The University of Southampton
University of Southampton Institutional Repository

Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system

Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system
Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system
Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.
1932-6203
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13
Pasternak, Grzegorz
fd3857b4-1e43-4fa7-aab8-0162c02b2c1b
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13
Pasternak, Grzegorz
fd3857b4-1e43-4fa7-aab8-0162c02b2c1b
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16

Ieropoulos, Ioannis, Pasternak, Grzegorz and Greenman, John (2017) Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system. PLoS ONE, 12 (5), [e017647]. (doi:10.1371/journal.pone.0176475).

Record type: Article

Abstract

Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.

Text
document - Version of Record
Available under License Creative Commons Attribution.
Download (7MB)

More information

Published date: 2 May 2017

Identifiers

Local EPrints ID: 454049
URI: http://eprints.soton.ac.uk/id/eprint/454049
ISSN: 1932-6203
PURE UUID: 00517617-266a-4056-8a99-72b43963c503
ORCID for Ioannis Ieropoulos: ORCID iD orcid.org/0000-0002-9641-5504

Catalogue record

Date deposited: 27 Jan 2022 19:20
Last modified: 17 Mar 2024 04:10

Export record

Altmetrics

Contributors

Author: Grzegorz Pasternak
Author: John Greenman

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×