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We have recently demonstrated supervised deep learning methods for rapid generation of radiofre-
quency pulses in magnetic resonance imaging (https://doi.org/10.1002/mrm.27740, https://doi.org/10.1
002/mrm.28667). Unlike the previous iterative optimization approaches, deep learning methods generate
a pulse using a fixed number of floating-point operations - this is important in MRI, where patient-
specific pulses preferably must be produced in real time. However, deep learning requires vast training
libraries, which must be generated using the traditional methods, e.g., iterative quantum optimal control
methods. Those methods are usually variations of gradient descent, and the calculation of the gradient of
the performance metric with respect to the pulse waveform can be the most numerically intensive step.
In this communication, we explore various ways in which the calculation of gradients in quantum opti-
mal control theory may be accelerated. Four optimization avenues are explored: truncated commutator
series expansions at zeroth and first order, a novel midpoint truncation scheme at first order, and the
exact complex-step method. For the spin systems relevant to MRI, the first-order midpoint truncation
is found to be sufficiently accurate, but also significantly faster than the machine precision gradient.
This makes the generation of training databases for the machine learning methods considerably more
realistic.
� 2021 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Optimal control theory (OCT) in magnetic resonance started at a
similar time to hardware implementation of arbitrarily shaped
pulses [1,2]. Numerical optimization was used to design highly
selective excitation pulses [3] and population inversion pulses
[4]. The early successes of using non-rectangular pulses led
researchers to explore the potential of OCT. Selective excitation
problems using numerically designed 90� and 180� pulses used
OCT to solve Bloch equations with arbitrary pulse shapes [5].

One of the first successful applications of OCT in nuclear mag-
netic resonance spectroscopy (NMR) used an existing deuterium
decoupling pulse sequence [6] as an initial guess to a gradient-
based numerical optimization algorithm [7]. The unitary bounds
on general NMR polarization transfer experiments were shown to
be much larger than the apparent limits of NMR polarization trans-
fer using state-of-the-art experiments of that time [8,9]. Pulses
with the shortest possible time were found for coherence transfer
experiments in heteronuclear two and three spin systems [10,11].
The search for solutions nearer to these bounds became the work
of the following decade.

In the context of magnetic resonance imaging (MRI), tailored
radiofrequency (RF) pulses are used in advanced applications:
reduced field-of-view imaging [12–14], spectral-spatial selectivity
[12,15], as well as imaging with inhomogeneous RF fields (Bþ

1 ) [16],
off-resonance effects [17–20] or gradient imperfections [21].
Among several pulse design methods, e.g., small-tip-angle
[22,23], Shinnar-LeRoux [24], magnitude least-squares [25], OCT
is well suited for generating the necessary RF pulse shapes, includ-
ing multi-channel pulses, several milliseconds long with microsec-
ond time stepping and arbitrary flip angles [15,26–31].

One method, called gradient ascent pulse engineering (GRAPE),
uses a piecewise-constant pulse approximation that is well suited
for MRI [32]. Here, the term gradient is in relation to optimization
and not to be confused with the magnetic field gradients. GRAPE
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was initially designed using the gradient ascent method (linear
convergence), and then extended to quasi-Newton (super-linear
convergence) methods [33], and Newton–Raphson (quadratic con-
vergence) methods [34]. The latter two require very accurate gra-
dients [33–36]. Importantly, tailored RF pulses in MRI often need
to be computed in real time - the patient is inside the scanner.
However, GRAPE uses iterative optimization that has no wall clock
time guarantees: for realistic systems, it can become impractically
slow.

We have recently proposed a neural network based method for
generating RF pulses to alleviate the run time problem [37–39].
This DeepControl framework requires training libraries with hun-
dreds of thousands of RF pulses generated, e.g., with OCT, but a
trained neural network predicts a pulse quickly, and with a hard
guarantee on the wall clock time.

These vast libraries require an improvement in our ability to
run OCT simulations and calls for optimization of the numerical
efficiency of the GRAPE algorithm, in particular, in the part that
deals with the gradient calculation.

