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Control of energy dissipation in sliding low-dimensional materials
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Frictional forces acting during the relative motion of nanosurfaces are the cause of energy loss and wear which
limit an efficient assembly and yield of atomic-scale devices. In this research, we investigate the microscopic
origin of the dissipative processes as a result of the frictional response, with the aim to control them in a subtle
way. We recast the study of friction in terms of phonon modes of the system at the equilibrium, with no need to
resort to dynamics simulations. As a case study, we here consider layer sliding in transition metal dichalcogenides
thin films. We find that the population of specific atomic orbitals and the relative contribution of the atomic type
to selected system vibrations are the crucial quantities which determine the frictional response in tribological
conditions. A reduced amount of energy dissipation is found when the bond character is more ionic and the layer
sliding is realized by a faster motion of the chalcogen atoms. The individuated relevant parameters governing
the energy dissipation can be used as descriptors in high-throughput calculations or machine learning engines to
screen databases of frictional materials. The presented framework is general and can be promptly extended to
the design of tribological materials with targeted frictional response, irrespective of the chemistry and atomic
topology.
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I. INTRODUCTION

Manipulation and assembly of free-standing atomic
layers into final devices, and their use in micro/

nanoelectromechanical systems (MEMS/NEMS, e.g.,
sensors and actuators) require a deep knowledge and control
of their frictional response and related energy dissipation
characteristics [1]. Moving parts during device fabrication
and operation are subject to nonconservative forces active
during the relative motion of the involved surfaces; those
forces limit the output efficiency by producing heat, fatigue
and wear up until compromising the correct construction
or functioning of the device. Indeed, the comprehension
of mechanisms governing friction at the nanoscale is a
forefront challenge to save energy and increase the lifetime
and sustainability of miniaturized devices, in addition to
improving their performance [2]. To this aim, in the present
work we investigate the atomic detail of the dissipative
processes generated by frictional forces occurring during
relative motions of few atomic layers.

Several classical and quantum mechanical approaches have
already been developed to study friction at the atomic scale,
by considering both ad hoc defined interatomic force for-
mulations and parameter-free ab initio descriptions [3–6].
The reliability of such approaches is a compromise between
the accuracy of the system-dependent parametrizations and/or
the width of the simulated time-window—this last being com-
putationally expensive if ab initio methods are used [7–13].
We here follow a different approach, with the goal being to ob-
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tain information on frictional and dissipative properties by the
only knowledge of the static properties of the system, without
the need to perform long and costly dynamic simulations;
furthermore, we use a system-independent framework which
is applicable to any kind of chemistry and atom topology.
The approach that we adopt is based on the phonon modes
calculated on the stable geometry; indeed, recent works have
already drawn attention to the role of phonons in determining
the frictional properties of tribological systems [14,15].

We already showed that any sequence of geometric con-
figurations representing the layer sliding can be decomposed
in terms of polarization vectors obtained by diagonalization
of the dynamical matrix at any point of the reciprocal space
[16,17]. This allowed us to recast the study of the frictional
response in terms of sliding and dissipative phonon modes
[18]. The sliding modes give rise to relative shifts of adjacent
atomic layers. In terms of the classical picture, to each of
these modes we can associate a harmonic restoring force f ∝
ω2, where ω is the mode frequency; by lowering the mode
frequency, it is then possible to lower the restoring force and
hence facilitate the layer sliding. By going beyond the local
harmonic description [18] we observed that the layer sliding
occurs as long as the energy contained in the sliding modes
(i.e., the phonon population) is above a certain threshold
characteristic of the material. The dissipative modes instead
are all those modes which subtract energy from the sliding
modes by means of phonon recombination processes. Such
processes correspond to energy dissipation since they degrade
the ordered motion (sliding) into disordered vibrations (heat);
in this way, we can define the frictional forces as those
forces corresponding to phonon scattering events reducing the
population of the sliding modes.
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FIG. 1. (a),(b) Model structure of hexagonal P63/mmc 2H poly-
morph of MX 2 TMD crystal. M–X bonds form trigonal prisms
arranged in parallel layers which can reciprocally slide thanks to
weak van der Waals interactions.

