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The effect of slow light on second harmonic generation in a periodically poled χ(2) nonlinear
medium is investigated theoretically. A linear π phase shifted grating is used to slow the group
velocity of the fundamental frequency and the resulting field enhancement greatly increases the
second harmonic conversion efficiency. A second linear grating at the input end ensures that all
output is in the forward direction. We show that almost 100% conversion efficiency can be achieved
for continuous wave pumping at low intensities that generate negligible conversion in the absence of
the slow-light grating.

I. INTRODUCTION

Second-harmonic-generation (SHG) is a second order
nonlinear process induced by the χ(2) susceptibility ten-
sor of a material, typically a crystal, which converts an
electromagnetic wave of frequency ω into a wave at the
second harmonic frequency 2ω [1, 2]. Because of the small
value of χ(2) of common nonlinear materials either long
device lengths or high light intensities are required to
achieve efficient SHG.

One option to reduce the pump intensity requirements
is to enhance the field intensity by enclosing a nonlin-
ear crystal within a Fabry–Perot cavity which is reso-
nant with either the fundamental or second harmonic
frequency [3]. An experimental demonstration showed
that this method increased SHG by 13% [4]. Another
approach is to enhance the field intensity by using a
slow light resonance: here the chromatic dispersion of
a strong, narrowband resonance of either the material it-
self or of an appropriate waveguide structure creates a
strong reduction of group velocity. A light pulse entering
such a device experiences pulse compression and corre-
spondingly produces the field enhancement necessary for
enhanced SHG.

There are many different approaches to generating
slow light, for example using electromagnetically induced
transparency [5] or Brillouin scattering [6], but here we
are principally interested in slowing light with Bragg
gratings. A Bragg grating [7] consisting of a periodic
modulation of the refractive index reflects light within
a certain frequency band. At the edges of this reflec-
tion band the grating creates strong chromatic dispersion
and group velocity reduction, i.e., slow light that could
be used for SHG enhancement. However, strong group
velocity dispersion (GVD) also leads to significant pulse
broadening in this case, thereby counteracting the field
enhancement.

This pulse broadening can largely by avoided by us-
ing more complex, superstructure gratings. In particu-
lar, inserting periodic phase shifts into a standard Bragg
grating [8], a so-called π phase shifted grating, opens up
a narrow transmission band within the stop band which
permits the generation of slow-light field enhancement
with zero GVD at its center [9]. The same effect can also

be achieved by the superposition of two Bragg gratings
of similar but different resonant wavelengths, a so-called
moiré grating [10].

Another important factor affecting SHG conversion ef-
ficiency is phase matching between the fundamental and
second harmonic waves: chromatic dispersion of the ma-
terial typically leads to dephasing and thus a periodic
exchange of energy between fundamental and harmonic
wave instead of a continuous increase of second har-
monic energy along the propagation direction. Among
the different techniques that can be used to achieve phase
matching, the most popular approaches are to use ei-
ther a birefringent nonlinear crystal or to employ quasi-
phase-matching (QPM) [11]. This last technique works
by periodically modulating the sign of the χ(2) suscep-
tibility to compensate for the phase mismatch acquired
between fundamental and harmonic wave during propa-
gation. Phase matching can also be achieved by tailoring
the dispersion of a linear grating [12–14].

For slow-light enhancement of SHG we therefore re-
quire linear gratings in a χ(2) medium. While there
have been theoretical studies of linear gratings with a
quadratic nonlinearity [15–18], it has traditionally been
challenging to write linear gratings in bulk χ(2) media
[19, 20]. However, progress has been made in produc-
ing linear gratings with high index contrast in thin-film
lithium niobate [21]. There has also been recent demon-
strations of producing π phase shift gratings in thin-film
lithium niobate [22, 23].

In this work we examine the continuous wave (CW)
enhancement of second harmonic generation in a QPM
device by including a π-phase shifted grating tuned to
the fundamental wave frequency such that this pump
field experiences slow down and thus field enhancement.
However, the superstructure grating achieves the slow
light effect by coupling the fundamental wave into for-
ward and backward modes which in turn generates for-
ward and backward second harmonic modes. A second
linear Bragg grating is therefore added at the input end
of the device to reflect the backward second harmonic
mode and thus to ensure unidirectional forward propa-
gating output of the second harmonic. We demonstrate
that a device of this type is capable of generating con-
siderably higher second harmonic conversion efficiency
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FIG. 1: (a) Schematic of a periodically poled χ(2)

medium showing the poling period Λ. (b) Schematic of
the two linear gratings: a slow light π phase shifted

grating with Bragg period Λ1 and superstructure period
ΛS , and a reflection Bragg grating with period Λ2 at

the input end of the device.

compared to a standard QPM device at lower intensi-
ties and we investigate the dependence of the conversion
efficiency on the device parameters.

