Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring
Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring
Standard Biological Oxygen Demand (BOD) analysis requires 5 days to complete. To date, microbial fuel cell biosensors used as an alternative method for BOD assessment requires external apparatus, which limits their use for on-line monitoring in remote, off-grid locations. In this study, a self-powered, floating biosensor was developed for online water quality monitoring. This approach eliminated the need for external apparatus and maintenance that would otherwise be required by other techniques. The biosensor was able to detect urine in freshwater and turn ON a visual and sound cues (85 dB). The energy needed to operate the biosensor was produced by the system itself with the use of electroactive microorganisms, inside microbial fuel cells. The Chemical Oxygen Demand (COD) was used as a fast method of biosensor validation. When urine concentration exceeded the lower threshold, corresponding to a COD concentration of 57.7 ± 4.8 mgO2 L−1, the biosensor turned the alarm ON. The shortest observed actuation time, required to switch ON the alarm was 61 min, when the urine concentration was 149.7 ± 1.7 mgO2 L−1. Once the sensor was switched ON, the signal was emitted until the urine organic load decreased to 15.3 ± 1.9 mgO2 L−1. When ON, the microbial fuel cell sensor produced a maximum power of 4.3 mW. When switched OFF, the biosensor produced 25.4 μW. The frequency of the signal was proportional to the concentration of urine. The observed frequencies varied between 0.01 and 0.59 Hz. This approach allowed to correlate and quantitatively detect the presence of water contamination, based on signal frequency. The sensor was operating autonomously for 5 months. This is the first report of a self-powered, autonomous device, developed for online water quality monitoring.
Water quality, Online monitoring, Self-powered biosensor, BOD, Energy harvesting, Microbial fuel cell
815-822
Pasternak, Grzegorz
fd3857b4-1e43-4fa7-aab8-0162c02b2c1b
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13
June 2017
Pasternak, Grzegorz
fd3857b4-1e43-4fa7-aab8-0162c02b2c1b
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13
Pasternak, Grzegorz, Greenman, John and Ieropoulos, Ioannis
(2017)
Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring.
Sensors and Actuators B: Chemical, 244, .
(doi:10.1016/j.snb.2017.01.019).
Abstract
Standard Biological Oxygen Demand (BOD) analysis requires 5 days to complete. To date, microbial fuel cell biosensors used as an alternative method for BOD assessment requires external apparatus, which limits their use for on-line monitoring in remote, off-grid locations. In this study, a self-powered, floating biosensor was developed for online water quality monitoring. This approach eliminated the need for external apparatus and maintenance that would otherwise be required by other techniques. The biosensor was able to detect urine in freshwater and turn ON a visual and sound cues (85 dB). The energy needed to operate the biosensor was produced by the system itself with the use of electroactive microorganisms, inside microbial fuel cells. The Chemical Oxygen Demand (COD) was used as a fast method of biosensor validation. When urine concentration exceeded the lower threshold, corresponding to a COD concentration of 57.7 ± 4.8 mgO2 L−1, the biosensor turned the alarm ON. The shortest observed actuation time, required to switch ON the alarm was 61 min, when the urine concentration was 149.7 ± 1.7 mgO2 L−1. Once the sensor was switched ON, the signal was emitted until the urine organic load decreased to 15.3 ± 1.9 mgO2 L−1. When ON, the microbial fuel cell sensor produced a maximum power of 4.3 mW. When switched OFF, the biosensor produced 25.4 μW. The frequency of the signal was proportional to the concentration of urine. The observed frequencies varied between 0.01 and 0.59 Hz. This approach allowed to correlate and quantitatively detect the presence of water contamination, based on signal frequency. The sensor was operating autonomously for 5 months. This is the first report of a self-powered, autonomous device, developed for online water quality monitoring.
Text
1-s2.0-S0925400517300199-main
- Version of Record
More information
Published date: June 2017
Keywords:
Water quality, Online monitoring, Self-powered biosensor, BOD, Energy harvesting, Microbial fuel cell
Identifiers
Local EPrints ID: 454045
URI: http://eprints.soton.ac.uk/id/eprint/454045
ISSN: 0925-4005
PURE UUID: 8e039bb0-57f9-4067-96a0-dfbaec841c50
Catalogue record
Date deposited: 27 Jan 2022 19:19
Last modified: 17 Mar 2024 04:10
Export record
Altmetrics
Contributors
Author:
Grzegorz Pasternak
Author:
John Greenman
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics