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Earth’s plate tectonic activity regulates the carbon cycle, and hence, climate, via volcanic outgassing and silicate-rock
weathering. Mountain building, arc-continent collisions, and clustering of continents in the tropics have all been invoked
as controlling the weathering flux, with arcs also acting as a major contributor of carbon dioxide (CO2) to the atmosphere.
However, these processes have largely been considered in isolation when in reality they are all tightly coupled. To properly
account for interactions between these processes, and the inherent multi-million-year time lags at play in the Earth system,
we need to characterise their complex interdependencies. Here we analyse these interdependencies over the past 400 million
years, using a Bayesian network to identify primary relationships, time lags and drivers of the global chemical weathering
signal. We find that the length of continental volcanic arcs—the fastest-eroding surface features on Earth—exerts the
strongest control on global chemical weathering fluxes. We propose that the rapid drawdown of CO2 tied to arc weathering
stabilises surface temperatures over geological time, contrary to the widely held view that this stability is achieved mainly
by a delicate balance between weathering of the seafloor and the continental interiors.

Weathering of Earth’s surface regulates climate over geologi-
cal timescales (∼1–10 million years, Myr)1,2,3,4,5. When atmo-
spheric CO2 concentrations are high and temperatures elevated,
these conditions lead to ocean acidification and an intensified
hydrologic cycle with increased evaporation, precipitation and
runoff1. These conditions give rise to enhanced weathering of
silicate minerals and CO2 drawdown. Conversely, reduced sil-
icate weathering reduces CO2 drawdown under cold climates,
promoting warming. This ‘thermostat’ stabilises surface tem-
peratures through time6. During the Phanerozoic (541–0 mil-
lion years ago, Ma), the periodic onset of icehouse conditions
has variously been attributed to enhanced weathering rates asso-
ciated with mountain building4,7, reductions in continental arc
magmatism8, and uplift of oceanic crust during arc-continent
collisions9. Rather than occurring in isolation, these global
tectonic processes are inextricably linked and the resulting
collinearity—coupled with unknown time lags—obscures each
process’s individual contribution to global weathering fluxes.
These issues have thus far severely limited our understanding
of the first-order drivers of Earth’s weathering fluxes.

Deep-time data mining

To address this problem, we constructed a deep-time
Bayesian Network (BN), a class of probabilistic graphical
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model that represents a set of variables (nodes) and their condi-
tional dependencies (see Methods). This approach—widely ap-
plied in machine learning—can be used to quantify the strength
of influence of individual processes on an outcome of interest
(e.g., a chemical signal in seawater). Our BN uses data min-
ing to systematically quantify the strength of the relationships
between key geological variables and the chemical weather-
ing flux to identify primary drivers and lags. To perform the
analysis, we use Uninet, a software package for uncertainty
analysis and high dimensional dependence modelling. Uninet
has proven capability for analysing complex data, and evaluat-
ing geological relationships and temporal dependencies16. We
focus on the past 400 Myr, when key predictors of weather-
ing flux such as crustal distribution, seafloor production rates10

and atmospheric CO2
11 are generally well constrained (Fig. 1).

This period was also chosen because (1) it captures the assem-
bly and breakup of the supercontinent Pangaea (Fig. 1a), sta-
ble from ∼320 to 200 Ma (Fig. 1f); and (2) the four main lin-
eages of vascular plants had already proliferated on land by 400
Ma17, meaning we do not expect the interval to encompass a
step change in terrestrial weathering tied to soil-plant biogeo-
chemical cycles. We compiled geospatial datasets using paleo-
geographic reconstruction from the open-source plate tectonic
software GPlates18, processed in R (Methods), to produce a di-
verse set of time series that capture times of key global tectonic
changes (Fig. 1). Parameters include: continental arc length13;
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climate state (characterised by latitudinal extent of continental
ice9 and atmospheric CO2 concentration11); suture zone length
as a proxy for arc-continent collisions9; the spatial extent of
large igneous provinces (LIPs)19; seafloor production rates; and
continental fragmentation and dispersal (Fig. 1a, 1f).

We used variations in strontium isotope ratios in seawater
((87Sr/86Sr)sw) derived from marine carbonates14 as a proxy
for global chemical weathering through time, and calculated a
moving average using a ±0.25 Myr window (Fig. 1g). Given the
large contrast in 87Sr/86Sr between radiogenic continents and
unradiogenic oceanic crust20, (87Sr/86Sr)sw is thought to repre-
sent a globally integrated balance in weathering flux from conti-
nental surfaces and the seafloor14,20,21. We tested this assertion
by constructing a network to explore the relationship between
(87Sr/86Sr)sw and partial pressure of atmospheric carbon dioxide
(pCO2) since 400 Ma11. This analysis reveals a clear relation-
ship between (87Sr/86Sr)sw and pCO2 (empirical correlation =

–0.57) at lag 0, which decreases with increasing lags (Extended
Data Fig. 1), confirming that they are coupled4. However, as
there are clearly secondary controls on (87Sr/86Sr)sw, and some
uncertainty in the CO2 record used11, the relationship is not
straightforward; this is a key justification for analysing what
drives these variations through time. We present our results in
terms of (87Sr/86Sr)sw—the standard framework—but also test
the sensitivity of our model to radioactive decay of 87Rb (to
87Sr) in the crust through time15.

Building an Earth network

Despite progress in linking variations in (87Sr/86Sr)sw to geo-
dynamic and paleogeographic factors22, it is unclear how pro-
cesses combine to drive (87Sr/86Sr)sw variations. We con-
structed the network (Methods) with nodes for (87Sr/86Sr)sw and
twelve predictor variables (Extended Data Fig. 2; Supplemen-
tary Data File S1), with lags from 0 to 50 Myr. We present
three correlation measures that summarise the relationships be-
tween the variables and (87Sr/86Sr)sw (Figs. 2–4). First, the em-
pirical rank correlation (CEmp, the Spearman Rank correlation)
is a non-parametric measure of the relationship between two
variables. Although informative, this does not account for au-
tocorrelation, or the joint influence of other variables. Second,
the BN rank correlation (CBN) is the modelled representation of
the empirical rank correlation. In an ideal case (i.e., a perfect
model) this would be equal to CEmp. Third, the conditional rank
correlation (CCond) is the rank correlation between two variables
conditional on any other parent variables (accounting for the ef-
fect of all nodes at shorter lags, and higher up in the network
hierarchy; Methods).

We construct our network by starting with the variable with
the highest empirical rank correlation with (87Sr/86Sr)sw at lag
0, and systematically search the set of predictor variables to find
maximum values of CCond at increasing lags (each 2.5 Myr win-
dows) up to 50 Myr (Methods). A variable is added to the net-
work if its conditional correlation exceeds a confidence interval
threshold (dependent on the number of original data points).
The conditional correlation removes the influence of variables

higher in the network hierarchy (and at shorter lags), and pro-
vides a measure of the additional information each subsequent
lagged variable provides in explaining (87Sr/86Sr)sw variation
(Fig. 4; Extended Data Figs. 3–4). This approach is based on
the method for partial autocorrelation, and efficiently accounts
for multiple joint dependencies and lags (Methods). Whilst our
focus below is on CCond, for context we also provide CEmp and
CBN (Fig. 4).

