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Abstract. In this paper we study the normalizer decomposition of a compact
Lie group G using the information of the fusion system F of G on a maximal

discrete p -toral subgroup. We prove that there is an injective map from the set

of conjugacy classes of chains of F-centric, F-radical discrete p -toral subgroups
to the set of conjugacy classes of chains of p -centric, p -stubborn continuous

p -toral subgroups. The map is a bijection when π0(G) is a finite p -group. We

also prove that the classifying space of the normalizer of a chain of discrete
p -toral subgroups of G is mod p equivalent to the classifying space of the

normalizer of the corresponding chain of p -toral subgroups.

1. Introduction

In [Dwy97], Dwyer formalized and unified three homology decompositions for
the p -completed classifying space of a finite group G based on a collection of p -
subgroups: the centralizer decomposition, the subgroup decomposition, and the
normalizer decomposition. The first two had been studied in [JM92] and [JMO92]
for compact Lie groups, and the normalizer decomposition was new in this context.
Dwyer showed that for a given collection of subgroups of a finite group G, either
all three decompositions give the correct homotopy type for BG∧p or none of them
do. Such decompositions in the setting of Lie groups have since been studied by
other authors, for example [CLN07, Lib11, So01, Str00]. In particular, in [Lib11]
Libman gives a normalizer decomposition and then unifies the three homology de-
compositions for Lie groups, as Dwyer did in the finite group case.

Recently, the homotopy theory of p -local compact groups [BLO07, Defn 4.2] has
provided a new, more general framework for dealing with the homotopy type of p -
completed classifying spaces of compact Lie groups, in addition to other examples
coming from finite loop spaces ([BLO14]). One works with discrete p -toral groups
(Definition 2.1) instead of p -toral groups. The formal structure of a p -local compact
group consists of a triple (S,F ,L) where F is a saturated fusion system over the
discrete p -toral groups S and L is a centric linking system associated to F . But in
view of [LL15, Thm B] a p -local compact group is equivalent to just a pair (S,F),
namely a saturated fusion system over a discrete p -toral group.

When the p -local compact group arises from a compact Lie group G, it encodes
the essential p -local information needed to uniquely determine the homotopy type
of BG∧p (see [BLO07], [Che13], [Oli13], [LL15]). A great advantage of studying Lie
groups via this theory is that it reduces the study of a topological group to the study
of a collection of discrete subgroups. There are also other interesting examples
of p -local compact groups. For example, one can construct a p -local compact
group capturing the homotopy type of a p -compact group (an Fp-finite loop space
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together with a chosen p -complete delooping, see [DW94]). Other examples of
p -local compact groups are given in [BLO14] and [GLR19].

To state the form of a normalizer decomposition more precisely, consider a col-
lection C of closed subgroups of a Lie group G. Define sd(C) to be the poset of
G-conjugacy classes of chains of proper inclusions in C, say H∗ := (H0 ⊂ · · · ⊂ Hk).
One can construct a functor δ : sd(C)→ Top, and a natural transformation from δ
to the constant functor with value BG, to induce a map

(1.1)

(
hocolim

sd(C)
δ

)∧
p

→ BG∧p

such that δ(H∗) ' BNG(H0 ⊂ · · · ⊂ Hk) := B
(⋂

iNG(Hi)
)
. The following

statement collects results of [Lib11, Thm C, D], [JMO92, Thm 1.4], and [BLO07,
Lemma 9.7] that establish collections for which the normalizer decomposition cor-
rectly computes the p -completed homotopy type of BG.

Theorem 1.2. Let G be a compact Lie group and let C be either (i) the collec-
tion of nontrivial p -radical p -toral subgroups or (ii) the collection of p -stubborn
p -toral subgroups or (iii) the collection of p -centric p -toral subgroups of G (see
Definition 4.1). Then (1.1) is an equivalence.

Our program’s goal, taken up in a forthcoming work [BCG+], is a computable
setup that generalizes the normalizer decomposition (1.1) from compact Lie groups
to p -local compact groups. The formalism is a straightforward generalization of the
earlier work of Libman [Lib06] giving a normalizer decomposition for p -local finite
groups. In a result similar to Theorem 1.2, [BCG+] will also show that if the p -
local compact group corresponds to the fusion system F , then the full subcategory
of F consisting of F-centric and F-radical subgroups (Definition 4.1) is sufficient
to determine the homotopy type of the p -completed classifying space. This result
is in the literature for finite groups ([Gro02, Thm 1.5]) and p-local finite groups
([BCG+05, Thm 3.5]), but not for p -local compact groups.

When it comes to actual computations, the analysis of the spaces coming into
our normalizer decompositions for p -local compact groups can be delicate. This
paper is largely in service of understanding the spaces in the decompositions that we
obtain in certain examples. In particular, we need to understand what happens in
the case of a p -local compact group that arises from a compact Lie group, because
we want to compare the decomposition we obtain in [BCG+] with the earlier one
of Libman for the corresponding Lie group [Lib11].

We turn to a description of the contents of this paper and how they fit into our
program. Let G be a compact Lie group, and let S ⊆ G be a maximal p -toral
subgroup of G with maximal discrete p -toral subgroup S ⊆ S. The corresponding
fusion system F associated to G is the category whose objects are the discrete p -
toral subgroups of S, and whose morphisms are given by homomorphisms induced
by conjugation by elements of G. The goal of this paper is to establish that the
left side of (1.1), which is described in terms of chains of continuous p -toral groups
and the action of G, can instead be described in terms of F , i.e. in terms of chains
of discrete p -toral groups of G and morphisms in F . There are two issues: the
indexing category, and the values of the functor δ.

Our first theorem addresses the indexing category, by relating conjugacy classes
of chains of discrete p -toral subgroups of a compact Lie groupG to conjugacy classes
of chains of continuous p -toral subgroups of G. The following theorem establishes
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that the desired classes of chains can all be found by considering the p -stubborn
p -toral subgroups of G, which are classified in [Oli94] for classical groups. (See
Definition 2.5 for p -discretization.)

Theorem 4.3. Let S be a maximal p -toral subgroup of a compact Lie group G,
with p -discretization S ⊆ S. The closure map P 7→ P defines an injective map{

P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are F-centric and F-radical
}
/G

��{
P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are p -toral, p -centric, and p -stubborn

}
/G.

The map is a one-to-one correspondence if π0G is a p -group.

Our second theorem deals with the values of the functor δ in (1.1). In particular,
we relate the mod p homotopy type of the classifying spaces of normalizers of chains
of discrete p -toral subgroups to those of chains of continuous p -toral subgroups.
Since our decomposition for p -local compact groups will involve the former, this
theorem will relate (i) the decomposition given by our p -local compact group meth-
ods applied to the case of a compact Lie group and (ii) the decomposition for a
compact Lie group that is obtained by [Lib11].

