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Abstract

Some extragradient-type algorithms with inertial effect for solving strongly pseudo-monotone
variational inequalities have been proposed and investigated recently. While the convergence
of these algorithms was established, it is unclear if the linear rate is guaranteed. In this pa-
per, we provide R-linear convergence analysis for two extragradient-type algorithms for solving
strongly pseudo-monotone, Lipschitz continuous variational inequality in Hilbert spaces. The
linear convergence rate of is obtained without the prior knowledge of the Lipschitz constants of
the variational inequality mapping and the stepsize is bounded from below by a positive number.
Some numerical results are provided to show the computational effectiveness of the algorithms.
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1 Introduction

Let C be a nonempty closed and convex subset of a Hilbert space H and F : H → H be a continuous
operator. The variational inequality (VI) as follows.

VI(C,F) : Find x∗ ∈ C s.t. 〈Fx∗, y − x∗〉 ≥ 0 ∀y ∈ C.

Variational inequality theory is an important tool in economics, engineering mechanics, math-
ematical programming, transportation and others (see, for example, [1, 2, 3, 4, 5]). Numerous
numerical algorithms for solving VI(C,F) have been proposed for solving variational inequalities
and related optimization problems, see [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In general, each
solution method is designed for certain class of VIs so that the convergence of the algorithms can
be guaranteed. The extragradient type algorithms are well designed for solving pseudo-monotone
VIs. The classical extragardient method for solving monotone VIs in finite dimenstional spaces
was proposed by Korpelevich [18], Antipin [19] and improved by Popov in [20]. Extension to
pseudo-monotone VIs in infinite dimensional Hilbert space has been studied recently in [14]. The
extragradient method with inertial effect was studied in [21], where the inertial constant depends
heavily on the stepsize via a very complicated formula. This method was improved in [32], where
the authors proposed a subgradient extragradient method with constant stepsize for solving mono-
tone VIs. Note that all the extragradient type algorithms appeared before [14] can only be applied
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for solving monotone VIs in infinite dimensional Hilbert spaces, but not pseudo-monotone VIs.

We focus on the class of strongly pseudo-monotone VIs, which has been attracting a lot of
attentions in recent years, see e.g., [22, 23, 24, 25, 26, 27, 28]. The existence and uniqueness as
well as stability of this problem were studied in [27]. It was proved in [27] that if F is strongly
pseudo-monotone and Lipschitz continuous, then VI(C,F) has a unique solution. [25] proved that
the gradient projection method converges linearly to the unique solution provided that the step-
size is sufficiently small, depending on the strong pseudo-monotonicity and Lipschitz continuity
constants of the considered operator. Some modifications of the gradient projection method were
recently considered in [23], where diminishing stepsizes were required but the Lipschitz continu-
ity was relaxed to continuity. Variants of the extragradient method, where two projections per
iteration are needed, were studied in [26]. When the knowledge of Lipschitz and strong pseudo-
monotonicity constants is not available, one has to consider diminishing stepsizes [23, 24, 25, 28],
which slows down the convergence speed. To improve the convergence speed, we need to avoid
diminishing stepsize and/or combine the algorithms with inertial effect. Inertial algorithms for
variational inequality and optimization problems has recently received considerable attention, see,
e.g, [21, 29, 30, 31] and the references therein.

In this paper, we consider two extragradient-type algorithms: the inertial subgradient algo-
rithm proposed in [32] and the inertial forward-backward-forward algorithm studied in [33]. In
contrast to the inertial extragradient algorithm proposed in [28], these algorithms require only one
projection onto the feasible set per iteration. Under strong pseudo-monotonicity and Lipschitz
continuity assumptions, we prove that the iterative sequence generated by the aforementioned al-
gorithms converges linearly to the unique solution of VI(C,F). These results are new and have not
been considered in [32, 33]. Moreover, in comparison with [23, 25] the stepsizes considered in these
algorithms are not diminishing but instead bounded from below by a positive constant, which avoid
the slow convergence speed.

The rest of the paper is organized as follows: In Sect. 2, we recall some definitions and prelim-
inary results for the convergence analysis. Sect. 3 deals with the linear convergence analysis of the
proposed algorithms. Finally, in Sect. 4, we present some numerical experiments to illustrate the
behaviors of the proposed algorithms.

2 Preliminaries

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. For every point
x ∈ H, there exists a unique nearest point in C, denoted by PCx such that

‖x− PCx‖ ≤ ‖x− y‖ ∀y ∈ C.