Identification of chemical weathering drivers

We find that the length of continental volcanic arcs13 (Fig.
1c), where oceanic lithosphere is subducted beneath continen-
tal lithosphere8, is most strongly correlated with (87Sr/86Sr)sw

(CEmp = -0.79; CCond = -0.7; Figs. 2, 3a, 4a), increasing when
we correct for crustal radioactive decay of 87Rb (ref.15; CEmp

= -0.82; Fig. 2; Extended Data Table 2). This strong relation-
ship (Figs. 2, 3a) suggests that periods of increased continental
arc volcanism have favoured unradiogenic seawater composi-
tions, and vice versa. Today, the global continental arc sys-
tem is ∼14,000 km long13, and includes regions such as the
Alaska Peninsula, the Cascades and the Andean Volcanic Belt
(Extended Data Fig. 5). The global arc system was three times
longer (∼37,500 km) during the Mesozoic (Fig. 1c), reflecting
a sharp increase in seafloor production (Figs. 1c–d). The ocean
chemical response to changing arc extent is rapid, peaking in
<0.5 Myr (Fig. 4a). Before exploring the importance of these
observations, we need to quantitatively evaluate how other pro-
cesses combine to drive (87Sr/86Sr)sw.

Terrestrial weathering fluxes are highly sensitive to crustal
deformation1,4,6,5,7. It has been suggested that arc-continent
collisions in the tropics—where volcanic island arcs are ob-
ducted onto continents forming ophiolite complexes—gave rise
to enhanced weathering of (ultra-) mafic lithologies and CO2
drawdown, driving Phanerozoic glaciations9,23. Weathering of
ultramafic lithologies on this scale should reduce (87Sr/86Sr)sw,
so the correlation should be negative, reflecting unradiogenic
inputs to oceans. To evaluate this, we incorporate suture
length data9 into our network (Fig. 1e; Extended Data Fig.
6). The empirical correlation between active suture length and
(87Sr/86Sr)sw is strong and positive. Accounting for other dom-
inant processes (i.e., continental arc length), this reduces, leav-
ing a peak CCond = 0.47 at lag 0 (Fig. 4b). Given that we
find consistently positive correlations between suture length
and (87Sr/86Sr)sw (Fig. 4b), we infer that arc-continent colli-
sions promote enhanced weathering of radiogenic continental
material via orogenesis and erosion4,7, rather than predomi-
nantly unradiogenic ultramafics as suggested before9,23. Our
results are consistent with the conventional uplift-weathering
hypothesis4 and also help explain the reported link between arc-
continent collisions and glaciations9. Increasing suture length
appears to drive enhanced weathering of continental material,
promoting CO2 consumption and cooling.

Chemical weathering is also sensitive to continental frag-
mentation, which increases the reach of oceanic moisture into
continental interiors24, but the timescales and impacts are
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highly uncertain. To address this, we consider geospatial at-
tributes of continents through time (Methods). Using the foot-
print defined by continent-ocean boundaries10, we computed
the continental perimeter/area ratio25,26—a quantitative mea-
sure of crustal fragmentation (Fig. 1f). We find that the cor-
relation between continental fragmentation and (87Sr/86Sr)sw is
moderate to low (maximum CCond = 0.31), and positive, consis-
tent with enhanced weathering of radiogenic crust during plate
tectonic fragmentation. The peak CCond at time lags of ∼12.5–
15 Myr (Fig. 4c) is commensurate with typical timescales of
rift-to-drift transitions and delayed basin connectivity follow-
ing continental breakup27. Accounting for lags of this order
will be crucial to correct interpretation of associations between
tectonic fragmentation and marine biodiversity28.

High temperatures and precipitation usually favour high
weathering rates in tropical regions9,24. It has thus been hypoth-
esised that a high proportion of continental landmasses within
the tropics could strongly influence global weathering24. We
test this by quantifying continental area within the tropical lat-
itudinal bands (we test both ±20◦ and ±10◦ of the equator) at
1 Myr intervals (Fig. 1f; Extended Data Fig. 7), and integrate
this in our network. The land surface area within the tropics has
increased over 400–0 Ma (Fig. 1f), but makes a negligible con-
tribution to weathering fluxes from the continental surface (Ex-
tended Data Fig. 3). This could be due to development of deep,
indurated soil profiles in tropical drainage basins that lead to
very low (transport-limited) weathering intensity29. Similarly,
the spatial extent of LIPs through time19 is only very weakly re-
lated to (87Sr/86Sr)sw (Extended Data Fig. 3), possibly because
they are typically flat lying rather than mountainous terrains.
This suggests that environmental perturbations associated with
LIPs are most likely due to changes in volcanic CO2 fluxes30

rather than enhanced weathering of mafic lithologies.
It is well established that seafloor basalt alteration31 and

hydrothermal venting decrease (87Sr/86Sr)sw (i.e. toward mid-
ocean ridge basalt [MORB] mantle 87Sr/86Sr ' 0.7035; ref.21).
Therefore, (87Sr/86Sr)sw is expected to scale inversely with
seafloor production rate (Fig. 1d), which we calculate as the
product of ridge length and spreading rate (Extended Data Fig.
8), adapting an existing plate model26. We find that seafloor
production rates are negatively correlated with (87Sr/86Sr)sw at
short lags (Fig. 4d), reflecting the effects of early high tem-
perature alteration of basalts along ridge axes32. The seafloor
weathering contribution becomes negligible ∼15–20 Myr after
emplacement, suggesting that seafloor is not releasing unradio-
genic Sr appreciably after this time. This is strikingly consis-
tent with hydrothermal models33 and observations of secondary
minerals in ocean crust34,35, which indicate that ∼70–80% of
fluid flux occurs in seafloor within 20 Myr of formation. We
find that radiogenic continental weathering sources dominate
the (87Sr/86Sr)sw signal at lags >20 Myr, explaining the switch
to a positive correlation (Fig. 4d).

Glacial intensity is also known to influence (87Sr/86Sr)sw
36.

Investigating the effect of continental ice coverage, we find a
strong empirical correlation between latitudinal extent of ice
sheets (Fig. 1b) (as a proxy for the severity of glaciation and
global climate9) and (87Sr/86Sr)sw (-0.72; Figs. 3b, 4e), sup-

porting the notion that glaciations cause intensified weathering
of continental crust20,36,37,38. This is likely due to preferential
weathering of radiogenic minerals like biotite in comminuted
rock flour characteristic of glaciated catchments37,38. The con-
ditional correlation is low due to collinearity between ice extent,
and arc and suture lengths. Observations suggest that weather-
ing influences atmospheric CO2 concentration11 (Fig. 1f; Ex-
tended Data Fig. 1), but also provide evidence for a feedback
whereby CO2 influences weathering (negative CEmp = -0.58
where (87Sr/86Sr)sw lags CO2 by 0.5–2.5 Myr, in Fig. 4f). A
weak, but statistically significant positive CCond between CO2
and (87Sr/86Sr)sw at lags >10 Myr (Fig. 4f; Extended Data Figs.
3f and 4f) suggests a weak negative carbonate-silicate feedback
operating over tens of millions of years. This appears to be a
secondary effect.

Unpicking uncertainty

To determine how input uncertainties could affect results, we
simulated 1,000 variant time series for each input parameter,
and repeated the BN analysis using this alternative input data
set (Methods). Where available, we used existing uncertainty
estimates (e.g., for pCO2 and continental arc length), and simu-
lated uncertainty for other key variables using the best existing
knowledge (Extended Data Fig. 2). The analysis reveals that
when uncertainty envelopes are considered, the strongest corre-
lations with (87Sr/86Sr)sw remain largely unchanged (Extended
Data Figs. 3–4), with very small differences between the BN
and empirical correlations for the original and variant inputs
(Extended Data Table 1; Supplementary Data File S3).

