free MeDeCom algorithm that 
dissects DNA methylation data into major components of 
variation, called latent methylation components (LMC).27 
DNA methylation data of melanoma patients were 
processed according to a recently published protocol.28 
The protocol selected the 5000 most variably methylated 
CpG sites across the samples as input to MeDeCom. Inves-
tigation of the cross-validation error and of the objective 
value for the parameter number of LMCs (kappa) and 
the regularization parameter (lambda) were performed, 
resulting in a set of LMCs. In order to prevent a strong 
dependence of the clustering on the LMC with the 
highest proportion across the samples, we decided to stan-
dardize the LMC proportions using z-scores. This allows 
for uncovering fine-grained changes in the LMC propor-
tions and identification of subtle differences between the 
samples. LMC proportion values were standardized by 
subtracting the respective column mean and dividing by 
the column SD. Standardization was performed for LMCs 
1–8 of all samples collectively (TCGA and ICI cohort), 
and separately in the TCGA and ICI cohort. Standardized 
LMC proportion-based clusters were further investigated 
regarding their prognostic and predictive significance. 
Hierarchical cluster analysis was performed using Ward’s 
minimum variance method.

Reference-based LUMP algorithm
To estimate the leukocyte content in the bulk tumor 
samples, the leukocyte unmethylation for purity (LUMP) 
algorithm as implemented within RnBeads was employed. 
LUMP provides leukocyte ratios from the DNA meth-
ylation data by screening for 44 CpG sites particularly 
hypomethylated in leukocytes.29 30

Reference-based MethylCIBERSORT algorithm
For a detailed deconvolution of the cellular composition 
of bulk melanoma samples, we applied the reference-
based analysis MethylCIBERSORT. MethylCIBERSORT 

relies on DNA methylome-based reference data to infer 
distinct cellular contents (cancer cells, CD14-positive, 
CD19-positive, CD56-positive and CD8-positive cells, T 
regulatory cells, CD4-positive effector cells, eosinophils, 
fibroblasts and neutrophils). Methylation patterns of 
the sample of interest are compared with deposited cell-
type-specific and determinating DNA methylomes.31 32 
MethylCIBERSORT analysis was carried out according 
to the respective protocols.32 Briefly, EPIC array IDAT 
sets were imported in R’s “minfi” package to perform 
quality checks, Noob normalization and acquisition of 
beta values. Using the “MethylCIBERSORT” R package, 
a mixture file was built whose matrix consisted of beta 
values for comparison to a reference matrix (provided 
by TRF). This reference file contained signature meth-
ylation beta values of well-characterized cell types. After 
generating the mixture file, mixture and reference files 
were uploaded onto the CIBERSORT portal and decon-
voluted (provided by the Alizadeh Lab, Stanford Univer-
sity, USA, developed by Newman et al31).

Patient classifier
A patient classifier based on the 5000 most variable meth-
ylated CpGs selected for MeDeCom tumor deconvolution 
was developed for patient allocation to predictive LMC 
proportion-based clusters. Based on these CpG sites, 
we employed logistic regression using Lasso regulariza-
tion (glmnet R-package)33 to predict whether a tumor 
sample would belong to the beneficial LMC proportion-
based cluster or to the less beneficial cluster. Finally, this 
shrinkage led to 20 predictive CpGs. We employed nested 
10-fold cross-validation to estimate model performance 
and the hyperparameter lambda simultaneously.

Statistics
All statistical analyses were conducted using either JMP16 
(SAS, Cary, USA) or R (R Core Team, 2019). The non-
parametric Wilcoxon’s test was applied for comparisons 
of data distributions between two groups. Kaplan-Meier 
survival curves were compared by log-rank and Wilcox-
on’s test. Likelihood ratios and risk ratios were computed 
in univariate proportional hazard models. Hierarchical 
clustering was performed by use of the Ward’s minimum 
variance method.