In this paper, we report some efficiency improvements in the
GRAPE gradient calculation process. We analyze the trade-offs
between CPU time and convergence rate for four different levels
of approximation to the GRAPE gradient: standard zero and first
order approximation, a novel midpoint first order approximation
proposed here, and the exact, complex-step gradient.

A note should be made here, in that this work is presented here
in the context of MRI, but the core of this work can also be
extended to the general area of OCT for pulsed control systems
using the piecewise constant pulse approximation, particularly
for areas using magnetic field gradients [40].

2. Optimal control theory

The equation of motion of a system of non-interacting spin-1/2
particles, ignoring relaxation, can be formulated as:

_Mðr; tÞ ¼ Xðr; tÞMðr; tÞ ð1Þ

where _Mðr; tÞ is the time-derivative of Mðr; tÞ, the instantaneous
magnetization vector at a spatial location r, and Xðr; tÞ is the
dynamics matrix containing external magnetic fields, defined
below. By the nature of this study, we introduce discrete notation
from this point. The spatial dimension is separated into P different
locations, with 1 < p < P, and for the pth location

rðpÞ ¼ ½xðpÞ; yðpÞ; zðpÞ�> (> is the vector transpose operation).
The control of these dynamics is in the form of a piecewise-

constant control waveform with a fixed total duration T, divided
into N time steps of duration Dt ¼ T=N, called a time slice. The
magnetization vector we are attempting to control,

MðpÞ
n ¼ ½MðpÞ

x;n;M
ðpÞ
y;n;M

ðpÞ
z;n�

>
, will have N þ 1 temporal instances for

each spatial position, with an initial state MðpÞ
0 and a final state

MðpÞ
N . Hence, for state vectors 0 < n < N, the nth control propagates

the system from the ðn� 1Þth time point to the nth time point. The
task for an OCT problem is to bring this final state as close as pos-
sible to a desired target state by maximizing the overlap of the tar-

get state, MðpÞ
target, and the final state, MðpÞ

N .
Dynamics of Eq. (1) are governed by X, and the piecewise-

constant formulation of this is

XðpÞ
n ¼ c

0 þG>
n r

ðpÞ þ BðpÞ
z �BðpÞ

y;n

�G>
n r

ðpÞ � BðpÞ
z 0 þBðpÞ

x;n

þBðpÞ
y;n �BðpÞ

x;n 0

2
664

3
775; ð2Þ
2

which includes the RF fields in the Zeeman rotating frame, BðpÞ
x;n and

BðpÞ
y;n, the magnetic field gradient, Gn ¼ ½Gx;n;Gy;n;Gz;n�>, the magnetic

field inhomogeneity, BðpÞ
z , and the gyromagnetic ratio, c.

Xu et al. [30] have shown how to extend these equations to
multiple RF channels, 1 < l < NTx, i.e., parallel transmit (pTx) with

complex coil sensitivity patterns, sðpÞl :

BðpÞ
x;n ¼

XNTx

l¼1

Re sðpÞl

� �
cu;l;n � Im sðpÞl

� �
cv;l;n

h i
ð3Þ

BðpÞ
y;n ¼

XNTx

l¼1

Im sðpÞl

� �
cu;l;n þ Re sðpÞl

� �
cv;l;n

h i
ð4Þ

Here, cj;l;n 2 fcu;l;n; cv;l;ng are the RF control sequences to be opti-
mized to achieve the aim, and all other parameters are considered
fixed. For generality, we introduce the control cj;l;n, with the sub-
script j as reference to either u or v, when it is possible to imply
to either.

Discrete solutions to Eq. (1), in the piecewise-constant approx-
imation, can be written as

MðpÞ
n ¼ UðpÞ

n MðpÞ
n�1 ð5Þ

where MðpÞ
0 is a given initial state of the system and UðpÞ

n is a time-
propagator describing a rotation on the Bloch sphere, which can
be calculated with the matrix exponential:

UðpÞ
n ¼ eX

ðpÞ
n Dt ð6Þ

Note, the magnetic field gradient waveform is specified for the
entire pulse duration and kept fixed, although it could also be
included as a control to be optimized.