Central role for volcanic arc weathering

This analysis supports our overall conclusion that continen-
tal volcanic arc length exerts the strongest influence on global
weathering fluxes during greenhouse intervals. This is consis-
tent with regional studies39,40 and the observation that chemical
weathering of island arcs dominates the oceanic Sr budget to-
day41, and may even have contributed to Neogene cooling42.
We might expect that the variation of the island arc source over
time would be similar to the continental arc source because both
are ultimately dependent on spreading rates. However, we do
not have a sufficiently extensive or accurate record of island arc
lengths to test this hypothesis. However, if we assume that the
global length of subduction zones is a crude proxy for oceanic
island arc length, the observed relatively weak conditional cor-
relations (Extended Data Fig. 3g) suggest that volcanic island
arcs are unlikely to be a first-order driver of the weathering sig-
nal over geological timescales in contrast to continental arcs.
The latter are an important contributor to the atmospheric CO2
inventory, owing to a propensity for decarbonation reactions in
the continental lithosphere8. The strongly negative correlation
between continental arc length and (87Sr/86Sr)sw (Figs. 2, 3a,
4a) is consistent with the hypothesis that their formation and
spatial extent governs icehouse-greenhouse transitions8.

The high CO2 outgassing flux and greenhouse conditions
associated with extensive continental arcs8 favour intensified

3



chemical weathering1,5,6. Today, continental volcanic arcs are
among the highest topographic—and fastest eroding—surface
features on Earth39, supplying Ca-Mg silicate weathering prod-
ucts to the ocean over tens of millions of years40. Hydrother-
mal activity maximises water–rock interactions, which, given
the enhanced orographic precipitation typical in these regions,
results in extreme chemical denudation rates43,44. For exam-
ple, the present-day Andes (Extended Data Fig. 5) dominates
dissolved ion fluxes to the Amazon River45, fuelling Earth’s
greatest offshore river plume. Today, continental arcs are pre-
dominantly unradiogenic (Extended Data Fig. 5), with mean
87Sr/86Sr values of 0.7044 (N = 5,498; median = 0.704, mode =

0.7035), only slightly higher than typical MORB and ocean is-
land basalts46. Thus, prolonged cycles of arc assembly, erosion
and weathering39,40 likely drove seawater toward the unradio-
genic compositions we observe (Figs. 2–4). Greenhouse condi-
tions linked to extensive arcs8 should promote increased bottom
water temperatures and enhanced seafloor weathering47, further
reducing (87Sr/86Sr)sw.

Continental volcanic arcs are predisposed to acid-
intermediate magmatism, favouring zircon production48.
The interpretation that continental arcs drive global chemical
weathering fluxes (Fig. 2) is therefore consistent with an
observed increase in detrital zircon abundance during green-
house intervals8. The latter implicates increased transport and
weathering of arc detritus to ocean basins when continental
arcs are longest. Our analysis confirms that the 87Sr/86Sr
of zircon-bearing igneous rocks strongly correlates with
(87Sr/86Sr)sw over the past 400 Myr (Extended Data Table 2),
suggesting that global chemical weathering is tightly coupled
to the composition of continental igneous lithologies15. The
correlation between igneous 87Sr/86Sr and (87Sr/86Sr)sw is high-
est15 when arc systems are longest13. It is therefore probable
that the length of continental arcs drives (87Sr/86Sr)sw via the
proportional availability of weatherable igneous catchments.
This finding draws specific attention to the rock compositions
(i.e., calc-alkaline) and climate conditions (predominantly
highland and tropical-humid) that offer the best potential for
accelerated CO2 drawdown in enhanced weathering schemes
designed to counteract current global climate change49.

To summarise, we have developed a data mining approach
based on conditional probability estimation, to disentangle
complex interdependencies between solid Earth, hydrosphere,
and atmospheric processes, over the past 400 million years.
This approach has significant potential to aid interpretation of
complex Earth data exhibiting high dimensional dependency on
different spatial and temporal scales.

It is widely accepted that continental arcs modulate atmo-
spheric CO2 levels8,50 and represent a major agent of crustal
growth through post-Archean Earth history via arc accretion
processes39. Our analysis indicates that arcs have also domi-
nated global chemical weathering fluxes, which determine the
Sr isotopic composition of seawater, (87Sr/86Sr)sw, over the past
400 Myr. This revises conventional concepts that (87Sr/86Sr)sw

is driven by competition between weathering of the seafloor
and continental interiors. Arc weathering causes reduction in
(87Sr/86Sr)sw while continental weathering causes increases in

(87Sr/86Sr)sw. Thus, our findings of arc dominance in weather-
ing help explain enigmatic low (87Sr/86Sr)sw during greenhouse
climates, where the higher temperatures should according to
conventional concepts have promoted greater continental crust
weathering6, driving increased (87Sr/86Sr)sw.

Our results indicate that continental arcs provide a self-
regulating thermostat, gradually removing atmospheric CO2 via
rock weathering reactions that offset their more rapid high vol-
canic CO2 outgassing fluxes. Conversely, when continental arc
extent reduces, global CO2 emissions decrease, arc weather-
ing slows down, and continental ice sheets become the prin-
cipal agent of physical and chemical weathering, driving in-
creased (87Sr/86Sr)sw. Through this regulation of atmospheric
CO2 levels over geological timescales, continental volcanic arcs
played a central role in maintaining habitability over the course
of Earth history even in the face of dramatic external drivers.
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Figure Captions

Figure 1: Tectonic, atmospheric and ocean chemical
changes over the past 410 Myr | a, Continental distribution10

with continental landmasses shown in pink, present-day coast-
lines in black, and the tropics (±20◦ of the equator) in beige;
b, atmospheric CO2 concentration (multi-proxy, black line)11,
and phytane-based estimates in red12; continental ice latitude9

is shown as the blue line (blue shaded regions denote glacia-
tions); c, continental arc length13; d, seafloor production rates
(Methods); e, suture zone lengths9; f, fragmentation index (i.e.,
continental perimeter/area, as black line), and total area of con-
tinents in the tropics (red line); g, (87Sr/86Sr)sw from marine
carbonates14, calculated as a ±0.25 Myr window in red; h, nor-
malised (87Sr/86Sr)sw curve removing the signal caused by ra-
dioactive 87Rb decay in the crust15. Minimum and maximum
estimated uncertainties are shown in grey (and pink in f); for
all time series used and their uncertainty distributions, see Ex-
tended Data Fig. 2 (and Supplementary Data File S1).

Figure 2: Effects of continental arc extent on the strontium
isotopic composition of seawater | a, Normalised (87Sr/86Sr)sw

(using ref.15) versus continental arc length; the dashed vertical
lines show the division between short (<16,100 km), interme-
diate (16,100–29,300 km), and extensive (≥29,300 km) arc sys-
tems (these divisions denote approximately equal quantiles); b,
Ranked normalised (87Sr/86Sr)sw versus ranked continental arc
length; note that the smallest value that occurs in the data set
is ranked 1. The ranked plot is a particularly useful way to vi-
sualise the relationship between variables, because it shows the
correlation of the non-parametric form of the data; it is less sen-
sitive to the underlying distributions of the data being analysed,
or the effects of any extreme outliers.

