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ABSTRACT
As is well known, gravitational wave detections of coalescing binaries are standard sirens, allowing a measurement of source
distance by gravitational wave means alone. In this paper we explore the analogue of this capability for continuous gravitational
wave emission from individual spinning neutron stars, whose spin-down is driven purely by gravitational wave emission. We
show that in this case, the distance measurement is always degenerate with one other parameter, which can be taken to be the
moment of inertia of the star. We quantify the accuracy to which such degenerate measurements can be made. We also discuss
the practical application of this method to scenarios where one or other of distance or moment of inertia is constrained, breaking
this degeneracy and allowing a measurement of the remaining parameter. We consider a broad range of possible, unknown
parameters, as well as we present results for the aLIGO and Einstein Telescope sensitivities. Our results will be of use following
the eventual detection of a neutron star spinning down through such gravitational wave emission.
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1 INTRODUCTION

Gravitational-wave (GW) astronomy has been one of the fastest-
growing fields in modern astrophysics. The first GW detection of
the binary black-hole (BH) system GW150914 (Abbott et al. 2016)
in 2015 opened a new channel to test theories about the sources of
gravitational waves, cosmology, astrophysical processes and gravi-
tation itself. So far, tens of coalescencing binaries - double BHs or
double neutron stars (NSs) - have been detected (Abbott et al. 2019a,
2020a) by the LIGO (Aasi et al. 2015) and Virgo (Acernese et al.
2014) instruments.
GWs from coalescencing binary systems are ‘standard sirens’

(Schutz 1986) - the GW analog of an astronomical standard can-
dle - as determination of their luminosity distance depends only
on measurable quantities like amplitude, frequency and frequency
derivative of the signal. Additionally, double NS mergers have elec-
tromagnetic counterparts that can allow identification of the host
galaxy. Such multi-messenger observations allow determination of
cosmological parameters like e.g. Hubble constant. Such an analysis
(Abbott et al. 2017c) was performed for the first multi-messenger
detection, the GW170817 event (Abbott et al. 2017b,f,e). It is even
possible to use gravitational wave observations of binary black co-
alescences to constrain the Hubble constant, despite the absence of
a uniquely identified host galaxy (Soares-Santos et al. 2019; Abbott
et al. 2021d).
In addition to inspirals and mergers of compact objects, there are

other classes of objects that can produce gravitational radiation. This
includes long-lasting and almost-monochromatic emission from iso-
lated, spinning NSs. Such continuous gravitational waves (CGW)

★ E-mail: magdalena.sieniawska@uclouvain.be

might be due to the steady rigid rotation of a triaxial star, whose tri-
axiality or “mountain” is supported by elastic and/ormagnetic strains.
Alternatively, the emission may be due to oscillations in a rotating
star, with r-mode oscillations a prime candidate. See Andersson et al.
(2011); Lasky (2015); Riles (2017); Sieniawska & Bejger (2019)
for relevant reviews. As the GW detectors improve their sensitivity
and data analysis methods are constantly upgraded, CGW signals are
considered as serious candidates for future detections.
In this workwe investigate the possibility of using CGWsources as

standard sirens. So far pulsar distances have been determined using
electromagnetic observations, mainly via dispersion measurements
(Donner et al. 2020). For the coalescencing binary NS systems it is
possible to determine their distance directly from the GW observa-
tions. However, for the CGW sources, we show that distance estima-
tion is always degenerate with one additional unknown parameter.
We nevertheless analyse the accuracy to which such measurements
can bemade, and comment on the extent to which additional informa-
tion can be used to break this degeneracy. We consider CGW signals
produced by mountains and by r-modes oscillations. We consider a
broad range of the possible parameters, including ellipticity, r-mode
amplitude and initial rotational frequency. We give results for the
aLIGO detector1 (Abbott et al. 2020a) and third-generation, planned
Einstein Telescope2 (Sathyaprakash et al. 2012). We show how our
formulae can be modified to take cosmological red-shift corrections
into account.
There exists another, completely differentmethod, wherebyCGWs

can be used to infer source distances, via parallax, as described in

1 https://dcc.ligo.org/LIGO-P1200087-v42
2 http://www.et-gw.eu/index.php/etsensitivities
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Seto (2005). This method has the advantage of not suffering from
any degeneracies, but only works for relatively nearby sources, with
distances of a kiloparsec or less (see figure 1 of Seto 2005).
The paper is composed as follows: in section 2we introduce general

information about gravitational radiation theory, our signal model
and CGW detectability. We also compare distance estimation for
coalescing binaries with that for NSs with mountains or r-modes
oscillations, as well as considering cosmological corrections. We
estimate errors in the measurement of relevant signal parameters, to
help assess when our ideas can be meaningfully applied. At the end
of this section we motivate our assumptions and the parameter space
used in the simulations. Section 3 contains results of our simulations.
In section 4 we present some discussion, while in section 5 we
conclude our work.

