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Abstract 68 

Non-alcoholic fatty liver disease (NAFLD), recently re-defined and re-classified as 69 

metabolic dysfunction-associated fatty liver disease (MAFLD), has become 70 

increasingly prevalent and emerged as a public health problem worldwide. To date, 71 

the precise pathogenic mechanisms underpinning MAFLD are not entirely 72 

understood, and there is no effective pharmacological therapy for NAFLD/MAFLD. 73 

As a newly discovered form of iron-dependent programmed cell death, ferroptosis can 74 

be involved in the development and progression of various chronic diseases, but the 75 

pathogenic connections and mechanisms that link MAFLD and ferroptosis have not 76 

been fully elucidated. The main characteristics of ferroptosis are the accumulation of 77 

lipid peroxides and reactive oxygen species. In this brief narrative review, the 78 

mechanisms of ferroptosis and its putative pathogenic role in MAFLD are discussed 79 

to highlight potential new research directions and ideas for the prevention and 80 

treatment of MAFLD. 81 
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Introduction 95 

In the past, two main mechanisms of programmed cell death have been recognized, 96 

namely apoptosis and necrosis. However, these two mechanisms do not explain all 97 

forms of cell death. Other forms of programmed cell death have recently been 98 

recognized, such as pyroptosis, autophagy and ferroptosis. Of these newly discovered 99 

forms of programmed cell death, ferroptosis has been widely studied in recent years, 100 

because it involves accumulating lipid-active oxygen species and appears to play a 101 

key role in the development of some types of tumors, neurodegenerative diseases, or 102 

endocrine diseases.1-3  103 

 104 

Non-alcoholic fatty liver disease (NAFLD), recently named as metabolic dysfunction-105 

associated fatty liver disease (MAFLD)4,5,6, has reached epidemic proportions, 106 

becoming the most common cause of chronic liver diseases worldwide (affecting up 107 

to ~30% of world’s adults).7,8 Growing evidence supports the notion that MAFLD is a 108 

“multisystem” disease, in addition to causing severe liver damage (i.e., MAFLD-109 

related cirrhosis)9, affecting the vasculature and other organ systems that requires a 110 

multidisciplinary and holistic approach.10  111 

 112 

To date, the role of ferroptosis in the development and progression of MAFLD has not 113 

been fully elucidated. Therefore, in this review we briefly discuss the role of 114 

ferroptosis in MAFLD in order to highlight new areas for potential research into the 115 

prevention and treatment of this common and burdensome liver disease. 116 

 117 

1. Overview of ferroptosis 118 

1.1 The concept and characteristics of ferroptosis 119 

In 2012, Dixon et al. first coined the term ferroptosis as a new form of regulated cell 120 

death.11 This form of cell death results from glutathione depletion and glutathione 121 

peroxidase inactivation (Figure 1).10,12 As an iron-dependent form of non-apoptotic 122 

regulated cell death, iron plays a key role in the occurrence of ferroptosis. 123 

Experimentally, it has been shown that iron-chelating agents may inhibit ferroptosis.13 124 
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At the same time, imbalance of iron metabolism induces lipid peroxidation and 125 

production of reactive oxygen species (ROS), thereby triggering ferroptosis. The 126 

regulatory mechanisms of ferroptosis are closely related to reactive oxygen clusters, 127 

and accumulation of reactive oxygen clusters triggered by the Fenton-like reaction, 128 

nicotinamide adenine dinucleotide phosphate-dependent lipid peroxidation, and 129 

glutathione depletion.1 Thus, as an atypical oxidative form of regulated cell death, 130 

ferroptosis may induce cell death by increasing ROS production, thereby affecting 131 

development of disease. 132 

 133 

1.2 Comparison of ferroptosis with other forms of programmed cell death 134 

From a morphological point of view, apoptosis is characterized by the occurrence of 135 

typical apoptotic cellular bodies and by no rupture of cell membranes.14 Cell necrosis 136 

is characterized by cell swelling, nucleus concentration, fragmentation, and 137 

dissolution, as well as chromatin staining and flocculent, and organelle enlargement or 138 

fragmentation. In contrast, ferroptosis does not show any typical morphological 139 

features of both apoptosis and necrosis. Ferroptosis is typically characterized by cell 140 

membrane rupture and vesiculation, reduced mitochondrial cristae, mitochondrial 141 

atrophy, as well as lack of chromatin agglutination in the nucleus.14 142 

 143 

In terms of biochemical characteristics and regulatory mechanisms, apoptosis is 144 

mainly dependent on cysteinyl aspartate-specific proteinase. During cell apoptosis, 145 