Figure 3: Effects of continental arc extent and global ice dis-
tribution on the strontium isotopic composition of seawater

| a, Probability density for continental arc length13, identify-
ing short (<16,100 km), intermediate (16,100–29,300 km), and
extensive (≥29,300 km) arcs (note: these divisions denote ap-
proximately equal quantiles); the distributions show that exten-
sive continental arc systems favour low (87Sr/86Sr)sw and vice
versa. b, Probability density for latitudinal ice extent, show-
ing the (87Sr/86Sr)sw during periods of low ice latitude (<65◦),
high ice attitude (65–90◦) and no glaciation (90◦). The distribu-
tions show that more extensive (severe) glaciations favour high
(87Sr/86Sr)sw and vice versa.

Figure 4: Simplified network showing key geological pro-
cesses and correlations with seawater Sr | Illustration of a
subset of our network, showing how six key variables (a–f)
influence or lead (87Sr/86Sr)sw (Extended Data Fig. 3). The
plots summarise the relationships between each variable and
(87Sr/86Sr)sw using regular 0.5 Myr time series, spanning the pe-
riod 410 Ma to 0.5 Ma (n = 720 time steps after accounting for
lags). CEmp, CBN , and CCond are computed at lags from 0 to 50
Myr in 2.5 Myr intervals. A lag of 0 means the processes occur
within the same 0.5 Myr time-step. The numbers in grey de-
note the highest absolute values of CEmp; if each process were
considered in isolation this value could be interpreted as the
dominant time lag. However, due to significant autocorrelation
and joint dependence, the key drivers and their associated lags
can be better identified by peak CCond (red). The horizontal
dashed lines denote 99% confidence intervals estimated from
the number of original data points for a given variable.
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Methods

1.0. Bayesian Network analysis
Here we outline the methodology for our Bayesian analysis.

A Bayesian Network (BN) is a directed acyclic graph. It com-
prises a set of variables (which can represent discrete or con-
tinuous quantities) and a set of directed edges (arcs) between
the variables, with the condition that the edges do not form
a directed cycle. This means there are no loops (i.e., a node
cannot be connected to itself) and no cycles (i.e., no path that
leads from a node, via other nodes, back to itself). There is
no requirement for the links to represent causal relationships.
We use the Uninet COM library51 in Visual Studio (C++)52 to
perform data mining on the time-series detailed in section 3.0
(below). Uninet represents the graphical model using joint nor-
mal copula (e.g., ref.16), allowing fast and efficient modelling of
complex multivariate dependencies. The approach enables the
identification of dominant correlations for a range of geophys-
ical and geochemical variables with the strontium isotope ratio
of seawater (87Sr/86Sr)sw through geological time as a proxy for
global chemical weathering14,15. All initial data processing and
GIS analysis is performed in R53.

Our analysis considers data for the time period from 410 Ma
to 0 Ma, using regularised time-series with a time step of 0.5
Myr. These time-series are provided in Supplementary Data
File S1 (Fig. 1). As many of the individual time-series are based
on measurements, estimates or model values irregularly spaced
in time, we interpolate to obtain regular (0.5 Myr) time-series
to match the resolution of the CO2 record used11. For cases
with multiple observations in a given time interval, a moving
average is applied (again with a 0.5 Myr window). The number
of original data points before interpolation (and accounting for
lags) is used to estimate confidence interval thresholds (CIthresh)
for rank correlation coefficients for each of the variables with
(87Sr/86Sr)sw. The CI (in this case the 99 percentile) thresh-
old determines whether or not a particular lagged variable is
retained in the model (described in detail in section 5.0). To in-
vestigate the potential time lags between the various processes
and Sr, we calculate average values for each of the predictor
variables with lead times up to 50 My, in 2.5 Myr intervals.
A correlation at zero lag means the processes occur within the
same time step (t, Myr). A lag of 2.5 corresponds to the cor-
relation between Sr and the average value for a variable in the
interval t–2.5 to t–0.5 Myr etc. as we are interested in how Sr
lags the various geological processes. The one exception to this
is Extended Data Fig. 1, where we present correlations for Sr
leading CO2.

We also repeated the BN data mining using 1 Myr interval in-
put data, and the differences in the results were negligible. We
impose CI thresholds based on the original number of observa-
tions, not the length of the interpolated time-series.

2.0. Uncertainty Analysis
To investigate the effect of uncertainty in the original input

data, we simulated 1,000 variant time series for each parame-
ter, and used this alternative data set to test the BN analysis and
search algorithm (see section 5.0). For each input parameter

(with the exception of pCO2, where variant time series output
from Foster et al.11, were used directly), we performed ran-
dom sampling to generate multiple alternative time series, at
the same resolution as the original data. Each simulated input
time series was then interpolated to produce a regular 0.5 Myr
time series, and time lags were calculated in the same manner
as for the original input data set.

In some cases, there are existing models of variability (e.g.,
for pCO2)11 or published error estimates (e.g., upper and lower
bounds for continental arc length13), and we can directly ap-
ply these ‘known’ uncertainties. For other parameters, we have
to make reasonable assumptions to characterise their uncer-
tainty, based on existing knowledge of the individual processes
or model limitations (see Section 3.2).

The (87Sr/86Sr)sw and igneous Sr ratio were treated slightly
differently to the inputs derived from tectonic reconstructions
or proxy records because these curves are well established
and based on several thousand individual direct measurements
across the period of interest. Therefore, it is reasonable to ac-
cept that the variability present in the raw data (e.g., Fig. 1g)
provides a good approximation of the ‘true’ uncertainty. Rather
than simulating additional noise, we vary the width of the time
window used to calculate a moving average.

Fundamentally, characterising the uncertainties in many of
these processes (e.g., global tectonics) is complex, because the
time series are of differing resolution, and the individual ge-
ological processes vary on different timescales. Some pro-
cesses vary rapidly (on timescales of the order ∼1 Ma or less)
whereas others (e.g., subduction length) are expected to vary
more slowly. In addition, there are physical grounds for au-
tocorrelation and correlation between processes, which cannot
be explicitly simulated without making many assumptions. To
avoid making unjustifiable or overly complex model choices
we simply use independent random sampling to make perturba-
tions to the original data and thus simulate uncertainty. This is
a cautious approach and will reduce correlation (and autocorre-
lation) for any given variable.

For parameters with no well-defined or widely accepted er-
ror bounds, we have attempted to strike a balance between es-
timating a reasonable level of uncertainty, and preserving the
physical characteristics of the individual time series (i.e., the
expected frequency of oscillation in time; e.g., arc length is
relatively steady over 1–2 Myr, whereas atmospheric CO2 can
vary more rapidly). For several parameters (see section 3.2),
we applied increased uncertainty for ages older than c. 200
Ma because little oceanic lithosphere of this age is preserved
today54, leading to greater uncertainty in tectonic simulations
that cover the studied period from 410–200 Ma. As the BN is
learned purely from the data and requires no prior assumptions
about conditional dependence between nodes, it can readily be
updated should new observations (or better-constrained uncer-
tainty estimates) become available. Thus, our hypotheses are
explicitly open to further scrutiny and testing using the same
modelling approach.

In our primary analysis, we use a single time series for each
parameter that represents the best available evidence. These in-
puts are all from published time series of observations, model
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simulations or proxy data. Below, we detail the process of simu-
lating input uncertainty for each parameter in turn. These simu-
lated time series (and associated time lags) were combined into
a single input data file (∼3 GB size, comprising 1,000 individ-
ual variant time series for 253 nodes including lags), and used
to test the BN by:

(a) Calculating the empirical and BN correlations for all vari-
ables/lags and comparing the results with calculations for
the original ‘best estimate’ input data (Extended Data Fig.
4);

(b) Running the BN node search algorithm to identify the
variables/lags that provide the most information about
(87Sr/86Sr)sw, and again comparing these results with the
search using the original input data.