Our performance functional, describing our aim, is the projec-

tion of MðpÞ
N , onto the target state MðpÞ

target, summed and normalized
over all spatial points:

J ¼ 1
P

XP
p¼1

MðpÞ
N

> �MðpÞ
target ð7Þ

Thus, J is the quantity we want to maximize and is termed the fi-
delity. Further to this fidelity measure, which is dependent on only
the final state of the system and termed the terminal cost, an addi-
tional term can be included, which is termed a running cost and
depends on the state of the system over all of the pulse duration.
The running cost can be regularization terms, to penalize untar-
geted control behavior, e.g., excess power or jagged waveforms
[34], or boundary constraints. In this work we use simple boundary
constraints, which are detailed in [29].

3. Fidelity gradient calculations

The formal theory of OCT introduces an adjoint state of the sys-
tem, LðpÞn , with the detailed derivation published elsewhere [41].
This adjoint state of the system can be interpreted as the propaga-
tion of the target, backwards in time from t ¼ tN to t ¼ t0, and for a
particular time slice this is

LðpÞn�1 ¼ UðpÞ
n

>
LðpÞ
n ð8Þ

where LðpÞ
N ¼ MðpÞ

target. The adjoint state is used in calculation of the
fidelity gradients, rJu;l;n and rJv;l;n, with respect to cu;l;n and cv;l;n,
enabling the use of gradient-following numerical optimization
methods to maximize J.

The scope of this study is to cast light on a number of different
strategies for calculating rJu;l;n and rJv ;l;n. Common prerequisites
for the different gradient strategies are a forward time-
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propagation of the magnetization from the initial to the final state
for all positions by Eq. (5) and a backward time-propagation of the
adjoint state for all positions by Eq. (8).

3.1. Standard approximate gradients

Derivatives of functions of matrices, f ðXÞ, are called directional
derivatives, or Gâteaux derivatives, which are defined in Ref. [42] as

DHðf ðXÞÞ, lim
h!0

f ðXþ hHÞ � f ðXÞ
h

¼ d
dh

����
h¼0

f ðXþ hHÞ ð9Þ

where H is the operator matrix for the control in question and elab-
orated below.

Eq. (9) is a similar form to the finite difference equation and the
Taylor series truncated to first order, and should be considered the
formal definition of the derivative of the function of a matrix.

For the dynamic system of Eq. (6) we are considering here, the
directional derivative can be written as [43]

DHðeXDtÞ ¼
Z Dt

0
eXsHe�Xsds

� �
eXDt ð10Þ

¼ H;

Z Dt

0
eXsds

� �
eXDt ¼ H;

eXDt � 1

X

� �
eXDt

¼
X1
r¼0

ðDtÞrþ1

ðr þ 1Þ! H;Xrf g
" #

eXDt ð11Þ

where fA;Bg denote the anti-commutator of the matrices A and B.
The first order approximation, r ¼ 1, corresponds to Eq. (12) in the
original GRAPE paper [32]. For the controls cu;l;n and cv ;l;n [30], the
corresponding control operators are

HðpÞ
u;l ¼

0 0 �Im sðpÞl

� �
0 0 þRe sðpÞl

� �
þIm sðpÞl

� �
�Re sðpÞl

� �
0

2
66664

3
77775 ð12Þ

HðpÞ
v;l ¼

0 0 �Re sðpÞl

� �
0 0 �Im sðpÞl

� �
þRe sðpÞl

� �
þIm sðpÞl

� �
0

2
6664

3
7775 ð13Þ

In addition, if we optimized the magnetic field gradient waveform,
e.g., Gg;n with g 2 fx; y; zg, its control operator is

HðpÞ
Gg

¼
0 þgðpÞ 0

�gðpÞ 0 0
0 0 0

2
64

3
75; g 2 fx; y; zg ð14Þ

In our vectorized model, Eqs. (2), (4)–(8), we consider the first two
standard gradients approximations denoted STD-0 and STD-1 pre-
cise to zeroth and first order with r ¼ 0 and r ¼ 1 in Eq. (11),
respectively:

rJðSTD�0Þ
j;l;n ¼ Dt

P

XP
p¼1

LðpÞn

>
HðpÞ

j;l

h i
MðpÞ

n�1 þ OðDtÞ ð15Þ

rJðSTD�1Þ
j;l;n ¼ Dt

P

XP
p¼1

LðpÞn

>
HðpÞ

j;l U
ðpÞ
n

h i
MðpÞ

n�1 þ OðDt2Þ ð16Þ

where the O-notation quantifies the error, which depends mainly
on the size of the time step [33].
3

Had we included regularization in Eq. (7) this would also be
present in the gradient terms above [34].