II. THEORETICAL MODEL

Throughout this paper we consider a device fabricated
in thin film lithium niobate doped with magnesium oxide
(MgO:LiNbO3) to increase the optical damage thresh-
old [24]. The highest nonlinear χ(2) tensor component
for MgO:LiNbO3 is d33 = 25 pm/V at a wavelength of
1064 nm, which we use in our analysis. The d33 compo-
nent is accessed by waves polarized vertically along the
z-axis and therefore a z-cut thin film is required; light is
propagating in the x direction. The waveguide is periodi-
cally poled with period Λ to ensure quasi-phase matching
for SHG as shown in Figure 1(a).

In addition to the periodic variation of the χ(2) nonlin-
earity, we assume that a spatial profile of the waveguide’s
linear refractive index is written into the thin film after

the poling process of the form

n(x) = n̄+ δn
(
f1(x)a1(x)aS(x) + f2(x)a2(x)

)
, (1)

where n̄ is the effective refractive index and δn is the
grating strength. This linear grating modulation is com-
posed of two parts. The first part, given by the term
f1(x)aS(x)a1(x), creates an apodized π-phase shifted
grating with a transmission band centered at the wave-
length λ1 which we refer to as the slow-light grating. The
second part is given by f2(x)a2(x) and creates a Bragg
reflector at the wavelength λ2 of the second harmonic
at the input end of the device; we refer to this term as
the reflection grating. Figure 1(b) shows a schematic of
these gratings. The slow-light grating is composed of
an apodization f1 which provides an overall amplitude
profile, a superstructure envelope aS which defines the
π-phase shift positions, and a fundamental Bragg grat-
ing profile a1. The apodization is chosen throughout the
rest of this paper to have a Gaussian profile of the form

f1(x) = exp[−αA(x− L/2)2/L2] (2)

where the center of the Gaussian is at L/2 and where αA
parametrizes the width of the Gaussian. In all the fol-
lowing analyses we set αA = 16 which gives a full width
at half maximum (FWHM) of L/2

√
ln(2). The super-

structure envelope and the fundamental Bragg grating
are given by

aS(x) = sgn

[
cos

(
π(2x− L)

Λs
+
π

2

)]
, (3)

a1(x) = cos

(
2πx

Λ1
+ φ1

)
, (4)

respectively. Here φ1 is a constant phase term and the
fundamental Bragg period is given by Λ1 = λ1/(2n̄1)
where n̄1 is the effective refractive index at frequency
ω, so that the Bragg resonance is centered at the fun-
damental wavelength. The phase of the superstructure
envelope π(2z −L)/Λs + π/2 is chosen so that there is a
π phase shift at the center of the grating for any choice
of superstructure period Λs.

The reflection grating is defined by f2(x) which gives
its overall profile and a2(x) which creates a Bragg grating
resonant at the second harmonic. The latter is given by

a2(x) = cos

(
2πx

Λ2
+ φ2

)
, (5)

where φ2 is a constant phase term and the harmonic
Bragg period Λ2 = λ2/(2n̄2) which creates a Bragg reso-
nance at λ2 and where n̄2 is the effective refractive index
at frequency 2ω. The apodization functions fulfil the
constraint f1(x) + f2(x) ≤ 1 to ensure that the over-
all magnitude of grating modulation does not exceed the
maximum δn that can be fabricated. Since f1(x) is given
by Eq. (2), we define the reflection grating profile by

f2(x) =

{
1− f1(x) if 0 ≤ x ≤ LR,
0 if x > LR,

(6)
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FIG. 2: Slow-light grating apodization f1 and reflection
grating profile f2 with parameters L = 10 mm, αA = 16

and LR = 1 mm.

where LR is the length of the grating. Figure 2 gives an
example of the slow-light grating apodization and of the
reflection grating profiles.