PC is the metric projection of H onto C. It is known that PC is nonexpansive. Moreover the
following property hold:

Fact 2.1. ([34]) Let C be a nonempty closed convex subset of a real Hilbert space H and PC be the
metric projection onto C. Given x ∈ H and z ∈ C. Then z = PCx⇐⇒ 〈x− z, z− y〉 ≥ 0 ∀y ∈ C.

Fact 2.2. ([34]) Let C be a closed and convex subset in a real Hilbert space H, x ∈ H. Then
i) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 ∀y ∈ H;
ii) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 ∀y ∈ C.
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For properties of the metric projection, the interested readers are referred to [34, Section 3].

Definition 2.1. [35] A sequence {xn} in H is said to converge R-linearly to x∗ with rate ρ ∈ [0, 1)
if there is a constant c > 0 such that

‖xn − x∗‖ ≤ cρn ∀n ∈ N.

Definition 2.2. Let F : H → H be a mapping. Then F is called

1. L-Lipschitz continuous if there exists a constant L > 0 such that

‖Fx− Fy‖ ≤ L‖x− y‖ ∀x, y ∈ H.

2. κ-strongly monotone if there exists a constant κ > 0 such that

〈Fx− Fy, x− y〉 ≥ κ‖x− y‖2 ∀x, y ∈ H.

3. κ-strongly pseudo-monotone if there exists a constant κ > 0 such that

〈Fx, y − x〉 ≥ 0 =⇒ 〈Fy, y − x〉 ≥ κ‖x− y‖2 ∀x, y ∈ H.

Remark 2.1. Obviously, if the mapping F is strongly monotone, then it is strongly pseudo-
monotone with the same modulus. In addition, if the mapping F is strongly pseudo-monotone
and Lipschitz continuous then the problem VI(C,F) has a unique solution [27].

3 R-linear Convergence Analysis

In this section, we consider two extragradient-type algorithms: the inertial subgradient extragradi-
ent algorithm [28, 32] and the inertial forward-backward-forward algorithm [33]. We prove that the
iterative sequence generated by the these algorithms converge to the unique solution of VIs with
an R-linear rate.

3.1 The inertial subgradient extragradient algorithm

We consider first the inertial subgradient extragradient algorithm studied in [28, 32]. Even though
it does not require the prior knowledge of the Lipschitz constant associated with the variational
inequality mapping, the stepsize is still bounded from below by a positive constant. This is in
contrast with the gradient projection algorithms considered in [23, 24, 25].

Algorithm 1. (iSEG)

Initialization: Given α ≥ 0, τ1 > 0, µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary

Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set wn = xn + α(xn − xn−1) and compute

yn = PC(wn − τnFwn).

If yn = wn or Fyn = 0 then stop: yn is a solution to the problem VI(C,F).
Otherwise, go to Step 2.
Step 2. Compute

xn+1 = PTn(wn − τnFyn),
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where
Tn := {x ∈ H|〈wn − τnFwn − yn, x− yn〉 ≤ 0}.

Update

τn+1 =

min

{
µ‖wn − yn‖
‖Fwn − Fyn‖

, τn

}
if Fwn − Fyn 6= 0,

τn otherwise.
(3.1)

Set n := n+ 1 and go to Step 1.

The following lemmas are quite helpful to analyze the convergence of algorithm.

Lemma 3.1. ([17]) The sequence {τn} generated by (3.1) is a nonincreasing sequence and

lim
n→∞

τn = τ ≥ min{τ1,
µ

L
}.

Lemma 3.2. Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly pseudo-
monotone on C. Let p be the unique solution of V I(C,F ) and {xn} be generated by Algorithm 1.
Then the following inequality holds:

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− µ τn
τn+1

)‖yn − wn‖2 − (1− µ τn
τn+1

)‖xn+1 − yn‖2 − 2τnδ‖yn − p‖2.

Proof: Since p ∈ Sol(C,F ) ⊂ C ⊂ Tn, we have

‖xn+1 − p‖2 = ‖PTn(wn − τnFyn)− PTnp‖2

≤ 〈xn+1 − p, wn − τnFyn − p〉

=
1

2
‖xn+1 − p‖2 +

1

2
‖wn − τnFyn − p‖2 −

1

2
‖xn+1 − wn + τnFyn‖2

=
1

2
‖xn+1 − p‖2 +

1

2
‖wn − p‖2 +

1

2
τ2n‖Fyn‖2 − 〈wn − p, τnFyn〉

− 1

2
‖xn+1 − wn‖2 −

1

2
τ2n‖Fyn‖2 − 〈xn+1 − wn, τnFyn〉

=
1

2
‖xn+1 − p‖2 +

1

2
‖wn − p‖2 −

1

2
‖xn+1 − wn‖2 − 〈xn+1 − p, τnFyn〉.

