
For Peer Review Only
ARTICLE TEMPLATE

Confidence interval estimation for the Mantel-Haenszel estimator of

the risk ratio and risk difference in rare event meta-analysis with

emphasis on the bootstrap

ARTICLE HISTORY

Compiled August 9, 2021

ABSTRACT

This paper takes a deeper look into uncertainty assessment of the Mantel-Haenszel

estimator. We look at the risk ratio and the risk difference as the parameters of

interest. In the homogeneity case, all developed confidence intervals for these pa-

rameters behave acceptably, even in the rare events situation. For heterogeneity,

we demonstrate that the non-parametric bootstrap approach provides confidence

interval estimates for the risk difference with acceptable coverage, depending on the

number of studies. For the risk ratio, the situation is more complex as typically

distributions for the log-relative risk are considered. The Mantel-Haenszel estimator

overestimates the expected value of the distribution of the log-relative risk whatever

it may be. However, if we consider as true value the estimand of Mantel-Haenszel

estimator, reasonable coverage probabilities can be achieved with the bootstrap. A

source for the occurrence of this problem can be seen in the fact that the moments

of a non-linearly transformed relative risk variable are not equal to the non-linearly

transformed moments of the respective relative risk variable. If the transformation

is concave, as a consequence of Jensen’s inequality, the mean of the log-relative risk

will be at most as large as the logarithm of the mean of relative risk, constituting

the overestimation bias of the Mantel-Haenszel estimator. Of course, these issues

disappear in the homogeneity case as the relative risk is constant across the studies.
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1. Introduction and motivation

The paper considers the following situation in meta-analysis. In k independent studies,

counts of events are observed in an intervention and control group. This setting can be

described by a count random variable or number of events Yij . The index i indicates

the study i, for i = 1, 2, ..., k, where k denotes the number of available studies. Also,

j = 1 denotes an intervention group and j = 0 a control group. The mean of Yij is

given by E(Yij) = λijPij , where λij denotes the event occurrence risk and Pij stands

for the person-time at risk which is considered as non-random and reduces to the

number at risk nij , if all members in study i share the same person-time. In many

research studies, we are interested often in settings where the probability of no events

is large. So that low frequency counts such as 0, 1, or 2 are observed. The Poisson

assumption comes into play in this connection, which assumes that

Yij ∼ Po(λijPij), (1)

where Po(θ) denotes the Poisson distribution with the density e−θθyij/yij ! for count

yij = 0, 1, 2, .... Under assumption (1), the variance of Yij is given as Var(Yij) = λijPij .

We will make occasionally use of (1), but will always say when we do so.

Let us first illustrate the setting with an example as follows. The data on a sys-

tematic review of the effectiveness of prophylactic antibiotic treatment on infectious

complications in women undergoing caesarean delivery are used. These were originally

published by Smaill and Hofmeyr [1], and mentioned again in Cooper et al. [2]. The

data include 61 studies with counts of occurrence of wound infection as outcome in

women undergoing caesarean delivery. The intervention group uses prophylactic an-

tibiotics, whereas the control group is placebo or no prophylactic antibiotics. The data

show sample sizes with an average of 80 persons per trial in the treatment group and

63 persons per trial in the control. The occurrence of wound infection is observed

relatively rarely. Many of the component studies are small in size and there are zero

events in each of two arms, especially in the treatment. The entire dataset can be

found in the appendix. The forest plot of the estimated risk ratios obtained from the
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Figure 1. Forest plot of meta-analytic data on the prophylactic antibiotics in caesarean section.

3

Page 3 of 38

URL: http:/mc.manuscriptcentral.com/gscs

Journal of Statistical Computation and Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

METAN package in Stata [3] is shown in Figure 1. In this case, we point out that if

the inverse variance-weighted average method [4] (the method that requires the study-

specific estimates and its standard error) is used, in fact, the double-zero or single-zero

study would have to be excluded before the analysis because the risk ratio estimate is

undefined. Thus, some available studies will be ignored. When a statistical package is

applied, zero cell frequencies will be replaced by the value 0.5, also called a continuity

correction. This shows a disadvantage of the traditional method, as it can introduce

bias in estimation [5].

To address these problems, several statistical methods have been introduced to es-

timate the effect parameters. Examples are the maximum likelihood method, the Peto

method, the median unbiased estimator method, and regression analysis in generalized

linear models [6]. Our interest in this paper is the Mantel-Haenszel (MH) approach [7,8]

which is widely used in applications, such as in epidemiologic and clinical studies. For

a more general reference, see Jewell [9] and Landis et al. [10]. The MH estimator uses

a weighting procedure different from the inverse variance-weighted average method.

Furthermore, it has a number of benefits as will be outlined below. For estimating the

risk ratio (RR), the estimator from the MH method is given by

R̂RMH =

∑
i Yi1Pi0/Pi∑
i Yi0Pi1/Pi

=
V

W
, (2)

where Pi = Pi0 + Pi1, for i = 1, 2, ..., k. We note that the estimand is the risk ratio1.

A careful definition of the estimand is needed. If λi0 = λ0 and λi1 = λ1 for all i,

then the risk ratio is simply λ1/λ0. However, if λi0 arise from a distribution with

mean Λ0 and, potentially, also λi1 arise from a distribution with mean Λ1, then we

can define the risk ratio as Λ1/Λ0. We leave it at this point not further specified

which form these distributions will have, but will return to this issue later-on. If both

distributions concentrate all mass on one point λ1 and λ0, respectively, the risk ratio

is λ1/λ0, and we are in the situation of homogeneity. We are mentioning this here to

be clear what the estimand is when we are in the general situation of non-homogeneity

1Some authors carefully distinguish between the risk ratio, when the ratio considered relates to risks, and the
rate ratio, when the ratio considered relates to rates. Here we uniquely speak of risk ratios even though the

ratio involves rates, e.g. person-times.
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or heterogeneity [4]. Note that the MH estimator eliminates the baseline parameters

and concentrates on estimating an average risk ratio.

The MH estimator has several advantages:

• it is not sensitive towards the occurrence of zero counts and is always defined

unless only zeros occur in one group,

• it is in the form of a ratio of sums (and not a sum of ratios) and we will exploit

this nature in the following,

• it is quite closely related to profile maximum likelihood estimation [11].

We like to point out here that, in meta-analysis in general, one can investigate the

behavior of an estimator with respect to the sample size within a study. Another

investigation could be related to the number of studies. We are in meta-analysis where

the number of studies is rather small, typically below 100, often much lower than that.

Our interest is here on rare events studies. Hence our work can be seen as a study

in the small sample and small event behavior and we will focus in particular on the

bootstrap approach for these reasons. However, we like to mention that little work

has been done on the asymptotic behavior of the MH estimator such as by Noma

and Nagashima [12], who look also at the case when the common effect assumption

(homogeneity of effect) is violated. Furthermore, it is reported in Bakbergenuly and

Kulinskaya [13] and Bakbergenuly et al. [14] that the MH estimator experiences bias

under effect heterogeneity.

In applications of meta-analysis using count outcome data, the MH method has be-

come the favourite tool. See, for example, [15–21]. But also in theoretical developments

the MH method has been considered, for example in network meta-analysis [22–24].

This evidence indicates that the MH procedure is a standard method widely used in

meta-analysis. We therefore take here an in-depth look at the uncertainty assessment

for this estimator.
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2. Variance and confidence interval estimation of the Mantel-Haenszel

estimator of the relative risk

2.1. Formula-based method

In the following, we give a brief review of available methods for variance estimation

of the MH estimator of the relative risk and, often associated with this, confidence

interval estimation. One of the benefits of the ratio structure of the MH estimator

presented in (2) is that the variances of V and W are easily available:

σ2
V = Var(V ) =

∑
i

P 2
i0

P 2
i

Var(Yi1) =
∑
i

P 2
i0

P 2
i

λi1Pi1, (3)

where we have used the Poisson assumption (1) at the second equality in (3) which

we will also keep for the remainder of this section. The latter can be estimated by

σ̂2
V =

∑
i
P 2
i0

P 2
i
Yi1. Similarly, we can estimate σ2

W = Var(W ) by σ̂2
W =

∑
i
P 2
i1

P 2
i
Yi0. Note

that both V and W are not sensitive to the occurrence of zeros.