We model light propagating through our χ(2) medium
with linear refractive index profile (1) by using coupled
mode theory. We start with a linearly z-polarized electric
field of the form

Ez(x) = Eω(x) + E2ω(x) (7)

which is composed of an electric field Eω(x) for the funda-
mental mode and E2ω(x) for the second harmonic. The
linear gratings will couple forward and backward prop-
agating waves in both the fundamental and second har-
monic and so we introduce the following ansatz for the
fields:

Eω(x) = u1(x)ei(β1x−ωt) + v1(x)e−i(β1x+ωt) + c.c., (8)

E2ω(x) = u2(x)ei(β2x−2ωt) + v2(x)e−i(β2x+2ωt) + c.c.
(9)

The forward and backward mode envelopes are given
by u1 (u2) and v1 (v2), respectively, for the fundamen-
tal (harmonic) field. The propagation constants are
β1 = n̄1k1 β2 = n̄2k2 where k1 and k1 are the correspond-
ing wavenumbers for frequencies ω and 2ω, respectively.
Coupled mode equations can be derived by substituting
equations (1) and (7) into the nonlinear wave equation

∂2Ez
∂x2

− n2

c2
∂2Ez
∂t2

= µ0
∂2PNL

∂t2
(10)

where the nonlinear polarization is given by

PNL = ε0χ
(2)(x)E2

z . (11)

Then by setting χ(2)(x) = χ(2)sgn
[

sin(2πx/Λ)
]

and

making a rotating wave approximation, slowly varying

envelope approximation and neglecting small terms [25],
the following set of coupled mode equations can be de-
rived

∂u1
∂x

= ieiφ1κ1(x)v1 +
κ3
n̄1
u∗1u2,

∂v1
∂x

= −ie−iφ1κ1(x)u1 +
κ3
n̄1
v∗1v2,

∂u2
∂x

= ieiφ2κ2(x)v2 −
κ3
n̄2
u21,

∂v2
∂x

= −ie−iφ2κ2(x)u2 −
κ3
n̄2
v21 ,

(12)

where we introduced the coupling coefficients

κ1(x) =
πδn

λ1
f1(x)aS(x), (13)

κ2(x) =
2πδn

λ1
f2(x), (14)

κ3 =
4χ(2)

λ1
. (15)

III. NUMERICAL METHODS

The coupled mode equations (12) form a boundary
value problem with known and unknown boundary con-
ditions on both ends of the device. The fields have 8
complex (16 real) boundary conditions, four at the start
and four at the end of the grating. The known bound-
ary conditions at the start of the grating are u1(0) = A
and u2(0) = 0 where A is the initial amplitude of the
forward fundamental field, which is fixed by the pump
intensity, and the initial forward harmonic is zero. At
the end of the grating the known boundary conditions
are v1(L) = 0 and v2(L) = 0 ensuring that no light is
coupled into the gratings from the end of the structure.
That leaves two boundary conditions at both the start
and end of the grating that are unknown.

Such a first order system of equations with only par-
tially known boundary conditions can be solved numeri-
cally by the shooting method as described in detail by Ja
[26]. First we express the unknown boundary conditions
by

p(x) = [v1(0), v2(0), u1(L), u2(L)]

and express the fields by

y(z) = [u1(z), u2(z), v1(z), v2(x)].

Next an initial guess for p has to be made so that the
fields y(z,p) are now also a function of the unknown
boundary conditions. We then denote integrating the
fields forward from the start of the grating by yf (x,p)
and integrating backwards from the end of the grating
by yb(z,p). Then for some point x = m, where m can
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be arbitrarily chosen, finding the solution to the coupled
mode equations equates to solving the equation

g(p) = yf (m,p)− yb(m,p) = 0. (16)

There exist numerous methods to solving Eq. (16).
Our approach here is as follows. As g(p) is in general
a complex function we can define the quantity

L =
∑
i

|gi(pi)|2 (17)

and minimizing L to zero is equivalent to solving Eq. (16).
For this minimization we use the Nelder–Mead method
[27]. Compared to many approaches of directly solving
Eq. (16), this has the advantage that it does not require
calculating the Jacobian and therefore the partial deriva-
tives of g(p). In practice we have found that the conver-
gence of the Nelder–Mead method fails for high intensi-
ties if a poor initial choice of p is made. Therefore to
find solutions for higher intensities it is necessary to first
find a solution that converges at a lower intensity and
then incrementally increase the intensity up to the de-
sired value. At each increment the initial choice for the
unknown boundary conditions is then the p found at the
previous increment.