This implies that

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − ‖xn+1 − wn‖2 − 2〈xn+1 − p, τnFyn〉. (3.2)

Since p is the solution of the problem (VI), we have 〈Fp, x − p〉 ≥ 0 for all x ∈ C. By the strong
pseudo-montonicity of F on C, we have 〈Fx, x− p〉 ≥ δ‖x− p‖2 for all x ∈ C. Taking x := yn ∈ C,
we get

〈Fyn, p− yn〉 ≤ −δ‖yn − p‖2.

Thus we have

〈Fyn, p− xn+1〉 = 〈Fyn, p− yn〉+ 〈Fyn, yn − xn+1〉
≤ −δ‖yn − p‖2 + 〈Fyn, yn − xn+1〉. (3.3)
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From (3.2) and (3.3), we obtain

‖xn+1 − p‖2

≤ ‖wn − p‖2 − ‖xn+1 − wn‖2 + 2τn〈Fyn, yn − xn+1〉 − 2τnδ‖yn − p‖2

= ‖wn − p‖2 − ‖xn+1 − yn‖2 − ‖yn − wn‖2 − 2〈xn+1 − yn, yn − wn〉
+ 2τn〈Fyn, yn − xn+1〉 − 2τnδ‖yn − p‖2

= ‖wn − p‖2 − ‖xn+1 − yn‖2 − ‖yn − wn‖2

+ 2〈wn − τnFyn − yn, xn+1 − yn〉 − 2τnδ‖yn − p‖2. (3.4)

Since yn = PTn(wn − λnFwn) and xn+1 ∈ Tn we have

2〈wn − λnFyn − yn,xn+1 − yn〉
= 2〈wn − λnFwn − yn, xn+1 − yn〉+ 2λn〈Fwn − Fyn, xn+1 − yn〉
≤ 2λn〈Fwn − Fyn, xn+1 − yn〉. (3.5)

We estimate 2τn〈Fwn − Fyn, xn+1 − yn〉 as follows

2τn〈Fwn − Fyn, xn+1 − yn〉 ≤ 2τn‖Fyn − Fwn‖‖yn − xn+1‖

≤ 2µ
τn
τn+1

‖wn − yn‖‖yn − xn+1‖

≤ µ τn
τn+1

‖wn − yn‖2 + µ
τn
τn+1

‖yn − xn+1‖2. (3.6)

Combining (3.5) and (3.6), we obtain

2〈wn − λnFyn − yn, xn+1 − yn〉 ≤ µ
τn
τn+1

‖wn − yn‖2 + µ
τn
τn+1

‖yn − xn+1‖2. (3.7)

Substituting (3.7) into (3.4) it holds

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− µ τn
τn+1

)‖yn − wn‖2 − (1− µ τn
τn+1

)‖xn+1 − yn‖2 − 2τnδ‖yn − p‖2.

Lemma 3.3. Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly pseudo-
monotone on C. Let p be the unique solution of V I(C,F ) and {xn} be generated by Algorithm 1.
Then there exist N ∈ N and ρ, ξ ∈ (0, 1) such that

‖xn+1 − p‖2 ≤ρ‖wn − p‖2 − ξ‖xn+1 − wn‖2 ∀n ≥ N.

Proof: Indeed, thanks to Lemma 3.2 we get for any θ ∈ (0, 1) that

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− µ τn
τn+1

)‖yn − wn‖2 − (1− µ τn
τn+1

)(1− θ)‖xn+1 − yn‖2 − 2τnδ‖yn − p‖2

= ‖wn − p‖2 − (1− µ τn
τn+1

)θ‖yn − wn‖2 − (1− µ τn
τn+1

)(1− θ)[‖yn − wn‖2

+ ‖xn+1 − yn‖2]− 2τnδ‖yn − p‖2

≤ ‖wn − p‖2 − (1− µ τn
τn+1

)θ‖yn − wn‖2 −
1

2
(1− µ τn

τn+1
)(1− θ)‖xn+1 − wn‖2 − 2τnδ‖yn − p‖2.
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Let β := min

{
(1− µ)θ

4
,
τδ

2

}
, where τ := limn→∞ τn, we obtain

lim
n→∞

1

2
(1− µ τn

τn+1
)(1− θ) =

1

2
(1− µ)(1− θ) > 1

2
(1− µ)(1− θ)θ;

lim
n→∞

(1− µ τn
τn+1

)θ = (1− µ)θ ≥ 4β;

lim
n→∞

τnδ = τδ ≥ 2β.