Ca2+ and pH levels of cytoplasm increase, and endonuclease is activated, leading to 146 

nuclear DNA fragmentation. Cell necrosis induces a severe local inflammatory 147 

response that is associated with activation of signaling pathways, such as receptor-148 

interacting protein kinase 3. In contrast, in ferroptosis, intracellular Fe2+ accumulation 149 

occurs, and levels of lipid peroxidation increase significantly.15 At the same time, 150 

ROS production increases, cellular cystine/cysteine uptake decreases, glutathione 151 

(GSH) is reduced, and some mediating factors, such as arachidonic acid, are 152 

released.15 The essential nature of ferroptosis is intracellular Fe2+ accumulation that is 153 

a typical disorder of cell redox metabolism. Thus, intracellular antioxidant capacity 154 
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decreases, and ROS and lipid peroxidation products accumulate in large quantities, 155 

inducing cell death. There is no overlap between the regulatory mechanisms of 156 

ferroptosis and those implicated in cell apoptosis or necrosis, and small molecules that 157 

inhibit cell apoptosis and necrosis do not have any inhibitory effect on ferroptosis.16 158 

 159 

2. Effects of regulatory mechanisms of ferroptosis on MAFLD 160 

MAFLD comprises a histological spectrum of progressive liver conditions, ranging 161 

from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. The 162 

pathophysiology underlying MAFLD involves a multitude of interlinked processes, 163 

including insulin resistance (IR), lipotoxicity attributable to the accumulation of toxic 164 

lipid species, infiltration of proinflammatory cells causing hepatic injury and 165 

ultimately leading to hepatic stellate cell (HSC) activation and increased liver 166 

fibrogenesis. 167 

 168 

2.1 Lipid peroxidation  169 

Ferroptosis was first detected after stimulation of RAS-mutant cells by a small 170 

molecular substance (i.e., erastin).17 Subsequent studies have shown that lipid 171 

peroxidation is one of the major drivers of ferroptosis.18 Lipids are widely found in 172 

biofilms and lipoproteins. When lipid peroxidation occurs, lipids become the major 173 

target of peroxidation by increasing ROS. In turn, the increased production of ROS 174 

leads to increased oxidative stress, and oxidative stress-induced lipid peroxidation 175 

could play a key role in the development and progression of MAFLD.19 Convincing 176 

evidence supports the importance of different lipid peroxidation products in the 177 

development of MAFLD. Among the different aldehydes that can be formed as 178 

secondary products during lipid peroxidation, malondialdehyde (MDA) and 4-179 

hydroxynonenal (4-HNE) are the two most extensively studied and both are 180 

associated with different stages of MAFLD. A significant association between hepatic 181 

4-HNE adducts and increasing stage of fibrosis has been described, and increased 182 

mitochondrial 4-HNE–protein adducts during MAFLD development have been 183 
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reported.20,21 Studies also reported higher circulating levels of MDA, as measured by 184 

the 2-thiobarbituric acid reaction assay, and higher levels of low-density lipoprotein 185 

(LDL) oxidation in patients with MAFLD than in control subjects.22,23 186 

 187 

2.2 Iron overload  188 

Not only is abnormal lipid metabolism involved in the development of MAFLD, but 189 

also imbalance of iron metabolism may affect the occurrence of MAFLD.24 Because 190 

iron has two different valence states, iron participates in intracellular redox reactions 191 

in vivo, enabling iron to produce oxidative free radicals. Iron overload induces 192 

oxidative stress by producing ROS. The liver is one of the most critical organs for 193 

iron storage. Approximately 25-30% of total iron in the body is stored in ferritin in the 194 

liver, and the intrahepatic contents of iron and ROS are greater in diseased liver than 195 

in normal liver, suggesting that ferroptosis may be associated with chronic liver 196 

diseases.25 197 

A cross-sectional study, involving 5445 Chinese individuals, showed that there was a 198 

dose-response relationship between dietary iron intake and the prevalence of 199 

MAFLD.26 In a case-control study in Southeast China, Pan et al. also found that 200 

elevated serum ferritin levels were associated with a higher risk of MAFLD (adjusted-201 

odds ratio 1.62, 95% CI 1.16-2.27), and the hepcidin-to-ferritin ratio was significantly 202 

associated with a lower risk of MAFLD (adjusted-odds ratio 0.70, 95% CI 0.50-0.98). 203 

