
1

Machine-Learning-Aided Optical OFDM for
Intensity Modulated Direct Detection

Xiaoyu Zhang, Member, IEEE, Thien Van Luong, Periklis Petropoulos, Fellow, OSA,
and Lajos Hanzo, Fellow, IEEE

Abstract—End-to-end learning systems are conceived for Or-
thogonal Frequency Division Multiplexing (OFDM)-aided optical
Intensity Modulation paired with Direct Detection (IM/DD) com-
munications relying on the Autoencoder (AE) architecture in deep
learning. We first propose an AE-aided Layered ACO-OFDM
(LACO-OFDM) scheme, termed as LACONet, for exploiting
the increased bandwidth efficiency of LACO-OFDM. LACONet
employs a Neural Network (NN) at the transmitter for bit-to-
symbol mapping, and another NN at the receiver for recovering
the data bits, which together form an AE and can be trained in an
end-to-end manner for simultaneously minimizing both the BER
and PAPR. Moreover, the detection architecture of LACONet
is drastically simplified compared to classical LACO-OFDM,
since the Fast Fourier Transform (FFT) operation is applied
only once at the receiver. We further propose a generalized
AE-aided optical OFDM scheme for IM/DD communications,
termed as IMDD-OFDMNet, where the unipolarity of the Time
Domain (TD) signal is no longer guaranteed by the Hermitian
Symmetry, but rather by taking the absolute square value of the
complex TD signal. As such, all available subcarriers of IMDD-
OFDMNet are used for carrying useful information, hence it has
a higher throughput than the LACO-based schemes. As a further
benefit, its transceiver requires only a single Inverse FFT or FFT.
Finally, simulation results are provided to show that our learning
schemes achieve better BER and PAPR performance than their
conventional counterparts.

Index Terms—Optical communications, autoencoder, OFDM,
LACO-OFDM, optical OFDM, bit error ratio, peak-to-average-
power ratio, neural network, deep learning, visible light commu-
nications.

I. INTRODUCTION

There is an insatiable appetite for improving the data rates
to accommodate flawless multimedia services [1]. As a result,
an increasing amount of attention has been dedicated to
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Optical Wireless Communications (OWC) for exploiting its
rich bandwidth resources in the unlicensed optical spectrum
[2].

As opposed to coherent detection techniques, Intensity
Modulation paired with Direct Detection (IM/DD) has gained
popularity in OWC as a benefit of its inexpensive hardware
implementation [3]. In the simplest IM/DD setup, a Light
Emitting Diode (LED) operating at a visible wavelength
acts as the Transmitter (TX), converting the information bits
into optical intensity and transmitting them. At the Receiver
(RX) side, a PhotoDiode (PD) is capable of converting the
received optical signal back to the electric domain for further
signal processing. This appealingly simple design makes it
economical to widely roll out OWC. However, one of the
major drawbacks of IM/DD is that the transmitted electric
signal driving the optical emitter has to be positive and real-
valued.

This unipolar real-valued constraint prevents OWC from
adopting the Orthogonal Frequency Division Multiplexing
(OFDM) scheme to create Optical OFDM (O-OFDM) [2],
[4], [5]. This impediment has been partially circumvented by
arranging for the Frequency Domain (FD) signal to satisfy
the so-called Hermitian Symmetry (HS), which guarantees for
its Time Domain (TD) counterpart to be real-valued. Arm-
strong [6] then proposed the Asymmetrically Clipped Optical
OFDM (ACO-OFDM) scheme, which achieves clipping all
the negative-valued TD samples without information loss by
inserting zeros into every even-indexed FD subcarriers. How-
ever, ACO-OFDM achieves this at the cost of low Bandwidth
Efficiency (BE), since three quarters of the total bandwidth
conveys zeros [7]. Harnessing the multi-layer modulation
concept [8], Wang et al. [9] later proposed the Layered ACO-
OFDM (LACO-OFDM) scheme, which arranges for the blank
subcarriers of ACO-OFDM to be beneficially exploited, hence
improving the BE, albeit at the cost of an increased complex-
ity, as discussed in [10]–[12]. LACO-OFDM has also been
shown to reduce the Peak-to-Average Power Ratio (PAPR)
[10] and improve flexibility [13], [14].

Recent years have seen an increasing trend of harness-
ing Machine Learning (ML) or Deep Learning (DL) in the
physical layer of communication systems [15]–[17], including
the specific tasks of classification [18], coding [19], channel
estimation and signal detection [20]–[22], scheduling [23],
[24], just to name a few. On a broader note, ML has also
been exploited for holistic system optimization based on the
appealing concept of the so-called Autoencoder (AE) [16].
Explicitly, in an AE scheme, NNs are used instead of the
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classic signal processing modules at both TX and RX sides.
At the TX side, the original information is directly mapped
by an AE to the transmitted signal, which is then sent
through the communication channel. The NN decoder located
at the RX is capable of detecting the received signal and
reproducing a close replica of the transmitted bit sequence
with the aid of unsupervised training [15]. This is different
from supervised training, where the training data are mapped
to labels beforehand and the NN learns the mapping strategy
used during the training process. Explicitly, the DNN at the
transmitter and the DNN at the receiver constitute a single
network. The training process ensures that the input to the
transmitter-side of the DNN and the output of the receiver-
side of the DNN are as similar as possible, through the use
of the mean squared error (MSE) loss in the training, without
accounting for their labels.

In contrast to the classic Shannonian “block-based” commu-
nication systems, the AE-based scheme constitutes a “com-
bined” design, which is capable of jointly optimizing the
entire signal processing chain of a communication system
without having to consider each Shannonian block separately.
Hence, AEs have found their way into a wide range of
communications scenarios, such as Radio Frequency (RF)
wireless [15], optical fiber [25] and optical wireless systems
[26]. Explicitly, in [27], Felix et al. embedded the AE scheme
into an OFDM system relying on the conventional Cyclic
Prefix (CP) for amalgamating the advantages of both learning
and OFDM. In [19], Cammerer et al. exploited the adoption of
channel coding to the AE system with experimental validation
in RF. In [28], Luong et al. proposed the novel concept of AE
for noncoherent multi-carrier systems. As a further advance,
Karanov et al. [25], [29] studied the AE in the context of opti-
cal fiber communications and provided experimental results to
prove its performance benefits. Further optical physical layer
performance investigations have been carried out by Hao et
al. [30] and Ulkar et al. [31] in the context of ACO-OFDM
and other scenarios, respectively.

It is worth mentioning that in our work the key OFDM
components, namely the IFFT and FFT layers at the trans-
mitter and receiver side respectively, are not replaced by the
neural networks. Despite the fact that given a sufficiently long
training stage, the neural networks can eventually “learn” to
use OFDM, it has been demonstrated in [15], [27] that explic-
itly introducing the IFFT and FFT layers provides additional
expert knowledge for the neural network, which expedites
training and improves the performance. Moreover, using the
IFFT/FFT processing ensures that the system benefits from
the compelling advantages of OFDM, such as multi-carrier
modulation and single-tap equalization. The practice of artifi-
cially injecting expert knowledge is not uncommon in machine
learning. One of the most popular examples is the utilization
of convolutional neural networks (CNN) in computer vision
[16], where manually introducing convolutional layers speeds
up the training and reduces the complexity.