It is now straightforward to use the delta method to derive the variance of log R̂RMH ,

the natural logarithm of the MH estimator of relative risk. The delta method provides

Var(log V − logW ) ≈
σ2
V

[E(V )]2
+

σ2
W

[E(W )]2
, (4)

which can be estimated by

∑
i
P 2
i0

P 2
i
Yi1

V 2
+

∑
i
P 2
i1

P 2
i
Yi0

W 2
. (5)

From (5) assuming approximate normality, it is easy to derive an approximate two-

sided (1 − α)100% confidence interval for the log-relative risk using the Wald-type

method, namely

log(V/W ) ± z

√∑
i
P 2
i0

P 2
i
Yi1

V 2
+

∑
i
P 2
i1

P 2
i
Yi0

W 2
, (6)
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where z = Φ−1(1 − α/2) with Φ(·) being the cumulative distribution function of the

standard normal distribution and α is the significance level. Taking anti-log’s of (6)

will provide a confidence interval for the true parameter RR.

Another approach is in the spirit of Fieller’s method [25] to construct the confidence

interval for the relative risk. Based on this approach, we rewrite the ratio V/W as a

linear combination of V and W . In doing so, we look at

Z = V −RR×W

and note that E(Z) = 0, as RR = E(V )/E(W ), and Var(Z) = σ2
V + RR2σ2

W , as

V and W are independent. Hence, an approximating standard normal distribution is

considered for Z/
√

Var(Z). As consequence, a confidence interval can be constructed

via

P

−z ≤ V −RR×W√
σ2
V +RR2σ2

W

≤ z

 ≈ 1 − α. (7)

The inequalities inside the brackets of the probability statement can be equivalently

written as

− z
√
σ2
V +RR2σ2

W ≤ V −RR×W ≤ z
√
σ2
V +RR2σ2

W , (8)

or

V

W
− z

√
σ2
V +RR2σ2

W

W
≤ RR ≤ V

W
+ z

√
σ2
V +RR2σ2

W

W
,

leading to the final confidence interval by replacing RR with R̂RMH under the root

R̂RMH ± zR̂RMH

√
σ̂2
V /V

2 + σ̂2
W /W

2. (9)

The approach does not directly provide an estimate of the variance of R̂RMH , but

7

Page 7 of 38

URL: http:/mc.manuscriptcentral.com/gscs

Journal of Statistical Computation and Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

from (9) it seems natural to suggest

R̂R
2

MH [σ̂2
V /V

2 + σ̂2
W /W

2] (10)

as an estimator of the variance of R̂RMH . To compare (10) with (5), we need to go

back to the log-scale. Using again the delta method, we find

Var(log R̂RMH) ≈ Var(R̂RMH)

R̂R
2

MH

=
σ̂2
V

V 2
+
σ̂2
W

W 2
, (11)

which is identical to (5). Hence, both approaches are closely related.

In addition, there is a different way to utilize (8). If we divide the inequality chain

by W and add RR on all sides the expression, we achieve

RR− z
√
σ2
V +RR2σ2

W /W ≤ V/W ≤ RR+ z
√
σ2
V +RR2σ2

W /W. (12)

This can be written as

L(RR) ≤ R̂RMH ≤ U(RR), (13)

where L(RR) = RR− z
√
σ2
V +RR2σ2

W /W and U(RR) = RR+ z
√
σ2
V +RR2σ2

W /W .

Now, L(RR) and U(RR) are strictly monotone increasing functions of RR, so that

inverse functions L−1(RR) and U−1(RR) exist. Hence, (13) can be written equivalently

as

U−1(R̂RMH) ≤ RR ≤ L−1(R̂RMH), (14)

which defines the confidence interval as (U−1(R̂RMH), L−1(R̂RMH)). This method of

construction is sometimes also called the pivotal method. In practice, we need to find

the two solutions of the quadratic equation in RR

W 2(RR− R̂RMH)2/z2 = σ2
V +RR2σ2

W

8
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and the two solutions define then the confidence interval for RR.

Typically, in practice the estimate of variance of the MH estimator suggested by

Greenland and Robins [26] is used. The estimated variance obtained from Greenland

and Robins’s method is given as

V̂ar(log R̂RMH) =

∑
i Pi0Pi1Yi/P

2
i

VW
, (15)

where Yi = Yi0 + Yi1 and Pi = Pi0 + Pi1. Greenland and Robins pointed out that the

formula will be only valid under homogeneity of the effect parameter:

All the variance formulas presented here were derived under the assumption of homo-

geneity across strata of the effect parameter.

Another approach is utilizing the simple form of the profile likelihood function in

this case. The model, allowing for baseline heterogeneity, is given as

logE(Yij) = logPij + αi + β × j, (16)

for i = 1, 2, ..., k and j = 0, 1, the latter indicating control or intervention. The coeffi-

cient β = logRR is the log-relative risk. The log-likelihood is then provided as (up to

an additive constant not involving the parameters)

logL = −
∑
i

eαiPi0(1 +Rie
β) +

∑
i

Yiαi +
∑
i

Yi1β, (17)

where Ri = Pi1/Pi0. The log-likelihood (17) is maximized for fixed the parameter of

interest β by eα̂i = Yi/[Pi0(1 +Rie
β)]. We achieve the profile log-likelihood function

`(β) =
∑
i

Yi1β −
∑
i

Yi log(1 +Rie
β). (18)

The profile likelihood needs to be maximized numerically, but in the case of balanced

studies (Ri = 1) there is a closed-form solution which corresponds to the MH estimator.

The profile log-likelihood can now be used to derive a variance estimate by means of the

9
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estimated Fisher information, which is given as the negative of the second derivative

of (18):

Î(β) =
∑
i

Yi
Rie

β

(1 +Rieβ)2
. (19)

We now proceed as follows. As we expect that the MH estimator and the profile

maximum likelihood estimator are close as point out in [11], we then suggest to use

Î(log R̂RMH)−1 =

(∑
i

Yi
RiR̂RMH

(1 +RiR̂RMH)2

)−1

(20)

as an estimate for the variance of log R̂RMH . All the variance estimators for the

risk ratio provided here are closely related as the following result shows, which is

straightforward to prove.

Theorem 2.1. If all studies are balanced, i.e. Pi1 = Pi0 for all studies i = 1, 2, ..., k,

then (5) = (15) = (20) = 1/
∑

i Yi1 + 1/
∑

i Yi0.

Another method of confidence interval construction is the method of variance es-

timates recovery (MOVER). For a brief overview see Newcombe [27] or Donner

and Zhou [28]. The method works for a parameter difference θ = θ1 − θ2 as fol-

lows. Let Li be the lower confidence interval and Ui the upper confidence interval

limit for θi (i = 1, 2) at level 1 − α, then L = θ̂ −
√

(θ̂1 − L1)2 + (U2 − θ̂2)2 and

U = θ̂ +

√
(θ̂1 − U1)2 + (L2 − θ̂2)2 provide a two-sided (1 − α)100% confidence inter-

val for θ. Here, θ̂i are estimates of θi for i = 1, 2 and θ̂ = θ̂1 − θ̂2 is the estimator of θ.

To apply the method for our case, we use θ̂1 = log V and θ̂2 = logW as we can safely

assume that both are non-zero. If we assume that L1 and U1 are constructed as

log V ± z

√∑
i
P 2
i0

P 2
i
Yi1

V 2

10
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(see also (6)) and that L2 and U2 are constructed as

logW ± z

√∑
i
P 2
i1

P 2
i
Yi0

W 2
.

Then, the MOVER interval for the log-relative risk corresponds to

log R̂RMH ± z

√∑
i
P 2
i0

P 2
i
Yi1

V 2
+

∑
i
P 2
i1

P 2
i
Yi0

W 2
,

which is the confidence interval we obtain on the basis of (6). Of course, if the con-

struction of the individual limits differs from the above construction, the MOVER

method will lead to a different interval.

2.2. Bootstrap method

A further way of constructing confidence intervals for the log-relative risk uses the

bootstrap. This method is a simple, but powerful statistical tool firstly described

by Efron [29]. It is also widely used in applications. In practice, we take B, say

B = 1,000, samples (Y ∗
i1, Y

∗
i0, P

∗
i1, P

∗
i0) with replacement of size k from the original

(Yi1, Yi0, Pi1, Pi0). For each of these bootstrap samples, the estimator log R̂R
∗
MHb is

determined, where b = 1, 2, ..., B. Then, a (1−α)100% bootstrap percentile confidence

interval is calculated by

(
log R̂R

∗
MH(α/2), log R̂R

∗
MH(1 − α/2)

)
,

where log R̂R
∗
MH(α/2) is the (α/2)th percentile of the bootstrap estimates and α is

the significant level. Furthermore, a (1−α)100% bootstrap variance confidence interval

for the log-relative risk is given by

log R̂R
∗
MH ± z

√
Var(log R̂R

∗
MH),

11
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where log R̂R
∗
MH =

∑B
b=1 log R̂R

∗
MHb/B and Var(log R̂R

∗
MH) =

∑B
b=1(log R̂R

∗
MHb −

log R̂R
∗
MH)/B is the bootstrap variance. The confidence interval for the relative risk

is then found by taking the anti-log.