27 In a proof-of-concept study, Rostoker et al. prospectively analyzed the association 204 

between intra-hepatic iron content and magnetic resonance imaging-proton density fat 205 

fraction (MRI-PDFF) in 68 patients on chronic dialysis.28 Among these dialysis 206 

patients, 17 patients were followed-up during the period of iron therapy. The results of 207 

this pilot study showed that liver fat content (assessed by MRI-PDFF) of patients with 208 

moderate or severe iron overload was higher than that of normal iron load patients or 209 

mild iron overload patients [median (interquartile range) MRI-PDFF-assessed liver fat 210 

content: 7.9% (0.5-14.8%) vs. 5.0% (0.27-11%) vs. 5.0% (0.30-11.6%), respectively, 211 

P<0.05]. In 7 patients who received iron treatment, both liver iron and fat contents 212 
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increased concomitantly, whereas in 10 patients with iron overload, liver fat content 213 

decreased after parenteral iron withdrawal, thereby suggesting that liver iron load may 214 

influence liver fat content in these dialysis patients.28 Barrera et al. also demonstrated 215 

that in rats, iron overload significantly increased hepatic fat content, serum 216 

transaminase levels, and induced a disruption in the desaturation capacity leading to 217 

polyunsaturated fatty acid (PUFA) depletion, all of which were diminished by 218 

antioxidant intervention.29 Wang et al. showed that high iron levels served as a driving 219 

factor in the induction of ferroptosis, and the ferroptosis could damage liver 220 

mitochondria associated with elevated serum ALT levels.30 It is known that 221 

inflammation and fibrosis are two critical stages in the pathophysiology of MAFLD. 222 

Meanwhile, iron is known to increase the respiratory burst activity of Kupffer cells, 223 

which may have a proinflammatory impact through the activation of nuclear factor 224 

(NF)-kB, thereby triggering the hepatic production of multiple pro-inflammatory and 225 

fibrogenic mediators.31 Finally, in a small intervention study, Yamamoto et al. showed 226 

that dietary restriction of calories, fat and iron improved the grade of hepatic iron 227 

accumulation and oxidative stress in patients with MAFLD. In addition, the levels of 228 

serum ALT and ferritin were significantly decreased.32  229 

It is known that IR is a pathogenic factor in the development and progression of 230 

MAFLD.33 Previous studies found that excessive iron accumulation may adversely 231 

affect insulin secretion from pancreatic β-cells and, at the same time, may interfere 232 

with expression of insulin receptors, thus resulting in greater IR. Pancreatic β-cells are 233 

highly sensitive to levels of iron ions and can express hepcidin, which relieves iron 234 

overload.34 Moreover, excessive iron accumulation also induces oxidative stress and 235 

mitochondrial damage, thereby further impairing pancreatic β-cell function. Hepatic 236 

iron overload may also exacerbate hepatic IR by directly damaging liver cells.34,35  237 

 238 

2.3 Glutathione (GSH) 239 

As discussed above, ferroptosis is a modulated form of cell death that is characterized 240 

by the iron-dependent accumulation of lipid peroxidation to lethal levels. When 241 
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cystine transport proteins are inhibited (e.g., erastin), intracellular GSH is depleted, 242 

resulting in inactivation of glutathione peroxidase (GPX4) and accumulation of lipid 243 

peroxidation products that induce cell death.36,37 Koruk et al. showed that serum GSH 244 

levels were higher in patients with MAFLD than in controls, suggesting that GSH 245 