RESULTS
Workflow and cohort statistics
To identify prognostic DNA methylation signatures in 
melanoma patients, we first performed global approaches 
for dimensional reduction of large-scale DNA methylome 
data. As a next step, we used reference-free and reference-
based tumor deconvolution analyses, which allowed for 
development of a patient classifier and a biological inter-
pretation of results (figure  1). The TCGA melanoma 
cohort comprised 396 tumor samples located in skin, soft 
tissue, central nervous system, peripheral, non-central 
nervous system organs and lymph nodes, respectively. 
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Tumors from all AJCC tumor stages I–IV were included 
(figure  1). For validation of the TCGA cohort statis-
tics, we performed Kaplan-Meier survival analysis which 
revealed that the applied simplified AJCC stages I–IV 
were prognostic (figure  2A). The ICI cohort included 
tissue from cutaneous metastases of 65 patients with AJCC 
stage IV melanoma treated with ICI therapy exclusively. 
Regarding the mutational status, 45.3% of the primary 
tumors showed a BRAF mutation, while 25.6% were NRAS 
mutant. Brain metastases were observed in 40% of all 
patients (online supplemental table 1). We assessed OS, 
survival under ICI treatment as well as the radiological 

disease response assigning patients to either DC or PD. 
The Kaplan-Meier analysis of the survival under ICI 
therapy stresses a benefit in patients responding to ICI 
therapy according to the iRECIST criteria, thus proving 
cohort stringency (figure 2A).

Global DNA methylation analysis does not decipher distinct 
signatures for melanoma subgroups
In a first approach, we assessed global DNA methylation 
patterns including all eligible CpG sites that might differ 
between subgroups of the well-characterized cohort of 
stage IV melanoma patients treated with ICI. Using PCA 

Figure 2  MeDeCom reference-free DNA methylome-based tumor deconvolution and standardized clustering of the total study 
population. (A) Kaplan-Meier survival curves indicating patient outcome characteristics of the different cohorts of the study: 
TCGA cohort (396 stages I–IV melanoma patients), total cohort (TCGA cohort plus ICI cohort including 65 patients with stage 
IV melanoma under ICI treatment (highlighted as orange dots)) and the ICI cohort discriminated by patients with progressive 
disease (PD) and disease control (DC) under ICI therapy, defined according to the neuroradiological iRECIST criteria. Survival 
times (weeks) were compared by log-rank and Wilcoxon test (p-values depicted). (B) By use of the reference-free tumor 
deconvolution algorithm MeDeCom, eight LMCs were identified in the total patient cohort (TCGA+ICI cohort). Heatmap showing 
the standardized proportions of the LMCs in all patient samples of the total cohort (rows, n=461, cohort and melanoma stage 
depicted). Number of patients in parentheses. ICI, immune checkpoint inhibitor; LMC, latent methylation components; TCGA, 
The Cancer Genome Atlas.
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neither BRAF/NRAS mutational status, brain metastases 
status, nor radiological response status showed a clear 
association to the principal components (online supple-
mental figure 1A). Accordingly, differential methylation 
analysis did not reveal major differentially methylated 
CpGs (online supplemental figure 1B). This emphasizes 
that there is no global DNA methylation state associ-
ated with any of the available clinicopathological sample 
annotations.

Reference-free MeDeCom analysis of the total study 
population and reference-based deconvolution algorithms of 
TCGA DNA methylation data
Since the initial global DNA methylation analyses (PCA 
and differential methylation) of the stage IV melanoma 
cohort did not reveal an association with ICI therapy, we 
aimed for a more refined yet profound and reference-free 
algorithm to assess potential prognostic and predictive 
methylation signatures. Therefore, we first applied the 
MeDeCom algorithm to the bulk tumor DNA methyla-
tion data of the combined TCGA and ICI cohort (param-
eter selection is depicted in online supplemental figures 
2). Overall, the cross-validation error pointed to selecting 
eight components (parameter k) and the regularization 
parameter λ as 0.001. The proportions of the eight LMCs 
(LMC1-8) across the samples are visualized in figure 2B. 
Hierarchical cluster analysis of LMC proportion Z-scores 
of the entire cohort (TCGA+ICI) did not reveal clear clus-
tering according to the cohort (TCGA vs ICI) and clusters 
did not show a clear association with AJCC tumor stages 
(figure  2B). In a next step, we analyzed the prognostic 
impact of LMC proportion-based clustering on OS of the 
TCGA cohort. Cluster analysis revealed two main clusters 
(1 vs 2, figure 3A). Although, patients of cluster 1 showed 
a trend toward a better OS in the total TCGA cohort as 
well as in AJCC stages II and IV, log-rank and Wilcoxon’s 
test did not indicate statistical significance (figure  3B). 
MeDeCom is a reference-free deconvolution algorithm 
of DNA methylation data, which generates LMCs and 
their proportions and follows dominant cell types. As we 
were interested in distinct cellular composition of LMC 
proportion-based clusters and as MeDeCom does not 
compare data to cell-type specific reference methylation 
profiles, we further investigated LMC proportion-based 
clusters 1 and 2 using the reference-based algorithms 
LUMP and MethylCIBERSORT.