We also look at the bias corrected and accelerated percentile interval (BCa) [30,31].

It is a distribution-free method used to construct bootstrap confidence intervals. This

is similar to the percentile bootstrap method as noted before, but corrects for bias

and skewness in the distribution of bootstrap estimates. The idea of BCa interval

uses percentiles of bootstrap distribution depended on estimating the two parame-

ters: acceleration parameter, namely â, and bias-correction coefficient, namely ẑ0 [32].

Considering the log-relative risk, a (1 − α)100% BCa confidence interval is given by

(
log R̂R

∗
MH(α1), log R̂R

∗
MH(α2)

)
,

where α1 = Φ
(
ẑ0 +

ẑ0+zα/2
1−â(ẑ0+zα/2)

)
, α2 = Φ

(
ẑ0 +

ẑ0+z1−α/2
1−â(ẑ0+z1−α/2)

)
, and zα/2 is the

(α/2)100th percentile of the standard normal distribution. The bias-correction fac-

tor is computed from

ẑ0 = Φ−1

(
#(log R̂R

∗
MHb < log R̂RMH)

B

)
,

where #(log R̂R
∗
MHb < log R̂RMH) is the number of bootstrap replications that pro-

vide log R̂R
∗
MHb less than the MH log-relative risk of the original sample. Furthermore,

the acceleration is given by

â =

∑k
i=1(log R̂RMH(.) − log R̂RMHi)

3

6
[∑k

i=1(log R̂RMH(.) − log R̂RMHi)
2
]3/2

,

where R̂RMHi is the mean estimate that excludes the i-th data point (jackknife esti-

mate) and R̂RMH(.) is the mean of R̂RMHi [33,34]. In computation, the BCa inter-

val is simply estimated using the boot or bootstrap packages of R (https://www.r-

project.org/).
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3. Variance estimation for the Mantel-Haenszel estimator of the risk

difference

The risk difference (RD) is one of effect sizes alternatively used in meta-analysis of

count outcomes. However, and we point this out right at the beginning, the risk differ-

ence is not invariant w.r.t. change of duration across studies. To illustrate we consider

a setting with event risk of 0.1 in the intervention group and 0.05 in the control group.

In a unit time, with 100 persons at risk we would expect 10 events in the intervention

and 5 events in the control group, leading to a risk difference of 0.05. If duration time

doubles, we would expect 20 events in the intervention group and 10 in the control

group giving a risk difference of 0.1. Hence, the risk difference appears heterogeneous

although this is clearly not the case. This problem does not occur with the risk ra-

tio and might be one of the reasons why the latter is more popular in practice. So,

when working with the risk difference it seems sensible to assume that all studies have

comparable duration and we drop the concept of person-time.

In this section, we assume that Yij are independent binomial distributions with

sample sizes nij and success or event probabilities λij , for i = 1, 2, ..., k and j = 0, 1.

Again, j = 1 represents the intervention group and j = 0 the control group. The

probability mass function of Yij is given as

(
nij
yij

)
λ
yij
ij (1 − λij)

nij−yij ,

where count yij = 0, 1, ..., nij . The mean and variance of Yij are E(Yij) = nijλij and

Var(Yij) = nijλij(1 − λij), respectively.

For a given study i, Yi1 and Yi0 denote the number of persons with an event out

of ni1 in the intervention and ni0 in the control group, respectively. In addition, there

are the associated risks λi1 and λi0. The true effect for the risk difference is therefore

denoted as RD = Λ1−Λ0, where −1 < RD < 1. In general, RD can be homogeneous or

heterogeneous across studies. To capture heterogeneity, we denote with Λ1 the expected

value of the distribution leading to unobserved values λ11, λ21, ..., λk1, similarly for

Λ0. If both distributions concentrate all mass on one point λ1 and λ0, respectively,
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RD = λ1 − λ0, and we are in the situation of homogeneity [35].

To estimate the parameter from sparse data or low frequency counts, the MH risk

difference estimator is suggested, and given as

R̂DMH =

∑
i(Yi1ni0 − Yi0ni1)/ni∑

i ni1ni0/ni
=

∑
i(Yi1ni0 − Yi0ni1)/ni∑

iwi
, (21)

where wi = ni1ni0/ni are the MH weights and ni = ni1 + ni0 [7,36]. This estimator

enjoys the same properties as the MH estimator of the risk ratio. R̂DMH is unbiased

(not only asymptotically unbiased) as

E(R̂DMH) =

∑
i(Λ1ni0ni0 − Λ0ni0ni1)/ni∑

i ni1ni0/ni
= Λ1 − Λ0.

Furthermore, an advantage of this estimator is that it does not rely on the study-

specific effect size estimates. R̂DMH is therefore a suitable estimator for meta-analytic

settings where double-zero or single-zero studies occur, unless all studies are zero in

one arm [6].

In practice, the variance estimator for R̂DMH based on Greenland and Robins’s

method [26] is applied. Following this method, two sample proportions of λi1 and λi0,

estimated by λ̂i1 = Yi1/ni1 and λ̂i0 = Yi0/ni0, are used. Taking the variance of (21), the

estimated variance according to Greenland and Robins (V̂argr(R̂DMH)) is therefore

given as

V̂argr(R̂DMH) =

∑
iw

2
i [Yi1(ni1 − Yi1)/n3

i1 + Yi0(ni0 − Yi0)/n3
i0]

(
∑

i ni1ni0/ni)
2

, (22)

where wi = ni1ni0/ni. However, the Greenland and Robins’s variance estimator is

only consistent when sample size ni for each component study becomes large [37]. An

alternative method for estimating the variance of R̂DMH has been suggested by Sato

[38]. The variance estimator obtained from the latter is noted to be consistent when

the number of studies become large and while the within-study data might remain

sparse [39].

Based on the method of Sato, the construction of the variance of R̂DMH is explained
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as follows. Let λi1 = RD+λi0 and λi0 = λi1 −RD. Since Yi1 and Yi0 are independent,

the variance of the numerator of (21) is given by

Var(
∑
i

(Yi1ni0 − Yi0ni1)/ni) =
∑
i

Var((Yi1ni0 − Yi0ni1)/ni). (23)

From (23), the term Var((Yi1ni0 − Yi0ni1)/ni) is further developed. We obtain two

different expressions:

RD[n2
i0(ni1 − Yi1) − n2

i1(ni0 − Yi0)] + Yi0ni0(ni1 − Yi1) + Yi1ni1(ni0 − Yi0)

n2
i

and

RD(Yi0n
2
i1 − Yi1n

2
i0) + Yi1ni0(ni0 − Yi0) + Yi0ni1(ni1 − Yi1)

n2
i

.

Next, these two formulas are averaged, so that we have

Var((Yi1ni0 − Yi0ni1)/ni) =
RD[Yi0n

2
i1 − Yi1n

2
i0 + ni1ni0(ni0 − ni1)/2]

n2
i

+
Yi1(ni0 − Yi0) + Yi0(ni1 − Yi1)

2ni
. (24)

It is now easy to derive the variance estimator of R̂DMH using (23) and (24) by

substituting R̂DMH into RD. Therefore, the variance estimator suggested by Sato (or

V̂arst) is given as

V̂arst(R̂DMH) =
R̂DMH

∑
i Si +

∑
i Ti

(
∑

i ni1ni0/ni)
2

, (25)

where Si = [Y 2
i0n

2
i1 − Yi1n

2
i0 + ni1ni0(ni0 − ni1)/2]/n2

i , Ti = [Yi1(ni0 − Yi0) + Yi0(ni1 −

Yi1)]/(2ni1ni0), and ni1 and ni0 must be greater than one. The two-sided (1−α)100%

confidence interval for RD based on the Wald-type method using the estimated vari-
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ance of Sato is of the form

R̂DMH ± z

√
V̂arst(R̂DMH).

The performance of the confidence intervals given in Sections 2 and 3 will be eval-

uated using simulations. Since, in fact homogeneity or heterogeneity situation can be

assumed, they are studied in the next section.

4. Simulation study

4.1. MH log-relative risk

The study investigates the performance of the Wald-type confidence intervals using

the variances of log R̂RMH derived based on the delta method (dt), the pivotal method

(pivot), the Greenland and Robins’s method (gr), and the profile likelihood method

(pl). These are compared to the bootstrap percentile (bp), the bootstrap variance (bv),

and the bias-corrected and accelerated bootstrap percentile (bca) confidence intervals.