Theorem 5.1. Let P0 ⊆ . . . ⊆ Pk be a chain of p -toral subgroups of a compact
Lie group G, and let P0 ⊆ . . . ⊆ Pk be a chain of discrete p -toral subgroups such
that each Pi is a p -discretization of Pi. Then

NG (P0 ⊆ . . . ⊆ Pk) −→ NG (P0 ⊆ . . . ⊆ Pk)

induces a mod p equivalence of classifying spaces.

The proof introduces the outer automorphism group of a chain H0 ⊆ · · · ⊆ Hk

(Definition 5.2), which turns out to be a finite group and plays an important role
in the argument. (See Proposition 5.3, Lemma 5.6, and diagram (5.14).)

In summary, this paper provides the technical results necessary to compare two
normalizer decompositions for classifying spaces of compact Lie groups: the one ob-
tained by applying [BCG+] to a p -local compact group arising from a Lie group G,
and the earlier one due to Libman [Lib11], obtained by techniques using G-actions.
The two decompositions are related by taking closures of discrete p -toral subgroups,
which brings up surprisingly subtle issues. Hence we develop some useful tools for
studying the relationship between discrete p -toral groups and their closures, as well
as the relationship between the classifying spaces of their respective normalizers.

Notation. Throughout the paper, G denotes a compact Lie group. Our convention
for conjugation is that cg(x) = g−1xg. We generally use a boldface font to denote a
topological group, as opposed to a discrete group, with the exception of the ambient
Lie group G itself. For example, we use P for a p -toral group, and P for a discrete
p -toral group.

Organization. Section 2 includes background material on p -toral and discrete
p -toral subgroups of a compact Lie group. Section 3 presents a key technical
result on p -discretization of pairs, which allows us to understand how chains of
discrete p -toral subgroups conjugate inside their closures. Some of the results of
this section already appear in [BLO07], but we present some simplified proofs.
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Section 4 contains the proof of Theorem 4.3. Lastly, in Section 5 we introduce the
group of outer automorphisms of a chain and we prove Theorem 5.1.
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2. p -toral and discrete p -toral subgroups of Lie groups

In this section, we give background material on p -toral and discrete p -toral
subgroups of a compact Lie group G. First, the definitions.

Definition 2.1.

(1) A group is p -toral of rank r if it is an extension of a torus of rank r by a
finite p -group.

(2) A discrete p -torus of rank r is a group isomorphic to a product (Z/p∞)
r
.

(3) A discrete p -toral group of rank r is an extension of a discrete p -torus of
rank r by a finite p -group.

Remark. When we want to emphasize the difference between a p -toral group and
a discrete p -toral group, we will sometimes refer to the former as a continuous
p -toral group.

The p -toral subgroups of a compact Lie group G play a key role in the analysis of
the mod p homology of the classifying space ofG, analogous to the role played by the
p -subgroups in the case of a finite group. However, there is a key difference between
the finite and topological contexts: subgroups of finite p -groups are finite p -groups,
but subgroups of p -toral groups need not be p -toral. For example, S1 is a p -toral
group, but it has finite subgroups of order prime to p (certainly not p -toral) as well
as the subgroup Z/p∞ ⊂ S1 (also not p -toral, for a different reason). By contrast,
a subgroup of a discrete p -toral group is necessarily another discrete p -toral group.
This feature of discrete p -toral subgroups of a compact Lie group G gives them an
advantage over continuous p -toral subgroups as tools to approximate G.

A compact Lie group G admits both maximal continuous p -toral subgroups and
maximal discrete p -toral subgroups, both of which have properties analogous to
those of the Sylow p -subgroups of a finite group.

Proposition 2.2 ([BLO07, Prop. 9.3]). Let G be a compact Lie group.

(1) Every p -toral subgroup (respectively, discrete p -toral subgroup) of G is con-
tained in a maximal one.
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(2) All maximal p -toral subgroups (respectively, discrete p -toral subgroup) are
conjugate in G.

Unfortunately, discrete p -toral subgroups will not be good approximations to
continuous p -toral groups when their group theoretic properties interact badly with
their embeddings. In particular, a discrete p -toral group can have smaller rank than
its closure, and this can occur even when the groups are just tori. For example,
Z/p∞ can be embedded via a homomorphism as a dense subgroup of S1 × S1. To
set apart good approximations from bad ones, we have the following definition.

Definition 2.3 ([BLO07, Defn. 9.1]). A discrete p -toral subgroup P ⊆ G is snugly
embedded if P is a maximal discrete p -toral subgroup of P .

Lemma 2.4 ([BLO07, Prop. 9.2]). If P ⊆ G is a snugly embedded discrete p -toral

group, then P ↪→ P induces a homotopy equivalence (BP )
∧
p '

(
BP

)∧
p

.

Not all discrete p -toral subgroups of a compact Lie groupG are snugly embedded.
However, since any p -toral group possesses maximal discrete p -toral subgroups by
Proposition 2.2, a p -toral group can always be approximated by a snugly embedded
discrete p -toral group. A more compact terminology will be helpful.

Definition 2.5. Let P be a p -toral subgroup of G, and let P ⊆ P be a snugly em-
bedded discrete p -toral subgroup with P = P. We say that P is a p -discretization
of P.

In particular, a p -discretization of P is characterized by being a maximal discrete
p -toral subgroup of P.

Example 2.6. A torus has only one p -discretization, namely the subgroup con-
sisting of all p -torsion elements. Similarly, Proposition 2.2(2) establishes that any
abelian p -toral group has a unique p -discretization.

In general, however, a p -toral group P that has multiple components has many
p -discretizations. If P ⊆ P is one such, then the others are all conjugate to P in P
by Proposition 2.2(2). The stabilizer of P is NP(P ), so the approximations are
parametrized by P/NP(P ). (See also Remark 3.7.)

The simplest nontrivial example with more than one discretization is the 2-toral
group P = O(2) ∼= S1 o {±1}, where −1 is represented by reflection over the y-
axis. An obvious 2-discretization is given by the subgroup P = Z/2∞ o {±1}. A
direct matrix calculation shows that NP(P ) = P , so in fact the 2-discretizations
are parametrized by P/P ∼= S1/ (Z/2∞). The other parametrizations are given by

(2.7) P ′ =
(
Z/2∞ × {1}

)
t
(
ξ · Z/2∞ × {−1}

)
where ξ is any fixed element of S1. And indeed, the proof of [BLO07, 9.3] establishes
that, in general, the different p -discretizations of a p -toral group P can be obtained
by conjugation by an element of the torus of P.