Interestingly, the cancer cell fraction was significantly 
lower in the rather beneficial cluster 1, whereas immune 
and stromal cells were strongly increased in cluster 1 
(figure 3D and online supplemental figure 3A,B). Taking 
a closer look at immune cell subtypes, especially CD8-
positive T cells, B-cells, NK cells but also myeloid CD14-
positive cells were enriched in cluster 1. On the contrary, 
CD4-positive T cells were significantly reduced in cluster 
1. In summary, this indicates that LMC proportion-based 
clusters might be of prognostic relevance in certain 
subgroups of melanomas in a heterogenous melanoma 

cohort. However, a precise interpretation of LMCs with 
regard to immune biological processes remains elusive.

Reference-free MeDeCom analysis of DNA methylation data 
exhibits predictive clusters in immune checkpoint inhibitor 
treated metastatic melanoma
In search of predictive signatures of large-scale DNA meth-
ylation data, we further investigated cutaneous metastases 
of stage IV melanoma patients receiving immune check-
point inhibition in three dermato-oncology centers in 
Germany. Based on our initial MeDeCom analysis which 
decomposes DNA methylation data of the total cohort into 
eight LMCs, we performed LMC proportion-based unsu-
pervised hierarchical cluster analysis in the ICI cohort 
only (figure  4A). Hierarchical cluster analysis depicted 
two major clusters with an enrichment of patients with 
DC in cluster 2 (figure 4A,B). In line with this, survival 
calculated from the initiation of ICI treatment was signifi-
cantly longer in cluster 2 patients (figure 4C) and cluster 
2 was predictive for survival from initiation of ICI treat-
ment in univariate analysis (figure  4D). The median 
duration of ICI treatment as an indirect marker for DC 
and treatment tolerability accounted for 183 days in the 
beneficial cluster 2 as compared with 90 days in cluster 1 
(Wilcoxon’s non-parametric test p=0.03).

Additional MethylCIBERSORT facilitated a micro-
environmental analysis of the tumor samples allocating 
to the predictive LMC-based clusters in the ICI cohort. 
While the cancer cell fraction, as well as most immune 
cell subsets did not show significant differences between 
the beneficial cluster 2 and cluster 1, only regulatory T 
cells (Tregs), CD56-positive (NK) cells and fibroblasts 
were depleted in cluster 2 (figure 4E and online supple-
mental figure 3). Timing of biopsy (before vs under 
ongoing ICI treatment) did not have a substantial impact 
on the cellular composition of tumor bulks with solely the 
fraction of CD56-positive NK cells being enriched after 
initiation of ICI treatment (online supplemental figure 
4). In summary, MeDeCom analysis unraveled predictive 
signatures for DC in metastatic melanoma being treated 
with ICI.

LMC-based classifier allows for patient stratification into 
predictive clusters
Finally, the findings of reference-free methylome analyses 
in the ICI cohort were integrated to develop a patient 
classifier with the aim to allocate patients to the predic-
tive LMC proportion-based cluster. Therefore, we used 
the 5000 CpGs computed by MeDeCom as an input for a 
logistic regression analysis. Lasso regularization revealed 
20 of these 5000 CpG sites to predict sample allocation to 
the less favorable cluster 1 or the favorable cluster 2 of the 
ICI cohort (figure 4F). By means of this classifier model, 
we achieved a cross-validated accuracy of 89.5% as well as 
an area under the curve of the receiver operating charac-
teristic curve of 0.9664 in our cohort of melanoma stage 
IV patients under ICI treatment (figure 4G).
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DISCUSSION
Malignant melanoma ranges among the top cancer 
diseases and its incidence is rising gradually.1–3 Immuno-
modulatory treatment approaches aiming to reinvigorate 

an exhausted lymphocytic immune response against 
tumor cells mainly by targeting immune checkpoints led 
to a substantial prognostic improvement in advanced 
melanoma.34 35 Due to a limited response to ICI therapy 