In the present work, we discuss which are the relevant
quantities that determine such energy dissipation, and how
to act to deactivate specific dissipation channels. We also
show that this can be achieved by using quantum mechanical
static calculations on the fixed geometry of the stable system,
thus saving computational time and investigation effort which
would be required by standard dynamical approaches. As
a case study, we consider layer sliding in transition metal
dichalcogenides (TMDs) thin films, which are becoming
ubuquitous in several technological applications spanning hy-
drogen evolution, energy storage, high-performance electron-
ics, and photonic devices [19–21].

II. METHODS

A. Computational details

Transition metal dichalcogenides have general stoichiom-
etry MX 2, where M and X are a transition metal and a
chalcogen atom, respectively. One M cation coordinates six
chalcogen anions in a trigonal prismatic arrangement forming
a periodic MX 2 layer with M–X covalent bonds (Fig. 1). Ad-
jacent layers are bound together by weak van der Waals forces
which allow relative sliding under tribological conditions.
We consider the 2H polymorph crystalline MX 2 compounds
as reference structures [19], with M = Mo, W and X = S,
Se, Te, and hexagonal P63/mmc symmetry (SG 194). The
primitive unit cell of such geometry is formed by two adjacent
layers arranged in such a way that a metal atom of one layer
is aligned with two anions of the other one along the direction
orthogonal to the layer planes (c-axis in our setting—see
Fig. 1). Starting from the chosen reference geometries, we
truncate the periodic image repetition along the c axis by
setting the c lattice parameter at 65 Å, and consider only two,
three, four, five, and six MX 2 subsequent layers. In this way,
for each considered compound, we build five model systems
that we name MX -nL, where M and X specify the kind of
transition metal and chalcogen atom, respectively, while n
corresponds to the number of MX 2 layers forming the unit
cell; the corresponding space group is P3̄m1 (#164) if n is
odd and P6̄m2 (#187) if n is even.

We perform density functional theory (DFT) calculations
using the Perdew-Burke-Ernzerhof (PBE) energy functional
[22] as implemented in VASP software [23,24]. We also take
into account van der Waals interactions using the Grimme

correction [25], which correctly reproduces the structural
features, as we reported in previous works and references
therein [16,26,27]. The Brillouin zone is sampled with a
minimum of a 7 × 7 × 1 k-point mesh and plane wave cutoff
of 500 eV. Full structural (atoms and lattice) relaxations
are initiated from diffraction data [28–33] and the forces
minimized to a 0.5 meV Å−1 tolerance. We diagonalize
the dynamical matrices of the stable systems with the aid
of the PHONOPY software [34] and compute the first-order
anharmonic phonon-phonon interaction strengths by means
of the PHONO3PY software [35].

B. Theoretical background

In tribological conditions, the relative motion among sub-
sequent MX 2 layers can be geometrically described in terms
of eigendisplacements associated to the phonon modes of the
stable geometry [16,17]. If we consider a system with N
atoms, the degrees of freedom of the system is 3N , with each
atom being free to move along all the three spatial directions.
At any q vector of the Brillouin zone of the system, the diag-
onalization of the dynamical matrix yields 3N eigenvectors,
each characterized by a polarization vector describing the
atomic displacement pattern (i.e., the phonon mode pattern).
The 3N eigenvectors are orthogonal and constitute a basis for
the geometric description of the system; there is therefore a
one-to-one correspondence between the degrees of freedom of
a system and the eigendisplacements relative to any q recipro-
cal vector [36], and any set of atomic displacements can then
be represented as a linear combination of phonon modes. The
projection of the geometric sequence representing the layer
sliding onto the phonon eigenvectors allows to identify which
phonons have the main role in the representation of the sliding
motion: they are those with the largest coefficient in the linear
combination, and we can name them as sliding modes. This
phonon-based description of the layer sliding is not only a
convenient geometric picture, but also provides fundamental
information about the role of the phonons during the whole
tribological process. This is apparent in the frequency analysis
of dynamical trajectories [18]: sliding modes are active during
the sliding motion while become silent once the sliding termi-
nates. Layer sliding is active as long as the sliding modes own
enough energy: scattering processes reduce the population
of the sliding modes until the ordered motion (i.e., sliding)
is completely downgraded to thermal vibration (i.e., heat)
and the equilibrium is reached. The decomposition of sliding
trajectories into phonon modes allows one to distinguish then
between sliding and dissipative modes: the former are those
who have an effective geometric contribution to the layer drift,
while the latter reduce the population of the sliding ones via
phonon-phonon recombination processes. In this description,
the frictional forces are then all those forces which activate
recombination processes that reduce the population of the
sliding modes. In general, the main effect of friction during
sliding is to increase the temperature of the system, while oth-
ers like free charge production or structural deformations are
minor ones; in our phonon-based description, we neglect such
minor effects and frictional forces have the only consequence
to convert work (ordered motion of the atoms represented by
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the sliding) into thermal vibrations, hence heat which rises the
temperature of the system.