In this simulation, the data for the log-relative risks from k studies, logRRi, were

generated from an N(µ, τ2), where the true generating parameter µ = logRR = -0.5,

0, 0.5, and variance τ2 = 0.5. The number of studies k were set as 10, 20, 30, 50, and

100. The number of events in the treatment group Yi1 and in the comparison group

Yi0 were generated from Po(λi1Pi1) and Po(λi0Pi0), respectively, where λi0 = 0.05,

corresponding to a rare events setting as also noted in [6], and λi1 was calculated by

RRi×λi0, for i = 1, 2, ..., k. We also looked at the case λi0 = 0.01 with results presented

in the appendix, as Table A1. The person-time Pi1 were sampled from a uniform

distribution, U(50, 100), and Pi0 = d× Pi1, where d ∼ U(0.9, 1), the degree of within-

study-imbalance. Note that when τ2 = 0, we are in the situation of homogeneity.

Each scenario was then repeated H = 5,000 times using R [40]. A large number of

H was used to eliminate only random error due to simulation. The performance of

the 95% confidence interval for the parameter of interest was investigated using the

coverage probability. Here, our focus in performance of the confidence interval is that

the coverage probability on average is close to the nominal level of 0.95.
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4.1.1. Simulation results of log R̂RMH for estimating the generating parameter (µ)

Table 1 shows the values of log R̂RMH on average under meta-analysis for the rare

events setting. In the heterogeneity case, log R̂RMH obtained from the formula and

bootstrap methods are greater than the generating parameter µ in all cases considered.

It can be also seen that the coverage probabilities of all confidence intervals are lower

than the target probability of 0.95. The confidence intervals using the four variance

formulas provide the coverage probability lower than the bootstrap confidence intervals

in all situations. In conclusion, the results indicate that in the heterogeneity case

log R̂RMH overestimates µ. As can be also seen in Figure 2 for a case when k = 100,

µ is given as -0.5 but the estimated values from both methods (formula-based and

bootstrap) are approximately equal to -0.25. Furthermore, when µ = 0, the estimated

values are 0.25. These lead to the Wald-type and bootstrap confidence intervals having

a low coverage probability. In contrast, the point and interval estimates obtained from

the variance formulas under homogeneity situations provide a good estimation for the

log-relative risk. Those of the bootstrap methods perform well when k > 30.

To consider a different situation from the previous simulation, we evaluate the per-

formance of the MH log-relative risk under heterogeneity by generating the data from

a two-component mixture distribution. The binary indicator for the mixture compo-

nent is sampled form a Bernoulli distribution with event probability 0.5. The marginal

mean for the mixture on the log-scale is then given as µ = 0.5 logRR1 + 0.5 logRR2,

where RRi is the relative risk in component i, for i = 1, 2. If the outcome of the

Bernoulli experiment is 1 then logRR1 = -0.5 is used, and logRR2 = 0.5 is used

otherwise. Note that for this case µ = 0 and exp(µ) = 1. On the RR-scale we yield

0.5 exp(−0.5) + 0.5 exp(0.5) = 1.1276 and this is what the MH-estimator estimates as

can be seen in column eight of Table 2 (upper part) as log 1.1276 = 0.1201.

Whereas in first scenario the risk ratio is 1 on the log-scale, we consider another

setting where it is also 1 but on the RR-scale. In this scenario, if the outcome of the

Bernoulli experiment is 1, we use RR1 = 0.5, else RR2 = 1.5. Thus, the marginal

mean of the mixture on the RR-scale is given by 0.5RR1 + 0.5RR2, which takes the

value 1 for the given values. This is what the MH estimator estimates as log 1 = 0

(see again column eight of Table 2, lower part). However, on the log-scale we yield
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Table 1. The mean of log-MH estimate and coverage probability (CP) of the 95% confidence intervals for

the true generating log-relative risk (µ) using variance formula-based and bootstrap methods, when generating

data under the normal distribution.

Formula-based method Bootstrap method

µ k log R̂RMH CPdt CPpivot CPgr CPpl log R̂RMH CPbp CPbv CPbca

Heterogeneity case
-0.5 10 -0.2842 0.7394 0.7504 0.7396 0.7394 -0.3139 0.8608 0.8568 0.8442

20 -0.2625 0.6410 0.6548 0.6416 0.6410 -0.2785 0.8240 0.8140 0.8004
30 -0.2541 0.5608 0.5760 0.5606 0.5608 -0.2651 0.7818 0.7690 0.7390
50 -0.2613 0.4492 0.4622 0.4490 0.4492 -0.2681 0.6868 0.6744 0.6146
100 -0.2544 0.2194 0.2274 0.2194 0.2194 -0.2580 0.4230 0.4140 0.3848

0 10 0.2173 0.7178 0.7112 0.7182 0.7178 0.1945 0.8620 0.8594 0.8394
20 0.2369 0.5954 0.5914 0.5948 0.5954 0.2243 0.8208 0.8100 0.7826
30 0.2394 0.5208 0.5180 0.5212 0.5210 0.2308 0.7608 0.7582 0.7066
50 0.2424 0.3706 0.3680 0.3702 0.3706 0.2370 0.6336 0.6284 0.5986
100 0.2500 0.1492 0.1486 0.1492 0.1492 0.2472 0.3484 0.3468 0.3246

0.5 10 0.7265 0.6628 0.6462 0.6622 0.6628 0.7090 0.8454 0.8414 0.8380
20 0.7353 0.5736 0.5572 0.5732 0.5732 0.7249 0.8140 0.8072 0.7668
30 0.7451 0.4654 0.4514 0.4654 0.4654 0.7379 0.7418 0.7354 0.7092
50 0.7434 0.3244 0.3140 0.3242 0.3242 0.7388 0.6034 0.6028 0.5634
100 0.7477 0.1214 0.1180 0.1214 0.1214 0.7453 0.3234 0.3220 0.2888

Homogeneity case
-0.5 10 -0.5056 0.9508 0.9462 0.9504 0.9508 -0.5138 0.8950 0.9100 0.9074

20 -0.5062 0.9522 0.9492 0.9522 0.9522 -0.5104 0.9250 0.9322 0.9286
30 -0.5035 0.9514 0.9500 0.9514 0.9512 -0.5062 0.9320 0.9378 0.9424
50 -0.5034 0.9498 0.9466 0.9490 0.9499 -0.5051 0.9366 0.9400 0.9382
100 -0.5011 0.9550 0.9544 0.9548 0.9550 -0.5019 0.9496 0.9520 0.9470

0 10 -0.0041 0.9532 0.9514 0.9532 0.9532 -0.0039 0.8994 0.9110 0.9024
20 -0.0017 0.9532 0.9528 0.9532 0.9532 -0.0013 0.9286 0.9316 0.9314
30 0.0025 0.9538 0.9534 0.9542 0.9538 0.0027 0.9368 0.9410 0.9382
50 0.0001 0.9498 0.9496 0.9498 0.9498 0.0003 0.9376 0.9384 0.9416
100 -0.0006 0.9516 0.9512 0.9514 0.9516 -0.0006 0.9428 0.9438 0.9440

0.5 10 0.5096 0.9522 0.9466 0.9522 0.9522 0.5156 0.8978 0.9096 0.9062
20 0.5006 0.9512 0.9518 0.9512 0.9512 0.5034 0.9300 0.9358 0.9250
30 0.5016 0.9544 0.9540 0.9544 0.9544 0.5035 0.9380 0.9404 0.9350
50 0.4993 0.9474 0.9484 0.9470 0.9474 0.5005 0.9408 0.9414 0.9380
100 0.5015 0.9526 0.9520 0.9526 0.9526 0.5021 0.9464 0.9480 0.9438
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Figure 2. Plots of simulated MH log-relative risk from formula-based method (left) and bootstrap method

(right) under heterogeneity case, when logRRi ∼ N(µ = logRR, τ2 = 0.5) and k = 100.
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Table 2. The mean of log-MH estimate and coverage probability (CP) of the 95% confidence intervals for the

true generating log-relative risk (µ) using variance formula-based and bootstrap methods, when generating data
under the two-component mixture case.

Formula-based method Bootstrap method

µ k log R̂RMH CPdt CPpivot CPgr CPpl log R̂RMH CPbp CPbv CPbca

Case 1: True logRR = 0.5(-0.5)+0.5(0.5) = 0
0 10 0.1134 0.8676 0.8626 0.8678 0.8676 0.1044 0.8744 0.8798 0.8746

20 0.1132 0.8318 0.8288 0.8314 0.8318 0.1089 0.8790 0.8778 0.8836
30 0.1122 0.8072 0.8042 0.8074 0.8072 0.1091 0.8714 0.8694 0.8652
50 0.1168 0.7416 0.7386 0.7414 0.7416 0.1150 0.8282 0.8244 0.8318
100 0.1205 0.5966 0.5952 0.5966 0.5966 0.1196 0.7004 0.7002 0.7162

Case 2: True logRR = 0.5 log 0.5 + 0.5 log 1.5 = -0.14
-0.14 10 -0.0150 0.8546 0.8528 0.8534 0.8540 -0.0275 0.8750 0.8782 0.8776

20 -0.0059 0.8074 0.8068 0.8072 0.8070 -0.0122 0.8708 0.8686 0.8694
30 -0.0040 0.7624 0.7652 0.7628 0.7624 -0.0082 0.8456 0.8432 0.8446
50 -0.0037 0.6898 0.6908 0.6902 0.6898 -0.0060 0.7950 0.7894 0.7926
100 -0.0019 0.5178 0.5194 0.5180 0.5178 -0.0031 0.6488 0.6442 0.6468

µ = (0.5 logRR1 + 0.5 logRR2) = −0.1438, which again shows the underestimation

fact relative to the value of zero which the MH-estimate estimates on the RR-scale for

this case.

Let us return to the case when logRRi ∼ N(µ, τ2), where µ = logRR. In other

words, the log-relative risk is normally distributed which is a quite common assumption

often met in mixed modelling. In this case, we point out again that in the heterogeneity

situation R̂RMH is a biased estimator for RR or exp(µ). This can be explained using a

special case as follows. From (2), when the person-times are balanced within studies, we

have E(R̂RMH) ≈ E(RR). However, in fact the log-relative risk is a random variable

having a normal distribution with mean µ and variance τ2. This means that the relative

risk has a log-normal distribution, denoted as RRi ∼ LN(µ, τ2), where E(RRi) =

exp(µ+ τ2/2). Therefore, R̂RMH will estimate the parameter exp(µ+ τ2/2), instead

of exp(µ) as we might have expected. An evidence for confirming this hypothesis is

shown in Figure 2. Here, we investigate what log R̂RMH is estimating. As we have seen

in the balanced case, the asymptotic expected value of R̂RMH is exp(µ + τ2/2). For

example, when µ = 0 and τ2 = 0.5, the logarithm of the asymptotic expected value of

R̂RMH is 0.5/2 = 0.25, not equal to µ = 0.

4.1.2. Simulation results of log R̂RMH for estimating the estimand (θ)

As we noted in the above section, it is not appropriate to consider log R̂RMH as an

estimator of µ, if there is heterogeneity. The performance of this estimator including

confidence intervals was therefore investigated using simulations once again. However,
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in this part the estimand of the MH estimator, denoted by θ, was used as the true

value and we consider only the heterogeneity situation. When the log-relative risk is

generated under the normal distribution, the estimand is θ = exp(µ + τ2/2), where

µ = -0.5, 0, and 0.5, and τ2 = 0.5. Under the two-component mixture distribution of

the log-relative risk, the estimand is computed by w × RR1 + (1 − w) × RR2, where

the event probability from the Bernoulli distribution is w = 0.5, RR1 and RR2 are

corresponded to the previous simulation settings of the heterogeneity case. The main

results are described in the following. Tables 3 and 4 show the coverage probabilities

of the confidence intervals based on the two main methods under the normal and

mixture distributions, respectively. It can be seen that the values of log R̂RMH are

close to θ, particularly when k > 30. The coverage probabilities of the confidence

intervals considered here are greater than those when we used the true value as µ (see

subsection 4.1.1). In more detail, the bootstrap intervals provide coverage probabilities

greater than the Wald-type confidence intervals. Especially, the bootstrap variance

confidence interval outperforms the other bootstrap intervals under comparison.

The bias of the MH estimator has been mentioned before such as in the case of the

MH estimator for the odds ratio (see Bakbergenuly et al. [13] and Bakbergenuly and

Kulinskaya [14]). The deeper reason for this overestimation bias of the MH estimator in

the case of heterogeneity stems from Jensen’s inequality [41]. If there is heterogeneity

in the relative risk, then RR will have a distribution and it follows from the concavity

of the logarithm that

logE(RR) ≥ E(logRR).

In the case that logRRi ∼ N(µ, τ2) we have E(logRR) = µ, but what we estimate

is logE(RR) which equals µ + τ2/2. Hence, an overestimation bias occurs. We could

correct for this overestimation bias if we would need to have an estimate for τ2, but

this is usually not available without further modelling assumptions and additional

computational expense. From our perspective, it seems more fair to consider the per-

formance of the MH estimator in terms for what it estimates. This precisely means

to consider the true heterogeneity on the RR-scale and not on the log-scale. So, for
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Table 3. The mean of log-MH estimate and coverage probability (CP) of the 95% confidence intervals for the
estimand of MH estimator for the log-relative risk (θ) using variance formula-based and bootstrap methods,

when generating data under the normal distribution with heterogeneity.

Formula-based method Bootstrap method

θ k log R̂RMH CPdt CPpivot CPgr CPpl log R̂RMH CPbp CPbv CPbca

-0.25 10 -0.2955 0.8422 0.8360 0.8420 0.8422 -0.3262 0.8878 0.9101 0.8987
20 -0.2727 0.8226 0.8214 0.8224 0.8226 -0.2891 0.9054 0.9146 0.9062
30 -0.2617 0.8272 0.8230 0.8268 0.8270 -0.2727 0.9218 0.9286 0.9256
50 -0.2555 0.8222 0.8212 0.8222 0.8222 -0.2624 0.9322 0.9334 0.9304
100 -0.2555 0.8186 0.8176 0.8186 0.8186 -0.2590 0.9318 0.9358 0.9338

0.25 10 0.2196 0.8098 0.8088 0.8104 0.8098 0.1974 0.8982 0.8997 0.8987
20 0.2345 0.8000 0.8012 0.7994 0.7998 0.2220 0.9090 0.9182 0.9118
30 0.2395 0.8018 0.8028 0.8022 0.8018 0.2310 0.9240 0.9284 0.9250
50 0.2457 0.8054 0.8046 0.8052 0.8054 0.2401 0.9358 0.9400 0.9364
100 0.2490 0.7986 0.7988 0.7986 0.7986 0.2461 0.9356 0.9386 0.9404

0.75 10 0.7296 0.7826 0.7904 0.7822 0.7826 0.7120 0.8980 0.8992 0.8986
20 0.7341 0.7770 0.7802 0.7778 0.7774 0.7236 0.9114 0.9186 0.9112
30 0.7406 0.7806 0.7786 0.7806 0.7806 0.7333 0.9246 0.9284 0.9238
50 0.7463 0.7740 0.7770 0.7744 0.7742 0.7417 0.9336 0.9348 0.9346
100 0.7467 0.7664 0.7666 0.7664 0.7664 0.7443 0.9402 0.9416 0.9402

Table 4. The mean of log-MH estimate and coverage probability (CP) of the 95% confidence intervals for the

estimand of MH estimator for the log-relative risk (θ) using variance formula-based and bootstrap methods,
under the two-component mixture case with heterogeneity effect.

Formula-based method Bootstrap method

θ k log R̂RMH CPdt CPpivot CPgr CPpl log R̂RMH CPbp CPbv CPbca

Case 1: Estimand of MHE = log(0.5 exp(−0.5) + 0.5 exp(−0.5)) = 0.12
0.12 10 0.1046 0.8996 0.8962 0.8992 0.8996 0.0958 0.8984 0.9120 0.9008

20 0.1145 0.9028 0.9010 0.9028 0.9028 0.1101 0.9254 0.9316 0.9330
30 0.1169 0.9010 0.8994 0.9014 0.9010 0.1141 0.9342 0.9366 0.9380
50 0.1191 0.9030 0.9026 0.9030 0.9030 0.1174 0.9448 0.9464 0.9486
100 0.1184 0.9012 0.9016 0.9012 0.9012 0.1175 0.9506 0.9522 0.9510

Case 2: Estimand of MHE = log(0.5 × 0.5 + 0.5 × 1.5) = 0
0 10 -0.0116 0.9012 0.8976 0.9010 0.9012 -0.0244 0.8980 0.9136 0.9066

20 -0.0014 0.8996 0.8988 0.8998 0.8996 -0.0074 0.9290 0.9332 0.9350
30 -0.0072 0.8910 0.8890 0.8908 0.8910 -0.0113 0.9314 0.9378 0.9362
50 -0.0044 0.8950 0.8952 0.8954 0.8950 -0.0069 0.9440 0.9466 0.9492
100 -0.0004 0.8904 0.8902 0.8904 0.8904 -0.0017 0.9408 0.9438 0.9430
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example, if the heterogeneity distribution of the risk ratio is normal on the log-scale it

is only appropriate to evaluate the performance of the MH estimator on the associated

distribution on the RR-scale. We return to these issues in the discussion.