Our system has a number of free parameters: the su-
perstructure period Λs, the two Bragg phases φ1 and φ2,
the length of the slow-light grating L, the length of the
reflection grating LR, the input intensity of the forward
fundamental mode I, and the grating strength δn.

The aim of our study is to maximize SHG, i.e., to
maximize the forward propagating second harmonic field
u2(x = L) at the device output. We are thus seeking to
find the parameters which achieve this aim by studying
numerically the parameter dependence of the solutions
of Eq. (16) or, equivalently, Eq. (17).

IV. GROUP VELOCITY AND INTENSITY
ENHANCEMENT

The superstructure period Λs is a key parameter as
it controls the bandwidth of the transmission band. A
longer Λs leads to a narrower transmission band with a
reduced group velocity. Typically the group velocity is
defined by vg = ∂ω/∂β, however, the propagation con-
stant β is modified due to the presence of the π-phase
shifted grating and cannot be directly calculated. It can
be shown that the group velocity can instead be defined
by

vg = vp

∫ L
0

dx |u1|2 − |v1|2∫ L
0

dx |u1|2 + |v1|2
, (18)

which is expressed directly in terms of the forward and
backward propagating fundamental fields and where vp is
the phase velocity [9, 28]. Figure 3 shows how the group
velocity slow down factor defined by vp/vg varies with Λs

FIG. 3: Group velocity of a Gaussian apodized π-phase
shifted grating vs superstructure period Λs. With

parameters αA = 16, λ1 = 1064 nm, n̄ = 2.147,
δn = 10−3 and L = 4 cm

in a Gaussian apodized π-phase shifted grating. Lower
group velocities lead to greater slow down factors and
field enhancement which in turn allows for more efficient
SHG as discussed below.

V. RESULTS

To first demonstrate the effectiveness of the slow-light
and reflection gratings in enhancing second harmonic
generation, figure 4(a) shows a simulation of the out-
put powers for the four propagating fields, i.e., at x = L
for u1 and u2 and at x = 0 for v1 and v2, when the
superstructure period Λs is varied. The other parame-
ters were fixed to φ1 = φ2 = 0, L = 4 cm, LR = 1 mm,
I = 103 W/cm2 and δn = 10−3. As Λs is increased
we find a corresponding increase of the second harmonic
generation. The maximum second harmonic generation
occurs at Λs = 5.3 mm which corresponds to a slow down
factor of 16.6 and a conversion efficiency of 67% which
is an enhancement by a factor of 65.5 compared to the
periodically poled crystal without the linear gratings, as
shown in figure 4(c).

Once Λs is past its optimum value we find that power
begins transferring to the backwards fundamental mode
as can be seen in figure 4(a). To understand this be-
havior, we note that there are two channels by which
the input power of u1 can be transferred to u2. It can
be transferred directly via the nonlinearity κ3 between
the forward propagating modes, or by first coupling the
forward into the backward fundamental mode v1 by the
slow-light grating via κ1, then into the backward har-
monic mode v2 by κ3 and then finally to the forward
harmonic mode u2 via the reflection grating κ2. How-
ever, depending on the relative phases of fundamental
and harmonic fields, the same processes can also convert
power back from the harmonic to the fundamental mode.

Therefore, we next look at the affect of varying the
Bragg phases φ1 and φ2. Figure 5 shows a simulation
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(a)

(b)

(c)

FIG. 4: Output powers for fundamental and second
harmonic fields versus superstructure period Λs, where
powers are normalized to the input fundamental power,
for (a) φ1 = 0, and (b) φ1 = π/4. (c) Enhancement of
SHG conversion efficiency compared to a periodically

poled crystal without linear gratings. Other parameters
are λ1 = 1064 nm, L = 4 cm, LR = 1 mm, αA = 16,

δn = 10−3, n̄1 = 2.147, n̄2 = 2.223, χ(2) = 25 pm/V and
I = 103 W/cm2.

of the normalized output power of the forward second
harmonic when φ1 and φ2 are varied through 2π. The
figure shows that the interaction of the two linear grat-
ings can create a resonance or antiresonance depending
of the values of φ1 and φ2. This behaviour is not seen
if the reflection grating is removed. We note that the
condition

φ1 −
φ2
2

=
π

4
(19)

gives the optimum second harmonic generation. In all
the simulations we have conducted Eq. (19) holds for any

(a)

(b)

FIG. 5: (a) Normalized output power of the forward
second harmonic field versus Bragg phases φ1 and φ2.