The zeroth and first-order standard gradient approximations
are widely used and fast to compute [44], but for a quasi-
Newton method they would quickly corrupt the Hessian estima-
tion and slow the super-linear convergence to linear, especially
for long time increments [33]. De Fouquieres et al. [33] show
how gradients computed to increasing precision improve the per-
formance of quasi-Newton methods.

3.2. Midpoint approximate gradients

In this paper, we propose a midpoint variant of the standard
approximate gradient to partly overcome the convergence problem
of the standard approximate gradients. The midpoint variant was
inspired by the central finite-difference gradient, although it has
a deep theoretical basis in the exponential midpoint method [45–
47,43,48].

The midpoint method for this manuscript is

rJðMIDÞ
j;l;n ¼ Dt

2P

XP
p¼1

LðpÞn

>
UðpÞ

n�1H
ðpÞ
j;l þHðpÞ

j;l U
ðpÞ
n

h i
MðpÞ

n�1 þ OðDt2Þ ð17Þ

which is an average of the ðn� 1Þth and nth gradient elements; cen-

tering the derivative to the midpoint of the ðn� 1Þth and nth time
point. The propagator at t0 is the identity matrix so, when

expanded, LðpÞ1

>
UðpÞ

0 HðpÞ
j;l M

ðpÞ
0 ¼ LðpÞ1

>
HðpÞ

j;l M
ðpÞ
0 .

Although this may seem a simple extension to Eq. (16) without
obvious benefit, since both have an error OðDt2Þ, a deeper read to
the literature shows the OðDt2Þ error term in Eq. (16) has a constant
hidden in the O-notation. The hidden constant depends on the time
derivatives of M and the bounds of the X [46–48]. The midpoint
method in Eq. (17) does not suffer from this error dependency
[45] and can be important, when space discretization is used
[43]. It should be emphasized that the exponential midpoint
method [45–47,43,48] is designed for approximation of time prop-
agators, which is not the case in this study; time propagators in

this study are exact, and the derivatives of time propagators, DðpÞ
j;l;n

defined by Eq. (11), are approximated using a midpoint method.

3.3. Exact Gradient

Floether et al. [49] presented a method to compute exact con-
trol gradients using an auxiliary matrix approach [50], and Good-
win et al. [35] extended this to the second order derivatives
needed for a Hessian.

We recently adopted the exact gradient calculation in our OCT
framework, and described it in Ref. [29]. Briefly,

rJðEXACTÞj;l;n ¼ 1
P

XP
p¼1

LðpÞn

>
DðpÞ

j;l;n

h i
MðpÞ

n�1 ð18Þ

The gradient in Eq. (18) is exact to machine precision [35]. The

essence of this exact approach is the derivation of DðpÞ
j;l;n in Eq. (18).

This can be obtained from the upper right corner of an auxiliary

matrix [50,49,35] but for real matrices XðpÞ
n and HðpÞ

j;l , the compact
method of complex-step approximation [51] can be used to calculate

the directional-derivative, DðpÞ
j;l;n. This method gives the propagator

and derivative as the real and imaginary parts of a complex matrix,
respectively:

UðpÞ
n þ iDðpÞ

j;l;n ¼ exp XðpÞ
n þ iHðpÞ

j;l

h i
Dt

n o
; ð19Þ
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where i is the imaginary unit, and XðpÞ
n and HðpÞ

j;l must be real matri-
ces, which can be the case in the single-spin model.

Considering any one given spatial point, p, the complex-step
differentiation involves 3� 3 complex matrices instead of 6� 6
real matrices. With that, there is potential to improve memory
allocation. Complex-step differentiation is also known to have bet-
ter roundoff error tolerance in finite precision arithmetic [51].