We close this section by observing that, as in (2.7), any p -discretization must
start with the unique p -discretization of the torus.

Lemma 2.8. If P is a p -toral group with maximal torus T, and Tp denotes the
p -torsion elements of T, then any p -discretization of P must contain Tp.

Proof. By Proposition 2.2, Tp can be expanded to a p -discretization P ′ of P, and
P ′ is conjugate to P in P. However, Tp is a normal subgroup of P and hence is
stabilized by the conjugation. Thus Tp ⊆ P as well. �
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3. p -discretizations of pairs

Let P be a p -toral group. Proposition 2.2 tells us that all p -discretizations of P
are conjugate in P. It also tells us that if Q ⊆ P is a p -toral subgroup and Q
is a p -discretization of Q, then Q can be expanded to a p -discretization P of P.
However, it is likely that there is more than one way to expand Q; that is, there
can be different pairs of discrete p -toral subgroups (Q,P1) and (Q,P2) that are
p -discretizations for the pair (Q,P). The main goal of this section is to establish
the following proposition, which can be thought of as a uniqueness statement about
p -discretizations of pairs. The point is that P1 and P2 are conjugate in P by an
element that fixes Q. Hence the pair (Q,P1) is conjugate in P to the pair (Q,P2).

Proposition 3.1. If P1 and P2 are p -discretizations of P, and Q ⊆ P1 ∩ P2, then
there exists y ∈ CP(Q) such that cy (P1) = P2.

Our approach is based on a non-canonical (and non-topological) splitting of p -
toral groups, for which we use the following standard homological lemma.

Lemma 3.2. Let K be a finite group, and let

0 −→ I −→ X −→ V −→ 0

be a short exact sequence of Z[K]-modules. If V is uniquely |K|-divisible and I is
an injective Z-module, then there is a splitting X ∼= I × V as Z[K]-modules.

Proof. Because I is an injective abelian group, there is a retraction of abelian groups
r : X → I, which in turn defines a section s : V → X of abelian groups. However,
HomZ(V,X) is uniquely |K|-divisible (because V is), so we can define a new section
s̃ : V → X by averaging over the elements of K,

s̃ :=
1

|K|
∑
y∈K

y−1sy.

Then s̃ is a section of X → V as Z[K]-modules, which establishes the lemma. �

We use the following notation for the splitting result below. Let T = Rr/Zr be
a rank r torus, whose subgroup of torsion elements is denoted TQ := Qr/Zr. The
quotient of T by the torsion elements is denoted T∞ := T/TQ. If p is a prime, then
the p -torsion subgroup of T is denoted Tp := (Z/p∞)

r
, and we write Tp′ for the

subgroup of T consisting of torsion elements of order prime to p, i.e. the product
of all the subgroups (Z/q∞)

r
over primes q 6= p.

Lemma 3.3. Let P be a p -toral group with p -discretization P ⊆ P. There ex-
ists a (non-canonical, discontinuous) group homomorphism P → P that splits the
inclusion P ↪→ P. Any such splitting has the property that if P ′ is another p -
discretization of P, then P ′ → P→ P is an isomorphism.

Proof. Let T be the maximal torus of P and let K = π0P = P/T, a finite p -group.
By Lemma 3.2 applied to T (considered as a discrete group), there is a split short
exact sequence of Z[K]-modules

0 −→ Tp −→ T −→ Tp′ × T∞ −→ 0.

Note that by Lemma 2.8, Tp ⊆ P . Further, because Tp′ × T∞ is split from T as
a Z[K]-module, we know Tp′ × T∞ is normal in P and we can define the quotient

P̃ := P/ (Tp′ × T∞), which is a discrete p -toral group. (We note here that we



Normalizer decompositions 7

have completely discarded the topology on the torus. The key tool resulting from
Lemma 3.3 is Lemma 3.5, and the topology is not needed there.)

Consider the commutative ladder of exact sequences

(3.4)

0 // Tp //

��

P //

i

��

K //

=

��

0

0 // Tp × Tp′ × T∞︸ ︷︷ ︸
T

//

��

P //

q

��

K //

=

��

0

0 // Tp // P̃ // K // 0.

By construction, the compositions of the two maps in the first and third columns
are identity maps on Tp and K, respectively. Hence the composite f := q◦i : P → P̃
is an isomorphism. Then f−1 ◦ q : P → P is the required group homomorphism
splitting the inclusion P ⊆ P.

If P ′ ⊂ P is another p -discretization of P, then P ′ also contains Tp (Lemma 2.8).

Therefore we can substitute P ′ for P in (3.4) and the composite P ′ → P→ P̃ will

still be an isomorphism. Hence composing with the isomorphism f−1 : P̃ → P
finishes the proof. �

Using the splitting, we are able to show a sense in which a p -discretization P ⊆ P
is able to capture conjugation information present in P. The statement below is a
slight generalization of [BLO07, Lemma 9.4(a)] and a couple of statements in its
proof.

Lemma 3.5. Let P be a p -toral subgroup with p -discretization P . Let Q1 and Q2

be subgroups of P , and suppose that a group homomorphism f : Q1 → Q2 is induced
by conjugation in P. Then f can be induced by conjugation in P .

Proof. Suppose that f : Q1 → Q2 is given by conjugation by y ∈ P. Let r : P→ P
be the retraction provided by Lemma 3.3, and consider the commutative diagram

Q1
� � //

f=cy

��

P �
� // P

r
//

cy

��

P

cr(y)

��
Q2
� � // P �

� // P
r
// P.

Although we cannot fill in the rectangle, because conjugation by y may not take
P to P , we do know that (by assumption) that Q1 and Q2 are contained in P .

Since P ↪→ P
r−→ P is the identity map of P , the compositions across the top and

bottom rows corestrict to the identity maps on Q1 and Q2, respectively. Therefore
conjugation by y ∈ P and r(y) ∈ P induce the same map f : Q1 → Q2. �

We now have all the tools we need to establish Proposition 3.1.