Against this background, we propose a pair of novel AE-
aided O-OFDM schemes, termed as LACONet based on
LACO-OFDM and the generalized IMDD-OFDMNet. We
contrast our contributions to the relevant state-of-the-art at a

glance in Tab. I, which are detailed below:

1) Proposal of LACONet: We propose an AE-aided
LACO-OFDM scheme for Visible Light Communica-
tions (VLC) and fiber optic communications, where the
FD symbols to be loaded onto each LACO-OFDM layer
are determined by the NN-based AE, rather than on
the classic Quadrature Amplitude Modulation (QAM)
mappers. This allows us to simultaneously improve both
the Bit Error Ratio (BER) and PAPR performance of
conventional LACO-OFDM. At the receiver, the NN
decoder recovers all the data bits using a single Fast
Fourier Transform (FFT) operation, which drastically
reduces the complexity of conventional LACO-OFDM,
where the number of FFTs to be used is determined by
that of the layers.

2) Proposal of IMDD-OFDMNet: Further, we propose a
generalized AE-aided optical OFDM scheme, where the
unipolarity of the TX TD signal no longer has to be
guaranteed by the HS. More explicitly, in contrast to
both our LACONet and to conventional LACO-OFDM,
all subcarriers of IMDD-OFDMNet are used for carrying
useful information, which results in a higher BE than the
LACO-based schemes despite its lower TX complexity,
since it requires only a single Inverse FFT (IFFT) at the
transmitter. By contrast, the number of IFFT activation
in conventional LACO-OFDM is given by the number of
layers included in the scheme. Despite its simplified TX
architecture, IMDD-OFDMNet achieves better BER and
PAPR than both LACONet and classic LACO-OFDM.

This treatise is organized as follows: Section II introduces
the IM/DD channel we are using, as well as the LACO-OFDM
scheme designed for IM/DD transmission. Our LACONet is
presented in Section III, followed by IMDD-OFDMNet in
Section IV. Finally, our conclusions are offered in Section V.

II. SYSTEM MODELS

A. Intensity Modulated Direct Detection Optical Channel

In the IM/DD transmitter, the information is mapped onto
the current driving an optical emitter, such as an LED for
visible light communications or a laser for free space optics
and fiber optics, which controls its instantaneous illuminating
intensity. As long as the driving current lies within the linear
range of the optical emitter, the illuminating intensity is
linearly proportional to it. Hence, after transmission through
the optical channel, the beam impinging on the photodiode at
the RX side is then converted back into the electric domain
further processing. Naturally, mapping the information onto
the intensity of light requires the current exciting the optical
transmitter to be positive-valued.

Similar to RF signals, IM/DD transmission may also suffer
from Frequency-Selective (FS) fading, due to the potential
existence of both Line-Of-Sight (LOS) and Non-LOS (NLOS)
light beams impinging at the photodiode of the RX [32].
Therefore, it is natural to appropriately adapt and transplant
mature anti-fading techniques of classic RF communications
into IM/DD solutions.
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A COMPARISON OF RESEARCH WORKS ON LEARNING-AIDED OPTICAL WIRELESS COMMUNICATIONS
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TABLE I
A COMPARISON OF RESEARCH WORKS ON LEARNING-AIDED OPTICAL WIRELESS COMMUNICATIONS

Topic
Research publication [29] [32] [19] [30] [31] This work

AE for end-to-end communications ✓ ✓ ✓ ✓ ✓ ✓
Multi-objective optimization ✓ ✓ ✓ ✓ ✓
Application to optical communications ✓ ✓ ✓ ✓ ✓
Application to OFDM ✓ ✓ ✓
Proposal of an HS-based O-OFDM scheme ✓ ✓
Proposal of another non-HS-based O-OFDM scheme ✓

Explicitly, for FS fading, we consider the scenario of the
popular indoor environment of [34], where an LED transmitter
and a PD receiver are in an empty room of dimension (5.0m×
5.0m×3.0m). The LED is placed at the center of the ceiling at
the coordinate of (2.5m, 2.5m, 3.0m), while the PD is located
in the corner of the room at coordinate (0.5m, 1.0m, 0.0m)
pointing upwards. Moreover, we consider the coexistence of
both a line-of-sight path and two non-line-of-sight paths in the
channel, whose linear gain and time delays are (3.8, 1.4, 0.5)×
10−5 and (11, 14, 17)ns, respectively.

B. Optical OFDM based on Hermitian Symmetry

In RF-OFDM, the information bits are usually mapped to
complex-valued QAM symbols, before baseband modulation
using IFFT modules for transforming them from the FD to
the TD, yielding a TD modulated signal that is generally also
complex-valued, which is unsuitable for driving the optical
emitter in IM/DD transmission, as discussed above. However,
by carefully arranging the FD sequence to satisfy Hermitian
symmetry, it would be guaranteed that the corresponding TD
signal is indeed positive and real-valued. Explicitly, a length-
K FD sequence s satisfying Hermitian symmetry exhibits an
anti-symmetric FD spectrum, which means that its second half
is represented by the conjugated counterpart of its first half in
reversed order, which is formulated as:

s[k] = −s∗[K − k − 1], 0 ≤ k ≤ K

2
− 1, (1)

where ()∗ represents the complex conjugate operation. Next,
we will briefly outline both ACO-OFDM and LACO-OFDM.

1) ACO-OFDM: Fig. 1 provides the schematic of the ACO-
OFDM transmitter and receiver, which obeys Hermitian sym-
metry. At the transmitter, the ACO-OFDM scheme leaves all
the even-indexed subcarriers blank, so that when the negative
samples of the TD signal are clipped to zero, all the clipping
distortions directly fall on those blank subcarriers as detailed in
[10], leaving the information-bearing odd-indexed subcarriers
free from distortion. Correspondingly, at the receiver, the PD
converts the received optical signal back to the electric signal
r, while the FFT operation converts r back to the FD signal
R̄. The odd-indexed subcarriers from the first half of R̄ can
then be extracted as R for obtaining the bit sequence b̂ through
QAM demapping.

Again, a major drawback of ACO-OFDM is, however, its
low BE. According to its bit-to-subcarrier mapping strategy,
only a quarter of all subcarriers can be utilized for carrying
“payload” information, while the rest are either used for

accommodating Hermitian symmetry or the clipping distor-
tion. Under the framework of Hermitian symmetry, various
sophisticated O-OFDM schemes [9], [35]–[38] have been
proposed for improving the BE by exploiting the “clipping-
distortion-bearing” subcarriers, which occupy half of the total
bandwidth.