3.4. Accuracy tests

The relative accuracy of the gradients calculated with the meth-
ods in Eq. (15), Eq. (16), and Eq. (17), is shown in Fig. 1. The error in
the accuracy is calculated with

n ¼ jjrJ �rJðEXACTÞjj2
jjrJðEXACTÞjj2

ð20Þ

and averaged over 20 instances of random pulses. Each pulse has a
duration of T ¼ 6:39 ms, with the random distribution between �1
kHz for RF controls, cu and cv , and �160 kHz for magnetic field gra-
dient controls, cG. The tests were done firstly (top, Fig. 1) with time
slice, Dt, ranging logarithmically in 20 steps from 63.9 ns to
0.639 ms for an offset of BðpÞ

z ¼ 0 Hz. These limits were chosen to
extend the analysis to time scales also relevant to NMR [40]. Sec-
ondly (bottom, Fig. 1), the offset was picked randomly in a band-
width of 160 kHz for a fixed Dt ¼ 10 ls. The number of offset
points is approximately one point per 2:1 kHz of bandwidth, and
they are spread randomly within the given bandwidth. The initial
state of the system is all spins having positive z-magnetization,
and the target state is all spins having positive x-magnetization
i.e. a 90� rotation around the y-axis of the Bloch sphere.
Fig. 1. Relative accuracy of approximate gradients compared to the exact gradient
in Eq. (18). Both plots show the relative accuracy of the standard zeroth order (STD-
0), Eq. (15), first order (STD-1), Eq. (16), and first order midpoint (MID), Eq. (17),
gradients. (Top) Errors as a function of time slice, Dt, with the dashed vertical line
being the Dt used in the study. (Bottom) Errors as a function of offset for Dt ¼ 10 ls,
corresponding to the dashed vertical line in the top plot. Both plots show the error,
when field gradient controls (cG) are used together with RF controls (cu; cv ) with
dotted lines, and when it is just RF controls (as in this study) with full lines.

4

The accuracy comparison in Fig. 1 shows that the MID gradient
gives an increase in accuracy, even though the method of calcula-
tion in Eq. (17) requires only the insignificant computational cost
of a matrix addition per gradient element. The dashed vertical line
in the top panel of Fig. 1 indicates the time slice, Dt ¼ 10 ls, used
in the results that follow. This time slice is chosen as it is physically
relevant to the MRI hardware, but also from approximately this
time slice the MID gradient becomes increasingly more effective
than the STD-0 and STD-1 gradients for decreasing time slices.
The pulse duration, bandwidths, and control amplitudes were
based on the settings described in the next section.
4. Methods

An OCT framework was implemented in MATLAB (Mathworks,
Natick, MA, USA), with hard constraints on the RF pulse amplitudes
using the fmincon optimization function supplemented with a
performance gradient function and the necessary housekeeping
procedures. We focus here on the gradients required by the
quasi-Newton option of fmincon, although we are not limited to
GRAPE.

The four gradients types have been implemented[52] in the
blOCh framework used in Refs. [13,41,15,28,29,37,38].

A common feature for these calculations is that all magnetiza-
tion and adjoint states must be known at a given time slice, n,
and/or at the adjacent time slice, n� 1. Conducting full magnetiza-
tion forward propagation, and adjoint state backward propagation
solves this issue. In principle, however, the magnetization vector
can be calculated as gradient element calculations proceed, i.e.,
UðpÞ

n can also be extracted from Eq. (19), in the same way as propa-
gator recycling implemented for Hessian calculations [53], possibly
with efficient matrix caching [34].

The most efficient code for parallelizing the propagation and
gradient elements is specific to computing architecture. The two
most obvious parameters considered are the amount of CPU cores
available, and the storage size needed for all matrices from forward
and backward propagation. Our computations were performed on
a 28-CPU core, Intel Xeon Gold 5120, 2.2 GHz workstation with
384 GB of RAM.

The EXACT gradient of Eq. (19) was assessed regarding paral-
lelization efficiency. An L-curve analysis is shown in Figure S1 in
the Supplementary Material. The EXACT gradient was on the pre-
sent workstation most efficient with parallelization on around 23
out of the 28 available workers. Accordingly, the reported compu-
tation times for the EXACT gradient are with 23-fold paralleliza-
tion. The STD-0, STD-1 and MID gradients are efficient without
parallelization, and we report computation times for the fastest
(non-parallelized) implementations we could develop.