Proof of Proposition 3.1. Since P1 and P2 are both p -discretizations of P, they are
conjugate in P. Choose y ∈ P such that cy(P1) = P2. It is possible that cy does
not stabilize Q, so let Q′ = cy(Q). Then Q and Q′ are both subgroups of P2, and
cy : Q → Q′. By Lemma 3.5, there exists x ∈ P2 such that cx = cy : Q → Q′.
Define y′ = y · x−1. Then y′ still conjugates P1 to P2, but y′ centralizes Q. �
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In the remainder of this section, we give two applications of Proposition 3.1.
First, we prove that the outer automorphism group in G of a p -discretization is the
same as that of its closure. This is proved in [BLO07, Lemma 9.4] using a different
point of view. Second, we prove that for the purpose of understanding the mod p
homology of classifying spaces, centralizers and normalizers can be computed either
in a discrete p -toral group or a continuous p -toral group. These two results are
the base cases for inductions to establish the corresponding results for chains of
subgroups in Section 5.

Lemma 3.6. Let P be a p -discretization of a p -toral subgroup P of G. Then
OutG(P ) ∼= OutG(P).

Proof. We want to prove that the natural map

OutG(P ) :=
NG(P )

CG(P ) · P
−−→ NG(P)

CG(P) ·P
=: OutG(P)

is an isomorphism. To show that it is an epimorphism, suppose that n ∈ NG(P).
Because cn(P ) and P are both discretizations of P, there exists x ∈ P such that
cx(cnP ) = P . Therefore n · x ∈ NG(P ), and it represents the same class as n in
OutG(P).

To show injectivity, first suppose that n ∈ NG(P ) ∩ P. We would like to show
that n is already in CG(P ) ·P . However, Lemma 3.5 tells us that the automorphism
of P induced by n can be induced by some y ∈ P . Hence n · y−1 = c ∈ CG(P ) and
n = c · y ∈ CG(P ) · P , as required.

To finish, suppose that n ∈ NG(P )∩ [CG(P) ·P], say n = c ·x with c ∈ CG(P) =
CG(P ) and x ∈ P. Then x = n · c−1 normalizes P . The previous argument shows
that x ∈ CG(P ) · P , and hence n = c · x ∈ CG(P ) · P , as required. �

Remark 3.7. Observe that NP(P ) = NG(P ) ∩ P, and the proof of Lemma 3.6
establishes that NG(P ) ∩ P =

(
P · CG(P )

)
∩ P. Since CG(P ) ∩ P = CG(P) ∩

P = Z(P), we have actually proved that if P is a p -discretization of P, then
NP(P ) = P · Z(P). This gives a refinement to the discussion of Example 2.6: p -
discretizations of P are parametrized by P/NP(P ) = P/(P · Z(P)). We recover
the result that if P is abelian (Z(P) = P), then the p -discretization is unique.
Indeed, if the torus is central in P then there is a unique p -discretization of P, and
otherwise there are infinitely many.

For our final result of this section, note that if Q ⊆ P is an inclusion of p -toral
subgroups, then both NP(Q) and CP(Q) (and hence Z(Q)) are p -toral ([JMO92,
Lemma A.3]).

Proposition 3.8. Let Q ⊆ P be p -discretizations of p -toral groups Q ⊆ P. Then
CP (Q) is a p -discretization of CP(Q), and NP (Q) is a p -discretization of NP(Q).

Proof. Let D be a p -discretization of CP(Q); we note that Z(Q) is necessarily
contained in D, since Z(Q) has only one p -discretization. Since D commutes
with Q, their product D ·Q is a discrete p -toral subgroup of NP(Q). We can expand
D ·Q to a p -discretization N of NP(Q), and then enlarge N to a p -discretization
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P ′ of P. So we have compatible p -discretizations

D //
� _

��

D ·Q // N //
� _

��

P ′
� _

��
CP(Q) // NP(Q) // P.

By construction, Q ⊆ N ∩Q, and since Q is a maximal discrete p -toral subgroup
of Q, we know that Q = N ∩Q. Therefore N normalizes Q (because N normalizes
both itself and Q), so N ⊆ NP ′(Q) ⊆ NP(Q). But N is a maximal discrete p -toral
subgroup of NP(Q), so in fact N = NP ′(Q). Similarly, we have D ⊆ CP ′(Q) ⊆
CP(Q) and maximality gives us D = CP ′(Q).

However, we have another p -discretization of P, namely P . Notice that Q is
contained both P (by assumption) and P ′ (by construction), so Proposition 3.1 tells
us that there exists y ∈ CP(Q) with cy(P ′) = P . We obtain the two commutative
diagrams

CP ′(Q)
cy
//

� _

��

CP (Q)
� _

��
CP(Q)

cy
// CP(Q)

NP ′(Q)
cy
//

� _

��

NP (Q)
� _

��
NP(Q)

cy
// NP(Q).

The left vertical arrows are p -discretizations by construction, therefore the right
vertical arrows are p -discretizations as well. �

Corollary 3.9. If P is a p -discretization of P, then Z(P ) is a p -discretization
of Z(P).

Proof. Apply Proposition 3.8 with P = Q. �

4. Chains of p -centric, p -stubborn subgroups of G

In [BLO07], Broto, Levi and Oliver construct a saturated fusion system asso-
ciated to a compact Lie group G, denoted FS(G), where S is a maximal discrete
p -toral subgroup of G. It is a category whose objects are the subgroups of S and
whose morphisms are homomorphisms induced by conjugation in G. The pur-
pose of this section is to compare the collection of FS(G)-centric, FS(G)-radical
subgroups (Definition 4.1) with the analogous collection of continuous p -toral sub-
groups, namely the p -centric, p -stubborn subgroups. In our forthcoming normalizer
decomposition for p -local compact groups [BCG+], the indexing category will be
conjugacy classes of chains of FS(G)-centric, FS(G)-radical subgroups of S. In this
section, we show that when π0G is a p -group, the set of such conjugacy classes is in
one-to-one correspondence with conjugacy classes of chains of p -centric, p -stubborn
subgroups of G (Theorem 4.3). Further, even when π0G is not a p -group, there is
still an injection from the first set to the second.

First we need some definitions, taken from the definitions for a fusion system (see
[BLO07, Def. 2.6 and pp 380] and [JMO92, Def. 1.3]). For streamlined notation,
we suppress both G and the maximal discrete p -toral subgroup S.

Definition 4.1. Fix a compact Lie group G and a maximal discrete p -toral sub-
group S ⊆ G.



10 Belmont, Castellana, Grbić, Lesh, and Strumila

(1) For discrete p -toral groups
(a) A subgroup P ⊆ S is F-centric if whenever Q ⊆ S is G-conjugate

to P , we have CS(Q) = Z(P ). (In particular, CS(P ) = Z(P ).)
(b) A subgroup P ⊆ S is F-radical if OutG(P ) := NG(P )/ [CG(P ) · P ]

has no nontrivial normal subgroups.
(2) For continuous p -toral groups

(a) A p -toral subgroup P ⊆ G is p -centric in G if Z(P) is a maximal
p -toral subgroup of CG(P).