4.2. MH risk difference

To investigate the performance of the MH estimator for the true risk difference (RD)

under rare events, simulation settings were set as follows. Under heterogeneity, we

generated an indicator variable for the two-component mixture distribution from a

Bernoulli with event probability w = 0.25 and 0.75. If the outcome of Bernoulli ex-

periment was 1 we set RDi = a, otherwise RDi = b, for i = 1, 2, ..., k. To avoid cases

with negative treatment probability, we used a = 0.04 and b = −0.04. The risk for

the control group was given as λi0 = 0.05, and the risk for the treatment group was

calculated by λi1 = RDi + λi0, where RDi depended on the result of a Bernoulli ex-

periment. We set λi0 and λi1 as noted above for obtaining rare events. Then, the true

risk difference was estimated by RD = w × a+ (1 − w) × b, which were -0.02 or 0.02.

For homogeneity situation, RD = 0.04 was considered without using an indicator. The

number under risk were generated as unbalanced, with ni1 sampled from a discrete

U(50, 100) and ni0 = d× ni1 with d ∼ U(0.9, 1). We then generated Yi1 and Yi0 from

two binomial distributions, B(ni1, λi1) and B(ni0, λi0), respectively. Furthermore, we

looked at λi0 = 0.01, where the results are presented in Table A2 of the appendix.

The performance of the 95% Wald-type confidence intervals for RD based on Green-

land and Robins’s variance (gr), Sato’s variance (st), and the bootstrap percentile (bp)

and bootstrap variance (bv) confidence intervals are presented in Table 5. It can be

concluded that R̂DMH from the formula-based and bootstrap methods work well and

provide the estimated values close to RD, even in the case of heterogeneity. However,

the coverage probabilities of the confidence intervals based on the two formula vari-

ances in heterogeneity cases are lower than the nominal level of 0.95. The bootstrap

confidence intervals have the coverage probability greater in this case, but they cover

the true parameter with a satisfied probability when k > 30. Again for homogeneity

case, the confidence intervals based on the two variance formulas perform well in terms

of coverage probability. This finding is also supported by Klingenberg [37] and Lui [39],
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Table 5. The mean of MH estimate and coverage probability (CP) of the 95%

confidence interval for the risk difference using variance formula-based and boot-
strap methods.

Formula-based method Bootstrap method

RD k R̂DMH CPrd.st CPrd.gr R̂DMH CPrd.bp CPrd.bv

Heterogeneity case
-0.02 10 -0.0197 0.8148 0.8102 -0.0197 0.8774 0.8822

20 -0.0202 0.8164 0.8116 -0.0202 0.9188 0.9180
30 -0.0201 0.8136 0.8164 -0.0201 0.9294 0.9282
50 -0.0198 0.8206 0.8138 -0.0198 0.9426 0.9414
100 -0.0200 0.8218 0.8044 -0.0200 0.9422 0.9416

0.02 10 0.0201 0.8454 0.8506 0.0201 0.8972 0.8976
20 0.0200 0.8482 0.8524 0.0200 0.9254 0.9242
30 0.0198 0.8492 0.8576 0.0198 0.9354 0.9366
50 0.0200 0.8514 0.8552 0.0200 0.9398 0.9402
100 0.0200 0.8472 0.8510 0.0200 0.9424 0.9440

Homogeneity case
0.04 10 0.0399 0.9494 0.9436 0.0399 0.8958 0.9044

20 0.0397 0.9498 0.9492 0.0397 0.9260 0.9296
30 0.0401 0.9470 0.9520 0.0401 0.9328 0.9360
50 0.0401 0.9550 0.9482 0.0401 0.9426 0.9456
100 0.0400 0.9532 0.9428 0.0400 0.9490 0.9500

and makes sense as these variance estimators are constructed under homogeneity of

effect.

5. Case study

5.1. The effectiveness of prophylactic antibiotics in caesarean section

(continued)

We now illustrate the various estimators at the example of a case study. A systematic

review of the effectiveness of prophylactic antibiotic treatment on infectious compli-

cations in women undergoing caesarean delivery [2] as noted in the first section of

this paper is used. We note again that many of the component studies in the data

were small in size and there were zero events in each of two arms, especially in the

treatment group. If the inverse variance-weighted average method is used, the double-

zero or single-zero study would have to be excluded before the analysis because the

risk ratio is undefined. However, the MH meta-analysis and bootstrap methods can

be used when those zero-event studies are included.

Using the data given in Table B1 of the appendix, we first focus on checking the

homogeneity of the risk ratio. The chi-squared test on testing the hypothesis of homo-

geneity gives a p-value of 0.32 and Higgins’s I2 is 7.1%. This indicates no empirical
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evidence of a difference of risk ratios between studies. In our analysis using 61 studies,

the estimated risk ratio from the MH estimator and bootstrap method equal 0.3864

and 0.3854, respectively. For the risk difference, the MH and bootstrap estimates are

-0.0575 and -0.0574, respectively. The 95% confidence intervals for the parameter of

interest and the variance estimates of the MH estimator are also computed, and given

in the first part of Table 6. There is a clear indication of a significant difference between

the two therapies. Overall, a women undergoing caesarean delivery has lower risk for

infectious complications if in the prophylactic antibiotic treatment group relative to

being in placebo or in the no prophylactic antibiotic treatment group.

Under this data set, the meta-analysis based on the MH method and the bootstrap

can be computed. They provide the summary results in the same way, even though rare

events are available. The MH estimate and the confidence intervals for the risk ratio

obtained from the formula-based and bootstrap methods do not much differ. These

confirm the simulation results under homogeneity situations presented in Section 4.

5.2. The association of MERS exposure proximity with infection

In the second example, we use the meta-analytic data on the effects of physical distance

1 metre (m) or more (exposure) and less than 1 m (non-exposure) on Middle East

respiratory syndrome (MERS) transmission reported in Chu et al. [42]. The data

given in Table B2 of the appendix include eight studies with confirmed cases of MERS

comparing distances between people and MERS infected patients of 1 m or larger

with smaller distances. The results given in Figure 3 show that there is a significant

difference of risk ratios between studies (or heterogeneity effect) with Higgins’s I2

of 74.9% and p-value of 0.008. In our analysis, the estimated MH risk ratio and risk

difference based on 8 studies are 0.1569 and -0.1197, respectively. The bootstrap values

for the MH relative risk and risk difference are 0.1699 and -0.1079, respectively. We

also estimate the 95% confidence intervals for the risk ratio and risk difference using

several methods. They are presented in the second part of Table 6. From the results, the

confidence intervals for the risk difference are slightly different. However, the confidence

intervals based on the variance formulas for the log-relative risk are quite different from

the bootstrap confidence intervals. Given the results in Section 4 we give more trust
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Table 6. The estimated variance of the estimators and 95% confidence intervals for the relative risk

and risk difference using two meta-analytic data examples.

Confidence limits Confidence limits

Approach V̂ar(log R̂RMH) for RR V̂ar(R̂DMH) for RD
Example 1: Prophylactic antibiotics in caesarean section

Delta 0.0089 (0.3212, 0.4649) - -
Greenland & Robins 0.0089 (0.3214, 0.4647) 2.8 ×10−5 (-0.0679, -0.0470)
Profile likelihood 0.0088 (0.3215, 0.4645) - -
Pivot method - (0.3187, 0.4626) - -
Sato - - 2.9 ×10−5 (-0.0681, -0.0468)
Bootstrap percentile - (0.2958, 0.4861) - (-0.0727, -0.0427)
Bootstrap variance 0.0167 (0.3003, 0.4945) 5.9 ×10−5 (-0.0725, -0.0423)
BCa bootstrap - (0.2929, 0.4827) - (-0.0746, -0.0436)

Example 2: Association of MERS exposure proximity with infection
Delta 0.2586 (0.0579, 0.4250) - -
Greenland & Robins 0.1419 (0.0750, 0.3282) 0.0009 (-0.1815, -0.0134)
Profile likelihood 0.1896 (0.0668, 0.3682) - -
Pivot - (0.0159, 0.3707) - -
Sato - - 0.0009 (-0.1784, -0.0610)
Bootstrap percentile - (0.0499, 0.5875) - (-0.1815, -0.0134)
Bootstrap variance 0.3997 (0.0493, 0.5879) 0.0023 (-0.2012, -0.0145)
BCa bootstrap - (0, 0.5453) - (-0.1968, -0.0217)

to the bootstrap intervals, in particular the bootstrap percentile and the bootstrap

variance interval.