We evaluated optimization performance with the four different
gradients by computing single-channel 2DRF pulses with a library
of total 150 different flip-angle (FA) maps of three different target
categories:

1. 50 binary images, where ten randomly placed points were
dilated and merged to a single binary shape with no holes.
These are denoted BW (black-white), see Figure S2.

2. 50 normalized gray-scale images made binary with a 0.5-
threshold, denoted GrBW, see Figure S3.

3. 50 normalized gray-scale images, denoted Gr (Gray), see
Figure S4.

Images were taken from the ImageNet database [54], and the
nominal target FA was 30�. The target magnetization x- and z-
component levels were dictated by the image intensity levels mul-
tiplied with the nominal FA. The target y-component was 0. The
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initial magnetization was longitudinal. The Gr category represents
our ability to induce spatially variant FAs, while the binary cate-
gories are two random ad hoc ways to obtain shaped excitation
patterns, mimicking anatomic regions of interest.

The (fixed) gradient waveform accommodating the spatial
selectivity of the 2DRF pulses formed an inward 16-turn spiral in
the excitation k-space (full Nyquist sampling) with a duration of
6.39 ms, a field of excitation of 25 cm, and limited to 40 mT/m
amplitude and 180 T/m/s slew rate [55,26]. To support works like
that of Zhang et al. [56], where the gradient waveforms are also
predicted along with the RF waveforms, our choice of spiral could
be used as an initial starting point in the field gradient optimiza-
tion, if we activated the corresponding optimization gradients by
Eq. (14) etc. Until then, we are limited to a single pulse duration,
spatial resolution and field of excitation. The common time slice
for RF and field gradients was 10 ls. RF pulses were constrained
below 1 kHz (nutation rate) amplitude using the boundary option
implemented in fmincon. The spatial grid was 64�64 with a mask
formed by a centrally placed super ellipse, which reduced the
number of spatial points to 2919. The quasi-Newton method with
STD-0, STD-1, MID and EXACT gradients was limited with the algo-
Fig. 2. Plots of NRMSE and FA statistics for the different target categories: BW (left colum
the NRMSE values from the optimization, i.e., the error of the Bloch simulated magnetiza
For the Gr target category, the entire pattern is considered as inside the ROI, thus there a
deviation FA inside the ROI is not expected or supposed to be 30� and 0�, respectively, b

5

rithm termination conditions of reaching 100 iterations or a mini-
mum functional/step-size convergence tolerance of 1� 10�6.
5. Results

For all three categories (BW, GrBW and Gr), all optimizations
with approximate gradients converged. The optimizations with
EXACT gradients were stopped in 32% of all cases by the iteration
limit.

Fig. 2 shows the NRMSE and FA statistics from all Bloch simula-
tions. The cases are sorted by the NRMSEs of the EXACT gradient)
within each target category. All FA maps are shown in Figure S2-
4 in the Supplementary Material.

Table 1 lists iteration and computation time statistics (mean
and standard deviation) for the three target categories (BW, GrBW
and Gr) pooled together. Of interest (see the diagonal entries), the
MID and STD-1 gradients spend on average roughly the same
amount of iterations and time to finish, around 14 iterations in
15 s, respectively. The EXACT method spends on average 74 itera-
tions and nearly 300 s to finish.
n), GrBW (center column), Gr (right column). The case numbers are sorted based on
tion with respect to the target magnetization, based on the EXACT gradient results.
re no plots for outside areas. In the same category, the expected mean and standard
ut may vary according to the gray levels.



Table 1
Iteration and computation times (mean � standard deviation). Diagonal entries with two mean � standard deviation pairs
correspond to total use of a given method, i.e., computation times include gradient and approximate Hessian estimation, step size
search, hard-constraints, and all other internal routines of the interior-point algorithm used within MATLAB’s fmincon function.
The upper triangular entries include three mean � standard deviation pairs (from top to bottom): 1) the number of iterations it
takes for the method in the column to outperform the method in the row considering the NRMSE value; 2) the approximate time
it takes the column method to overtake the row method; 3) the approximate time the row method was overtaken by the column
method. The approximate times are estimated by the ratio of iterations needed for crossing and the total number of iterations
multiplied by the total computations times for all iterations. Target categories (BW, GrBW and Gr) are pooled for the measures in
this Table.