3.0. Network Nodes and Uncertainty Distributions

The principal aim of our analysis is to identify the variables
that are most strongly correlated with (87Sr/86Sr)sw (the ‘node
of interest’), and at what time lags, in order to quantitatively
understand the primary geological processes driving chemical
weathering. We used the variation in (87Sr/86Sr)sw ratios de-
rived from marine carbonates14 (Fig. 1g).

These raw (87Sr/86Sr)sw data produce an irregular time-series
with around 5,900 individual data points spanning the interval
from 410 to 0 Ma, with a maximum interval of 10.2 Myr. To
generate a regular time-series for our ‘node of interest’ we took
a moving average of (87Sr/86Sr)sw using a rolling window of
±0.25 Myr. We do not consider lagged values for Sr here, as
we are primarily interested in identifying the processes that lead
(87Sr/86Sr)sw. We do however present a separate analysis of the
relationship between lagged (87Sr/86Sr)sw and CO2 (Extended
Data Fig. 1).

3.1: Network Nodes:
The variables investigated are:

1. Plate tectonic fragmentation: Continental areas were es-
timated from shapefiles generated by the open-source plate
tectonic reconstruction software GPlates18, 55. We used
the plate tectonic reconstruction of Matthews et al.10 for
extracting latitudinal and time-sensitive data for our anal-
ysis. This plate model is a synthesis of the Domeier and
Torsvik56 model for the Late Palaeozoic and the Müller et
al.57 model for the Mesozoic and Cenozoic. All data were
extracted with the plate model in a palaeomagnetic refer-
ence frame, and the output comprises georeferenced maps
of continent boundaries at 1 million year (Myr) intervals
from 410 Ma to the present.

Areas were calculated by taking continental polygons
(which characterise the shape and location of all the con-
tinental landmasses) from the GPlates shapefiles10, and
splitting them into 6 bands according to latitude (90–
20◦N, 20–10◦N, 10–0◦N, 0–10◦S, 10–20◦S, 20–90◦S).
The Rsaga package function rsaga.intersect.polygons is
used to split the continental shapes by latitude, working in

WGS84 global reference system coordinates (EPSG4326).
The total continental area within each latitude band is cal-
culated by first ‘dissolving’ and cleaning the polygons
using the rsaga.geoprocessor function shapes–polygons,
then calculating the total area using the areaPolygon func-
tion from the R geosphere package. Area is calculated
in m2, and—accounting for the accuracy of shapefiles and
the coordinate transformation from longitude/latitude—is
considered accurate to approximately 2 significant figures.
This is reasonable given the model uncertainty and resolu-
tion.

We measured the perimeter of continental landmasses
through time using the perimeter function from the R geo-
sphere package, and adapted the method of Cogné and
Humler25 and Merdith et al.26 to compute the continen-
tal perimeter/area ratio—a measure of how “fragmented”
the continents are through time (Fig. 1f; Supplementary
Data File S1). In contrast to ref.26 we do not apply a min-
imum area threshold, as for the time period we are con-
sidering, we only require the reconstructions of Matthews
et al.10 and do not need to incorporate other plate mod-
els of variable spatial resolution. We do however remove
‘holes’ with areas <5 × 1011 m2, to eliminate the extremely
narrow void spaces (slithers) that occur where adjacent
continental polygons never fully join due to their geom-
etry and resolution in the model. Leaving these ‘holes’ in
place significantly inflates the perimeter estimate at certain
time steps, and they can be clearly identified as erroneous
gaps from inspection of the individual shape-files. Units of
fragmentation are m−1 (perimeter/area), and are extracted
at 1 Myr intervals, then interpolated to 0.5 Myr.

2. Land surface area within the tropics (a:±10◦, and
b:±20◦ of the equator): The area of the continental land
surface (a) within 10◦ degrees of the equator (i.e., the trop-
ical rain belt9) and (b) ±20◦ of the equator were measured
as described above, again using shapefiles exported from
GPlates and processed in R. The latitudinal distribution
of continental landmasses (within both ±20◦ (Fig. 1f) and
±10◦ bands) and the fractional areas of continental land-
masses in the equatorial bands (i.e., area within the belt
divided by the total crustal area) through time are shown
in Extended Data Figure 7, and the data are available in
Supplementary Data File S1. The result is a 1 Myr inter-
val time-series (units: m2), interpolated to 0.5 Myr for the
BN analysis.

3. Seafloor production rates: We calculated seafloor pro-
duction rates as the product of ridge length and spread-
ing rate of each discrete spreading segment (i.e., each mid
ocean ridge segment separated by a transform boundary)
at 1 Myr time steps, using the pyGPlates python library58.
The data were extracted from the Matthews et al.10 plate
model. The spreading segments were defined by obtaining
the tangent to the midpoint of the spreading segment and
measuring the angle between this and the great circle of the
stage pole orientation (i.e., spreading direction) that passes
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through the segment midpoint (Extended Data Fig. 8). If
this angle exceeds 70◦, it is assumed to represent a spread-
ing segment, and the full spreading rate was extracted and
multiplied by the length of the segment. The sum of all
segments × full spreading rate was calculated at 1 Myr in-
tervals to give total seafloor production. Further details on
this approach are provided in Extended Data Fig. 8.

A key uncertainty in the construction of seafloor pro-
duction rates is that very little oceanic lithosphere older
than 200 Ma is preserved today54. However, our analy-
sis does not concern time sensitive evolution of oceanic
lithosphere (such that is required for understanding how
oceanic volume changes through time, or the delivery
of volatiles to trenches, for instance). Instead, we just
require a measure of the volume of new crust formed
through time. The global tectonic models used to es-
timate our seafloor production rates are underpinned by
many geological constraints. For example, Atlantic-style
oceans that opened during the Palaeozoic (e.g., the Meso-
and Neotethys Oceans) are well constrained by rift-drift
records and palaeomagnetic data, allowing a first-order es-
timate of ocean basin evolution, as implemented in plate
models. The Panthalassa Ocean basin in the Matthews et
al.10 model was constructed by Domeier and Torsvik56 to
ensure that spreading rate and ridge length was sufficient
to ensure convergence at all subduction zones that encir-
cled the ocean basin. We therefore consider that—while a
non-unique solution—the evolution of this ocean basin in
the Palaeozoic provides a robust minimum estimate of the
volume of ocean crust added to the globe over this time.

Finally, one of the implications of our analysis for the past
410 Myrs is that seafloor production rate exerts a rela-
tively weak control on (87Sr/86Sr)sw through time. To test
the sensitivity of this result to the uncertainty in spreading
rates prior to 200 Ma, we developed a BN for the past 200
Myrs, when seafloor spreading rates are much better con-
strained. We found that the empirical correlation between
seafloor production rates and (87Sr/86Sr)sw reduces even
further (i.e., relative to the 410 Myr network; from -0.28
to -0.16). This test, targeting the interval with the highest
certainty, provides confidence that seafloor production rate
is of secondary importance in global chemical weathering,
and has been particularly weak since the early Jurassic.

The output is a 1 Myr interval time-series (units:
km2/Myr), which we interpolate to 0.5 Myr for purposes
of our analysis.