(b) A p -toral subgroup P ⊆ G is p -stubborn in G if NG(P)/P is finite
and has no nontrivial normal p -subgroups.

Note that although the concepts of F-centric and F-radical depend on both S
and G, we omit them from the notation because S and G are always clear from
context, and the omission gives a slimmer notation. We also observe that the
properties of being p -centric and p -stubborn are closed under G-conjugation since
cg(CG(P)) = CG(cg(P)) and cg(NG(P)) = NG(cg(P)) for any g ∈ G.

Remark 4.2. A p -toral subgroup P ⊆ G is p -radical if NG(P)/P has no nontriv-
ial normal p -toral subgroups (no assumption that NG(P)/P is finite). For finite
groups, the collection of p -radical subgroups was introduced by Bouc. In the com-
pact Lie case, the p -radical subgroups were featured in [Lib11].

However, when P ⊆ G is p -centric, then p -radical and p -stubborn become equiv-
alent, because OutG(P) is finite ([BLO07, Lemma 9.4]) and the short exact sequence

0→ CG(P)/Z(P)→ NG(P)/P→ OutG(P)→ 0

has CG(P)/Z(P) finite of order prime to p.

With the necessary vocabulary in hand, we are able to state the main theorem
for this section.

Theorem 4.3. Let S be a maximal p -toral subgroup of a compact Lie group G,
with p -discretization S ⊆ S. The closure map P 7→ P defines an injective map{

P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are F-centric and F-radical
}
/G

��{
P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are p -toral, p -centric, and p -stubborn

}
/G.

The map is a one-to-one correspondence if π0G is a p -group.

The first task is to show that the map of Theorem 4.3 actually exists. That is,
we need to establish that the closure of a discrete p -toral subgroup of S that is
F-centric and F-radical is p -centric and p -stubborn. (It is certainly p -toral.) To
use the results of Section 3, we need to know that the discrete p -toral groups we are
dealing with are snugly embedded. The following lemma can be found in [BLO07,
Corollary 3.5, Lemma 9.9], but we give an elementary proof here that does not use
the bullet construction.

Lemma 4.4. Let G be a compact Lie group with maximal discrete p -toral sub-
group S, and let P be a subgroup of S. If P is F-centric and F-radical, then P is
snugly embedded.
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Proof. Let P = P , and expand P to a p -discretization Q′ of P. To prove that P
is snugly embedded, we would like to prove that Q′ = P . Expand Q′ further to a
p -discretization S′ of S, so that we have P ⊆ Q′ ⊆ S′ ⊆ S. Using Proposition 3.1
with P ⊆ S ∩ S′, choose y ∈ CS(P ) such that cy(S′) = S, and let Q = cy(Q′).
Now we have P ⊆ Q ⊆ S ⊆ S and Q is a p -discretization of P, and our goal has
become to prove Q = P .

Consider the homomorphism

(4.5) NQ(P )/Z(P )→ NG(P )/CG(P ).

Because P is F-centric by assumption, CS(P ) = Z(P ). Therefore the centralizer
of P in Q ⊆ S is Z(P ) as well, and (4.5) is a monomorphism. We assert that the
image is a normal subgroup of NG(P )/CG(P ). To prove this, we must take an
element g ∈ NG(P ) and prove that we can adjust g by an element of x ∈ CG(P )
so that g · x normalizes NQ(P ). Given that g · x would certainly normalize P , it is
sufficient to construct x so that g · x normalizes Q.

Let Q′′ = cg(Q). Because g ∈ NG(P ) ⊆ NG(P), the groups Q′′ and Q are
both p -discretizations of P, and we have P ⊆ Q ∩ Q′′. Proposition 3.1 gives us
an element x ∈ CP(P ) such that cx(Q′′) = Q. Therefore g · x normalizes both Q
and P and we conclude that (4.5) is the inclusion of a normal subgroup. Taking
the quotient on both sides by P , we find that NQ(P )/P is a normal subgroup of
OutG(P ).

However, we have assumed that P is F-radical, meaning that OutG(P ) has no
nontrivial p -subgroups. Therefore NQ(P )/P must be the trivial group, that is,
NQ(P ) = P . Because P and Q are discrete p -toral groups, NQ(P ) = P implies
that the inclusion of P into Q cannot be proper [BLO07, Lemma 1.8], so P = Q.
Hence P is a maximal discrete p -toral subgroup of P, as required. �

Now that we know that F-centric and F-radical subgroups of G must be snug,
we can use the results of Section 3. Our next proposition shows that the map of
Theorem 4.3 can be defined. That is, we show that the closure of an F-centric and
F-radical discrete p -toral subgroup is in fact p -centric and p -stubborn. (See also
the argument given in [BLO07, Prop 8.4 and Lemma 9.6] for p -centricity.)

Proposition 4.6. If P is a p -discretization of P, and P is F-centric and F-radical,
then P is p -centric and p -stubborn.

Proof. To show that P is p -centric, we must show that Z(P) is a maximal p -
toral subgroup of CG(P). To see this, suppose that H ⊆ CG(P) is a maximal
p -toral subgroup. Then H necessarily contains Z(P), because all choices for H are
conjugate in CG(P) and Z(P) / CG(P). We construct a p -discretization of H by
expanding Z(P ) ⊆ H to a p -discretization H of H. Then we further expand the
discrete p -toral subgroup H · P to a maximal discrete p -toral subgroup S′ of G.
(Note that S′ does not have to have the same closure as S.)

All maximal discrete p -toral subgroups of G are conjugate, so there exists g ∈ G
with cg(S′) = S. Let Q = cg(P ) ⊆ S and J = cg(H) ⊆ S so we have the following
picture:

Z(P ) //

cg

��

H //

cg

��

P ·H //

cg

��

S′ //

cg

��

G

cg

��
Z(Q) // J // Q · J // S // G.
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By construction, H = CS′(P) = CS′(P ), and further, H is a p -discretization of H
and H ⊆ S′. This means H = CS′(P ), and so J = CS(Q).

But we know that Q ⊆ S is G-conjugate to P , and by definition of F-centric,
that implies Z(Q) = CS(Q) = J . Hence Z(P ) = H as well. Lastly, because
P is F-centric and F-radical, P is snug by Lemma 4.4, and therefore Z(P ) is a
p -discretization of Z(P) by Corollary 3.9. Since H is a p -discretization of H by
construction, and H = Z(P ), we find that H = Z(P), as required to prove that P
is p -centric.