Fig. 3. FA maps of the best (left), closest-to-mean (middle) and worst (right) cases, when contrasting the NRMSE of the FA maps of the MID gradient with respect to the EXACT
gradient. The corresponding STD-0 and STD-1 results are shown as well. Differences are shown in the lower part. Only pulses from converged solutions were considered for
this Figure.
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Fig. 4. NRMSE histograms contrasting the MID gradient against the EXACT gradient,
for the BW (top), GrBW (middle) and Gr (bottom) target categories. The best,
closest-to-mean and worst case examples shown in Fig. 3 are herein signified by the
dashed lines. The histograms contain all cases, i.e., also pulses terminated by
reaching the maximum number of iterations, why the histogram edges extend
below and beyond the best and worst case levels, respectively.
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In comparison (see the off diagonal entries), the MID gradient is
not outperformed by the EXACT gradient until it reaches 8 itera-
tions or 33 s, which is equivalent to around 9 s for the MID gradi-
ent. However, as shown in Fig. 2 the MID and EXACT gradients have
near identical performance. This is supported FA maps displayed in
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Fig. 3. In Figures S5-S13 in the Supplementary Material, we show
the pulses corresponding to the FA maps of Fig. 3.

Judged from the NRMSE of FA maps (MID against EXACT), we
compared the best, closest-to-mean, and worst cases for converged
pulses. As reference, we also show the results from the correspond-
ing STD-0 and STD-1 gradients, as well as the difference maps,
highlighting the increasing errors using less precise gradients.

Fig. 4 shows the NRMSE histograms of all pulses, where the
right skew reveals that the mean NRMSE is close to the best cases,
and the worst cases are rare.

6. Discussion

We have presented a midpoint first order gradient approxima-
tion, denoted MID, with a similar computation time to a standard
first order gradient approximation computation, and the accuracy
similar to the exact, complex-step gradient for typical MRI settings.

The average time per iteration for the present settings increase
by a factor of around 1.01 going from the standard first order to the
midpoint gradient method, however by a factor of five going from
the standard first order to the exact, complex-step gradient bearing
in mind the exact, complex-step gradient exploit 23-fold paral-
lelization. With four CPU cores, typically available on a laptop,
we estimate the complex-step gradient will further require a factor
of two of computation time.

The standard and the midpoint gradients are efficient without
parallelization, and easily vectorized. Several designs for the
approximate gradients have been tested for the RF pulse design.
However, we could not find any implementation, where either gra-
dient becomes faster from parallelization for the present applica-
tion: the bottleneck of transferring data to/from the workers
dominates the workload. For single-channel RF optimization and
the spatial grid size (P) and number of time-steps (N) as reported
above, the standard gradients are slightly faster being run in a
for-loop over time steps, rather than as a more vectorized version.
There was no significant difference between the for-loop and vec-
torized versions of the midpoint gradient. As a side-note, when
running multi-channel RF optimization (not the case herein), both
the standard and midpoint gradients benefit from the vectorized
version and the time difference between them diminishes. How-
ever, there remains a for-loop over the number of RF channels cur-
rently. Accordingly, approximate gradient computation times were
reported herein for the fastest, non-parallelized implementations
we have found.

Optimization speed is inherently important for in vivo experi-
ments, but also for generating AI training libraries. Considering
the vast training libraries required for DeepControl [37,38], the
non-parallelized, vectorized computation of the standard and mid-
point approximate gradients is not a problem, when we exploit all
available CPU cores with an outer parallelization over many inde-
pendent pulses.

It is beyond the scope of this work to investigate how the qual-
ities of the different gradients influence the DeepControl frame-
work, but we do expect infidelities of a given library to
propagate through to the final trained neural network, and that
predicted pulses never perform better than the representative
training library. This study leaves the question of what is more
important: fast computation time or pulse perfection, as an addi-
tional option for the user. We also propose the midpoint gradient
method for rapidly producing a good initial guess that may be
handed over to a slower, exact gradient method for finalizing.