4. Continental arc length: We used a global compilation of
continental volcanic arc lengths13 that is based on the spa-
tial extent of granitoids, currently exposed at the Earth’s
surface, associated with continental arc magmatism. Ac-
cordingly, these estimates are independent from any plate
model used in our analysis. Here, the minimum length is
based on the actual (i.e., observed) extent of the surface ex-
posure of the granitoids, and the maximum length is based
on the geological interpretation of the original spatial ex-

tent of the arcs (described in the Supplementary Informa-
tion accompanying Cao et al.13). It must be noted that, for
the present-day, these estimates omit several areas experi-
encing continental subduction (e.g., under Zealandia, flat
slab subduction in the Andes). In most cases, the mini-
mum and maximum lengths are equal, and in cases where
these deviated we used the average length value—noting
that the difference between the minimum/maximum and
the average length is <11.5% during the period of interest
(Fig. 1c). The time-series (units: km) is regular with a 1
Myr interval, interpolated to 0.5 Myr.

5. Suture zone length: We used a database of suture zone
length that records sites of ophiolite obduction during arc-
continent collisions9. Here, the suture zone lengths were
estimated using the observed spatial extent of ophiolites
based on published geological maps and global lithologi-
cal compilations. Macdonald et al.9 reconstructed the lo-
cations of suture zones throughout the Phanerozoic using
paleogeographic models. They estimated the duration of
suture zone activity using the onset of ophiolite obduction
(as evidenced by the first occurrence of arc exhumation),
which they defined as the first appearance of ophiolite-
derived detritus in the foreland; and the termination of
foreland deposition was taken to mark the cessation of
ophiolite obduction (procedure is described in the Sup-
plementary Information accompanying ref.9). Since the
suture “length” in a region is maintained as long as asso-
ciated sedimentary deposits are accumulating in the fore-
land basin9, the “duration” measure of Macdonald et al.9

is considered a crude proxy for the volume of exhumed
ophiolites. The time-series (units: km) is regular with a 5
Myr interval, interpolated to 0.5 Myr.

6. Atmospheric CO2 concentration: We used a compila-
tion of the partial pressure of atmospheric carbon dioxide
(pCO2) for the past 420 Ma derived from multi-proxy mea-
surements (N=1241; from the literature and covering five
independent techniques; ref.11). Foster et al.11 used a set
of criteria to screen and standardise these records, and ap-
plied Monte Carlo resampling and a local polynomial re-
gression (LOESS) fit to the resulting data series. We used
the maximum probability pCO2 data from ref.11 (Supple-
mentary Data File S1), with associated 68 and 95 per-
centile ranges (Fig. 1b). We note that recent phytane-based
measurements12 are in good agreement with this long-term
pCO2 record (Fig. 1b). The time-series from Foster et al.11

(units: ppm) is regular with a 0.5 Myr interval.

7. Latitudinal ice extent: We used a recent compilation of
the latitudinal extent of continental ice sheets (e.g., 90◦

= no ice sheets) from Macdonald et al.9. This compila-
tion is based on a literature review of the geological con-
straints on glaciation during the Phanerozoic, and the in-
ferred paleogeographic extent of continental ice using up-
dated age constraints (a full discussion of this database is
described in the Supplementary Information accompany-
ing ref.9). The time-series (units: degrees) is regular with
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a 1 Myr interval interpolated to 0.5 Myr.

8. Subduction zone length: The total length of subduction
zones (including oceanic arcs) through geological time
were taken from Matthews et al.10, and extracted using
pyGPlates58 at 1 Myr intervals. Spatial and temporal con-
straints on the distribution and extent of subduction zones
are provided by geological constraints such as, for in-
stance, ophiolites, subduction-related magmatism and the
occurrence of high pressure metamorphic lithologies that
are consistent with subduction processes59.

As noted by Merdith et al.59, there are some similari-
ties in the trends of subduction zone and continental arc
lengths13, lending support to these independently-derived
measures. The time-series is regular at 1 Myr intervals
(units: km), interpolated to 0.5 Myr.

9. Active LIP area: We used the area of Large Igneous
Provinces (LIPs) actively erupting at a particular 1 Myr
time step from the compilation of Johansson et al.19. This
database, which includes continental and oceanic LIPs,
was compiled and digitised from the literature and their lo-
cations were reconstructed using GPlates software19. An
underlying assumption of this time-series is that the LIPs
were active for a total period of 3 Myr after their accepted
eruption age. The time-series is regular at 1 Myr intervals
(units: km2), interpolated to 0.5 Myr.

10. Weatherable LIP area in the tropics: We also use the
area of LIPs (active or inactive) exposed within 15◦ of the
equator at a particular 1 Myr time step19. Johansson et
al.19 applied paleogeographic reconstructions to discrimi-
nate between continental and oceanic LIPs in order to iso-
late exposed (continental) LIPs within the tropics. This
regular time-series (1 Myr interval, units: km2) provides a
minimum estimate of LIP area through time.

11. Igneous Sr ratio: We use the 87Sr/86Sr ratio of zircon-
bearing igneous rocks (i-zig) over the last 400 Ma, from
the compilation of Bataille et al.15 that spans 1000 Ma, to
assess the relative contribution of continental igneous rock
lithologies (i.e., dominantly continental volcanic arcs, the
locus of zircon formation) to (87Sr/86Sr)sw. The authors
applied a bootstrap resampling approach to correct for ge-
ographic/sampling biases in the detrital zircon record com-
prising 24,715 individual zircon grains. Bataille et al.15

used the relationship between the εHf compositions of
zircons and the εSr of their igneous host rocks to esti-
mate the secular variations in the (87Sr/86Sr)i−zig through
time—reflecting the changing proportion of juvenile and
reworked materials generated during orogenesis. We re-
ran code from Bataille et al.15, using a modified smooth-
ing window of 5 Myr, and increment and scale of 0.5 Myr
(previously 10 Myr and 1 Myr, respectively, in Bataille et
al.15). Additionally, we applied an adaptive window (de-
creasing in size) for data points between 5 and 0 Ma, to
enable extension of the time-series to 0.5 Ma.

3.2: Uncertainty Distributions
For the original input time series for the node of interest,

(87Sr/86Sr)sw, we used a centred moving average with a win-
dow of 0.5 Myr (i.e., at each time step, t, we calculated the
mean within the window (t–0.25) to (t+0.25) Myr). For the
uncertainty analysis, the window for the moving average was
varied from 1 to 5 Myr, by randomly sampling from a uniform
distribution on the interval [1,5].

We simulated input uncertainty for each of the predictor
nodes (numbered as above) as follows, before finally interpo-
lating to give a regular 0.5 Myr time step, and calculating time
lags up to 50 Myr. We generated 1,000 variant time series for
each observable (and associated lags), and merged these into a
single input file to perform BN learning. The simulated uncer-
tainties for each node are shown in Extended Data Fig. 2.

1. Plate tectonic fragmentation: We consider the rift record
of the last 400 Ma to be robust because this interval only
encompasses one supercontinent breakup (i.e., there is lit-
tle overprint and many passive margins have not been in-
verted)60. Here, because little oceanic lithosphere older
than 200 Ma is preserved today54, affecting the fidelity of
plate models for this age, we applied increased uncertainty
for ages before 200 Ma. For 410–200 Ma we applied a
uniform random variation of up to ±10%, and a centred
moving average with a 10–15 Myr window (discrete uni-
form sample). For 200–0 Ma, where the data confidence
is greater, we applied a uniform random variation of up
to ±5%, and a centred moving average with a 5–10 Myr
window (discrete uniform sample).