It is worth noting that we do not need to make any
assumption on the sliding direction since such information
is automatically transferred into the eigenvector linear com-
bination by the projection of the cartesian displacements onto
the polarization vectors. Moreover, the roughness of interfaces
and presence of defects can be straightforwardly included in
the present approach without the need for specific working
hypotheses, provided that such irregularities are represented
by an appropriate choice of the atomic geometry and supercell
size. However, our representation is valid if the set of phonon
eigenvectors constitute a good description of the system in
tribological conditions, that is, if the equilibrium atomic
topology is not dramatically modified during the sliding
events [18].

By indicating with λ = (q, j) a phonon mode with wave
vector q and band index j, the decrease of the population of
the sliding mode λ occurs at a transition rate Pλ′′

λ,λ′ involving
the λ′ and λ′′ dissipative modes, and is proportional to the
square of the interaction strength �λλ′λ′′ [37]:

Pλ′′
λ,λ′ ∝ nn′(n′′ + 1)|�λλ′λ′′ |2, (1)

where n, n′ and n′′ are the phonon populations, while �λλ′λ′′

is a characteristic of the system. The phonon populations
depend on the environment, e.g., the presence of thermal
bath and irradiation or external intervention manifesting as
external forces, load, and controlled sliding velocity. Such
external parameters depend on the user, who can employ them
to dynamically control the dissipation channels. We are here
interested instead in modifying the intrinsic properties of the
system to inhibit or mitigate specific dissipative processes, ir-
respective of the environment conditions. In fact, irrespective
of the n, n′, and n′′ populations, if |�λλ′λ′′ |2 is null, likewise the
scattering probability in Eq. (1) is null and no dissipation will
occur. A fine-tuning of the interaction strength tensor �λλ′λ′′

then allows to design tribological materials with controlled
frictional response: as |�λλ′λ′′ |2 becomes lower, the λ + λ′ =
λ′′ scattering becomes less probable and the lifetime of the
sliding phonon λ increases. This implies that the magnitude
of an external drift force needed to keep the sliding active is
small when low values of |�λλ′λ′′ |2 are realized.

The interaction strength tensor �λλ′λ′′ is an intrinsic prop-
erty of the material since it is determined by the atomic kinds
and geometry forming the system which, in turn, determine
the eigenvectors, eigenfrequencies, and interatomic force con-
stants [36,37]:

�λλ′λ′′ =
√

h̄3

8N3

1√
ωλωλ′ωλ′′

∑
kk′k′′

1√
mkmk′mk′′

×
∑
αβγ

eα
λ (rk )eβ

λ′ (rk′ )eγ

λ′′ (rk′′ )

×
∑
ll ′l ′′

eiq·rkl eiq′·rk′ l′ eiq′′·rk′′ l′′ �αβγ (rkl , rk′l ′ , rk′′l ′′ ),

(2)

where h̄ is the reduced Planck’s constant, N is the number of
unit cells, ωλ is the eigenfrequency of the mode λ, mk is the
mass of the kth atom, rkl (rk′l ′ , rk′′l ′′ ) is the position of the kth

FIG. 2. Schematic example of one of the possible sliding modes
in MX -3L systems: three adjacent MX 2 layers rigidly shifts along
opposite directions according to the eigenvector e�,6.