2) LACO-OFDM: Fig. 2 provides the schematic of the
LACO-OFDM system, where additional layers are overlaid
onto the ACO-OFDM signal for loading extra information on
the clipping-distortion-bearing subcarriers. Explicitly, if the
original ACO-OFDM (referred to as layer 1 signal) utilizes
a K-point IFFT, layer 2 would have an ACO-OFDM signal
using a K/2-point IFFT, corresponding to the K/2 idle
subcarriers in layer 1. Likewise, layer 3 would employ ACO-
OFDM relying on K/4-point IFFT and layer l with K/2l−1-
point IFFT. Therefore, more information can be conveyed
by the additional layers using the same bandwidth, which
improves the BE. As a further benefit, it has also been shown
in [10] that having more layers reduces the PAPR of LACO-
OFDM.

However, while the preparation of each layer can be inde-
pendently and simultaneously carried out, the detection pro-
cess shown in the bottom half of Fig. 2 is relatively complex,
because the signals of the higher layers are mapped to the same
subcarriers as the clipping distortions of all the previous layers.
For example, the subcarriers conveying the layer 2 signal
also accommodate the clipping distortion of layer 1, while
the subcarriers of layer 3 additionally contain the clipping
distortion of layer 1 and layer 2. Hence, in contrast to the
parallel transmitter structure of Fig. 2, the detection of LACO-
OFDM is carried out on a layer-by-layer basis. Explicitly,
after converting the received TD signal r into the FD, the
subcarriers conveying the message of layer 1 are extracted
and detected. The resultant bits are then re-modulated with
the objective of re-generating the corresponding clipping dis-
tortion, which will be subtracted from the originally received
signal for decontaminating it from the interference imposed
by layer 1, paving the way for the detection of layer 2. The
extracted and detected symbols of layer 2 will also have to
be re-modulated for detecting layer 3. This detection loop of
Fig. 2 keeps on operating until all layers become detected,
during which its issue of high-complexity is observed.

Explicitly, the detection process of a single layer includes
the FFT, layer-extraction, symbol-to-bit demapping, reloading,
IFFT and clipping, as seen in Fig. 2. In contrast to the
parallel architecture of the transmitter, the layers must be
sequentially detected at the receiver. Hence, the improved BE
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Fig. 1. Schematic of the ACO-OFDM transmitter and receiver.
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Fig. 2. Transmitter and receiver schematic of LACO-OFDM.

is attained at the cost of an increased receiver complexity and
signal processing time delay. To tackle this issue, we resort to
harnessing artificial intelligence, where an AE is employed at
the transmitter and receiver, yielding our LACONet.

III. LACONET

In this section, we present our novel LACONet scheme.
To avoid ambiguity, we have to carefully distinguish a LACO
layer of transmitting signal from an NN layer.

A. LACONet Transceiver Design

Fig. 3 shows the schematic of the proposed LACONet
transceiver, where the upper half is the transmitter, while the
lower half is the receiver. Meanwhile, the detailed structures
of the NN-Based AE f(·) and the NN-Based Detector g(·) of
Fig. 3 are illustrated in Fig. 4.

The LACONet transmitter of Fig. 3 is similar to the original
LACO-OFDM transmitter of Fig. 2. Both designs feature a
layered ACO-OFDM-style process and rely on layer super-
position. However, while the bit stream of LACO-OFDM is
mapped to symbols by QAM modules, an NN-based encoder
in employed by LACONet for bit-to-symbol mapping. Let
us represent the NN-base encoding process by f(·) and the
encoded symbols of Fig. 3 by Z, yielding:

Z = f(b) = f(X), (2)

where X is the symbol-based counterpart of the bit sequence
b, having X[k] = b[k] with k = 1, . . . ,K representing the
bit-index in a symbol.

The symbols Z are then mapped to the layers of Fig. 3
for further layered processing through a serial-to-parallel (S/P)
operation, where in Fig. 3 we have L = 3:

Z = [Z1,Z2, . . . ,ZL], (3)

where Zl, being of length K/2l+1, represents the symbol
stream mapped to LACO layer l. The NN of AE handles the
mapping of bits/symbols to the LACO layers, since the NN
output Z of Fig. 3 is sorted for the layers. The symbols of

each LACO layer are then parsed through the ACO-OFDM
modules, including the IFFT-based modulation and clipping,
which are collectively represented by:

Ul = F−1(Zl). (4)

The outputs Ul (l = 1, . . . , L) of each LACO layers’ clipper
are then superimposed, which is formulated as:

UΣ =

L∑

l=1

Ul, (5)

followed by normalization representing the power control [28],
given as:

U =

√
EsUΣ√

E
[
∥UΣ∥2

] , (6)

where the operation E
[
∥·∥2

]
in the denominator calculates the

statistical average power of the output signal, and the factor√
Es in the numerator ensures that the average output power

is Es. Upon transmitting the signal U through the optical
channel, the received signal becomes:

Y = h⊗U + n, (7)

where n denotes the Gaussian-distributed noise and h is
the channel impulse response, while ⊗ is the convolution
operation. When an FS fading channel is considered, we have
h = [h0, h1, . . . , hI−1] representing the gain from of the I
paths, while for when an AWGN channel, we have simply
h = [1].

Recall that the benefit of using an AE-aided design becomes
more explicit at the receiver side, which in this case simply
has two components. The received signal is converted to
the FD by the FFT-based demodulator F(·), which is then
directly entered into the NN-based detector g(·). Therefore,
the receiver process can be formulated as:

X̂ = (g ◦ F)(Y ), (8)

where “◦” represents the function composition operator. The
NN-based detector is trained so that the signal on all LACO
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layers can be simultaneously detected. The bit stream b̂ of
Fig. 3 can then be directly obtained after a hard decision
operation at the receiver’s output as:

b̂[k] =

{
1, if X̂[k] > 0.5,

0, otherwise,
(9)

where the Sigmoid activation function of [22] is used for the
output layer of the RX NN, whose values, i.e. the elements of
X̂ , are in the range of (0, 1).

B. Neural Network Training

By employing our proposed LACONet, we aim at improving
both the BER and PAPR, relative to a LACO-OFDM signal
with the same number of LACO layers and BE. Therefore, a
pair of loss functions are required for representing the BER
and PAPR behavior.

Explicitly, for minimizing the BER, a loss function LBER

can be defined as the mean square distance between the
transmitted symbols X and their estimate X̂:

LBER(X, X̂) =
1

N1

N1∑

n=1

∣∣∣X(n)− X̂(n)
∣∣∣
2

, (10)

where N1 is the number of bits per transmission frame and
| · | is the absolute value operation.

By contrast, the loss function representing the PAPR is
defined as:

LPAPR(U) =
maxk |U(k)|2

1
K

∑K
k=1 |U(k)|2

− 1, (11)

where K is the number of subcarriers, the numerator
maxk |U(k)|2 stands for the peak sample energy in signal
U , whereas the denominator 1

K

∑K
k=1 |U(k)|2 represents its

average sample energy. It is worth noting that LPAPR(U)
is differentiable, since each component of |U(k)|2 in the
maximization operation is differentiable. Meanwhile, it is clear
that the fraction in the first term has a minimum value of 1,
when the signal has a constant envelope. Therefore, the term
“−1” has been included for ensuring that the PAPR-loss tends
to 0, similarly to the BER-loss.