2. Land surface area within the tropics (a:±10◦, and
b:±20◦ of the equator): Latitude is constrained by palaeo-
magnetic data, the mean uncertainty of which is approxi-
mately 10%61. For 410–200 Ma, we applied a conserva-
tive ±20% random variation (uniform distribution), and a
centred moving average with 10–15 Ma window (discrete
uniform sample). For 200–0 Ma, we applied a ±10% ran-
dom variation (uniform distribution), and a centred mov-
ing average with 10–15 Ma window (discrete uniform
sample).

3. Seafloor production rates: Again, seafloor production
rates are uncertain because little or no in situ oceanic crust
older than c. 200 Ma is preserved54. To account for this,
at each time step from 410–200 Ma, we applied a random
variation up to ±10%, sampled from a uniform distribu-
tion, which was considered an acceptable range based on
existing models of ocean basins54. We then took a centred
moving average with a variable 2–5 Myr window (sampled
from a discrete uniform distribution). For seafloor younger
than 200 Ma, we applied ±5% random variation (again us-
ing a uniform distribution), and a centred moving average
with a 1–2 Myr window (discrete uniform sample). This
range is in line with known errors for other parameters in
the simulation, and reflects the increased uncertainty fur-
ther back in time.
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4. Continental arc length: Much of the data include esti-
mates for the minimum, maximum and mean continen-
tal arc lengths13. For cases where only a single estimate
is provided (i.e., no range was specified in the published
compilation) we apply an uncertainty of ±10% of the pub-
lished values as a reasonable approximation to the upper
and lower bounds, and assume that the cited value is the
mean estimate. This is a cautious but reasonable approach
given that, where reported, measured uncertainty is typ-
ically of the order ±10% (ref.13). Simulated time series
were generated by sampling (at each 1 Ma time step) from
a Beta distribution with the specified minimum, maximum
and mean and (in the absence of any more information
about the true uncertainty distribution) assuming a stan-
dard deviation of 20% of the range. The Beta distribution
was chosen because it varies smoothly over a fixed inter-
val, and appropriate shape parameters can be readily esti-
mated given the mean, range and standard deviation.

5. Suture zone length: The published dataset9 does not in-
clude an estimate of uncertainty. However, the suture zone
records are underpinned by plate simulations that become
increasingly uncertain further back in time than 200 Ma
(see 1–3 above). Accordingly, at each 5 Myr time step, in
the absence of uncertainty estimates, we varied the data by
a randomly sampled (uniform) ±10% for ages older than
200 Ma, and ±5% for 200–0 Ma. Again, this range is in
line with known errors for other parameters in the simula-
tion (e.g., continental arc length), reflects increased uncer-
tainty further back in time, and also takes into account the
resolution of the original data.

6. Atmospheric CO2 concentration: We used 1,000 indi-
vidual realisations of the multi-proxy CO2 time series of
Foster et al.11, in which each data point was randomly var-
ied within its age and CO2 uncertainty. Our original time
series for CO2 uses pCO2 prob max from Foster et al.11 –
this is the modal value from their simulations at each 0.5
Myr time step.

7. Latitudinal ice extent: The temporal resolution of this
data set is ∼1 Myr, although the spatial resolution is fairly
coarse because latitude is estimated to the nearest 5◦. We
therefore chose to vary the values of both time and latitude
at each step change, rather than every 1 Myr. This pre-
serves the coarseness of the input rather than introducing
artificial ‘fast’ (i.e., short time scale) variability, which is
not present in the original data. We applied the following
steps:

(i) Perturbed the time stamp: For times older than 10
Ma (where there is less certainty about timing of
glaciation), we varied the time of each step change
by a random amount up to ±0.5 Myr, sampled from
a uniform distribution.

(ii) Perturbed the latitude estimate by a random amount,
sampling from a uniform distribution ±2.5◦.

(iii) Interpolated to 0.5 Myr, and calculated time lags.

8. Subduction zone length: Subduction zone length is de-
rived from plate tectonic reconstructions, and is related
to both continental arc length, and the spatial extent of
arc-continental collisions (i.e., as indicated by suture zone
length). We therefore followed a similar approach to that
used for suture zone length (5, above), and continental arc
length (4). For 410–200 Ma, we applied a (uniform) ran-
dom variation to the length of up to ±10%. Because this is
not a rapidly varying process (significant changes are ex-
pected to occur on timescales >1 Myr), we then applied a
centred moving average with a 5–10 Myr window (discrete
uniform sample). For 200–0 Ma, where length estimates
are better constrained, we applied uniform ±5% random
variation, and a centred moving average with a 5–10 Myr
window (discrete uniform sample), again because subduc-
tion zone length is not expected to vary very rapidly.

9. Active LIP area: For 410–200 Ma, we applied a uniform
random variation of up to ±20% (again due to the greater
uncertainty in model estimates before 200 Ma), and a cen-
tred moving average with a 5–10 Myr window (discrete
uniform sample). For 200–0 Ma, we applied a uniform
random variation of up to ±10%, and a centred moving
average with a 1–5 Myr window (discrete uniform sam-
ple).

10. Weatherable LIP area in the tropics: Same as (9) above.

11. Igneous Sr ratio: This time series was derived from 3,500
individual measurements spanning 410 to 0 Ma. Here we
adopted the method of calculation of Bataille et al.15, but
varied the window used to smooth the data from 2.5 to
7.5 Myr, sampling the window size from a uniform dis-
tribution (previously we used a fixed window of 5 Myr).
In addition, the increment (i.e., the time step used in the
calculations) was also varied by randomly sampling from
a uniform distribution from 0.25 to 1.25 Myr (previously
we used a fixed increment of 0.5 Myr).

4.0. Auto- and Cross-correlations

Many of the studied variables are strongly auto-correlated
and cross-correlated (e.g., due to being different proxies for the
same or related processes/states). This makes it very difficult
to identify dominant driving processes and their time lags. It
is straightforward to compute partial autocorrelations for indi-
vidual parameters—a standard approach in time-series analy-
sis, however the multivariate case cannot always be solved. We
tested whether the multivariate partial autocorrelation could be
computed for our data set using an R implementation of the
PACF62 (function acf/pacf in the stats package). This function
computes the partial lag autocorrelation matrix P(s) of Heyse
and Wei62 (pp 411-414 in Wei63), where P(s) is the autocorre-
lation matrix between Zt and Zt+s after removing the linear de-
pendency on the vectors at intervening lags Zt+1, Zt+2 ... Zt+s−1.
The elements are normalised correlation coefficients. Based on
this analysis, we concluded that the multivariate PACF62 could
not successfully be computed for our data.
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To provide an alternative means of accounting for the com-
bined effect of multiple parameters (at varying lags) on the vari-
able of interest (87Sr/86Sr)sw, we developed a novel method
based on conditional correlation, estimated using Uninet51.
The approach we employ is similar in principle to the multivari-
ate partial autocorrelation, but evaluates the conditional correla-
tion for variables added iteratively to the BN at increasing time
lags.

Code is written in C++ and uses the UninetWindows COM
library51. Uninet51 is a software package for uncertainty anal-
ysis and dependence modelling for high dimensional distribu-
tions64,65. It is available as a standalone application, and as a
Windows COM library (the Uninet Engine) enabling alterna-
tive programming interfaces, including but not limited to: R,
Matlab, and Visual Studio/C++ (used here). Uninet models
empirical multivariate distributions by building a joint density
function from a set of inputs (data mining). Joint dependency
is represented by conditional rank correlation, using the joint
normal copula66.