Thus, there exists N ∈ N such that for all n ≥ N it holds

1

2
(1− µ τn

τn+1
)(1− θ) ≥ 1

2
(1− µ)(1− θ)θ;

(1− µ τn
τn+1

)θ ≥ 2β;

τnδ ≥ β.

Hence we have for all n ≥ N that

‖xn+1 − p‖2 ≤‖wn − p‖2 − 2β‖yn − wn‖2 −
1

2
(1− µ)(1− θ)θ‖xn+1 − wn‖2 − 2β‖yn − p‖2

=‖wn − p‖2 −
1

2
(1− µ)(1− θ)θ‖xn+1 − wn‖2 − 2β(‖yn − wn‖2 + ‖yn − p‖2)

≤‖wn − p‖2 −
1

2
(1− µ)(1− θ)θ‖xn+1 − wn‖2 − β‖wn − p‖2

=(1− β)‖wn − p‖2 −
1

2
(1− µ)(1− θ)θ‖xn+1 − wn‖2

=ρ‖wn − p‖2 − ξ‖xn+1 − wn‖2,

where ρ := 1− β ∈ (0, 1), ξ :=
1

2
(1− µ)(1− θ)θ ∈ (0, 1).

Now, we prove that the iterative sequence generated by Algorithm 1 converges R-linearly to
the unique solution of the problem VI(C,F).

Theorem 3.1. Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly pseudo-
monotone on C. Let θ, γ ∈ (0, 1) and α be such that

0 ≤ α ≤ min

{
1 +

1−
√

1 + 4ξ

2ξ
,

√
(1 + γξ)2 + 4γξ − (1 + γξ)

2
, (1− γ)

(
1− (1− µ)θ

2

)}
(3.8)

where ξ :=
1

2
(1 − µ)(1 − θ)θ. Then the sequence {xn} is generated by Algorithm 1 converges in

norm to the unique solution p of the problem VI(C,F) with an R-linear rate not worse than

ρ = 1−min

{
(1− µ)θ

2
, τδ

}
. (3.9)

Proof: Thanks to Lemma 3.3, we get

‖xn+1 − p‖2 ≤ρ‖wn − p‖2 − ξ‖xn+1 − wn‖2 ∀n ≥ N. (3.10)
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On the other hand, we also have

‖wn − p‖2 = ‖(1 + α)(xn − p)− α(xn−1 − p)‖2

= (1 + α)‖xn − p‖2 − α‖xn−1 − p‖2 + α(1 + α)‖xn − xn−1‖2

and

‖xn+1 − wn‖2 = ‖xn+1 − xn − α(xn − xn−1)‖2

= ‖xn+1 − xn‖2 + α2‖xn − xn−1‖2 − 2α 〈xn+1 − xn, xn − xn−1〉
≥ ‖xn+1 − xn‖2 + α2‖xn − xn−1‖2 − 2α‖xn+1 − xn‖‖xn − xn−1‖
≥ ‖xn+1 − xn‖2 + α2‖xn − xn−1‖2 − α‖xn+1 − xn‖2 − α‖xn − xn−1‖2

≥ (1− α)‖xn+1 − xn‖2 − α(1− α)‖xn − xn−1‖2.

Combining these inequalities with (3.10) we obtain

‖xn+1 − p‖2 ≤ ρ(1 + α)‖xn − p‖2 − ρα‖xn−1 − p‖2 + ρα(1 + α)‖xn − xn−1‖2

− ξ(1− α)‖xn+1 − xn‖2 + ξα(1− α)‖xn − xn−1‖2 ∀n ≥ N,

or equivalently

‖xn+1 − p‖2 − ρα‖xn − p‖2+ξ(1− α)‖xn+1 − xn‖2

≤ρ
[
‖xn − p‖2 − α‖xn−1 − p‖2 + ξ(1− α)‖xn − xn−1‖2

]
− (ρξ(1− α)− ρα(1 + α)− ξα(1− α)) ‖xn − xn−1‖2 ∀n ≥ N.