might play a key role in MAFLD pathogenesis and disease progression.38  246 

 247 

3. Impact of ferroptosis on MAFLD 248 

3.1 Impact of ferroptosis on MAFLD-related risk factors 249 

3.1.1 Obesity  250 

Previous studies have shown that MAFLD is closely related to obesity, and ferroptosis 251 

might further promote the development of MAFLD by affecting obesity.39,40 252 

Experimentally, it has been reported that iron-chelating agents (e.g. deferoxamine, 253 

deferiprone or deferasirox) have the potential to treat obesity. For instance, Yan et al. 254 

reported that deferoxamine could reduce the expression of fat-generating genes in 255 

adipose tissue and reduce the expression of genes related to mitochondrial 256 

biosynthesis, thereby achieving the effect of treating obesity.41 In another 257 

experimental model of polygenic obese mice, Ma et al. found that increased iron 258 

concentration is associated with adipose tissue remodeling and increased adipose 259 

tissue IR.42 However, further experimental research is required in this field. 260 

 261 

3.1.2 Type 2 diabetes 262 

Apart from well-studied IR in peripheral cells, impaired insulin secretion from 263 

pancreatic β cells has been acknowledged as the core defect in the development of 264 

T2DM, because of exhaustion of pancreatic β cells and consequent failure of insulin 265 

secretion.43 Pancreatic β cell death, involving the modulation of both pancreatic β cell 266 

mass and function, is believed to be the final pathogenic event in the progression of 267 

T2DM, leading to rapid deterioration of glycaemic control, if not treated properly.44 268 

Li et al. reported that ferroptosis may contribute to pancreatic β cell loss and 269 

dysfunction, and insulin secretion is worsened by ferroptosis-inducing erastin or 270 

RAS-selective lethal compounds.45 Quercetin is a potential glucose-lowering 271 
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supplement that might also exert some beneficial effects on ferroptosis.45 A recent 272 

study showed that that daily quercetin intake was associated with a lower prevalence 273 

of T2DM in Chinese individuals, thus supporting a potetnial protective effect of 274 

quercetin in the development of T2DM.46 The possible anti-diabetic effects of 275 

quercetin, which have been replicated both in vivo and in vitro, are linked mainly to 276 

the anti-oxidant and anti-inflammatory actions of quercetin on pancreatic β cells.47,48 277 

Recent experimental data also suggested that quercetin might exert some beneficial 278 

effects on risk of T2DM, possibly by inhibiting pancreatic β cell iron deposition and 279 

ferroptosis.45 280 

 281 

3.1.3 Other metabolic risk factors  282 

The newly proposed diagnostic criteria of MAFLD are based on the evidence of 283 

hepatic steatosis (as assessed by histology, imaging techniques, or blood biomarkers), 284 

combined with one of the following three conditions: overweight/obesity, T2DM, or 285 

presence of metabolic dysregulation (i.e. defined by the presence of at least two of the 286 

following seven metabolic risk abnormalities that are often also present with 287 

metabolic syndrome: i.e. increased waist circumference, raised blood pressure, high 288 

triglycerides, low HDL-cholesterol, increased plasma glucose concentration, IR or 289 

elevated plasma C-reactive protein concentrations).4,49 Epidemiological studies have 290 

also shown that elevated serum ferritin or iron overload are associated with higher 291 

levels of plasma glucose, diastolic blood pressure, uric acid, and IR.50,51 Thus, as 292 

schematically summarized in Figure 1, it is reasonable to hypothesize that ferroptosis 293 

is closely related to obesity, T2DM or other coexisting metabolic disorders that occur 294 

with MAFLD. 295 

 296 

3.2 Impact of ferroptosis on MAFLD severity 297 

3.2.1 Hepatic inflammation or impaired liver function  298 

Iron overload may aggravate MAFLD/NAFLD by increasing the risk of hepatocyte 299 

swelling, inflammation and fibrosis, thereby promoting the progression from simple 300 

steatosis to steatohepatitis (NASH).52,53 301 
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 302 