(k′th, k′′th) atom in the lth (l ′th, l ′′th) cell replica, eα
λ (rk ) is

the αth Cartesian component of the eigenvector associated to
the mode λ and to the kth atom, and �αβγ is the third-rank
Cartesian tensor of the cubic anharmonic force constants. We
already observed [38] that it is possible to turn off or on any
λ + λ′ = λ′′ scattering process by controlling the symmetries
of the system; in fact, if �eλ , �eλ′ , and �eλ′′ are irreducible
representations for which the eigenvectors eλ, eλ′ , eλ′′ are,
respectively, a basis, then

�λλ′λ′′ �= 0 ⇒ �eλ ⊗ �eλ′ ⊗ �eλ′′ ⊆ A, (3)

which states that if the direct product among the irreducible
representations contains the totally symmetric representation
A, then the λ + λ′ = λ′′ scattering is allowed. Indeed, this
result is general and applies to any multiphonon scattering at
any order of anharmonicity. In what follows, we show that
an other way to control the value of �λλ′λ′′ is to act on the
subtle relation between the electronic density and the dynamic
properties of the system.

In all the MX -nL systems, the sliding modes with main
contribution to relative layer shift have wave vector q =
(0, 0, 0) ≡ � and band indices which depend on n [38] (see
Fig. 2 as an example; a schematic representation of the sliding
modes at different n can be found in the Supporting Material
of Ref. [38]). The number of sliding modes depends on the
number of layers: the higher n, the higher the number of
modes effectively contributing to the sliding, the higher the
number of dissipative modes and corresponding dissipation
channels. To track all the dissipative processes, we then
consider the quantity |�|2, which we define as the sum of the
squared modulus of all the �λλ′λ′′ elements involving both λ

sliding and λ′, λ′′ dissipative modes. By controlling |�|2, we
can then control the energy dissipation in tribological condi-
tions at the nanoscale. A quick inspection of Eq. (2) shows
that �λλ′λ′′ can be decreased by simply choosing atoms with
higher atomic masses mk via isotope substitution: however,
this would cause a decrease of the eigenfrequencies ωλ, the
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two quantities being related by a relation of the kind ω ∝
1/

√
m. Instead, we will focus on the choice of the atomic type,

which is the most adopted solution in practical applications.
The crucial quantity that determines �λλ′λ′′ is the third-

order tensor of the anharmonic force constants defined as

�αβγ (rkl , rk′l ′ , rk′′l ′′ ) = ∂3V

∂rkl∂rk′l ′∂rk′′l ′′

= ∂2

∂rk′l ′∂rk′′l ′′

(
∂V

rkl

)
,

(4)

where V is the potential energy which is a function of the
atomic positions. The term

∂V

rkl
= −F(rkl ) (5)

is obtained by calculating the forces F(rkl ), which depend on
the kind of atoms and the topologic environment in which
they are embedded. The accuracy with which such forces are
calculated affects the estimation accuracy of the dissipative
processes; ab initio descriptions of the interatomic forces
should then be preferred whenever computationally afford-
able, especially if subtle electronic effects must be taken into
account. This also shows that the atomic type, the geometry,
and the consequent electronic distribution, determine concur-
rently the final �λλ′λ′′ values in a nontrivial way. Since it is
not simple to map the behavior of �λλ′λ′′ against the atomic
kind, we need to identify proper collective descriptors to
guide us through the complex interplay between the electronic
structure and the dynamic features of the system. To this aim,
we will investigate what are the relations among phononic
states, electronic density, and phonon-phonon interactions.

III. RESULTS AND DISCUSSION

We begin our analysis by noticing that, at fixed chemical
composition, no significant variation of the a and b lattice pa-
rameters is observed with the number of layers. Irrespective of
the kind of M and X ions, |�|2 monotonically increases with
increasing n [Fig. 3(a)], in correspondence with the increase
of the number of active dissipation channels. We then define ω

as the average frequency of the sliding modes, with the aim to
capture how the eigenfrequencies determine the value of |�|2
at different number of layers. We observe that ω is globally
decreasing with n but the trend is not monotonic [Fig. 3(b)];
indeed, at a fixed number of layers, higher |�|2 is realized at
higher frequencies [Figs. 3(c) and 3(d)], against the intuitive
trend suggested by Eq. (2), where the eigenfrequencies appear
at the denominator of the expression of �λλ′λ′′ . Since by fixing
n we are making a comparison at a fixed topology, the eλ