6. Discussion

The Mantel-Haenszel (MH) approach can be viewed as a model-free summary tool

in meta-analysis of count data. It can be used whether there is homogeneity or not

in the effect measure interest. We have seen that in the case of heterogeneity in the

risk ratio certain issues arise which cannot easily be coped with in the bootstrap

approach, but rather needed to be decided which scale (log-scale or not) for the risk

ratio should be used. We have investigated interval estimation for the MH estimator

when outcomes are counts of events and focused on rare events leading to low count

values. The MH estimators for the relative risk (R̂RMH) and risk difference (R̂DMH)

are widely applied in this situation. To their advantage, they are not sensitive to zero-

event studies. To compute the variance of the relative risk estimator which is usually

done on the log-scale and the variance of the risk difference estimator, several methods

are introduced and applied in interval estimation including the Wald-type confidence

intervals. Furthermore, we study the bootstrap confidence intervals. The performance

of the confidence intervals was assessed using simulations with various settings.

Under homogeneity, log R̂RMH and the confidence intervals for logRR constructed

26

Page 26 of 38

URL: http:/mc.manuscriptcentral.com/gscs

Journal of Statistical Computation and Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 
 

 

 

 

 

 

M-H Overall  (I-squared = 74.9%, p = 0.008)

Wiboonchutikul et al., 2019

Arwady et al., 2016

D+L Overall

Park et al., 2016

Reuss et al., 2014

Ki et al., 2019

Report,

Ryu et al., 2019

Hall et al., 2014

Van Kerkhove et al., 2019

year

0.18 (0.10, 0.35)

(Excluded)

0.25 (0.04, 1.73)

0.23 (0.04, 1.20)

0.59 (0.04, 8.77)

(Excluded)

0.72 (0.14, 3.70)

(Excluded)

(Excluded)

0.05 (0.02, 0.12)

RR (95% CI)

100.00

0.00

17.41

4.79

0.00

10.67

Weight

%

0.00

0.00

67.13

(M-H)

0.18 (0.10, 0.35)

(Excluded)

0.25 (0.04, 1.73)

0.23 (0.04, 1.20)

0.59 (0.04, 8.77)

(Excluded)

0.72 (0.14, 3.70)

(Excluded)

(Excluded)

0.05 (0.02, 0.12)

RR (95% CI)

100.00

0.00

17.41

4.79

0.00

10.67

Weight

%

0.00

0.00

67.13

(M-H)

  
1.0213 1 46.9

M-H Overall  (I-squared = 74.9%, p = 0.008)

Wiboonchutikul et al., 2019

Arwady et al., 2016

D+L Overall

Park et al., 2016

Reuss et al., 2014

Ki et al., 2019

Report,

Ryu et al., 2019

Hall et al., 2014

Van Kerkhove et al., 2019

year

0.18 (0.10, 0.35)

(Excluded)

0.25 (0.04, 1.73)

0.23 (0.04, 1.20)

0.59 (0.04, 8.77)

(Excluded)

0.72 (0.14, 3.70)

(Excluded)

(Excluded)

0.05 (0.02, 0.12)

RR (95% CI)

100.00

0.00

17.41

4.79

0.00

10.67

Weight

%

0.00

0.00

67.13

(M-H)

0.18 (0.10, 0.35)

(Excluded)

0.25 (0.04, 1.73)

0.23 (0.04, 1.20)

0.59 (0.04, 8.77)

(Excluded)

0.72 (0.14, 3.70)

(Excluded)

(Excluded)

0.05 (0.02, 0.12)

RR (95% CI)

100.00

0.00

17.41

4.79

0.00

10.67

Weight

%

0.00

0.00

67.13

(M-H)

  
1.0213 1 46.9

Figure 3. Forest plot of meta-analytic data on the association of MERS exposure proximity with infection.

based on the Wald-type method using the standard variance formulas considered in

this work perform well. There is no significant bias in estimation. The coverage prob-

abilities are very close to the target level. The bootstrap confidence intervals also sat-

isfy the nominal coverage probability when number of studies are large. Furthermore,

R̂DMH and interval estimation for RD using the variance formulas provide satisfac-

tory results under this assumption. However, the results change when heterogeneity in

the effect is assumed. log R̂RMH overestimates and is a biased estimator for logRR.

Also, we have given explanations why this occurs. The Wald-type confidence intervals

have a low performance in terms of coverage probability. We have then concluded

that confidence interval for logRR constructed using the variance estimator derived

under the assumption of homogeneity should not be used if heterogeneity presents. In

contrast, R̂DMH can be used to estimate the true RD unbiasedly, whether there is

heterogeneity or not. The bootstrap confidence intervals for RD are able to provide

acceptable coverage as we have shown in simulation study.

For the risk ratio, in the setting of heterogeneity things are more complex as we have

seen. However, we focus here again on some of the issues. If we are willing to assume
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that the log-relative risk is normally distributed across studies, then the MH estimator

of relative risk will overestimate the true relative risk. Correct bootstrap inference

could be constructed if the confidence interval could calibrate by correcting for the

overestimation bias. This, however, requires an estimate of the variance of the latent

distribution of the log-relative risk which will require additional model assumptions

and computational effort. Also, in that case the bootstrap approach would no longer

be required. Alternatively, one might consider accepting a normal distribution (or any

other) of the relative risk scale in which case the bootstrap inference will deliver correct

inference. However, working on the relative risk scale with continuous distributions

seems less acceptable than doing so on the log-relative risk scale.

As a further alternative, we might think of the distribution of relative risk in a

non-parametric way on the relative risk scale. Again, here the bootstrap approach

will provide correct inference. The question, however, remains if one willing to accept

that non-symmetric weights are treated symmetrically. To illustrate, consider the two-

component mixture which gives equal weights to sub-populations with mean relative

risks 0.5 and 1.5, respectively. The marginal mean of the relative risk would be 1, and

this is also what the MH estimator would estimate. However, most epidemiologists will

likely feel that the symmetric effect for 0.5 on the relative risk scale should be 2 giving

a marginal relative risk mean of 1 on the log-relative risk scale 0.5 log 0.5+0.5 log 2 = 0.

However, the MH estimate will deliver a mean of 1.25 in this case, instead of 1 as it is

on the log-relative risk scale.

Ultimately, it is the question of which scale we are willing to accept for the relative

risk and which distribution for it. These problems do not exist for the risk difference

as we are working on a unique scale and this might be considered as an advantage.
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[6] Piaget-Rossel R, Taffé P. Meta-analysis of rare events under the assumption of a homo-

geneous treatment effect. Biom J. 2019;61(6):1557–1574.

[7] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies

of disease. J Natl Cancer Inst. 1959;22(4):719–748.

[8] Robins J, Greenland S, Breslow NE. A general estimator for the variance of the Mantel-

Haenszel odds ratio. Am J Epidemiol. 1986;124(5):719–723.

[9] Jewell NP. Statistics for Epidemiology. Boca Raton: CRC Press; 2004.

[10] Landis JR, Sharp TJ, Kuritz SJ, et al. Mantel-Haenszel Methods. Chichester: John Wiley

& Sons; 2005.
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Appendices

Appendix A. Additional simulation result

According to parameter settings given in the simulation section, the coverage proba-

bilities of the 95% confidence intervals under λi0 = 0.01 are given in the following. It
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is important to note that the results obtained from setting λi0 = 0.05, presented in

Section 4, and λi0 = 0.01 are in the same way. The performance of estimator obtained

from the bootstrap method is better than that of the formula-based method.

Table A1. The mean of log-MH estimate and coverage probability (CP) of the 95% confidence intervals for

the true generating log-relative risk (µ) using variance formula-based and bootstrap methods, when generating

data under the normal distribution (λi0 = 0.01).