To show that P is p -stubborn, we must show that NGP/P is finite and contains
no nontrivial normal p -subgroups. Consider the short exact sequence

(4.7) 1 −→ CG(P)/Z(P) −→ NG(P)/P −→ NG(P)/
[
CG(P) ·P

]︸ ︷︷ ︸
OutG(P)

−→ 1.

The right-hand term is OutG(P), which by Lemma 3.6 is isomorphic to OutG(P ).
The definition of F-radical tells us that OutG(P ) contains no nontrivial normal
p -subgroups, and hence the same is true of OutG(P).

Turning our attention to the left-hand term in (4.7), we have proved that Z(P)
is a maximal p -toral subgroup of CG(P). The quotient CG(P)/Z(P) is a compact
Lie group, but cannot contain an S1 by maximality of Z(P). Hence CG(P)/Z(P)
is finite. Again by maximality of Z(P), we know CG(P)/Z(P) has no p -torsion
elements, so it has order prime to p. As a consequence, the image of a nontrivial
normal p -subgroup of NG(P)/P would be a nontrivial p -subgroup of OutG(P) =
OutG(P ), a contradiction of the assumption that P is F-radical.

It remains to establish that NG(P)/P is finite, for which is it sufficient to know
that the right-hand term, OutG(P) ∼= OutG(P ), is finite. If OutG(P ) is not finite,
then it has a nontrivial torus, and therefore an infinite torsion subgroup. However,
any torsion subgroup of OutG(P ) is finite [BLO07, Prop. 1.5]. Therefore OutG(P) is
finite, and hence NG(P)/P is finite with no nontrivial normal p -subgroups, meaning
that P is p -stubborn, as required. �

So far, our progress toward proving Theorem 4.3 is to establish that the statement
makes sense: the function actually exists! Next we establish that the function is
injective.

Lemma 4.8. Let S ⊆ G be a maximal p -toral subgroup of the Lie group G, and
fix a p -discretization S of S. Suppose that P0 ⊆ . . . ⊆ Pk and Q0 ⊆ . . . ⊆ Qk are
two chains of snug discrete p -toral subgroups of S that both have P0 ⊆ . . . ⊆ Pk as
their closure. Then P0 ⊆ . . . ⊆ Pk and Q0 ⊆ . . . ⊆ Qk are conjugate in Pk (and
hence necessarily in G).

Proof. We induct on k. The base case k = 0 is true because P0 and Q0 are
both p -discretizations of P0, and hence are conjugate in P0. Now suppose that
P0 ⊆ . . . ⊆ Pk−1 and Q0 ⊆ . . . ⊆ Qk−1 are conjugate by x ∈ Pk−1. Then cx(Pk)
and Qk are p -discretizations of Pk, and Qk−1 ⊆ cx(Pk) ∩Qk. By Proposition 3.1,
there exists y ∈ CPk

(Qk−1) such that cy (cx(Pk)) = Qk. Hence x · y ∈ Pk and
conjugates P0 ⊆ . . . ⊆ Pk to Q0 ⊆ . . . ⊆ Qk. �

To address the extent to which the function in Theorem 4.3 is surjective, we first
need to check whether it is always possible to obtain a discretization of a given
chain in S within the chosen p -discretization S.
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Lemma 4.9. Let S ⊆ G be a maximal p -toral subgroup of the Lie group G, and
let P0 ⊆ . . . ⊆ Pk be a chain of p -toral subgroups of S. Fix a p -discretization
S ⊆ S. Then there exists an S-conjugate of P0 ⊆ . . . ⊆ Pk that has a chain of
p -discretizations P0 ⊆ . . . ⊆ Pk contained in S.

Proof. Choose a p -discretization P0 of P0, and expand it one group at a time to a
chain of p -discretizations P0 ⊆ . . . ⊆ Pk ⊆ S′ of P0 ⊆ . . . ⊆ Pk ⊂ S. Since S and
S′ are both p -discretizations of S, there exists s ∈ S such that cs(S

′) = S. Then
cs (P0 ⊆ . . . ⊆ Pk) is a p -discretization inside S of cs (P0 ⊆ . . . ⊆ Pk). �

Proof of Theorem 4.3. Most of the proof is in the preceding results. We have proved
that the function exists (Proposition 4.6) and that it is injective (Lemma 4.8).
Further, Lemma 4.9 lays the groundwork for an epimorphism statement, since a
chain in the target has a simultaneous p -discretization in the chosen S. To finish
the proof of the epimorphism statement, we must show that

(1) if P is p -stubborn and p -centric, with p -discretization P ⊆ S, then P is
F-centric, and

(2) if in addition π0G is a p -group, then P is also F-radical.

Suppose that P is p -stubborn and p -centric. Then CG(P)/Z(P) ⊆ NG(P)/P is
finite, and has order prime to p because P is p -centric. Mapping from S to G gives a
monomorphism CS(P)/Z(P) ↪→ CG(P)/Z(P) from a p -toral group ([JMO92, A.3])
to a finite group of order prime to p, and therefore the map is null. We conclude
that Z(P) = CS(P). But by Proposition 3.8 and Corollary 3.9, we know that
the groups Z(P ) ⊆ CS(P ) are p -discretizations of Z(P) = CS(P), respectively.
Maximality implies that Z(P ) = CS(P ), that is, the group P satisfies the required
condition to be F-centric.

We must also check that if Q ⊆ S is G-conjugate to P , then CS(Q) = Z(Q).
The subgroup Q is snug, because P is. Let Q be the closure of Q, and observe
that Q is G-conjugate to P, by the same element that takes Q to P . Further, Q
is p -stubborn and p -centric, because P is, and those properties are preserved by
conjugation in G. Since Q ⊆ Q is a p -discretization, the argument of the previous
paragraph shows that Q is F-centric as well.

We must still show that P is F-radical when we know that π0G is a p -group,
that is, we must show that OutG(P ) has no nontrivial normal p -subgroups. By
Lemma 3.6, OutG(P ) ∼= OutG(P), so we can use the short exact sequence of (4.7).
The key ingredient is that if π0G is a p -group, then CG(P) is p -toral [JMO92, A.5],
and hence CG(P)/P ⊆ NG(P)/P is also p -toral. However, P is p -stubborn by
assumption, so NG(P)/P is finite, and CG(P)/P is therefore a finite p -group. If
OutG(P) had a nontrivial normal p -subgroup, then its inverse image in NG(P)/P
would be a normal p -subgroup, in contradiction of the assumption that P is p -
stubborn. �

5. Normalizers

In Section 3 we studied relative discretizations and proved that centralizers and
normalizers of p -toral groups inside other p -toral groups are compatible with p -
discretizations (Proposition 3.8). In this section, we leverage the results of Section 3
to prove that if P0 ⊆ . . . ⊆ Pk is a chain of p -discretizations of P0 ⊆ . . . ⊆ Pk, then
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the corresponding map of G-normalizers induces a mod p homology isomorphism
on classifying spaces.