vectors do not change significantly; the anharmonic force
constants have then a key role in governing �λλ′λ′′ since, in
this case, they depend only on the atomic kinds and how these
determine the electronic density. To get more insight on how
to control |�|2, we then need to analyze in detail the subtleties
of the electronic distribution. To this aim, we analyze the
covalency [39] CM,X of the M–X bond, defined in terms of
atomic contributions to the system wave function. The higher
the CM,X value, the larger the covalent character of the M–X
bond; equivalently, the lower the CM,X value, the more ionic

FIG. 3. (a) Sum of the square modulus of the interaction
strengths involving both sliding and dissipative modes against the
number of layers: the number of dissipation channels increases
with n, producing an increase of the dissipated energy. (b) Average
frequency of the sliding modes against the number of layers: at fixed
composition the trend is not monotonic with n, showing the nontrivial
relation between electronic and dynamic features of the systems;
symbols are the same as in (a). (c),(d) |�|2 values of MoX-nL and
WX-nL systems against eigenfrequency average comprising both
sliding and dissipative modes: higher dissipation may be realized
at higher frequencies due to the competition between ωλ and �αβγ

values; the value of n is indicated by the different symbols as shown
in the legend. Lines are a guide for the eye.

the M–X bond. We observe that the covalency can be consid-
ered constant with the number of layers [Fig. 4(a)]; the same
result is obtained when we consider the difference among the
atomic charges obtained either by integration of the atom-
projected density of states or by performing a Bader analysis
[40–43]. Irrespective of chemical composition and number of
layers, we find that the more covalent the M–X bond, the
higher the |�|2 values hence the higher is the energy dissi-
pation during layer sliding [Figs. 4(b) and 4(c)]. Concerning
the dynamic aspect, at fixed n highest M–X bond covalency
realizes highest average frequencies ω (Fig. 5); however, as
we already observed, an increase of the M–X bond covalency
produces an increase of the dissipation [Figs. 3(b) and 3(c)],
against the fact that the eigenfrequencies ωλ appear at the
denominator of the expression of �λλ′λ′′ [Eq. (2)]. This then
confirms that the dominant contributions to the �λλ′λ′′ values
are represented by the interatomic force constants. Analysis
of the electron localization functions [44,45] does not show
any strong evidence of charge redistribution along the M–X
bond at varying chemical composition [46]. This is the result
of the subtle interplay between geometry, atomic kind, and
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FIG. 4. (a) M–X bond covalency against the number of layers: at
fixed composition, covalency does not change noticeably with vary-
ing n. (b),(c) |�|2 values of MoX-nL and WX-nL systems against the
M–X bond covalency: irrespective of the chemical composition and
the number of layers, more covalent bonds favor energy dissipation;
the value of n is indicated by the different symbols as shown in the
legend. Lines are a guide for the eye.

electronic distribution, which can be uncovered by a deeper
investigation.

To this aim, we consider the orbital polarization [47–49]
of the d and p orbital projections of the M and X ions,
respectively [50].

Orbital polarization Pl1ml1,l2ml2 of the |l1ml1〉 orbital relative
to the |l2ml2〉 orbital is defined as

Pl1ml1,l2ml2 = nl1ml1 − nl2ml2

nl1ml1 + nl2ml2

, (6)

where nl1ml1 and nl2ml2 are the populations of |l1ml1〉 and
|l2ml2〉, with orbital quantum number li and magnetic quantum
number mli, respectively. It measures the charge excess of the
former orbital with respect to the latter: positive (negative)
values indicate that |l1ml1〉 orbital is more (less) populated
than |l2ml2〉 orbital. We observe that Ppx,py , Ppx,pz and Ppy,pz

FIG. 5. Average frequency values of (a) MoX-nL and
(b) WX-nL systems against the M–X bond covalency: higher
frequencies are realized at increased values of the bond covalency.
Lines are a guide for the eye.