While it is possible to further improve the accuracy of the stan-
dard or midpoint approximate gradient by shortening the time
slice, this may not be feasible on realistic hardware. The accuracy
of the midpoint gradient corresponds roughly to that of the stan-



Mads Sloth Vinding, D.L. Goodwin, I. Kuprov et al. Journal of Magnetic Resonance 333 (2021) 107094
dard 0th order gradient, STD-0, with a halved time slice. This was
found by running the same experiments (data not shown) with
the STD-0 for a time slice of 5 ls instead of 10 ls.

The choice for target categories reflect our previous [37–39] and
future DeepControl experiments, which will be described in a sub-
sequent publication. Of the three target categories, the GrBW cat-
egory stood out with higher NRMSEs than the other two.
Considering just binary targets (BW and GrBW), as shown by Fig-
ures S2-3 of FA maps sorted after NRMSE, we observe that smaller
targets yield the lowest NRMSEs, and the larger targets with more
jagged edges result in higher NRMSEs. This trend is consistent for
all gradient methods, see Fig. 2.

On field-gradient optimization, we have included examples of
multiband pulse optimizations with both the midpoint and exact
gradients in the Supplementary Material[57]. We contrasted the
gradient computation times of RF-only optimizations, i.e. the stan-
dard slice selective gradient was fixed, against RF plus field-
gradient optimizations. We found that the midpoint method
including both RF and a field gradient in the optimization, was
21 to 28 times faster than the exact method without and with
the field gradient also being optimized, respectively. That was with
23-fold CPU parallelization in the exact method and single tread
computation in the midpoint method. Hence, on field-gradient
optimization, e.g., to support works like that of Zhang et al. [56],
the midpoint gradient method should still be attractive.

We acknowledge that routines operating in the so-called small-
tip-angle regime pose a robust alternative to OCT in terms of speed
and accuracy due to the linear Fourier relation existing between
the pulse waveform and the excitation pattern. As shown in Ref.
[37], we trained networks for both small and large flip angles, with
Fourier and OCT based algorithms generating the libraries. How-
ever, we note that the OCT framework we use enables arbitrary flip
angles and phases for each individual spatial and spectral position.
It is due to DeepControl experiments that we chose in this study to
target a nominal FA of 30� (in the small-flip-angle regime) together
with OCT, which was not strictly necessary for this FA, but chosen
for several other reasons, one being because our DeepControl
experiments benefit from hard pulse constraints, which we have
so far only implemented in the OCT framework. Yet hard con-
straints do exist in various other pulse designs [21,58]. It is impor-
tant to mention that the individual gradient computation times do
not change for other flip angles.

Further to the benefits outlined for the midpoint method, Eqs.
(15) and (16) are good approximations only when solutions to
the Bloch equations are mildly oscillating [59]. For MRI, mild oscil-
lations are not to be expected, as spatial discretization and in par-
ticular field gradient controls introduce highly oscillating parts to
the Bloch equations.
7. Conclusion

Pulse waveform optimization gradient calculation using a mid-
point first order approximation was evaluated and found to pro-
vide a significant efficiency improvement. This illustrates clearly
that the current trend of using exact gradients in all situations
should be revised - tailored approximations are much cheaper
and can be just as accurate. Approximate gradients have been
observed to make quasi-Newton pseudo-Hessian less efficient at
accelerating convergence, but we have not encountered this phe-
nomenon here, likely because the terminal fidelity requirements
were less stringent than they are in quantum technology
applications.

The midpoint gradient method has been tested herein for 2DRF
pulses, with the intent to create a large 2DRF neural network train-
ing library. Nevertheless, the midpoint and the other gradient
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methods discussed herein are general for the OCT setting pre-
sented, and therefor also applicable to other target shapes and
pulse types, e.g. multidimensional parallel transmit pulses of any
target flip angle [29], and other control types, e.g. field gradients
and novel multi-channel shim waveforms [60]. These applications
have a large number of channels, and would benefit significantly
from the fast gradient computation and the relatively high accu-
racy of the midpoint approximate gradient method outlined in this
paper.

Data Availability

The data that supports the findings of this study are available
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