Recently, Tsurusaki et al. reported that ferroptosis is implicated in the development of 303 

liver fat accumulation into NASH.54 These authors also reported that inhibition of 304 

ferroptosis prevents the development of NASH.54 With development of NASH, 305 

ferroptosis may lead to liver injury and inflammatory response, thereby providing a 306 

new potential target for NASH treatment.55 307 

 308 

3.2.2 Liver fibrosis 309 

Liver fibrosis is a complex pathophysiological process and an intermediate pathogenic 310 

link in a variety of chronic liver diseases. Activation of HSC is a critical step in liver 311 

fibrogenesis (Figure 1). Currently, liver transplantation is the only effective treatment 312 

for patients with late-stage of liver fibrosis. However, the shortage of liver donors and 313 

the risks of follow-up transplantation limit the treatment of patients with advanced 314 

liver fibrosis. Therefore, it is urgent to find new treatment strategies for advanced 315 

liver fibrosis.56 The activation, proliferation, and transformation of HSCs are key 316 

drivers in liver fibrogenesis. Therefore, focusing on HSCs as a target in MAFLD is 317 

important in treatment strategies targeting liver fibrosis.  318 

 319 

Iron is abundant in HSCs that is a pre-requisite condition for ferroptosis. From the 320 

current evidence in animal studies (as discussed above), it appears that ferroptosis 321 

might act as a two-edged mechanism in the development and progression of liver 322 

fibrosis. Some studies showed that ferroptosis may exacerbate liver fibrosis and liver 323 

injury.57,58 However, some experimental studies have recently suggested that 324 

induction of ferroptosis could be also considered a new strategy to improve liver 325 

fibrosis (as summarized in Table 1).56-62 An animal study showed that artesunate 326 

inhibits liver fibrogenesis through ferroptosis.59 Magnesium isoglycyrrhizate may 327 

regulate iron transport processes (mostly by up-regulating the expression of heme 328 

oxygenase-1), and promote accumulation of Fe2+ and lipid peroxides RTMN induce 329 

ferroptosis in HSC, thereby ameliorating liver fibrosis.60 In addition, artemether up-330 

regulates the gene expression of P53, inhibits the SLC7A11 recombinant protein, and 331 
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inactivates GPX4 (eventually inducing ferroptosis of HSC), thereby inhibiting liver 332 

fibrogenesis.61 Thus, ferroptosis might also inhibit the activation of HSC and thus 333 

ameliorate liver fibrosis.  334 

 335 

Conclusions 336 

Ferroptosis is a newly discovered form of regulated cell death. Iron-dependent lipid 337 

peroxidation is a major driver of ferroptosis and ferroptosis may also occur in 338 

MAFLD. The concept of ferroptosis-inducing treatment regulating liver fibrosis is of 339 

increasing interest in MAFLD. However, we suggest further mechanistic studies are 340 

needed to better understand the role of ferroptosis in liver fibrogenesis. Experimental 341 

evidence suggests that altered iron metabolism and lipid peroxidation are 342 

pathophysiologically involved in the link between ferroptosis and MAFLD. However, 343 

the role of ferroptosis in the pathophysiology of MAFLD is complex and needs 344 

further investigation. On the one hand, ferroptosis can lead to the occurrence of 345 

MAFLD and development of liver inflammation; whilst on the other hand, some 346 

studies have shown that ferroptosis of HSC could inhibit the progression of liver 347 

fibrosis. Further mechanistic studies of ferroptosis are required to better elucidate 348 

whether altering this new form of regulated cell death has merit in the prevention and 349 

treatment of MAFLD.  350 

 351 
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 576 

Table Legend 577 

Table 1. Experimental studies examining the role of ferroptosis in liver fibrosis.  578 

 579 

Figure Legend 580 

Figure 1. Potential regulatory mechanisms of ferroptosis in MAFLD. 581 

Ferroptosis is closely related to obesity, type 2 diabetes mellitus (T2DM) and other 582 

metabolic risk factors, all of which occur in MAFLD. The main regulatory 583 

mechanisms of ferroptosis in MAFLD include increased lipid peroxidation and iron 584 

overload. Induction of ferroptosis of hepatocytes may also inhibit fibrogenesis and 585 

serve as potential anti-fibrotic treatment. Moreover, ferritinophagy-mediated hepatic 586 

stellate cells (HSC)-ferroptosis may be also responsible for its anti-fibrotic efficacy.  587 
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