The overall loss function L used for the NN training has to
consider both. Hence, a loss scaling factor α is introduced to
represent the specific weight of PAPR-loss, yielding

L = LBER + αLPAPR. (12)

Let us now introduce a two-stage training procedure, where
the first stage is focused on minimizing the PAPR, while the
second stage on the BER. Explicitly,

1) In the first stage (initial training), a relatively high scal-
ing factor α is employed, so that the PAPR performance
has a stronger influence on the optimization process. A
higher learning rate rlearning is used for accelerating the
training process.

2) In the second stage (retraining), a smaller value of α
is stipulated, so that the learning becomes biased to-
wards improving the BER performance, without unduly
eroding the PAPR reduction attained. Correspondingly,

rlearning is also reduced for fine-tuning the system. The
values adopted for α and rlearning are detailed in the
next section.

C. LACONet Performance and Discussions

Let us now study the performance of LACONet by com-
paring its BER for different numbers of LACO layers, BE,
training complexity, as well as against the original LACO-
OFDM. Unless otherwise specified, the parameters of Tab. II
are adopted for all simulations in this section. Observe from
Tab. II that we employ the batch normalization technique of
[38] after each hidden layer of both the TX and RX NNs to
accelerate the training by reducing the internal covariate shift1,
while the Rectified Linear Unit (ReLU) activation of [22] is
used for all of their hidden layers. Additionally, it should be
noted that we consciously use linear activation for the output
layer of the TX NN, so that no restriction is imposed on the
FD symbols Z of Fig. 3.

Fig. 5 shows our BER comparison between LACONet
and LACO-OFDM for both AWGN and FS fading channels,
where different BEs are characterized. All other parameters,
including the number of NN layers and number of neurons
within each NN layer, are summarized in Tab. II. Explic-
itly, the BEs of 0.75, 1.5 and 0.875 bps/Hz are consid-
ered. Hence, the performance of conventional LACO-OFDM
schemes having 2-layer 4QAM, 2-layer 4QAM and 2-layer
16QAM are characterized in Fig. 5 for benchmarking the
performance of LACONet. The associated BEs are calculated
as in Tab. III, where the BEs of layers 1, 2 and 3 are 1/4,
1/8 and 1/16 that of the bits per info-bearing subcarrier,
respectively, as elaborated in Sec. II-B2. Observe in Fig. 5
that the BER of LACONet is better than that of LACO-OFDM
for all three BEs. It also transpires that the Signal-to-Noise
Ratio (SNR) improvement of the 3-layer 4QAM scheme is
more significant than that of the 2-layer 4QAM and 16QAM
schemes for all BEs. This indicates that LACONet succeeds
in more beneficially reducing the inter-layer interference than
LACO-OFDM in the face of having more layers. Moreover,
Fig. 5b shows a modest performance degradation under the FS
channel of Tab. II due to the multi-path effects for the 2-layer
16QAM scenario of 1.5 bps/Hz BE. Nevertheless, the OFDM-
based channel equalization of both LACONet and LACO-
OFDM succeeds in eliminating most of the FS channel-effects.
Moreover, observe again by comparing Fig. 5b to Fig. 5a
that the gaps between LACONet and LACO-OFDM of signals
at same BE become wider for FS channels, which indicates
that LACONet is more capable of combating the multipath
effects than classic OFDM. This is because the transmitter and
receiver of LACONet are jointly optimized during the training
stage in the presence of the FS channel, in order to achieve
the best performance under practical channel conditions. On
the other hand, the O-OFDM transceiver designs without AI
assistance are not optimized for any specific channel.

1The internal covariate shift is the change of the statistical distribution of
each layer’s parameters during the training process, as the result of the change
of its previous layers. [38]
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TABLE II
DEFAULT PARAMETERS USED FOR SIMULATIONS IN SECTION III

Parameter name Value Applicable
Figures

Parameters for all schemes simulated
Number of subcarriers K 32 5, 8, 9
Number of LACO layers L 2 6, 8, 9

Number of mapped symbols on LACO layer 1 K1 = K/4 8 8, 9
Number of mapped symbols on LACO layer 2 K2 = K/8 4 8, 9

Optical channel
AWGN channel impulse response h [1] 5a, 6, 8a, 9,

10, 11, 12
FS channel impulse response h [3.8, 1.4, 0.5] 5b, 8b

Parameters for LACONet
Bandwidth efficiency q/K 1.5 6, 8, 9
Total number of information bits q 48 8, 9
TX NN Input Layer

Number of neurons N1 = q 48 8, 9
TX Hidden Layer: Number of Layers 1 5, 6, 8, 9

Number of neurons N2 128 5, 6, 8, 9
Batch normalization after each hidden layer Yes 5, 6, 8, 9
Layer Activation ReLu 5, 6, 8, 9

TX Output Layer
Number of neurons N3 = 2(K1 +K2) 24 5, 6, 8, 9
Layer Activation Linear 5, 6, 8, 9

RX NN Input Layer
Number of neurons N4 = K 32 5, 8, 9

RX Hidden Layer: Number of Layers 3 5, 6, 8, 9
Number of neurons N5 = [N5,1, N5,2, N5,3] [512, 256, 128] 5, 6, 8, 9
Batch normalization after each hidden layer Yes 5, 6, 8, 9
Layer Activation ReLu 5, 6, 8, 9

RX Output Layer
Number of neurons N1 48 8, 9
Layer Activation Sigmoid 5, 6, 8, 9

Initial training
PAPR loss scale α 0.005 5, 6, 8, 9
Learning rate rlearning 0.001 5, 6, 8, 9
Number of training epochs nini 2000 5, 6, 8, 9

Retraining
PAPR loss scale α 0.0001 5, 6, 8, 9
Learning rate rlearning 0.0001 5, 6, 8, 9
Number of training epochs nre 200 5, 6, 8, 9

Parameters for LACO-OFDM
QAM constellation size for all 2 LACO layers M 16 6, 8, 9
Bandwidth efficiency (1/4 + 1/8) log2 M 1.5 6, 8, 9

TABLE III
LACO-OFDM BANDWIDTH EFFICIENCYS (BPS/HZ) CALCULATION

Case 1 2 3

Number of layers 2 3 2
QAM Order 4QAM 4QAM 16QAM
Bits per info-
bearing subcarrier

2 4 2

layer 1 BE 0.5 0.5 1
layer 2 BE 0.25 0.25 0.5
layer 3 BE N/A 0.125 N/A
Overall BE 0.75 0.875 1.5

Fig. 6 shows the Complementary Cumulative Distribution
Functions (CCDF) of the PAPR of both LACONet and LACO-
OFDM having two LACO layers and different numbers of
subcarriers K. The number of input bits N1 was adjusted
to 1.5K for each scheme to align their BEs for a fair
comparison, while all other parameters are summarized in
Tab. II. Observe in Fig. 6 that LACONet exhibits a lower
PAPR than its LACO-OFDM counterpart for all three cases.

By contrast, no significant difference can be observed amongst
the three LACONet schemes’ PAPR performance. Note from
this investigation that the hidden layer specifications of all
three LACONet scenarios were adjusted to meet their specific
throughput target. Explicitly, for the 16-subcarrier LACONet,
we have N2 = 128 and N5 = [256, 256, 64], while N2 = 512
and N5 = [512, 512, 512] are used for the 64-subcarrier
scheme.