Setting
Γn := ‖xn − p‖2 − α‖xn−1 − p‖2 + ξ(1− α)‖xn − xn−1‖2,

since ρ ∈ (0, 1) we can write

Γn+1 ≤‖xn+1 − p‖2 − ρα‖xn − p‖2 + ξ(1− α)‖xn+1 − xn‖2

≤ρΓn − (ρξ(1− α)− ρα(1 + α)− ξα(1− α)) ‖xn − xn−1‖2 ∀n ≥ N.

Note that from (3.8) and Lemma 3.3 we have

α ≤(1− γ)

(
1− (1− µ)θ

2

)
≤(1− γ)(1− β) = (1− δ)ρ,

which implies
ξα(1− α) ≤ (1− γ)ρξ(1− α) = ρξ(1− α)− γρξ(1− α). (3.11)

Since

α ≤
√

(1 + γξ)2 + 4γξ − (1 + γξ)

2

it holds
α2 + (1 + γξ)α− γξ ≤ 0,

or equivalently
α(1 + α) ≤ γξ(1− α).
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Hence
ρα(1 + α) ≤ ργξ(1− α). (3.12)

From (3.11) and (3.12) we deduce

ρξ(1− α)− ρα(1 + α)− ξα(1− α) ≥ 0.

which implies that
Γn+1 ≤ ρΓn.

Now, we show that Γn ≥ 0 for all n. Indeed, we have

Γn = ‖xn − p‖2 − α‖xn−1 − p‖2 + ξ(1− α)‖xn − xn−1‖2

(3.13)

On the other hand, we have

‖xn−1 − p‖2 = ‖xn−1 − xn + xn − p‖2 = ‖xn−1 − xn‖2 + ‖xn − p‖2 + 2〈xn−1 − xn, xn − p〉
≤ ‖xn−1 − xn‖2 + ‖xn − p‖2 + 2‖xn−1 − xn‖‖xn − p‖

≤ ‖xn−1 − xn‖2 + ‖xn − p‖2 + k‖xn−1 − xn‖2 +
1

k
‖xn − p‖2

= (1 + k)‖xn−1 − xn‖2 +

(
1 +

1

k

)
‖xn − p‖2, (3.14)

for all k > 0. Combining (3.13) and (3.14), we get

Γn ≥
[
1−

(
1 +

1

k

)
α

]
‖xn − p‖2 +

[
ξ(1− α)− (1 + k)α

]
‖xn − xn−1‖2. (3.15)

We show that there exists k > 0 such that1−
(

1 +
1

k

)
α > 0,

ξ(1− α)− (1 + k)α > 0.
(3.16)

Indeed, if α = 0 then the inequality (3.16) is obvious. Now, we consider α > 0. In this case, the
inequality (3.16) is equivalently to k >

α

1− α
,

k <
ξ(1− α)

α
− 1.

Moreover, from (3.8) we also have

0 ≤ α ≤ 1 +
1−
√

1 + 4ξ

2ξ

which follows that
α

1− α
<
ξ(1− α)

α
− 1,

that is, there exists k > 0 satisfying the inequality (3.16). From (3.15), it implies that Γn ≥ 0 for
all n. Hence

Γn+1 ≤ ρΓn ≤ ... ≤ ρn−N+1ΓN .

‖xn − p‖2 ≤
ΓN

ρN (1− ξ(1− α))
ρn,

which implies that {xn} converges R-linearly to p, the unique solution of VI(C,F).
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Remark 3.1. (i) We note that the linear convergence holds for any arbitrary θ, γ ∈ (0, 1). In
general, estimating the maximum value of inertial parameter α satisfying (3.8) is cumbersome.
We explain roughly how to choose the parameters θ, γ such that α is somehow maximal. Let

a := 1 +
1−
√

1 + 4ξ

2ξ
, b :=

√
(1 + γξ)2 + 4γξ − (1 + γξ)

2
, c =: (1− γ)

(
1− (1− µ)θ

2

)
,

where ξ :=
1

2
(1 − µ)(1 − θ)θ. Since θ ∈ (0, 1) we have ξ ∈

(
0, 1−µ8

]
with ξmax = 1−µ

8 when

θ = 0.5. It is clear that a = a(ξ) is an increasing function on
(

0, 1−µ8

]
. Hence amax is

attained at ξmax = 1−µ
8 , i.e., when θ = 0.5. Similarly, for any fixed γ, the function b = b(ξ)

is increasing on
(

0, 1−µ8

]
. This implies again that bmax is attained at θ = 0.5. Now let us fix

θ = 0.5, then c = (1− γ)
(

1− 1−µ
4

)
. For a given µ ∈ (0, 1), a = a(γ) is a constant, b = b(γ)

is increasing while c = c(γ) is decreasing on (0, 1). (see Figure 1 for an illustration when
µ = 0.5, in this case αmax = 0.052 when γ = 0.94.). Hence αmax is attained when γ is one of
the solution of

{a(γ) = b(γ), a(γ) = c(γ), b(γ) = c(γ)} ,
which are eventually quadratic equations with respect to γ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a=a( )
b=b( )
c=c( )

 <= min {a,b,c}

Figure 1: An illustration of upper bound for the inertial parameter.
.