(b) 1-dimensional cuts through (a) at φ1 = 0 and
φ2 = 0, respectively. Λs = 5.3 mm, other parameters as

in Fig. 4.

choice of parameters. Similarly the condition

φ1 −
φ2
2

=
3π

4
(20)

gives a minimum for SHG exiting the device, with all of
the power staying in the forward fundamental mode.

For such an optimized situation, φ1 = π/4 and φ2 = 0,
Figure 4(b) shows the various field output powers versus
Λs. In this case, the optimum forward second harmonic
conversion efficiency is increased to 99% at Λs = 5.8 mm
corresponding to a slow down factor of 26.2.

Finally, Figure 6 shows the forward second harmonic
field intensities along the length of the device with the
Bragg phases set to (19) and (20), respectively. We can
see that in the case of Eq. (20) a strong resonator is
formed between the reflection grating and the slow-light
grating, where high second harmonic intensities are gen-
erated close to the reflection grating. However, as the
fields propagate along x, this power is converted back
into the fundamental wave, with notable “steps” at the
positions of the π phase shifts of the slow-light grating,
and therefore little second harmonic output is observed
at the far end of the device. For phases fulfilling Eq. (19),
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FIG. 6: Comparison of power flow normalized to input
power across the device length for the forward second
harmonic mode, with φ1 set to produce maximum and

minimum conversion to the second harmonic,
respectively. Here Λs = 5.78 mm, other parameters as in

Fig. 4(b)

on the other hand, the second harmonic intensity builds
up continuously along x and reaches its maximum at the
device end. Therefore, the relative phase difference be-
tween the gratings has a strong affect on the overall effi-
ciency of the second harmonic generation.

Another factor that affects the conversion efficiency is
the length of the waveguide. In a standard QPM device,
the longer the interaction length the higher the conver-
sion efficiency. The same is true for our device, as can be
seen from Figure 7(a) which shows the output fields as a
function of device length. The parameters used here are
those which we found previously to optimize the conver-
sion efficiency for a 4 cm device with an input intensity
of 103 W/cm2. The figure shows that the conversion effi-
ciency remains close to 100% down to a device length of
around 2.5 cm after which the efficiency starts to decline;
at 10 mm the efficiency is at 32%. Figure 7(b) shows
the enhancement of SHG efficiency compared to a QPM
device without the linear gratings. For a short, 10 mm
length device, the enhancement factor is 492 which is a
significant increase in enhancement over the 4 cm device.
In a simplified picture we can argue that for the chosen
value of Λs the slow down factor is 26.2, c.f. Fig. 3, and
thus we may expect an enhancement of the fundamental
wave intensity by the same factor. Since SHG scales with
the square of the pump field, the SHG enhancement by
the slow-light effect should be of the order of 600 which
is comparable with the numerically found value. Note,
however, that this simplified argument neglects deple-
tion of the pump field and the additional field enhance-
ments due to the resonator effect between the reflection
and slow-light grating as discussed above. Thus, while
the slow-light enhanced conversion efficiency converges
to close to 100% already at short device lengths, the con-
version efficiency of a simple QPM device still increases
quadratically with length which explains the decay of the
curve in Fig. 7(b) for longer lengths L.

(a)

(b)

(c)

FIG. 7: (a) Normalized output powers for fundamental
and second harmonic modes versus device length L.
(b) Corresponding enhancement of SHG efficiency

compared to a QPM device without linear gratings.
(c) Output powers versus length of the reflection

grating LR. Here Λs = 5.78 mm, other parameters as in
Fig. 4(b).

The length of the reflection grating is also important
for increasing SHG conversion efficiency. Figure 7(c)
shows how varying the reflection grating length from 0
to 1 mm affects the SHG. When the grating is removed,
LR = 0, the second harmonic is split almost evenly be-
tween the forward and backward outputs. As the grat-
ing length is increased we see the backward mode being
converted into the forward mode. Once the grating is
sufficiently long to become a near-perfect reflector, i.e.,
for LR � 1/κ2 = 0.17 mm, no backward harmonic light
is transmitted and increasing LR further does not con-
tribute any further to increasing the conversion efficiency.