We can conclude from this section that both the BER
and PAPR performance of LACO-OFDM can be signifi-
cantly improved with the aid of NN, despite its simplified
detector architecture, since several IFFT-based re-modulation
and iterative interference cancellation stages of LACO-OFDM
were dispensed with, as seen in Fig. 3. However, given the
requirement Hermitian symmetry, half of the bandwidth still
has to be sacrificed in order to carry conjugate symbols. This
limitation will be circumvented in the next section.

TABLE III
LACO-OFDM BANDWIDTH EFFICIENCYS (BPS/HZ) CALCULATION

7

TABLE II
DEFAULT PARAMETERS USED FOR SIMULATIONS IN SECTION III

Parameter name Value Applicable
Figures

Parameters for all schemes simulated
Number of subcarriers K 32 5, 8, 9
Number of LACO layers L 2 6, 8, 9

Number of mapped symbols on LACO layer 1 K1 = K/4 8 8, 9
Number of mapped symbols on LACO layer 2 K2 = K/8 4 8, 9

Optical channel
AWGN channel impulse response h [1] 5a, 6, 8a, 9,

10, 11, 12
FS channel impulse response h [3.8, 1.4, 0.5] 5b, 8b

Parameters for LACONet
Bandwidth efficiency q/K 1.5 6, 8, 9
Total number of information bits q 48 8, 9
TX NN Input Layer

Number of neurons N1 = q 48 8, 9
TX Hidden Layer: Number of Layers 1 5, 6, 8, 9

Number of neurons N2 128 5, 6, 8, 9
Batch normalization after each hidden layer Yes 5, 6, 8, 9
Layer Activation ReLu 5, 6, 8, 9

TX Output Layer
Number of neurons N3 = 2(K1 +K2) 24 5, 6, 8, 9
Layer Activation Linear 5, 6, 8, 9

RX NN Input Layer
Number of neurons N4 = K 32 5, 8, 9

RX Hidden Layer: Number of Layers 3 5, 6, 8, 9
Number of neurons N5 = [N5,1, N5,2, N5,3] [512, 256, 128] 5, 6, 8, 9
Batch normalization after each hidden layer Yes 5, 6, 8, 9
Layer Activation ReLu 5, 6, 8, 9

RX Output Layer
Number of neurons N1 48 8, 9
Layer Activation Sigmoid 5, 6, 8, 9

Initial training
PAPR loss scale α 0.005 5, 6, 8, 9
Learning rate rlearning 0.001 5, 6, 8, 9
Number of training epochs nini 2000 5, 6, 8, 9

Retraining
PAPR loss scale α 0.0001 5, 6, 8, 9
Learning rate rlearning 0.0001 5, 6, 8, 9
Number of training epochs nre 200 5, 6, 8, 9

Parameters for LACO-OFDM
QAM constellation size for all 2 LACO layers M 16 6, 8, 9
Bandwidth efficiency (1/4 + 1/8) log2 M 1.5 6, 8, 9

TABLE III
LACO-OFDM BANDWIDTH EFFICIENCYS (BPS/HZ) CALCULATION

Case 1 2 3

Number of layers 2 3 2
QAM Order 4QAM 4QAM 16QAM
Bits per info-
bearing subcarrier

2 4 2

layer 1 BE 0.5 0.5 1
layer 2 BE 0.25 0.25 0.5
layer 3 BE N/A 0.125 N/A
Overall BE 0.75 0.875 1.5

Fig. 6 shows the Complementary Cumulative Distribution
Functions (CCDF) of the PAPR of both LACONet and LACO-
OFDM having two LACO layers and different numbers of
subcarriers K. The number of input bits N1 was adjusted
to 1.5K for each scheme to align their BEs for a fair
comparison, while all other parameters are summarized in
Tab. II. Observe in Fig. 6 that LACONet exhibits a lower
PAPR than its LACO-OFDM counterpart for all three cases.

By contrast, no significant difference can be observed amongst
the three LACONet schemes’ PAPR performance. Note from
this investigation that the hidden layer specifications of all
three LACONet scenarios were adjusted to meet their specific
throughput target. Explicitly, for the 16-subcarrier LACONet,
we have N2 = 128 and N5 = [256, 256, 64], while N2 = 512
and N5 = [512, 512, 512] are used for the 64-subcarrier
scheme.

We can conclude from this section that both the BER
and PAPR performance of LACO-OFDM can be signifi-
cantly improved with the aid of NN, despite its simplified
detector architecture, since several IFFT-based re-modulation
and iterative interference cancellation stages of LACO-OFDM
were dispensed with, as seen in Fig. 3. However, given the
requirement Hermitian symmetry, half of the bandwidth still
has to be sacrificed in order to carry conjugate symbols. This
limitation will be circumvented in the next section.

Fig. 6 shows the Complementary Cumulative Distribution
Functions (CCDF) of the PAPR of both LACONet and LACO-
OFDM having two LACO layers and different numbers of
subcarriers K. The number of input bits N1 was adjusted
to 1.5K for each scheme to align their BEs for a fair
comparison, while all other parameters are summarized in
Tab. II. Observe in Fig. 6 that LACONet exhibits a lower
PAPR than its LACO-OFDM counterpart for all three cases.

By contrast, no significant difference can be observed amongst
the three LACONet schemes’ PAPR performance. Note from
this investigation that the hidden layer specifications of all
three LACONet scenarios were adjusted to meet their specific
throughput target. Explicitly, for the 16-subcarrier LACONet,
we have N2 = 128 and N5 = [256, 256, 64], while N2 = 512
and N5 = [512, 512, 512] are used for the 64-subcarrier
scheme.

We can conclude from this section that both the BER
and PAPR performance of LACO-OFDM can be signifi-
cantly improved with the aid of NN, despite its simplified
detector architecture, since several IFFT-based re-modulation
and iterative interference cancellation stages of LACO-OFDM
were dispensed with, as seen in Fig. 3. However, given the
requirement Hermitian symmetry, half of the bandwidth still
has to be sacrificed in order to carry conjugate symbols. This
limitation will be circumvented in the next section.



8

0 3 6 9 12 15 1810−5

10−4

10−3

10−2

10−1

100

SNR (dB)

B
E

R

LACO-OFDM 2L4QAM, BE= 0.75

LACONet, BE= 0.75

LACO-OFDM 2L16QAM, BE= 1.5

LACONet, BE= 1.5

LACO-OFDM 3L4QAM, BE= 0.875

LACONet, BE= 0.875

(a) AWGN Channel

0 3 6 9 12 15 1810−5

10−4

10−3

10−2

10−1

100

SNR (dB)

B
E

R

LACO-OFDM 2L4QAM, BE= 0.75

LACONet, BE= 0.75

LACO-OFDM 2L16QAM, BE= 1.5

LACONet, BE= 1.5

LACO-OFDM 3L4QAM, BE= 0.875

LACONet, BE= 0.875

(b) FS Channel

Fig. 5. BER versus SNR for LACONet for bandwidth efficiencies of 0.75,
1.5 and 0.875 bps/Hz attained by varying the number of neurons N1 of the
TX input NN layer and RX output NN layer. All other simulation parameters
are summarized in Tab. II.