(ii) The value of ρ estimated in (3.9) only provides an upper bound of the actual linear rate. Theo-
retically, it is unclear how the inertial parameter α effects the linear rate. In practice, it is observed
that the bigger inertia implies better rate. From (i) we know that the optimal choice for θ is 0.5.
Then

ρ = 1−min

{
1− µ

4
, τδ

}
= max

{
3 + µ

4
, 1− τδ

}
.
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This estimation, however, is not optimal since limµ→1 ρ = 1.

3.2 The inertial forward-backward-forward algorithm

The inertial forward-backward-forward algorithm has been recently studied in [33, Remark 3]. In
this section, we present the convergence rate analysis of this algorithm.

Algorithm 2. (iFBF)

Initialization: Given α ≥ 0, τ1 > 0, µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary

Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set wn = xn + α(xn − xn−1) and compute

yn = PC(wn − τnFwn).

If yn = wn or Fyn = 0 then stop: yn is a solution to the problem VI(C,F).
Otherwise, go to Step 2.
Step 2. Compute

xn+1 = yn − τn(Fyn − Fwn).

Update

τn+1 =

min

{
µ‖wn − yn‖
‖Fwn − Fyn‖

, τn

}
if Fwn − Fyn 6= 0,

τn otherwise.

Set n := n+ 1 and go to Step 1.

Lemma 3.4. Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly pseudo-
monotone on C. Let p be the unique solution of V I(C,F ) and {xn} be generated by Algorithm 2.
Then the following inequality holds:

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− µ2 τ2n
τ2n+1

)‖yn − wn‖2 − 2τnδ‖yn − p‖2.

Proof: Indeed, we have

‖xn+1 − p‖2 = ‖yn − τn(Fyn − Fwn)− p‖2

= ‖yn − p‖2 + τ2n‖Fyn − Fwn‖2 − 2− τn〈yn − p, Fyn − Fwn〉
= ‖wn − p‖2 + ‖wn − yn‖2 + 2〈yn − wn, wn − p〉+ τ2n‖Fyn − Fwn‖2

− 2− τn〈yn − p, Fyn − Fwn〉
= ‖wn − p‖2 + ‖wn − yn‖2 − 2〈yn − wn, yn − wn〉+ 2〈yn − wn, yn − p〉

+ τ2n‖Fyn − Fwn‖2 − 2τn〈yn − p, Fyn − Fwn〉
= ‖wn − p‖2 − ‖wn − yn‖2 + 2〈yn − wn, yn − p〉+ τ2n‖Fyn − Fwn‖2

− 2τn〈yn − p, Fyn − Fwn〉. (3.17)

Since yn = PC(wn − τnFwn), it holds

〈yn − wn + τnFwn, yn − p〉 ≤ 0
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or equivalently,
〈yn − wn, yn − p〉 ≤ −τn〈Fwn, yn − p〉. (3.18)

From (3.17) and (3.18), it follows that

‖xn+1 − p‖2 ≤‖wn − p‖2 − ‖wn − yn‖2 − 2τn〈Fwn, yn − p〉+ τ2n‖Fyn − Fwn‖2

− 2τn〈yn − p, Fyn − Fwn〉
=‖wn − p‖2 − ‖wn − yn‖2 + τ2n‖Fyn − Fwn‖2 − 2τn〈yn − p, Fyn〉. (3.19)

Since p is the solution of VI(C,F), we have 〈Fp, x−p〉 ≥ 0 for all x ∈ C. By the strong pseudomon-
tonicity of F on C we have 〈Fx, x− p〉 ≥ δ‖x− p‖2 for all x ∈ C.
Taking x := yn ∈ C we get

〈Fyn, p− yn〉 ≤ −δ‖yn − p‖2. (3.20)

From (3.19) and (3.20) we obtain

‖xn+1 − p‖2 ≤‖wn − p‖2 − ‖wn − yn‖2 + τ2n‖Fyn − Fwn‖2 − 2τn〈yn − p, Fyn〉
≤‖wn − p‖2 − ‖wn − yn‖2 + τ2n‖Fyn − Fwn‖2 − 2τnδ‖yn − p‖2. (3.21)

Moreover, it is easy to see that by the definition of {τn} we have

‖Fwn − Fyn‖ ≤
µ

τn+1
‖wn − yn‖ ∀n. (3.22)

Combining (3.21) and (3.22), we obtain

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− µ2 τ2n
τ2n+1

)‖yn − wn‖2 − 2τnδ‖yn − p‖2.