Theorem 5.1. Let P0 ⊆ . . . ⊆ Pk be a chain of p -toral subgroups of a compact
Lie group G, and let P0 ⊆ . . . ⊆ Pk be a chain of discrete p -toral subgroups such
that each Pi is a p -discretization of Pi. Then

NG (P0 ⊆ . . . ⊆ Pk) −→ NG (P0 ⊆ . . . ⊆ Pk)

induces a mod p equivalence of classifying spaces.

Our forthcoming work on the normalizer decomposition of a p -local compact
group will use Theorem 5.1 to establish that, when applied to a compact Lie group,
our decomposition recovers a version of the theorem of Libman [Lib11] using p -toral
subgroups that are both p -centric and p -stubborn.

Our strategy to prove Theorem 5.1 is to study the “outer automorphism” group
of a chain separately from the “inner automorphisms” of the chain.

Definition 5.2. Let H be a group, and let P0 ⊆ . . . ⊆ Pk be a chain of subgroups
of H. We define OutH(P0 ⊆ . . . ⊆ Pk) as the quotient

NH (P0 ⊆ . . . ⊆ Pk)

CH(Pk) ·NPk
(P0 ⊆ . . . ⊆ Pk)

.

Note that the definition makes no restriction on the subgroups in the chain.
In particular, in the next proposition, we establish the relationship between the
outer automorphism group of a chain of continuous p -toral subgroups and that of
a p -discretization of the chain.

Proposition 5.3. Let P0 ⊆ . . . ⊆ Pk be a chain of p -toral subgroups of G, and let
P0 ⊆ . . . ⊆ Pk be a chain of p -discretizations of the p -toral chain. Then inclusion
of normalizers induces an isomorphism

(5.4) OutG(P0 ⊆ . . . ⊆ Pk)︸ ︷︷ ︸
NG(P0⊆...⊆Pk)

CG(Pk)·NPk
(P0⊆...⊆Pk)

−−−→ OutG(P0 ⊆ . . . ⊆ Pk)︸ ︷︷ ︸
NG(P0⊆...⊆Pk)

CG(Pk)·NPk
(P0⊆...⊆Pk)

.

Proof. To show that the map is an epimorphism, we induct on k. The case
k = 0 is Lemma 3.6. For the inductive hypothesis, assume that we have g ∈
NG (P0 ⊆ . . . ⊆ Pk), and that g stabilizes P0 ⊆ . . . ⊆ Pk−1. We need to adjust g
to stabilize Pk as well.

Suppose that cg(Pk) = P ′k. Then Pk−1 ⊆ Pk ∩ P ′k, and by Proposition 3.1 we
can find y ∈ CPk

(Pk−1) that conjugates P ′k to Pk. Now we have an element g · y
that stabilizes P0 ⊆ . . . ⊆ Pk, Since y is in NPk

(P0 ⊆ . . . ⊆ Pk), we conclude that
we have an epimorphism

NG (P0 ⊆ . . . ⊆ Pk)
epi−−−−→ NG (P0 ⊆ . . . ⊆ Pk)

NPk
(P0 ⊆ . . . ⊆ Pk)

,

and therefore (5.4) is also surjective.
To establish injectivity, consider n ∈ NG (P0 ⊆ . . . ⊆ Pk) such that [n] is in

the kernel of (5.4). We can write n = c · x where c ∈ CG(Pk) = CG(Pk) and
x ∈ NPk

(P0 ⊆ . . . ⊆ Pk). Then in fact x stabilizes P0 ⊆ . . . ⊆ Pk, since both n
and c do so. By Lemma 3.5, the automorphism of Pk induced by x can be induced
by some element y ∈ Pk, and then x · y−1 ∈ CPk

(Pk). Further, since x and x · y−1
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both stabilize P0 ⊆ . . . ⊆ Pk, so does y. We have expressed n = c ·x = (c ·x ·y−1) ·y
as an element in the denominator of the left side of (5.4), which completes the
proof. �

Corollary 5.5. Let P be a p -discretization of a p -toral group P, and let Q0 ⊆
. . . ⊆ Qk be a chain of snug subgroups of P . Then inclusions of normalizers induce
isomorphisms

OutP (Q0 ⊆ . . . ⊆ Qk) //

**

OutP (Q0 ⊆ . . . ⊆ Qk)

OutP (Q0 ⊆ . . . ⊆ Qk)

∼=
Prop. 5.3

44

Proof. The left diagonal map is clearly a monomorphism. To see that it is also an
epimorphism, note that any automorphism of Qk induced by conjugation in P can
also be induced by conjugation in P (Lemma 3.5). �

Outer automorphism groups of chains turn out to be finite, generalizing the
result of [BLO07, Prop. 9.4(b)] for a single group.

Lemma 5.6. Let G be a compact Lie group and let P0 ⊆ . . . ⊆ Pk be a chain of
snug discrete p -toral subgroups. Then OutG (P0 ⊆ . . . ⊆ Pk) is finite.

Proof. We induct on k. The base case is given by [BLO07, Prop. 9.4(b)]. Now
suppose that OutG (P0 ⊆ . . . ⊆ Pk−1) is finite, and consider the homomorphism
induced by deleting the smallest element of the chain:

(5.7)
NG (P0 ⊆ . . . ⊆ Pk)

CG(Pk) ·NPk
(P0 ⊆ . . . ⊆ Pk)

−−−→ NG (P1 ⊆ . . . ⊆ Pk)

CG(Pk) ·NPk
(P1 ⊆ . . . ⊆ Pk)

.

The target is finite by the inductive hypothesis, so we need only show that the
map is injective. The homomorphism of the numerators is certainly injective. Now
suppose that

n ∈ NG (P0 ⊆ . . . ⊆ Pk) ∩
[
CG(Pk) ·NPk

(P1 ⊆ . . . ⊆ Pk)
]
.

Then n = c · x for some c ∈ CG(Pk) and x ∈ NPk
(P1 ⊆ . . . ⊆ Pk). The element x

also normalizes P0, since n and c do. Hence n = c·x ∈ CG(Pk)·NPk
(P0 ⊆ . . . ⊆ Pk),

as desired. �

We turn now to the comparison of the normalizers and centralizers of continuous
and discrete p -toral subgroups of G. The starting point is Proposition 3.8, which
tells us that if Q ⊆ P are p -discretizations for p -toral groups Q ⊆ P, then CP (Q)→
CQ(P) and NP (Q) → NP(Q) are p -discretizations as well (and therefore induce
mod p homology equivalences on classifying spaces by Lemma 2.4).