Figure 3  MeDeCom reference-free DNA methylome-based tumor deconvolution and standardized LMC-based clustering of 
the TCGA melanoma cohort. (A) Heatmap of the patient samples of the TCGA cohort (rows, n=396, melanoma stage depicted) 
showing the proportions of the eight LMCs that were previously identified by MeDeCom analysis of the total patient cohort 
(TCGA+ICI cohort) and then standardized in the TCGA cohort before clustering. Hierarchical clustering of standardized LMC 
values revealed two distinct clusters (1=blue, 2=black). (B) Kaplan-Meier survival curves regarding patient allocation to LMC-
based cluster 1 vs 2 in the total TCGA cohort including all stages and in stages I–IV, respectively. Overall survival (weeks) was 
compared by log-rank and Wilcoxon test (p-values depicted). (C) Forest plot of TCGA cohort univariate proportional hazard 
analyses for the variables age at diagnosis, sex, melanoma stage and the LMC-based cluster 1 vs 2. (D) Tumor deconvolution 
of the TCGA melanoma cohort was performed by the reference-based MethylCIBERSORT algorithm. The proportions of the 
respective cell fractions in melanoma samples of patients belonging to LMC-based cluster 1 (blue) were compared with patients 
belonging to LMC-based cluster 2 (black) by non-parametric Wilcoxon’s test (significant p-values depicted). Number of patients 
in parentheses. ICI, immune checkpoint inhibitor; LMC, latent methylation components; TCGA, The Cancer Genome Atlas.
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along with potentially severe irAEs, the identification of 
predictive biomarkers to improve patient selection for 
ICI treatment is crucial. Some microenvironmental and 
genomic predictors for ICI treatment response were iden-
tified over the past few years.20 These predictors include 

the expression of tumor antigens and neoantigens, the 
mutational burden, alterations in antigen presentation, 
DNA mismatch-repair and Interferon-γ signaling, among 
others.20 Still, harmonization of applied assays, such as 
PD-L1 testing is pending.36 Predictive biomarkers cannot 

Figure 4  MeDeCom reference-free DNA methylome-based tumor deconvolution and standardized LMC-based clustering 
of stage IV melanoma patients under ICI therapy reveals predictive signatures. (A) Heatmap of the patient samples of the ICI 
cohort (rows, n=65, ICI response defined by iRECIST depicted) showing the proportions of the eight LMCs that were previously 
identified by MeDeCom analysis of the total patient cohort (TCGA+ICI cohort) and then standardized in the ICI cohort before 
clustering. Hierarchical clustering of standardized LMC values revealed two distinct clusters (1=black, 2=green). (B) Proportion 
of patients with progressive disease (PD, purple) and disease control (DC, green) defined by iRECIST in cluster 1 and cluster 
2, respectively. Patients lost to iRECIST follow-up (n=4, NA=not available) were not included into further outcome analyses. (C) 
Kaplan-Meier survival curves separating patients allocated to LMC-based cluster 1 vs 2 of the ICI cohort. Survival from the start 
of ICI therapy (weeks) was compared by log-rank and Wilcoxon test (p-values depicted). (D) Forest plot of ICI cohort univariate 
proportional hazard analyses for the variables age at diagnosis, sex, BRAF and NRAS mutation status, brain metastasis status 
and the LMC-based cluster 1 vs 2 (significant p-values depicted). (E) Tumor deconvolution of the ICI cohort was performed by 
the reference-based MethylCIBERSORT algorithm. The proportions of the respective cell fractions in melanoma samples of 
patients belonging to the favorable LMC-based cluster 2 (green) were compared with patients belonging to LMC-based cluster 
1 (black) by non-parametric Wilcoxon’s test (significant p-values depicted). (F) Classifier development with (G) receiver operating 
characteristic curve of the prediction model. Number of patients in parentheses. AUC, area under the curve; ICI, immune 
checkpoint inhibitor; LMC, latent methylation components; TCGA, The Cancer Genome Atlas.
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be reduced to single parts of the dynamic immune 
cascade and require the invention of more precise tools 
that are readily applicable in clinical routine. In this 
context, the analysis of epigenomic signatures especially 
DNA methylation-based approaches appear to be a prom-
ising candidate.24 25

In the present study, we introduced a novel approach 
for the analysis of DNA methylation data from melanoma 
bulk samples by refining (i) global, (ii) reference-free 
and (iii) reference-based algorithms. This strategy turned 
out as a valid tool to decipher prognostic methylation 
signatures in melanoma patients and ultimately allowed 
the development of a classifier for ICI response in stage 
IV melanoma patients.