5.0. Summary of the data mining algorithm
Input data are time-series for the variable of interest Xt

(which in this instance is (87Sr/86Sr)sw) and the 12 predictor
variables At, Bt, Ct, ... Lt (observables listed in section 3.0),
plus lagged values of those variables At−2.5... At−50 etc. Nodes
are grouped and evaluated in order of increasing lag, giving a
set of observables (At, Bt, Ct, ... Lt) at lag 0; (At−2.5, Bt−2.5, ...
Lt−2.5) at lag t-0.5 Myr to t-2.5 Myr etc., up to 50 Myr.

We construct the network by starting with the unlagged vari-
able with the highest empirical correlation with (87Sr/86Sr)sw,
then systematically search through the set of remaining predic-
tor variables to find maximum values of conditional correlation
(CCond) at increasing time lags. At each iteration we look for
the largest CCond as this identifies the variable that individually
provides the maximum additional information at each step. The
variable with the largest CCond is subsequently added to the net-
work if all of these following conditions are met:

1. Its conditional correlation CCond (the correlation with
(87Sr/86Sr)sw, conditional on all other variables in the net-
work) exceeds a specified confidence interval threshold.
Here we use the 99% CI, with the threshold depending
on the number of observations used to generate the time-
series for the variable in question. This results in a higher
threshold for lower resolution variables.

2. The difference between the (unconditional) empirical rank
correlation CEmp and BN (i.e., modelled) rank correlation
CBN with (87Sr/86Sr)sw is less than 30%. This eliminates
variables that cannot be represented accurately by the BN
(using normal copulae) and prevents such nodes affecting
the estimates of conditional dependence for subsequent
nodes.

3. The variable is not highly correlated (a correlation of 0.8
or greater) with any existing variables in the network (i.e.,
nodes higher up in the network hierarchy). This reduces
the effect of collinearity.

This procedure is repeated for each discrete time lag, result-
ing in the lagged variables being either added to the network
(in order of decreasing conditional correlation and increasing
lag, respectively), or rejected for not meeting one of the three
criteria above. These steps ensure the construction of a par-
simonious model where only the most informative nodes are
retained. We present the calculated Empirical, BN (modelled)
and Conditional (modelled) rank correlations for each variable
and time lag in Figure 3 and Extended Data Figures 3–4.

The computational efficiency of Uninet means that this ap-
proach is suitable for application to large numbers (of the order
hundreds to thousands) of nodes—greater than demonstrated
here.

5.1: Itemised steps to construct the network:
1. Generate a saturated BN using all variables (nodes) with

lag 0 (At, Bt, Ct ... Xt) and identify the node with
the largest empirical correlation (CEmp) with the variable
(node) of interest Xt. This node (e.g., Ct) individually
gives the most information about Xt so it is placed first in
the network hierarchy. The variable of interest Xt always
remains last in the hierarchy, as we are interested in com-
puting the probabilty of Xt given all the other observables.
(NB: A saturated BN contains arcs linking every pair of
nodes in the network).

2. Step through all the remaining nodes with lag 0 (At ... Lt)
and add them one by one, as a second “test node” in the
network. Calculate the conditional rank correlation c for
each test node in turn e.g., c = CCond (Xt At | Ct).

Poor fit (i.e., how well the BN can represent dependency
with the node of interest) is penalised by calculating c’=(1-
p)c, where p is a penalty value simply based on the abso-
lute fractional difference between the empirical and BN
correlations (CEmp(Xt At) and CBN(Xt At) respectively);
i.e., if these are the same, the penalty p is zero:

p= abs((CEmp(Xt At) – CBN(Xt At))/ CEmp(Xt At))

This prioritises inclusion of nodes that can be represented
most accurately by the BN.

3. Find the node that has the largest (absolute) value c’
(c’max). If the conditional correlation c is below the spec-
ified confidence interval threshold set for this particular
node, or if p > 0.3 (the BN and empirical correlations
differ by more than 30%), the node is eliminated and not
added to the network (in this case, move to step 5).

4. Reduce collinearity (high correlations between predictor
nodes) as follows: If the node giving c’max has not already
been eliminated in step (3) calculate the empirical corre-
lation of this node with all other nodes higher in the BN
hierarchy (i.e., all nodes other than the node of interest,
Xt). If this returns an empirical correlation greater than a
given threshold (in this case 0.8) indicating high collinear-
ity, the node is eliminated and not added to the network. If
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the empirical correlations are all below 0.8, add the node
to the network and proceed to step (5).

5. Repeat steps (2) through (4) with all remaining lag 0
nodes, until they are all either added to, or eliminated from
the network according to the steps above.

6. Repeat steps (2) through (5) using the set of nodes with
lag 0.5-2.5 Myr (At−2.5, Bt−2.5, ... Lt−2.5) etc., up to the
maximum lag (50 Myr).

Using the resulting network, we can then compute and
plot the conditional rank correlation for each variable at
increasing lag, having effectively removed both the effect
of shorter period lags, and other more informative predic-
tor variables (see Fig. 4; Extended Data Figs. 3–4).

Please note that an additional reference is cited in an Extended
Data Figure67.

Data availability

All data generated or analysed during this study are provided
in the online version of this article (Supplementary Data Files
S1–S3) and in Extended Data Tables 1–2. These data are also
available to download via the figshare repository, at the follow-
ing DOI addresses:

S1: dx.doi.org/10.6084/m9.figshare.14877099

S2: dx.doi.org/10.6084/m9.figshare.14877132

S3: dx.doi.org/10.6084/m9.figshare.14877162

Source data

Supplementary Data File S1:
Time-series compilation of all data used in our network, span-
ning the period from 410–0 Ma. This includes (a) the predic-
tor variables, which are: continental arc length13, suture zone
length9, latitudinal extent of continental ice sheets9, continen-
tal area within 20◦ of the tropics (this study), continental area
within 10◦ of the tropics (this study), plate tectonic fragmen-
tation index (this study), subduction zone length10, 59, seafloor
production rates (this study), atmospheric pCO2 (ref.11), area
of LIPs within 15◦ of the tropics19, eruptive area of LIPs19,
87Sr/86Sr of continental igneous lithologies15; and (b) the node
of interest, (87Sr/86Sr)sw (ref.14), as well as a normalised version
accounting for radioactive decay of 87Rb in the crust through
geological time15. The records were interpolated to obtain a
regular (1 Myr interval) time-series, and in cases where multi-
ple values occurred within a single time stamp we used a mov-
ing average with a 1 Myr window.

Supplementary Data File S2:
Summary of the simulated time series (capturing uncertainty)
for all input parameters, including the mean, median, 10th and
90th percentiles, and minimum and maximum values at 0.5 Ma
time steps (see Methods for details). The full input file with all
simulated inputs is 3 GB in size.

Supplementary Data File S3:
S3 tabulates the empirical rank correlations (CEmp) and BN cor-
relations (CBN) for all individual input parameters and lagged
parameters (the predictor nodes) with (87Sr/86Sr)sw (the node
of interest). These were calculated by generating a satu-
rated Bayesian Network with all 254 nodes (including lags),
and computing CEmp and CBN for all predictor nodes with
(87Sr/86Sr)sw. Correlations have been calculated using both the
original (‘best estimate’) input data set and also the simulated
data set, to evaluate the effect of input uncertainty (see Ex-
tended Data Fig. 2).

Code availability

More details on the computational methods and tools used
for this study are available from the corresponding author
(Thomas.Gernon@noc.soton.ac.uk) upon reasonable request.
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