Lemma 3.5. Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly pseudo-
monotone on C. Let p be the unique solution of V I(C,F ) and {xn} be generated by Algorithm 2.
Then there exists N ∈ N and ρ, ξ ∈ (0, 1) such that

‖xn+1 − p‖2 ≤ρ‖wn − p‖2 − ξ‖xn+1 − wn‖2 ∀n ≥ N.

Proof: Indeed, thanks to Lemma 3.4, we have

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− µ2 τ2n
τ2n+1

)‖yn − wn‖2 − 2τnδ‖yn − p‖2.

Hence for any θ ∈ (0, 1) we can deduce

‖xn+1−p‖2 ≤ ‖wn−p‖2−(1−µ2 τ2n
τ2n+1

)(1−θ)‖yn−wn‖2−(1−µ2 τ2n
τ2n+1

)θ‖yn−wn‖2−2τnδ‖yn−p‖2.

(3.23)
By the definition of xn+1 we have

‖xn+1 − yn‖ = ‖yn − τn(Fyn − Fwn)− yn‖
≤ τn‖Fyn − Fwn‖

≤ µ τn
τn+1

‖yn − wn‖.
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Therefore
‖xn+1 − wn‖ ≤ ‖xn+1 − yn‖+ ‖yn − wn‖ ≤ (1 + µ

τn
τn+1

)‖yn − wn‖.

This implies

‖yn − wn‖ ≥
1

(1 + µ
τn
τn+1

)
‖xn+1 − wn‖. (3.24)

From limn→∞

(
1− µ2 τ2n

τ2n+1

)
= 1− µ2 > 0, thus, there exists N0 ∈ N such that

1− µ2 τ2n
τ2n+1

≥ 1− µ2

2
> 0 ∀n ≥ N0.

Substituting (3.24) into (3.23) we have for all n ≥ N0 that

‖xn+1 − p‖2 ≤‖wn − p‖2 −

(
1− µ2 τ2n

τ2n+1

)
(

1 + µ
τn
τn+1

)2 (1− θ)‖xn+1 − wn‖2 − (1− µ2 τ2n
τ2n+1

)θ‖yn − wn‖2 − 2τnδ‖yn − p‖2

=‖wn − p‖2 −

(
1− µ τn

τn+1

)
(

1 + µ
τn
τn+1

)(1− θ)‖xn+1 − wn‖2 −
(

1− µ2 τ2n
τ2n+1

)
θ‖yn − wn‖2 − 2τnδ‖yn − p‖2

(3.25)

Let β := min

{
(1− µ2)θ

4
,
τδ

2

}
, where τ := limn→∞ τn, we have

lim
n→∞

(
1− µ τn

τn+1

)
(

1 + µ
τn
τn+1

)(1− θ) =
1− µ
1 + µ

(1− θ) > 1− µ
1 + µ

(1− θ)θ;

lim
n→∞

(
1− µ2 τn

τn+1

)
θ = (1− µ2)θ ≥ 4β;

lim
n→∞

τnδ = τδ ≥ 2β.

Thus, there exists N1 such that for all n ≥ N1 we have(
1− µ τn

τn+1

)
(

1 + µ
τn
τn+1

)(1− θ) ≥ 1− µ
1 + µ

(1− θ)θ;
(

1− µ2 τn
τn+1

)
θ ≥ 2β; τnδ ≥ β.
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Let N = max{N0, N1}, using (3.25) we get for all n ≥ N that

‖xn+1 − p‖2 ≤‖wn − p‖2 −
1− µ
1 + µ

(1− θ)θ‖xn+1 − wn‖2 − 2β(‖yn − wn‖2 + ‖yn − p‖2)

≤‖wn − p‖2 −
1− µ
1 + µ

(1− θ)θ‖xn+1 − wn‖2 − β‖wn − p‖2

≤(1− β)‖wn − p‖2 −
1− µ
1 + µ

(1− θ)θ‖xn+1 − wn‖2

=ρ‖wn − p‖2 − ξ‖xn+1 − wn‖2,

where ρ := 1− β ∈ (0, 1) and ξ :=
1− µ
1 + µ

(1− θ)θ ∈ (0, 1).