Global analyses of DNA methylation data failed to 
discriminate reliable prognostic or predictive signatures. 
This argued for a refinement of computational algo-
rithms. By use of the reference-free tumor deconvolution 
algorithm MeDeCom,27 we were able to avoid the limita-
tions imposed through a reference data set24 and gained 
a comprehensive view on the epigenetic tumor profiles. 
This approach is in contrast with previous studies that 
are mostly limited to reference-based tumor deconvolu-
tion algorithms which narrow down the amount of data 
entering the computation of prognostic methylation signa-
tures.25 Based on clustering of LMC-proportion Z-scores, 
MeDeCom revealed signatures in stages I–IV melanoma 
patients of the TCGA cohort which were characterized by 
a distinct cellular composition but only showed a trend 
toward a prognostic relevance. The microenvironmental 
compositions of the samples were investigated by LUMP 
and MethylCIBERSORT representing reference-based 
deconvolution algorithms.21 32 Chakravarthy et al were 
among the first to deconvolute tumors by means of DNA 
methylomes.32 Estimation of tumor purity and cellular 
microenvironmental composition allowed for allocation 
to immune hot and cold tumors.32 The association of the 
LMC-based clusters of the TCGA cohort with a partic-
ular microenvironmental composition might be relevant 
in earlier stage melanoma patients. However, the inter-
pretation of outcome parameters in the TCGA cohort 
is limited due to the sampling heterogeneity including 
tissue from different organs, patients in different clinical 
stages (with only few stage IV patients) and only limited 
clinical annotations. Therefore, this aspect should be 
investigated in larger data sets of clinically harmonized 
melanoma cohorts. To investigate the predictive value 
of methylation signatures, we compiled a comparatively 
large cohort of stage IV melanoma patients that received 
ICI treatment. We were able to identify a predictive 
value of LMC proportion-based clusters correlating with 
survival under ICI treatment.

To understand potential biological mechanisms 
behind the predictive LMC proportion-based clusters, 
we amended reference-based deconvolution of the DNA 
methylation data.

In the ICI cohort, we did not find a distinct cell signa-
ture which was associated with the prognostic clusters 

and long-term DC. Recent studies reported the pres-
ence of B cells and so-called tertiary lymphoid structures 
to be associated with improved survival and a response 
to ICI therapy in melanoma.37 38 In contrast, Mitra et al 
investigated DNA methylation clusters based on median 
methylation values of selected immune cell-specific genes 
in melanoma patients but failed bringing forth an ICI 
response prediction signature.25

The superior goal of a successful anticancer therapy 
is a long-term clinical benefit. Immunotherapy can lead 
to remarkable responses which can be objectified by 
imaging techniques. Unfortunately, even after showing 
an initial clinical or radiological response (assessed e.g. by 
the iRECIST), a considerable number of patients develop 
disease progression. Interestingly, our data show that LMC 
proportion-based clustering in ICI-treated melanoma can 
predict a durable long-term effect on ICI therapy reflected 
by a prolongation of survival after ICI treatment was initi-
ated. Therefore, we aimed at integrating the findings to 
develop a pilot patient classifier that allowed to allocate 
melanoma patients under ICI treatment to the predictive 
LMC proportion-based clusters. This is a first step toward 
the development of a tool readily applicable in a clinical 
setup. At this early stage, it should be noted that our clas-
sifier has to be considered as a pilot tool established in a 
small patient cohort that yet has to be validated in larger, 
prospective settings to control for both clinical and radio-
logical response parameters.

Taken together, our data demonstrate the benefit of 
reference-free deconvolution of DNA methylation data 
for cancer stratification. The obtained prognostic LMC 
proportion-based clusters have a very good predictive 
value for ICI treatment response in metastatic melanoma. 
The combined deconvolution approaches of bulk tumor 
DNA methylation data show a new way to develop a clas-
sifier to predict response to ICI treatment in melanoma. 
Further studies will be needed to validate this in larger 
cohorts of cancer patients treated with immunotherapy.

Author affiliations
1Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, 
Germany
2German Cancer Consortium (DKTK) Heidelberg, German Cancer Research Center 
(DKFZ), Heidelberg, Germany
3Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
4Department of Genetics, University of Saarland, Saarbrücken, Germany
5Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, 
Germany
6Graduate School of Computer Science, Saarland Informatics Campus, Saabrücken, 
Germany
7Department of Dermatology, University Hospital, Frankfurt am Main, Germany
8Department of Radiology, University Hospital, Frankfurt am Main, Germany
9Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of 
Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 
Berlin, Germany
10Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, 
Germany
11School of Biosciences, University of Kent, Kent, UK
12Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
13Dr. Senckenberg Institute of Neurooncology, University Hospital, Frankfurt am 
Main, Germany

P
rotected by copyright.

 on January 26, 2022 at U
niversity of S

outham
pton Libraries.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2020-002226 on 19 July 2021. D
ow

nloaded from
 

http://jitc.bmj.com/


10 Filipski K, et al. J Immunother Cancer 2021;9:e002226. doi:10.1136/jitc-2020-002226

Open access�

Acknowledgements  We thank C Siedel, H Kneitz, M Dunst and T Starzetz for 
technical support. The results shown here are in part based on data generated by 
the TCGA Research Network: https://www.​cancer.​gov//​tcga.