IV. IMDD-OFDMNET

Inspired by the performance vs. complexity improvement
of LACONet, we proceed by demonstrating the NNs are
also capable of directly generating unipolar signals under the
OFDM framework.

A. IMDD-OFDMNet Architecture

Fig. 7 shows the schematic of the IMDD-OFDMNet
transceiver. While the AE-aided LACONet of Fig. 3 still
relies on LACO-OFDM-like components at the transmitter,
the IMDD-OFDMNet scheme of Fig. 7 provides increased
freedom for the NN training by eliminating the Hermitian
Mapping blocks of Fig. 3. Thus, while a LACONet system
having K subcarriers and L LACO layers produces a sequence
of K(1 − 2−L) symbols at the output layer of the NN-
based TX, the IMDD-OFDMNet system of Fig. 7 succeeds in
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Fig. 6. CCDF of the signal PAPR for LACONet with different number of
OFDM subcarriers.

b
NN-Based AE

Z
IFFT

Zt Sample Energy,
Power Control

U

Y = h ⊗ U + n
FFTNN-Based Detector

Sigmoid

b̂

Fig. 7. Transmitter and receiver schematic of IMDD-OFDMNet.

further increasing this to K, because no Hermitian Mapping
is required.

Akin to LACONet, the bit stream b is entered into the AE
of Fig. 7, which outputs a symbol sequence Z of the same
length as the number of subcarriers K. In the absence of a
carefully designed Hermitian Mapper, the TD signal Zt of
Fig. 7 obtained by the IFFT-based modulation now becomes
bi-polar and complex-valued. To create a unipolar signal, the
energy of each TD sample of Zt is calculated for constructing
the signal U as follows:

U [k] = min(Zt[k] ·Z∗
t [k], Umax), k = 0, 1, ...,K − 1, (13)

where min(·, Umax) is the clipping operation that limits the
maximum amplitude of the signal to Umax. Following the
power control operation similar to that of (6), the resultant
signal is then used for intensity modulation.

Moreover, the FFT-NN-based receiver of Fig. 3 designed
for LACONet is retained for the IMDD-OFDMNet receiver.

For training the IMDD-OFDMNet scheme of Fig. 7, a
similar approach to that of Section III-B can be adopted. Given
a total of K subcarriers available, to achieve a BE of q/K,
an input bit sequence b of length q is required. Again, both
loss functions of (10), (11) and (12), as well as the two-stage
training process of Section III-B, are employed for jointly
minimizing the BER and PAPR.

B. IMDD-OFDMNet Performance and Discussions

In this section, we present numerical results for characteriz-
ing the performance of our proposed IMDD-OFDMNet, where
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TABLE IV
DEFAULT PARAMETERS USED FOR SIMULATIONS IN SECTION IV

Parameter name Value

Parameters for IMDD-OFDMNet
Optical channel AWGN
Number of subcarriers K 32
Bandwidth efficiency q/K 1.5

Total number of information bits q 48

Number of neurons on the TX NN input layer N1 = q 48
Number of neurons on the RX NN output layer N1 = q (Sigmoid activation) 48

Number of TX AE NN hidden layers 1
Number of neurons on the TX NN hidden layers N2 128

Batch normalization after each hidden layer Yes
Number of neurons on the TX NN output layer N3 = 2K (Linear activation) 64
Number of neurons on the RX NN input layer N4 = K 32
Number of RX NN Hidden Layers (ReLU activation) 3

Number of neurons on the RX NN hidden layers N5 = [N5,1, N5,2, N5,3] [512, 256, 128]

Batch normalization [39] after each hidden layer Yes
Initial training

PAPR loss scale α 0.005

Number of training epochs 2000

Retraining
PAPR loss scale α 0.0005

Number of training epochs 200

the default parameters are summarized in Tab. IV. By contrast,
when referring to the benchmarks of LACONet and LACO-
OFDM, the parameters of Tab. II are used.

1) BER and PAPR: Fig. 8 shows the BER comparison of
IMDD-OFDMNet, LACONet and LACO-OFDM under both
AWGN and FS fading channels, where the BE of all schemes
is 1.5 bps/Hz. For LACONet and LACO-OFDM, two LACO
layers are used. Additionally, for LACO-OFDM, 16QAM is
adopted for both LACO layers. According to Fig. 8, despite
its reduced TX complexity, IMDD-OFDMNet outperforms
LACONet for the same NN setup. Furthermore, observe in
Fig. 8b an approximately 3 dB Eb/N0 for IMDD-OFDMNet
over LACO-OFDM at a BER of 10−5.

Moreover, we present the BER and PAPR performance of
both LACONet and IMDD-OFDMNet, when trained under
a finite clipping threshold, by the dashed lines in Figs. 9,
respectively. A 10 dB clipping ratio, corresponding to Umax =√
1W × 10 · log10

(
1010/10

)
≈ 3.16V has been used in (13).

It is clear that for LACONet, a slight PAPR improvement
is achieved after training under the finite clipping, albeit at
the cost of degraded BER performance, especially at higher
SNRs (Eb/N0 > 12dB), where the clipping distortion might
be the dominant source of error. On the other hand, IMDD-
OFDMNet has a slightly better PAPR reduction than LA-
CONet, at a negligible BER penalty. This also demonstrates
the better performance of IMDD-OFDMNet thanks to its
higher AI optimization freedom. However, it is worth noting
that LACONet still outperforms LACO-OFDM under clipping.
Although the former also suffers from clipping distortion, yet
it does not have any PAPR gain.

To elaborate further, Fig. 9 shows the CCDF of the PAPR
of IMDD-OFDMNet, LACONet and LACO-OFDM, with all

parameters specified in Tabs. II and IV. Explicitly, IMDD-
OFDMNet provides even further PAPR reduction compared
to LACONet.

2) Offline Learning Complexity: In contrast to classical
methods, the improved performance of learning-aided schemes
is closely related to the quality of offline training. In Fig. 10,
we plot the BER of IMDD-OFDMNet as a function of the
number of training epochs, which represents the associated
offline complexity. It is clear that the system only starts to
perform adequately after at least 100 epochs, when the BER
dips below the 10−3 threshold, which is a typical value for
which forward error correction becomes capable of cleaning
up the residual errors [40]. Additionally, the BER gradually
approaches that of perfect training after about 500 epochs,
after which no more significant BER improvement can be ob-
served. Furthermore, Fig. 10 also validates the efficiency of our
proposed 2-stage training strategy, as detailed in Section III-B
and Tab. IV. While the first 500 epochs of initial training result
in considerable BER reduction, the improvements slow down
after 1000 epochs. On the other hand, by changing the cost
function and learning rate in the retraining stage according to
Tab. IV, an additional 50 ∼ 200 epochs result in a 3 dB SNR
gain at BER = 10−4, as the dashed lines shown in Fig. 10.