To prove Theorem 5.1, we need to relate normalizers of p -toral subgroups of
an ambient Lie group G (which could itself be p -toral) with normalizers of their
p -discretizations. We begin with a special case.

Proposition 5.8. Let P be a p -discretization of a p -toral group P, and let Q0 ⊆
. . . ⊆ Qk be a chain of snugly embedded discrete p -toral subgroups of P , with closures
Q0 ⊆ . . . ⊆ Qk. Then the inclusion

NP (Q0 ⊆ . . . ⊆ Qk) −→ NP (Q0 ⊆ . . . ⊆ Qk)

induces a mod p homology isomorphism on classifying spaces.
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Proof. We induct on the length of the chain. The case k = 0 is provided by
Proposition 3.8.

For the inductive hypothesis, assume that for any p -toral group B and p -
discretization B ⊆ B, the inclusion

(5.9) NB (Q0 ⊆ . . . ⊆ Qk−1) −→ NB (Q0 ⊆ . . . ⊆ Qk−1)

induces a mod p homology isomorphism of classifying spaces. Consider the rela-
tionship of the desired statement for k to the corresponding outer automorphism
groups:

(5.10)

NP (Q0 ⊆ . . . ⊆ Qk) // //
� _

��

OutP (Q0 ⊆ . . . ⊆ Qk)

∼= by Cor.5.5

��
NP (Q0 ⊆ . . . ⊆ Qk) // // OutP (Q0 ⊆ . . . ⊆ Qk) .

The horizontal maps are epimorphisms, and the map of kernels is given by

(5.11) CP (Qk) ·NQk
(Q0 ⊆ . . . ⊆ Qk) −−→ CP(Qk) ·NQk

(Q0 ⊆ . . . ⊆ Qk) .

To streamline notation, let Q∗ := (Q0 ⊆ . . . ⊆ Qk) and Q∗ := (Q0 ⊆ . . . ⊆ Qk).
Then (5.10) induces a commutative ladder of classifying spaces, where the rows are
fibrations:

(5.12)

B
(
CP (Qk) ·NQk

(Q∗)
)

//

��

B
(
NP (Q∗)

)
//

��

BOutP (Q∗)

∼=
��

B
(
CP(Qk) ·NQk

(Q∗)
)

// B (NP (Q∗)) // BOutP (Q∗) .

Since the base spaces are the same, it is sufficient to prove that the map between
fibers is a mod p homology isomorphism; a Serre spectral sequence argument then
establishes that the middle map is also an isomorphism on mod p homology.

To understand the map in (5.11), we need to understand the map on each factor,
and also on their intersection. The groups CP (Qk) and NQk

(Q∗) are commuting
subgroups of P , and their intersection is Z(Qk). We have a central extension

0 −→ Z(Qk) −→ CP (Qk)×NQk
(Q∗) −→ CP (Qk) ·NQk

(Q∗) −→ 0

and the analogous one involving Q∗ and P. The fibrations induced by these short
exact sequences are principal, and we have the following commutative diagram of
horizontal fibrations:

(5.13)

BCP (Qk)×BNQk
(Q∗) //

��

B (CP (Qk) ·NQk
(Q∗))

��

// B2Z(Qk)

��
BCP(Qk)×BNQk

(Q∗) // B (CP(Qk) ·NQk
(Q∗)) // B2Z(Qk).

First consider the fibers. The map on the first factor is a mod p homology
isomorphism by Proposition 3.8. For the second factor, we can apply the induc-
tive hypothesis, because NQk

(Q∗) is actually NQk
(Q0 ⊆ . . . ⊆ Qk−1) (the normal-

izer of a shorter chain); likewise NQk
(Q∗) is NQk

(Q0 ⊆ . . . ⊆ Qk−1). Therefore
BNQk

(Q∗)→ BNQk
(Q∗) is a mod p homology isomorphism.

Turning to the base, we know that BZ(Qk) → BZ(Qk) induces a mod p ho-
mology isomorphism by Corollary 3.9. The Rothenberg-Steenrod spectral sequence
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[McC01, Corollary 7.29] then shows that B2Z(Qk) → B2Z(Qk) likewise induces
an isomorphism on mod p homology.

We apply the Serre spectral sequence to (5.13). The base spaces are simply
connected. The maps between the bases and the fibers are mod p homology iso-
morphisms. Hence the map of total spaces is a mod p homology isomorphism as
well. Feeding this result back into (5.12) finishes the proof. �

Finally, we arrive at the proof of this section’s main result.

Proof of Theorem 5.1. Let P∗ denote the chain P0 ⊆ . . . ⊆ Pk, and similarly let P∗
denote the chain P0 ⊆ . . . ⊆ Pk. We compare the normalizers via the ladder of
short exact sequences

(5.14)

0 // CG(Pk) ·NPk
(P∗) //

� _

��

NG (P∗) //
� _

��

OutG(P∗) //

∼= by Prop. 5.3

��

0

0 // CG(Pk) ·NPk
(P∗) // NG (P∗) // OutG(P∗) // 0.

We are in the exact same situation as in the proof of Proposition 5.8. The inclusion
NPk

(P∗) ↪→ NPk
(P∗) induces an isomorphism on mod p homology of classify-

ing spaces by Proposition 5.8. The centralizers CG(Pk) and CG(Pk) are equal.
And lastly, CG(Pk) ∩ NPk

(P∗) = Z(Pk) and CG(Pk) ∩ NPk
(P∗) = Z(Pk), and

Z(Pk)→ Z(Pk) induces an isomorphism on mod p homology of classifying spaces
by Corollary 3.9. �
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[BCG+05] Carles Broto, Natàlia Castellana, Jesper Grodal, Ran Levi, and Bob Oliver, Subgroup
families controlling p-local finite groups, Proc. London Math. Soc. (3) 91 (2005), no. 2,

325–354. MR 2167090

[BLO07] Carles Broto, Ran Levi, and Bob Oliver, Discrete models for the p-local homotopy
theory of compact Lie groups and p-compact groups, Geom. Topol. 11 (2007), 315–

427. MR 2302494
[BLO14] , An algebraic model for finite loop spaces, Algebr. Geom. Topol. 14 (2014),

no. 5, 2915–2981. MR 3276851
[Che13] Andrew Chermak, Fusion systems and localities, Acta Math. 211 (2013), no. 1, 47–

139. MR 3118305
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