Contributors  Conception and design of the work: KF, KNZ, PSZ, PNH. Acquisition, 
analysis and interpretation of data: KF, MS, KNZ, AB, JK, PJ, TIH, MM, KHP, TRF, 
JW, ST, BS, PSZ, PNH. Drafting of the manuscript: KF, MS, KNZ, PSZ, PNH. Critical 
revision for important intellectual content: KF, MS, KNZ, AB, JK, PJ, TIH, MM, KHP, 
TRF, JW, ST, BS, PSZ, PNH. Provided material and clinical data: KNZ, AB, JK, PJ, MM, 
KHP, BS. All authors approved the final version of the manuscript and agreed to all 
aspects of the work in ensuring that questions related to the accuracy or integrity of 
any part of the work are appropriately investigated and resolved.

Funding  KF has received intramural funding by the Frankfurt Research Funding 
(FFF) program "Nachwuchswissenschaftler" and the "Clinician Scientist Program" 
by the Mildred-Scheel Foundation. MS is supported by the BMBF project 
de.NBI-epi (031L0101D) and the EU H2020 project SYSCID (733100). PSZ has 
received intramural funding by the FFF program "Nachwuchswissenschaftler" and 
"Patenschaftsprogramm" as well as within the "Clinician Scientist Program" by 
the Mildred-Scheel Foundation. The Dr Senckenberg Institute of Neurooncology is 
supported by the Dr Senckenberg Foundation. For this study, PNH obtained grants 
from “FCI/LOEWE: Discovery and Development Program”.

Competing interests  None declared.

Patient consent for publication  Not required.

Ethics approval  The retrospective study was approved by the local ethical 
committee (SNO-5-2019).

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available in a public, open access 
repository. All data relevant to the study are included in the article or uploaded as 
supplementary information. All data analyzed and/or generated within this study are 
included in the article and the supplementary data files. Raw data IDAT files as well 
as processed data of the ICI cohort are accessible via Gene Expression Omnibus 
(GEO, https://www.​ncbi.​nlm.​nih.​gov/​geo/ ; GSE175699). Any other relevant data are 
available upon reasonable request.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See http://​creativecommons.​org/​licenses/​by-​nc/​4.​0/.

ORCID iDs
Tim R. Fenton http://​orcid.​org/​0000-​0002-​4737-​8233
Bastian Schilling http://​orcid.​org/​0000-​0001-​8859-​4103
Pia S. Zeiner http://​orcid.​org/​0000-​0001-​6626-​9211

REFERENCES
	 1	 Glazer AM, Winkelmann RR, Farberg AS, et al. Analysis of 

trends in US melanoma incidence and mortality. JAMA Dermatol 
2017;153:225–6.

	 2	 Little EG, Eide MJ. Update on the current state of melanoma 
incidence. Dermatol Clin 2012;30:355–61.

	 3	 Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and 
survivorship statistics, 2019. CA Cancer J Clin 2019;69:363–85.

	 4	 Amin MB, Edge S, Greene F. AJCC cancer staging manual. 8th edn. 
New York: Springer International Publishing, 2017.

	 5	 Swetter SM, Tsao H, Bichakjian CK, et al. Guidelines of care for the 
management of primary cutaneous melanoma. J Am Acad Dermatol 
2019;80:208–50.

	 6	 Luke JJ, Flaherty KT, Ribas A, et al. Targeted agents and 
immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin 
Oncol 2017;14:463–82.

	 7	 Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus 
ipilimumab in advanced melanoma. N Engl J Med 2013;369:122–33.

	 8	 Robert C, Schachter J, Long GV, et al. Pembrolizumab versus 
ipilimumab in advanced melanoma. N Engl J Med 2015;372:2521–32.

	 9	 Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-Year survival with 
combined nivolumab and ipilimumab in advanced melanoma. N Engl 
J Med 2019;381:1535–46.

	10	 Hamid O, Robert C, Daud A, et al. Five-year survival outcomes for 
patients with advanced melanoma treated with pembrolizumab in 
KEYNOTE-001. Ann Oncol 2019;30:582–8.

	11	 Robert C, Ribas A, Schachter J, et al. Pembrolizumab versus 
ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year 
results from an open-label, multicentre, randomised, controlled, 
phase 3 study. Lancet Oncol 2019;20:1239–51.