The trend can be viewed more clearly in Fig. 11, where the
BER curve is the Eb/N0 distance for reaching the 10−3 BER
compared to the minimum Eb/N0 observed, while similarly
the PAPR curve is the PAPR reduction for reaching the 10−3

PAPR CCDF compared to the minimum PAPR observed. A
0.3 dB PAPR penalty is observed after retraining at 2000
epochs, which is the price paid in exchange for a 0.3 dB
Eb/N0 improvement observed at BER = 10−3.

3) Online Processing Complexity: In this section, we an-
alyze the online signal processing complexities of both the
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Fig. 8. BER versus SNR for IMDD-OFDMNet, LACONet and LACO-
OFDM schemes, all having a bandwidth efficiency of 1.5bps/Hz, using the
parameters of Tab. II for LACO-OFDM and LACONet and of Tab. IV for
IMDD-OFDMNet. Dashed lines represent signal trained under 10dB clipping
and solid lines the absent.

proposed LACONet and IMDD-OFDMNet in terms of the
number of Real-valued Multiplications and Additions (RMAs)
involved and compare them to that of conventional ACO- and
LACO-OFDM operating without any learning. By inspecting
the schematics seen in Figs. 3 and 7, it becomes plausible that
both the IFFT/FFT and the AE NNs impose the highest signal
processing complexity. However, recall that the situations are
different at the TX and RX side, hence have to be sepa-
rately discussed. For simplifying the analysis, we disregard
the OFDM CP overhead and additional complexity reduction
of ACO-OFDM attained by omitting the processing of the
blank subcarriers, because these two assumptions apply to all
schemes involved and therefore the comparisons remain valid.

A K-point FFT/IFFT operation requires K log2 K complex
additions and K

2 log2 K complex multiplications, which are
equivalent to 3K log2 K real additions and 2K log2 K real

0 3 6 9 12 15
10−4

10−3

10−2

10−1

100

PAPR (dB)

C
C

D
F

LACO-OFDM
LACONet
IMDD-OFDMNet

no clipping
10dB clipping

Fig. 9. CCDF of PAPR for IMDD-OFDMNet, LACONet and LACO-OFDM
schemes having 32 subcarriers. Dashed lines represent signal trained under
10dB clipping and solid lines the absent.
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multiplications, leading to a total of C1 = 5K log2 K RMAs.
Hence, for ACO-OFDM having K subcarriers, both its TX and
RX require C1 RMAs for IFFT/FFT, respectively. This also
applies to IMDD-OFDMNet, because it requires only a single
IFFT/FFT. By contrast, for LACO-OFDM having L layers, the
TX complexity is given by the sum of processing all LACO
layers, where each layer has half the complexity of its prede-
cessor due to its halved number of symbols. As a result, the
LACO-OFDM TX requires

∑L
l=1

(
1

2L−1C1

)
= (2− 21−L)C1

RMAs. This also applies to LACONet, due to its similar TX
structure. On the other hand, the LACO-OFDM RX imposes
nearly twice the complexity of ACO-OFDM, which is due to
the extra requirement of reconstructing the LACO-layer’s sig-
nal after detection. Explicitly, the LACO-OFDM RX requires∑L

l=1

(
1

2L−1C1

)
+
∑L−1

l=1

(
1

2L−1C1

)
= (4− 21−L − 22−L)C1
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RMAs. Since each layer is detected sequentially, the IFFT/FFT
sources can be reused consecutively for the detection of con-
secutive layers. The RX FFT complexity of IMDD-OFDMNet
may be deemed to be similar to that of ACO-OFDM, since it
also contains a single FFT.

As for the complexity of the NNs, this is directly related to
the number of nodes in the hidden layers. The TX depicted in
Fig. 4 has only a single hidden layer with N2 neurons, yielding
a total number of N1N2+N2N3 real multiplications and (N1−
1)N2 + (N2 − 1)N3 real additions, which jointly result in
approximately 2(N1N2+N2N3) RMAs in total. Similarly, the
RX NNs of Fig. 4 would require approximately 2(KN5,1 +
N5,1N5,2 + N5,2N5,3 + N5,3N1) RMAs. Since similar NN
structures have been employed for both LACONet and IMDD-
OFDMNet, it is reasonable to assume that they have the same
AE complexity. It is also worth scrutinizing the relationship
between the number of neurons and the structure of IFFT/FFT.
In this context, LACONet has N3 = 2K(1/2 − 2−L−1) and
N4 = K, while IMDD-OFDMNet relies on N3 = 2K,N4 =
K, according to Tabs. II and IV.

The above analysis has been summarized in Tab. V, while
a graphical comparison is provided in Fig. 12. Explicitly,
Fig. 12a compares the IFFT/FFT related complexities of
ACO-OFDM, LACO-OFDM, the proposed LACONet and also
IMDD-OFDMNet. By contrast, Fig. 12b portrays the learning-
related complexities of LACONet and IMDD-OFDMNet.
While the schemes operating with and without learning tend
to impose the same IFFT/FFT complexities, it is worth noting
the differences in the y-axis scales in the two figures, which
indicate that the learning-related complexities tend to be higher
than the IFFT/FFT-related complexities. Despite the fact that
the schemes of Figs. 1 and 2, which do not involve learning,
contain some additional low-complexity components, such as
demapping and re-mapping, it may still be deemed fair to say
that the proposed schemes relying on learning tend to improve

24 25 26
0

1

2

3

4

5
·103

ACO-OFDM TX, RX,
1-layer LACONet TX
All LACONet RX,
IMDD-OFDMNet TX, RX

Down to Up,
2- to 4-layer LACONet TX,
2- to 4-layer LACO-OFDM TX

Down to Up,
2- to 4-layer LACO-OFDM RX

K

IF
FT

/F
FT

R
M

A
s

(a) IFFT/FFT-related Complexity

24 25 26
0

1

2

3

4

5
·105

All 5 AE-aided schemes, RX

IMDD-OFDMNet, TX

Down to Up,
1- to 4-layer LACONetTX

K

A
E

R
M

A
s

24 25 26
0

1

2

3

4

5
·105

All 5 AE-aided schemes, RX

IMDD-OFDMNet, TX

Down to Up,
1- to 4-layer LACONetTX

K

A
E

R
M

A
s

(b) Learning-Related Complexity

Fig. 12. Online processing complexity comparison for O-OFDM schemes
with and without learning.

the BER and PAPR performance at the cost of a higher number
of RMAs. In a nutshell, our learning-aided solutions may be
deemed to dissipate more signal processing energy than their
Shannonian block-based counterparts – despite the simpler
architecture of Fig. 7.

V. CONCLUSIONS

In this paper, we proposed a pair of novel optical OFDM
schemes, namely LACONet and IMDD-OFDMNet by intro-
ducing deep learning into the classic OFDM-aided archi-
tecture. Both schemes have attained better BER and PAPR
performance than their conventional O-OFDM counterparts
operating without learning, such as ACO-OFDM and LACO-
OFDM. Moreover, IMDD-OFDMNet has been shown to out-
perform LACONet in terms of both its BER and PAPR
performance at the cost of a higher RMAs, despite its simpler
architecture. More explicitly, the complexity of both the off-
line training and of the on-line processing of NNs, has proved
to be considerably higher than that of the classic Shannonian
systems adopting traditional QAM mapping. Nevertheless,
NNs lend themselves to convenient parallelization, hence these
complexity considerations require further research.