Formula-based method Bootstrap method

µ k log R̂RMH CPdt CPpivot CPgr CPpl log R̂RMH CPbp CPbv CPbca

Heterogeneity case
-0.5 10 -0.2809 0.6482 0.6433 0.6482 0.6482 -0.3155 0.8874 0.8608 0.8612

20 -0.2882 0.5740 0.5802 0.5742 0.5740 -0.3161 0.8030 0.8170 0.7996
30 -0.2564 0.5244 0.5440 0.5214 0.5244 -0.2738 0.7776 0.7816 0.7824
50 -0.2614 0.4842 0.5046 0.4840 0.4842 -0.2717 0.6538 0.6546 0.6492
100 -0.2529 0.3660 0.3850 0.3658 0.3660 -0.2576 0.5572 0.5500 0.5542

0 10 0.2281 0.6122 0.6045 0.5918 0.5924 0.2060 0.8780 0.8986 0.8886
20 0.2426 0.5478 0.5344 0.5488 0.5482 0.2382 0.8748 0.8954 0.8866
30 0.2466 0.5142 0.5026 0.5034 0.5140 0.2431 0.8636 0.8738 0.8708
50 0.2452 0.4542 0.4466 0.4540 0.4542 0.2428 0.7266 0.7332 0.7278
100 0.2498 0.3110 0.3054 0.3108 0.3110 0.2474 0.5076 0.5112 0.5040

0.5 10 0.7232 0.6076 0.5721 0.5988 0.5980 0.7630 0.8644 0.8972 0.8648
20 0.7371 0.5360 0.4958 0.5358 0.5362 0.7663 0.8718 0.8976 0.8802
30 0.7489 0.4974 0.4648 0.4970 0.4972 0.7531 0.8526 0.8680 0.8482
50 0.7546 0.4234 0.3898 0.4243 0.4234 0.7565 0.7940 0.8118 0.7990
100 0.7586 0.2534 0.2288 0.2531 0.2532 0.7534 0.4506 0.4628 0.4628

Homogeneity case
-0.5 10 -0.5411 0.9792 0.9574 0.9692 0.9732 -0.5580 0.8992 0.9078 0.9026

20 -0.5226 0.9628 0.9592 0.9621 0.9613 -0.5582 0.9184 0.9458 0.9364
30 -0.5104 0.9544 0.9475 0.9536 0.9544 -0.5275 0.9284 0.9506 0.9432
50 -0.5008 0.9556 0.9514 0.9556 0.9552 -0.5211 0.9384 0.9488 0.9472
100 -0.5046 0.9562 0.9512 0.9558 0.9562 -0.5087 0.9456 0.9502 0.9514

0 10 0.0112 0.9686 0.9620 0.9686 0.9683 0.0131 0.8918 0.9198 0.9058
20 0.0072 0.9542 0.9484 0.9534 0.9542 0.0091 0.9202 0.9430 0.9354
30 -0.0004 0.9526 0.9488 0.9524 0.9526 0.0008 0.9296 0.9418 0.9428
50 0.0056 0.9508 0.9494 0.9506 0.9508 0.0065 0.9394 0.9488 0.9424
100 0.0053 0.9574 0.9562 0.9576 0.9571 0.0057 0.9490 0.9508 0.9502

0.5 10 0.5129 0.9644 0.9583 0.9640 0.9644 0.5603 0.8970 0.9230 0.9000
20 0.5018 0.9552 0.9474 0.9550 0.9545 0.5305 0.9252 0.9470 0.9394
30 0.5079 0.9496 0.9478 0.9496 0.9492 0.5243 0.9270 0.9402 0.9398
50 0.5021 0.9496 0.9498 0.9494 0.9496 0.5136 0.9388 0.9438 0.9474
100 0.5013 0.9532 0.9484 0.9530 0.9532 0.5065 0.9456 0.9476 0.9480
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Table A2. The mean of MH estimate and coverage probability (CP) of the

95% confidence interval for the risk difference using variance formula-based and
bootstrap methods (λi0 = 0.01).

Formula-based method Bootstrap method

RD k R̂DMH CPrd.st CPrd.gr R̂DMH CPrd.bp CPrd.bv

Heterogeneity case
-0.02 10 -0.0204 0.8243 0.8219 -0.0204 0.8774 0.8715

20 -0.0201 0.8245 0.8227 -0.0201 0.9188 0.9057
30 -0.0203 0.8259 0.8229 -0.0203 0.9294 0.9316
50 -0.0199 0.8237 0.8221 -0.0199 0.9426 0.9332
100 -0.0198 0.8293 0.8263 -0.0198 0.9422 0.9448

0.02 10 0.0199 0.8345 0.8309 0.0199 0.8972 0.8852
20 0.0198 0.8343 0.8317 0.0198 0.9254 0.9100
30 0.0198 0.8397 0.8377 0.0198 0.9354 0.9348
50 0.0200 0.8447 0.8423 0.0200 0.9398 0.9408
100 0.0199 0.8433 0.8407 0.0199 0.9424 0.9446

Homogeneity case
0.04 10 0.0399 0.9440 0.9420 0.0399 0.8954 0.8956

20 0.0400 0.9500 0.9484 0.0400 0.9258 0.9256
30 0.0399 0.9522 0.9500 0.0399 0.9386 0.9414
50 0.0399 0.9550 0.9534 0.0399 0.9448 0.9470
100 0.0399 0.9472 0.9456 0.0399 0.9410 0.9432

Appendix B. Data set

Two meta-analytic data sets used in the application of this paper are given in Tables

B1 and B2 as follows.
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Table B1. Meta-analytic data on prophylactic antibiotics treatment and placebo (no prophylactic antibiotics)
in caesarean section.

Treatment Placebo Treatment Placebo
Report, year event/ size event/ size Report, year event/ size event/ size
Adeleye et al., 1981 11/ 58 14/ 48 Leonetti et al., 1989 0/ 100 1/ 50
Bibi et al., 1994 4/ 133 28/ 136 Levin et al., 1983 0/ 85 3/ 43
Chan et al., 1989 27/ 299 12/ 101 Lewis et al., 1990 1/ 36 1/ 25
Conover et al., 1984 2/ 68 1/ 56 Lewis et al., 1990 2/ 76 4/ 75
Cormier et al., 1989 5/ 55 8/ 55 Mahomed et al., 1988 12/ 115 15/ 117
Dashow et al., 1986 3/ 100 0/ 33 Mallaret et al., 1990 6/ 136 16/ 130
Dashow et al., 1986 4/ 183 3/ 44 McCowan et al., 1980 9/ 35 7/ 38
De Boer et al., 1989 1/ 11 5/ 17 Miller et al., 1968 13/ 150 23/ 150
De Boer et al., 1989 10/ 80 21/ 74 Moodley et al., 1981 2/ 40 4/ 20
Dillon et al., 1981 0/ 46 4/ 55 Moro et al., 1974 0/ 74 2/ 74
Duff et al., 1980 0/ 26 1/ 31 Padilla et al., 1983 0/ 34 5/ 37
Duff et al., 1982 0/ 42 0/ 40 Phelan et al., 1979 2/ 61 2/ 61
Elliot et al., 1986 0/ 119 1/ 39 Polk et al., 1982 3/ 146 9/ 132
Engel et al., 1986 1/ 50 9/ 50 Rehu et al., 1980 4/ 88 4/ 40
Fugere et al., 1983 2/ 60 6/ 30 Roex et al., 1986 1/ 64 7/ 65
Gall, 1979 1/ 46 1/ 49 Ross et al., 1984 7/ 57 7/ 58
Gerstner et al., 1980 3/ 53 9/ 50 Rothbard et al., 1975 0/ 16 1/ 16
Gibbs et al., 1972 0/ 33 4/ 28 Rothbard et al., 1975 2/ 31 6/ 37
Gibbs et al., 1973 0/ 34 6/ 34 Ruiz-Moreno et al., 1991 1/ 50 4/ 50
Gibbs et al., 1981 0/ 50 2/ 50 Saltzman et al., 1985 1/ 50 2/ 49
Gordon et al., 1979 0/ 78 1/ 36 Schedvins et al., 1986 2/ 26 0/ 27
Hager et al., 1983 1/ 43 1/ 47 Stage et al., 1983 3/ 133 12/ 66
Hagglund et al., 1989 0/ 80 3/ 80 Stiver et al., 1983 6/ 244 17/ 117
Harger et al., 1981 2/ 196 14/ 190 Tully et al., 1983 1/ 52 2/ 61
Hawrylyshyn et al., 1983 2/ 124 2/ 58 Tzingounis et al., 1982 2/ 46 4/ 50
Ismail et al., 1990 2/ 74 8/ 78 Weissberg et al., 1971 0/ 40 3/ 40
Jakobi et al., 1994 4/ 167 5/ 140 Wong et al., 1978 2/ 48 3/ 45
Karhunen et al., 1985 2/ 75 9/ 77 Work et al., 1977 3/ 40 1/ 40
Kreutner et al., 1978 0/ 48 2/ 49 Yip et al., 1997 1/ 160 1/ 160
Kristensen et al., 1990 0/ 102 1/ 99 Young et al., 1983 1/ 50 4/ 50
Lapas et al., 1989 1/ 50 10/ 50

Table B2. Meta-analytic data on the association of Middle East respiratory syndrome

(MERS) exposure proximity with infection.

Treatment event Treatment Control event Control
Report, year (> 1 m) size (≤ 1 m) size
Van Kerkhove et al., 2019 8 774 11 54
Arwady et al., 2016 1 10 8 20
Ki et al., 2019 2 29 4 42
Park et al., 2016 0 3 5 25
Hall et al., 2014 0 5 0 43
Wiboonchutikul et al., 2019 0 16 0 22
Reuss et al., 2014 0 12 0 69
Ryu et al., 2019 0 7 0 27
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