	12	 Larkin J, Minor D, D'Angelo S, et al. Overall survival in patients with 
advanced melanoma who received nivolumab versus investigator's 
choice chemotherapy in CheckMate 037: a randomized, controlled, 
open-label phase III trial. J Clin Oncol 2018;36:383–90.

	13	 Postow MA, Sidlow R, Hellmann MD. Immune-Related adverse 
events associated with immune checkpoint blockade. N Engl J Med 
2018;378:158–68.

	14	 Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus 
ipilimumab or nivolumab alone versus ipilimumab alone in 
advanced melanoma (CheckMate 067): 4-year outcomes 
of a multicentre, randomised, phase 3 trial. Lancet Oncol 
2018;19:1480–92.

	15	 Liu D, Jenkins RW, Sullivan RJ. Mechanisms of resistance to immune 
checkpoint blockade. Am J Clin Dermatol 2019;20:41–54.

	16	 Sharma P, Allison JP. The future of immune checkpoint therapy. 
Science 2015;348:56–61.

	17	 Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in 
cancer immunotherapy. Mol Cancer Ther 2015;14:847–56.

	18	 Grosso J, Horak CE, Inzunza D, et al. Association of tumor PD-L1 
expression and immune biomarkers with clinical activity in patients 
(pts) with advanced solid tumors treated with nivolumab (anti-PD-1; 
BMS-936558; ONO-4538). J Clin Oncol 2013;31:3016.

	19	 Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and 
exclusion predict cancer immunotherapy response. Nat Med 
2018;24:1550–8.

	20	 Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response 
to immune checkpoint blockade. Nat Med 2019;25:389–402.

	21	 Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation 
arrays as surrogate measures of cell mixture distribution. BMC 
Bioinformatics 2012;13:86.

	22	 Capper D, Jones DTW, Sill M, et al. DNA methylation-based 
classification of central nervous system tumours. Nature 
2018;555:469–74.

	23	 Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. 
Epigenetic prediction of response to anti-PD-1 treatment in non-
small-cell lung cancer: a multicentre, retrospective analysis. Lancet 
Respir Med 2018;6:771–81.

	24	 Lauss M, Ringnér M, Karlsson A, et al. DNA methylation subgroups 
in melanoma are associated with proliferative and immunological 
processes. BMC Med Genomics 2015;8:73.

	25	 Mitra S, Lauss M, Cabrita R, et al. Analysis of DNA methylation 
patterns in the tumor immune microenvironment of metastatic 
melanoma. Mol Oncol 2020;14:933–50.

	26	 Pidsley R, Y Wong CC, Volta M, et al. A data-driven approach to 
preprocessing illumina 450K methylation array data. BMC Genomics 
: 2013;14:293.

	27	 Lutsik P, Slawski M, Gasparoni G, et al. MeDeCom: discovery and 
quantification of latent components of heterogeneous methylomes. 
Genome Biol 2017;18:55.

	28	 Scherer M, Nazarov PV, Toth R, et al. Reference-free deconvolution, 
visualization and interpretation of complex DNA methylation data 
using DecompPipeline, MeDeCom and FactorViz. Nat Protoc 
2020;15:3240–63.

	29	 Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of 
tumour purity. Nat Commun 2015;6:8971.

	30	 Müller F, Scherer M, Assenov Y, et al. RnBeads 2.0: comprehensive 
analysis of DNA methylation data. Genome Biol : 2019;20:55.

	31	 Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell 
subsets from tissue expression profiles. Nat Methods 2015;12:453–7.

	32	 Chakravarthy A, Furness A, Joshi K, et al. Pan-cancer deconvolution 
of tumour composition using DNA methylation. Nat Commun 2018;9.

	33	 Friedman J, Hastie T, Tibshirani R. Regularization paths for 
generalized linear models via coordinate descent. J Stat Softw 
2010;33:1–22.

	34	 Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with 
combined nivolumab and ipilimumab in advanced melanoma. N Engl 
J Med 2017;377:1345–56.