FIG. 6. |�|2 values of the (a) MoX-nL and (b) WX-nL systems
as a function of the Pt2g,eg orbital polarization. An excess of popula-
tion in the t2g orbitals reduce energy dissipation during layer sliding.
Lines are a guide for the eye.

is almost constant with the number of layers. while the
greatest variation is observed for Pt2g,eg and Px2−y2,z2 . The
symmetries of the system determine the relative occupation
of the d orbitals: Pt2g,eg is higher (lower) for even (odd)
number of layers; correspondingly, Px2−y2,z2 has the opposite
trend, while an exception is found for the WSe-3L system. A
deeper analysis is needed to shed light on the origin of such
behavior but for our purposes is not necessary and we will not
investigate on it in this work. We already observed that the
relative occupation of t2g and eg orbitals plays an important
role in the determination of the sliding dynamics in TMDs
[26,49]; indeed, we find that an excess of electrons in the t2g

orbitals, reduces the |�|2 values hence the energy dissipation
during layer sliding (Fig. 6). The delicate balance among
the orbital populations determine the value of the covalency.
At a fixed number of layers, lowest covalency is realized

FIG. 7. Covalency of the MX bond against the orbital polariza-
tion of MoX-nL and WX-nL systems: (a),(b) X Ppx ,py , (c),(d) M
Pt2g,eg . Lowest covalency values are in general realized when the
population unbalance between the considered atomic orbitals is the
largest. Lines are a guide for the eye.
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FIG. 8. Schematic of the electronic density projected on t2g and
p orbitals, depicted as red and blue lobes and centered on the M
and X atoms, respectively; the plane containing the M cations is
represented as a section of the electronic density, with RGB gradient
showing density isovalues (red = highest, blue = lowest). The t2g

and p overlap is small, since the most of the t2g orbitals extend into
the region outside the M–X bond axis; a charge shift towards the t2g

orbitals then makes the M–X bond character more ionic. (a) Overlap
among dxz (and dyz not shown for clarity), px and py is realized
only by partial interpenetration of the orbital boundaries; (b) the
same holds for the dxy and p orbitals. The dx2−y2 and py overlap is
more effective and an increase of their population makes the bond
character more covalent. The dz2 orbital does not participate to the
bond formation.

when the px orbital results to be slightly more populated with
respect to the py orbital [Figs. 7(a) and 7(b)]; at the same
time, low covalency values are in general realized when the
population unbalance of the t2g and eg orbitals is the largest
possible [Figs. 7(c) and 7(d)]. High values of Ppx,py and Pt2g,eg

hence determine the formation of more ionic M–X bonds
(Fig. 8) which lower the energy dissipation during sliding,
in agreement with what we observed above [Figs. 4(b), 4(c),
and 6].

We now need a descriptor which is able to parametrize the
atomic types and their contribution to the sliding dynamics of
the system. To this aim, we will use the cophonicity metric
[16] defined in terms of atom-projected phonon density of
states. We evaluate the cophonicity Cph(M-X ) of the M-X pair
in the frequency range [0,1] THz, which corresponds to the
eigenvectors with the highest contribution to the layer sliding.
We observe that, irrespective of the chemical composition,
cophonicity does not change significatively with the number
of layers [Fig. 9(a)]. Positive Cph(M-X ) values indicate that
M and X ions contribute more to higher- and lower-frequency
displacements, respectively; this means that M cations move
faster than X anions when forming the global layer sliding
motion, while the opposite holds for negative Cph(M-X ) val-
ues. On the other hand, cophonicity close to zero corresponds
to atomic displacements in which both M and X species move

FIG. 9. (a) Cophonicity of the M-X pair as a function of the
number of layers; no significant variation is observed at fixed com-
position by varying n. (b, c) |�λλ′λ′′ |2 values of MoX-nL and WX-nL
systems against the M-X pair cophonicity; lowest cophonicity favors
low-energy dissipation during layer sliding. Lines are a guide for
the eye.