However, having discussed the various benefits of the AI-
aided solutions, the scalability limitation of the neural net-
works remains an impediment. As a remedy, in our future
work we plan to employ a model-based solution to deal with
this. Explicitly, in our future work, we will split the input
stream into several groups, where each group processes the
autoencoder operation simultaneously but independently. The
reduced input size of the individual groups will result in a more
manageable neural network size, so that the overall number
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TABLE V
ONLINE PROCESSING COMPLEXITY OF O-OFDM SCHEMES WITH AND WITHOUT LEARNING
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TABLE V
ONLINE PROCESSING COMPLEXITY OF O-OFDM SCHEMES WITH AND WITHOUT LEARNING

Scheme Transmitter (TX) Receiver (RX)

IFFT/FFT AE IFFT/FFT AE

ACO-OFDM C1 N/A C1 N/A
LACO-OFDM (2− 21−L)C1 N/A (4− 21−L − 22−L)2C1 N/A

LACONet (2− 21−L)C1 2(N1N2 +N2N3) C1 2(KN5,1 +N5,1N5,2 +N5,2N5,3 +N5,3N1)
IMDD-OFDMNet C1 2(N1N2 +N2N3) C1 2(KN5,1 +N5,1N5,2 +N5,2N5,3 +N5,3N1)
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Fig. 13. Schematic of a multi-group IMDD-OFDMNet transmitter.

of subcarriers can be increased. Fig. 13 shows the tentative
transmitter architecture of the proposed multi-group scheme,
where the input is divided into G sub-streams for individual
DNN encoding and OFDM IFFT operations, before combining
them for further processing. Moreover, an interleaver is placed
across all groups between the DNN encoder and IFFT stage
for mitigating the potential PAPR imposed by the distributed
DNN training.

ACKNOWLEDGEMENT

The authors acknowledge the use of the IRIDIS High Per-
formance Computing Facility, and associated support services
at the University of Southampton, in the completion of this
work. The authors would like to thank Dr Chao Xu from the
University of Southampton for his constructive comments and
suggestions.

REFERENCES

[1] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi,
“Wireless myths, realities, and futures: From 3G/4G to optical and
quantum wireless,” Proc. IEEE, vol. 100, no. Special Centennial Issue,
pp. 1853–1888, May 2012.

[2] Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications:
Modulation and signal processing. Hoboken, NJ, USA: Wiley, 2018.

[3] J. Armstrong, “OFDM for optical communications,” J. Lightw. Technol.,
vol. 27, no. 3, pp. 189–204, Feb. 2009.

[4] L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA
for broadband multi-user communications, WLANs and broadcasting.
Chichester, U.K.: Wiley, 2005.

[5] L. Hanzo, Y. Akhtman, J. Akhtman, L. Wang, and M. Jiang, MIMO-
OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and
cooperative turbo transceivers. Chichester, U.K.: Wiley, 2011.

[6] J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,”
Electron. Lett., vol. 42, no. 6, Mar. 2006.

[7] R. Mesleh, H. Elgala, and H. Haas, “On the performance of different
OFDM based optical wireless communication systems,” IEEE J. Opt.
Commun. Netw., vol. 3, no. 8, pp. 620–628, Aug. 2011.

[8] R. Zhang and L. Hanzo, “Multi-layer modulation for intensity-modulated
direct-detection optical OFDM,” IEEE J. Opt. Commun. Netw., vol. 5,
no. 12, pp. 1402–1412, Dec. 2013.

[9] Q. Wang, Z. Wang, and L. Dai, “Asymmetrical hybrid optical ofdm
for visible light communications with dimming control,” IEEE Photon.
Technol. Lett., vol. 27, no. 9, pp. 974–977, May 2015.

[10] X. Zhang, Q. Wang, R. Zhang, S. Chen, and L. Hanzo, “Performance
analysis of layered ACO-OFDM,” IEEE Access, vol. 5, pp. 18 366–
18 381, 2017.

[11] J. Zhou and W. Zhang, “A comparative study of unipolar OFDM
schemes in Gaussian optical intensity channel,” IEEE Trans. Commun.,
vol. 66, no. 4, pp. 1549–1564, Apr. 2018.

[12] X. Zhang, Z. Babar, P. Petropoulos, H. Haas, and L. Hanzo, “The
evolution of optical OFDM,” IEEE Commun. Surveys Tuts., vol. 23,
no. 3, pp. 1430–1457, 3rd Quart. 2021.

[13] X. Zhang, Z. Babar, S. Chen, and L. Hanzo, “Multi-class coded layered
asymmetrically clipped optical OFDM,” IEEE Trans. Commun., vol. 67,
no. 1, pp. 578–589, Jan. 2019.

[14] X. Zhang, S. Chen, and L. Hanzo, “On the discrete-input continuous-
output memoryless channel capacity of layered ACO-OFDM,” J. Lightw.
Technol., vol. 38, no. 18, pp. 4955–4968, Sep. 2020.

[15] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. on Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563–575, Apr. 2017.

[16] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[17] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo,
“Thirty years of machine learning: The road to Pareto-optimal wireless
networks,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1472–1514,
3rd Quart. 2020.

[18] A. Fehske, J. Gaeddert, and J. H. Reed, “A new approach to signal
classification using spectral correlation and neural networks,” in 1st
IEEE Intl. Symposium on New Frontiers in Dynamic Spectrum Access
Networks, 2005. DySPAN 2005. Baltimore, MD, USA: IEEE, Nov.
2005, pp. 144–150.

[19] S. Cammerer, F. A. Aoudia, S. Dörner, M. Stark, J. Hoydis, and S. ten
Brink, “Trainable communication systems: Concepts and prototype,”
IEEE Trans. Commun., vol. 68, no. 9, pp. 5489–5503, Sep. 2020.

[20] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[21] Y. Jin, J. Zhang, S. Jin, and B. Ai, “Channel estimation for cell-free
mmWave massive MIMO through deep learning,” IEEE Trans. Veh.
Technol., vol. 68, no. 10, pp. 10 325–10 329, Oct. 2019.

[22] T. V. Luong, Y. Ko, N. A. Vien, D. H. N. Nguyen, and M. Matthaiou,
“Deep learning-based detector for OFDM-IM,” IEEE Wireless Commun.
Lett., vol. 8, no. 4, pp. 1159–1162, Aug. 2019.

[23] J. Wang, C. Jiang, H. Zhang, X. Zhang, V. C. Leung, and L. Hanzo,
“Learning-aided network association for hybrid indoor LiFi-WiFi sys-
tems,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3561–3574, Apr.
2017.

[24] N. Yang, H. Zhang, K. Long, H.-Y. Hsieh, and J. Liu, “Deep neural
network for resource management in NOMA networks,” IEEE Trans.
Veh. Technol., vol. 69, no. 1, pp. 876–886, Jan. 2019.

[25] B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lav-
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