P
rotected by copyright.

 on January 26, 2022 at U
niversity of S

outham
pton Libraries.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2020-002226 on 19 July 2021. D
ow

nloaded from
 

https://www.cancer.gov//tcga
https://www.ncbi.nlm.nih.gov/geo/
http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-4737-8233
http://orcid.org/0000-0001-8859-4103
http://orcid.org/0000-0001-6626-9211
http://dx.doi.org/10.1001/jamadermatol.2016.4512
http://dx.doi.org/10.1016/j.det.2012.04.001
http://dx.doi.org/10.3322/caac.21565
http://dx.doi.org/10.1016/j.jaad.2018.08.055
http://dx.doi.org/10.1038/nrclinonc.2017.43
http://dx.doi.org/10.1038/nrclinonc.2017.43
http://dx.doi.org/10.1056/NEJMoa1302369
http://dx.doi.org/10.1056/NEJMoa1503093
http://dx.doi.org/10.1056/NEJMoa1910836
http://dx.doi.org/10.1056/NEJMoa1910836
http://dx.doi.org/10.1093/annonc/mdz011
http://dx.doi.org/10.1016/S1470-2045(19)30388-2
http://dx.doi.org/10.1200/JCO.2016.71.8023
http://dx.doi.org/10.1056/NEJMra1703481
http://dx.doi.org/10.1016/S1470-2045(18)30700-9
http://dx.doi.org/10.1007/s40257-018-0389-y
http://dx.doi.org/10.1126/science.aaa8172
http://dx.doi.org/10.1158/1535-7163.MCT-14-0983
http://dx.doi.org/10.1200/jco.2013.31.15_suppl.3016
http://dx.doi.org/10.1038/s41591-018-0136-1
http://dx.doi.org/10.1038/s41591-019-0382-x
http://dx.doi.org/10.1186/1471-2105-13-86
http://dx.doi.org/10.1186/1471-2105-13-86
http://dx.doi.org/10.1038/nature26000
http://dx.doi.org/10.1016/S2213-2600(18)30284-4
http://dx.doi.org/10.1016/S2213-2600(18)30284-4
http://dx.doi.org/10.1186/s12920-015-0147-4
http://dx.doi.org/10.1002/1878-0261.12663
http://dx.doi.org/10.1186/1471-2164-14-293
http://dx.doi.org/10.1186/s13059-017-1182-6
http://dx.doi.org/10.1038/s41596-020-0369-6
http://dx.doi.org/10.1038/ncomms9971
http://dx.doi.org/10.1186/s13059-019-1664-9
http://dx.doi.org/10.1038/nmeth.3337
http://dx.doi.org/10.1038/s41467-018-05570-1
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1056/NEJMoa1709684
http://dx.doi.org/10.1056/NEJMoa1709684
http://jitc.bmj.com/


11Filipski K, et al. J Immunother Cancer 2021;9:e002226. doi:10.1136/jitc-2020-002226

Open access

	35	 Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus 
ipilimumab for advanced melanoma: final overall survival results of a 
multicentre, randomised, open-label phase 3 study (KEYNOTE-006). 
Lancet 2017;390:1853–62.

	36	 Hansen AR, Siu LL. PD-L1 testing in cancer: challenges in 
companion diagnostic development. JAMA Oncol 2016;2:15-6.

	37	 Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures 
improve immunotherapy and survival in melanoma. Nature 
2020;577:561–5.

	38	 Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary 
lymphoid structures promote immunotherapy response. Nature 
2020;577:549–55.

P
rotected by copyright.

 on January 26, 2022 at U
niversity of S

outham
pton Libraries.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2020-002226 on 19 July 2021. D
ow

nloaded from
 

http://dx.doi.org/10.1016/S0140-6736(17)31601-X
http://dx.doi.org/10.1001/jamaoncol.2015.4685
http://dx.doi.org/10.1038/s41586-019-1914-8
http://dx.doi.org/10.1038/s41586-019-1922-8
http://jitc.bmj.com/

	DNA methylation-­based prediction of response to immune checkpoint inhibition in metastatic melanoma
	Abstract
	Background
	Methods
	Sample selection and data acquisition of the ICI melanoma cohort
	Data acquisition of the TCGA melanoma cohort
	Human methylation EPIC array of the ICI melanoma cohort
	DNA methylation data processing
	Global DNA methylation analyses
	Reference-free MeDeCom analysis
	Reference-based LUMP algorithm
	Reference-based MethylCIBERSORT algorithm
	Patient classifier
	Statistics

	Results
	Workflow and cohort statistics
	Global DNA methylation analysis does not decipher distinct signatures for melanoma subgroups
	Reference-free MeDeCom analysis of the total study population and reference-based deconvolution algorithms of TCGA DNA methylation data
	Reference-free MeDeCom analysis of DNA methylation data exhibits predictive clusters in immune checkpoint inhibitor treated metastatic melanoma
	LMC-based classifier allows for patient stratification into predictive clusters

	Discussion
	References