in average at the same speed. At a fixed number of layers, low-
est cophonicity realises lowest |�|2 values at fixed cation type
[Figs. 9(b) and 9(c)], suggesting that when anions displace
faster than cations, the frictional force and the corresponding
energy dissipation is lower. This dynamical effect is con-
nected to the spatial extent and directionality of the electronic
distribution. In fact, at fixed n, Cph(M-X ) is monotonically
increasing with CM,X [Figs. 10(a) and 10(b)]; at the same time,
Cph(M-X ) decreases with Pt2g,eg becoming negative, indicat-
ing that a charge transfer towards t2g orbitals favors a faster
motion of the X ions with respect to the M cations when form-
ing the global sliding motion [Figs. 10(c) and 10(d)]. In other
words, a higher t2g population changes the character of the
sliding motion from M-dominant to X -dominant contributions
to the overall layer shift. In our previous works [16,27,49]
we already used cophonicity to parametrize the atomic type
and relate it to local harmonic forces which might contribute
to the frictional response; here we can instead recognize
that cophonicity can also be used to tune the anharmonic
interactions which produce energy dissipation due to friction,
hence going beyond the harmonic description.

Since covalency, cophonicity and orbital polarization de-
scriptors appear to be tied together by simple monotonic
relations, they can be easily fine-tuned to act as a knob to
control |�|2, that is to control the energy dissipation due to
the friction response during layer sliding. For example, we
observed [16] that a specific Ti → Mo cation substitution in
MoS2 bulk induces local distortions in the ion environment
which, in turn, determine a larger ionic bond character and
a lower cophonicity. This coupled behavior resulted into a
lowering of the sliding frequencies, and suggested that the
individuated Ti : MoS2 TMD phase should exhibit low fric-
tion when tangential external forces try to generate layer
sliding. By following a similar approach, it is possible to
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FIG. 10. (a),(b) Cophonicity of the M-X pair of the MoX-nL and
WX-nL systems as a function of the M-X bond covalency: more
covalent bond characters favor an increase of the M-X cophonicity.
(c),(d) Cophonicity of the M-X pair as a function of the Pt2g,eg orbital
polarization: an excess of electrons in the t2g orbitals favor a decrease
of the cophonicity values. Lines are a guide for the eye.

use the relation among covalency, cophonicity, and orbital
polarization to select the proper atomic species to design
new tribological materials with controlled energy dissipation.
We finally notice that calculation of cophonicity, covalency,
and orbital polarization is faster than the evaluation of the
phonon-phonon strength of interaction �λλ′λ′′ since the latter
requires the evaluation of atomic forces on hundreds of con-
figurations each containing ∼200 atoms. For this reason, the
three descriptors can be used as a quick guide to select the
proper atom to obtain low friction, or for fast high-throughput
screening of potential low-dissipative layered materials.

IV. CONCLUSION

We showed how nonequilibrium dissipative processes aris-
ing in tribological conditions can be controlled by fine-tuning

the phonon-phonon interaction strengths, which are deter-
mined by the equilibrium configuration and atomic type of
the system. In this way, it is possible to obtain information
on the dynamic response without the need to run long and
costly dynamic simulations. We applied our method to the
study of layer sliding in transition metal dichalcogenides thin
films. We recast the study of the frictional response in terms
of sliding and dissipative phonons and observed that it is
possible to tune the energy dissipation due to friction by fine
tuning the sliding-dissipative phonon coupling. We found that
an excess of charge in the t2g orbitals of the M cation favors
the formation of more ionic M–X bonds and reduces the
energy dissipation; dynamically, the cophonicity descriptor
shows that the lowered dissipation is obtained thanks to a
faster motion of the X atoms with respect to the M cations.
Cophonicity, covalency, and Pt2g,eg orbital polarization are tied
together by simple monotonic relations: the higher the t2g

orbital population, the more ionic the bond, the lower the
cophonicity and the energy dissipation during sliding.

The combined use of electrostructural descriptors and
phonon-based picture of the dissipative processes allows then
to identify what are the relevant physical quantities to control
the friction effect at the nanoscale. Such descriptors can
also be used as parameters in high-throughput calculations
or machine learning engines to screen large databases of
compounds where anharmonic interactions are relevant. Fi-
nally, the presented approach is general and can be applied
to the design of new tribological materials with targeted
frictional response, irrespective of the chemistry and atomic
topology.
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