So far we assumed an input intensity of 103 W/cm2

which in a 4 cm standard QPM device has a low con-
version efficiency and therefore is a good intensity to
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(a)

(b)

FIG. 8: (a) Output powers for fundamental and second
harmonic modes versus input intensity.

(b) Corresponding SHG enhancement over a standard
QPM device. Here Λs = 5.78 mm, other parameters as

in Fig. 4(b)

demonstrate the performance of our device. However,
the conversion efficiency is intensity dependent and we
next investigate over what range of input intensities our
device remains effective. Figure 8(a) shows how the con-
version efficiency varies from an intensity of 10 W/cm2

to 105 W/cm2 for device parameters which were opti-
mized for an input intensity of 103 W/cm2. The figure
shows that for the given parameters the conversion ef-
ficiency is close to 100% for three orders of magnitude
from 10 W/cm3 to 105 W/cm5. Below 103 W/cm2 the
conversion efficiency begins to decrease, reaching 25% ef-
ficiency at 101 W/cm2 which is an enhancement factor of
2555 compared to a standard QPM device, see Fig. 8(b).
This is analogous to what we saw when varying the de-
vice length, lower intensities have greater enhancement
factors whereas higher intensities have greater conversion
efficiency.

The grating refractive index modulation amplitude δn
is ultimately what determines the coupling strengths of
the slow-light grating and generates the enhancement.
If we set δn = 0 we recover a standard QPM device
and see no enhancement. Figure 9(a) shows the ef-
fect of varying the grating strength on the fundamen-
tal and harmonic output powers for an input intensity
of 103 W/cm2 and Fig. 9(b) shows the corresponding in-
crease in SHG efficiency compared to a standard QPM
device. At δn = 10−4 the slow down factor is reduced
to 1.01 resulting in almost zero SHG and therefore the

(a)

(b)

FIG. 9: (a) Output powers for fundamental and second
harmonic modes versus grating strength δn.

(b) Corresponding SHG enhancement over a standard
QPM device. Λs = 5.78 mm, other parameters as in

Fig. 4(b).

device is behaving as a standard QPM device. As the
grating strength is increased we see a corresponding in-
crease in SHG which reaches a maximum conversion effi-
ciency at δn = 10−3. As δn reaches 1.3× 10−3 the SHG
begins to decrease with a corresponding increase in the
backward fundamental mode. This is the same behavior
we saw when increasing Λs. In both cases as the param-
eter is increased the field enhancement increases but if
the field enhancement is increased beyond an optimum
for SHG light is coupled into the backward fundamental
mode.

VI. CONCLUSION

In conclusion, we investigated the use of slow-light
gratings in a quasi phase matched device for enhancing
second harmonic generation. A phase-shifted superstruc-
ture grating creates a slow-light effect and leads to corre-
sponding field enhancement which in turn enhances SHG.
Since the superstructure grating couples the forward and
backward propagating waves of the fundamental pump
field, SHG also leads to forward as well as backward prop-
agating harmonic fields. We therefore added a second,
short Bragg grating at the start of the device to act as
a reflector for the harmonic field, thus ensuring that all
harmonic output is in the forward direction.

We found that for a given wavelength and input in-
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tensity there is an optimum superstructure period and
thus an optimum group velocity reduction to maximize
the conversion efficiency. The system also benefits from
a resonator effect formed between the slow-light and the
reflection grating and is therefore sensitive to the relative
phase of the two gratings.

If the slow-light effect is too strong, for example be-
cause of a long superstructure period, a large refractive
index modulation, or too high an input pump intensity,
pump light starts to be back-reflected by the system and
exits through the input port, thereby reducing the maxi-
mum achievable SHG efficiency. However, we found that
the device still exhibits near-unity conversion efficiency
for intensities spanning three order of magnitude.

Most importantly, for all the parameter regimes inves-
tigated the slow-light device enhances significantly the
SHG conversion efficiency compared to a standard quasi-
phase matched device without the slow-light grating. For
the realistic parameters of magnesium oxide doped thin

film lithium niobate, enhancements by factors of several
hundreds are predicted. Slow-light enhancement there-
fore allows for SHG at much shorter device lengths or at
much lower pump intensities, which could have signifi-
cant impact in low-power applications such as in quan-
tum technology.
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