Theorem 3.2. Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly pseudo-
monotone on C. Let θ, γ ∈ (0, 1) and α be such that

0 ≤ α ≤ min

{
1 +

1−
√

1 + 4ξ

2ξ
,

√
(1 + γξ)2 + 4γξ − (1 + γξ)

2
, (1− γ)

(
1− (1− µ)θ

2

)}

where ξ :=
1− µ
1 + µ

(1− θ)θ. Then the sequence {xn} is generated by Algorithm 2 converges in norm

to the unique solution p of the problem (VI) with an R-linear rate not worse than

ρ = 1−min

{
(1− µ2)θ

2
, τδ

}
.

Proof: The proof is similar to that of Theorem 3.1, and therefore is omitted.

Remark 3.2. Similar to Theorem 3.1, we see that the maximal value for the inertial α is attained
when θ = 0.5. In addition, the upper bound of the linear rate obtained in (??) is slightly better than
(3.9).

4 Numerical Examples

In this section, we provide some numerical examples to illustrate the linear convergence of the itera-
tive sequence generated by Algorithm 1 and Algorithm 2. We focus on the class of strongly pseudo-
monotone but not (strongly) monotone VI. For numerical experiments with (strongly) monotone
VI, we refer the readers to [28].

Example 4.1. Let H = `2, the real Hilbert space, whose elements are the square-summable se-
quences of real numbers, i.e., H = {x = (x1, x2, . . . , xi, . . .) :

∑∞
i=1 |xi|2 < +∞}. The inner product

and the norm on H are given by setting

〈x, y〉 =

∞∑
i=1

xiyi and ‖x‖ =
√
〈x, x〉

for any x = (x1, x2, . . . , xi, . . .), y = (y1, y2, . . . , yi, . . .) ∈ H.
Let a, b ∈ R be such that b > a > b

2 > 0. Put

C := {x ∈ H : ‖x‖ ≤ a}, Fx := (b− ‖x‖)x.

Clearly, the V I(C,F ) has unique solution x∗ = 0. It was proved in [25] that F is strongly pseudo-
monotone and Lipschitz continuous but not monotone.
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It follows from Section 3 that the iterations generated by the proposed algorithms converge
linearly to the unique solution x∗ = 0. In the following, we compare the performance of these
algorithms with different inertial parameters. We choose H = R1000, a = 5, b = 8 and random
starting points x0, x1. The stopping condition is ‖xn‖ ≤ 10−10. It is clear that while iSEG and
iFBF are comparable, their inertial effect versions are faster than the non-inertial ones.
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Figure 2: Comparison of Algorithm 1 (iSEG) and Algorithm 2 (iFBF) for Example 4.1 (SEG and
FBF with α = 0, iSEG and iFBF with α = 0.05)

.

Example 4.2. Let C =
{
x ∈ [−5, 5]3 : x1 + x2 + x3 = 0

}
⊆ R3 and F : R3 → R3 be defined as

Fx =
(
e−‖x‖

2
+ q
)
Mx,

where q = 0.2 and

M =

 1 0 −1
0 1.5 0
−1 0 2

 .

As proved in [7], F is γ-strongly pseudo-monotone on R3 with constant γ := q · λmin ≈ 0.0764,
where λmin is the smallest eigenvalue of M , and Lipschitz continuous with constant L ≈ 5.0679.
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Moreover, F is not monotone since for x = (−1, 0, 0)T , y = (−2, 0, 0)T ∈ R3 we have

〈F (x)− F (y), x− y〉 = −0.1312 < 0.

We compare the performance of Algorithm 1 and Algorithm 2 with different inertial parameters.
We choose µ = 0.5, τ1 = 0.1 and random starting points x0, x1 for all tested algorithms. The
stopping condition is ‖xn − x∗‖ ≤ 10−10, where x∗ is the unique solution obtained by running
Algorithm 1 with α = 0 for 1000 iterations. It is clear that the inertial effect speeds up the
convergence rate.
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Figure 3: Comparison of Algorithm 1 (iSEG) and Algorithm 2 (iFBF) for Example 4.2 (SEG and
FBF with α = 0, iSEG and iFBF with α = 0.05)

.
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