2 METHODS

2.1 Gravitational radiation theory

According to the general theory of relativity (Einstein 1916, 1918),
GWs are perturbations in the curvature of space-time, travelling at the
speed of light. The lowest radiatingmultipole is the quadrupole, as the
emission from the monopole is forbidden by mass conservation and
emission from the dipole by momentum conservation. The general
expression for the GW amplitude strain tensor ℎ𝑖 𝑗 at position 𝑟 is:

ℎ𝑖 𝑗 =
2𝐺
𝑐4𝑟

¥𝑄𝑇𝑇
𝑖 𝑗

(
𝑡 − 𝑟

𝑐

)
, (1)

where 𝑄𝑇𝑇
𝑖 𝑗
is the mass-quadrupole moment in the transverse-

traceless (TT) gauge, evaluated at the retarded time (𝑡 − 𝑟/𝑐), 𝑐
and 𝐺 are the speed of light and gravitational constant, respectively.
For the CGW emission from a rigidly rotating triaxial star, the

amplitude of the signal given by equation (1) can be conveniently
parameterised in terms of (Ostriker & Gunn 1969; Melosh 1969;
Chau 1970; Press & Thorne 1972; Zimmermann 1978):

ℎ0,tr =
4𝐺
𝑐4
1
𝑑
𝐼3𝜖𝜔

2
rot, (2)

where 𝑑 is the distance to the source, 𝐼3 is the moment of inertia
along the spin axis, 𝜖 is the ellipticity that measures how different
from spherical shape the body is, defined as 𝜖 = (𝐼2 − 𝐼1)/𝐼3 (where
𝐼1 and 𝐼2 are moments of inertia along axes perpendicular to 𝐼3) and
𝜔rot = 2𝜋 𝑓rot is the rotational (angular) frequency. For the triaxial
ellipsoid model 𝑓GW = 2 𝑓rot, where 𝑓GW is the CGW frequency.
Assuming that the spin-down is driven by GW emission alone,

one can use the conservation of energy to derive an expression for
the rotational frequency derivative:

¤𝜔rot = −32𝐺
5𝑐5

𝜔5rot𝜖
2𝐼3, (3)

Additionally assuming that the ellipticity 𝜖 is constant in time, the
equation can be integrated to give:

𝜔rot (𝑡) =
𝜔0,rot(

128
5

𝐺
𝑐5
𝜖2𝐼3𝜔

4
0,rot𝑡 + 1

)1/4 , (4)

where 𝜔0,rot ≡ 𝜔rot (𝑡 = 0) is the rotational frequency at the begin-
ning of observations.
Another mechanism for producing CGWs are r-mode oscillations.

These are a subset of the inertial waves, caused by the Coriolis force
acting as restoring force (Rossby 1939). In NSs the r-modes can be
amplified by the Chandrasekhar-Friedman-Schutz instability (Chan-
drasekhar 1970; Friedman & Schutz 1975, 1978; Andersson 1998).

This instability is driven by GW back-reaction - it tends to amplify
hydrodynamic waves in the fluid components, which propagate in the
opposite direction to that of the NS rotation, producing GWs. Ac-
cording to Owen (2010), the CGW strain amplitude for the r-modes
case can be expressed as:

ℎ0,rm =

√︂
8𝜋
5

𝐺

𝑐5
(𝛼𝑀𝑅3𝐽) 1

𝑑
𝜔3mode, (5)

where 𝑀 and 𝑅 are mass and radius of the star, respectively, and the
angular frequency of the mode (and also of their CGW emission)
is 𝜔mode = 2𝜋 𝑓mode with 𝑓mode ≈ 4 𝑓rot/3 for the mode of interest.
The amplitude of the mode is parameterised by 𝛼, a dimension-
less constant (Owen et al. 1998a), while 𝐽 is another dimensionless
parameter, defined as:

𝐽 =
1

𝑀𝑅4

𝑅∫
0

𝜌̂𝑟6𝑑𝑟, (6)

where 𝜌̂ represents the mass density and 𝑟 the radial coordinate.
Similarly as for the triaxial ellipsoid case, spindown can be derived

from the conservation of energy, assuming no other energy losses:

¤𝜔rot = − 2
18𝜋𝐺

3852𝑐7
(𝛼𝑀𝑅3𝐽)2 1

𝐼3
𝜔7rot. (7)

Assuming constant mode amplitude 𝛼, this can be integrated to give:

𝜔rot (𝑡) =
𝜔0,rot(

1 + 219 𝜋𝐺3752𝑐7 𝑡𝜔
6
0,rot (𝛼𝑀𝑅3𝐽)2 1

𝐼3

)1/6 . (8)

The detectability of the GW signal is given in terms of the signal-
to-noise ratio (𝜌, SNR), as explained in Moore et al. (2015):

𝜌2 =

𝑓GW,end∫
𝑓GW,beg

(
ℎ𝑐 ( 𝑓 )
ℎ𝑛 ( 𝑓 )

)2
𝑑 (ln 𝑓 ), (9)

where 𝑓GW,beg and 𝑓GW,end are the GW frequencies of the signal
at the beginning an end of observational time, respectively. ℎc ( 𝑓 ) is
characteristic amplitude, defined as:

ℎc ( 𝑓 ) = 2 𝑓 · | ℎ̃( 𝑓 ) |, (10)

where ℎ̃( 𝑓 ) is a Fourier transform of the CGW signal (Finn & Cher-
noff 1993). The above equation can be averaged over sky location and
source orientation (Jaranowski et al. 1998), resulting in the averaged
characteristic amplitude 〈ℎc ( 𝑓 )〉 = 2

5 ℎc ( 𝑓 ). The quantity ℎn is an
effective noise of the detector given by:

ℎn ( 𝑓 ) =
√︁
𝑓 · 𝑆ℎ ( 𝑓 ), (11)

where 𝑆ℎ is the amplitude spectral density (a measure of the sensitiv-
ity of the detector). The integration in Eq. 9 is over the frequency of
the signal, from the value at the beginning of observation time, to the
value on the end of observations. For parts of our parameter space,
there is considerable variation in spin frequency (and amplitude),
hence the need for this integration.

2.2 Distance estimation

The idea to use coalescencing binaries as ‘standard sirens’ and deter-
mine their distance directly from GWs observations has been known
for a long time (Schutz 1986; Marković 1993). For such signal, the

MNRAS 000, 1–9 (2021)
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GWamplitude is given by (neglecting the dependence on sky position
and source orientation):

ℎ0,bin =
4𝜋2/3𝐺5/3

𝑐4
( 𝑓GWM)5/3 1

𝑓GW

1
𝑑
, (12)

where 𝑑 is the distance, 𝑓GW the GW frequency andM is the chirp
mass - a function of the component masses 𝑀1 , 𝑀2:

M =
(𝑀1𝑀2)3/5

(𝑀1 + 𝑀2)1/5
. (13)

During the inspiraling phase, when two stars are sufficiently far apart,
the post-Newtonian approximation can be applied, which is an ex-
pansion of general relativity when the velocity of the objects is small
compared to the speed of light. For the merger phase numerical
relativity has to be applied. The (measurable) frequency derivative
(during the inspiral phase) is related to the chirp mass as:

¤𝑓GW =
96
5
𝜋8/3

(
𝐺M
𝑐3

)5/3
𝑓
11/3
GW . (14)

Equations (12) and (14) contain the measurable quantities 𝑓GW, ¤𝑓GW
and ℎ0, and also the two (unknowns) 𝑑 and M. it follows one can
solve for the two unknowns. In particular, eliminatingM gives:

ℎ0,bin =
5𝑐
24𝜋2

1
𝑑

¤𝑓GW
𝑓 3GW

, (15)

which makes it clear that the GW measurement of ℎ0,bin, ¤𝑓GW and
𝑓GW allow calculation of the unknown 𝑑.
Here we perform similar manipulations for CGW sources. In the

case of emission from a mountain, equations (2) and (3) give the sig-
nal amplitude and frequency evolution. These two equations contain
three unknowns, 𝑑, 𝐼3 and 𝜖 . This means that, unlike the binary case,
we cannot solve for 𝑑. The best we can do is to eliminate one of these
three quantities, so that some combination of the other two remains.
As uncertainties in 𝐼3 are smaller than for 𝜖 (as discussed later), we
decided to eliminate 𝜖 , leaving 𝑑 and 𝐼3:

ℎ0,tr =

√︂
5𝐺
2𝑐3

√︂
¤𝜔rot
𝜔rot

√
𝐼3
𝑑

. (16)

We see that we in fact can measure the combination
√
𝐼3/𝑑, so the

distance is degenerate with the moment of inertia.
One can perform similar manipulations for CGW emission from

r-modes, by combining equations (5) and (7) and eliminating the
(𝛼𝑀𝑅3𝐽) factor:

ℎ0,rm =

√︂
45𝐺
8𝑐3

√︂
¤𝜔rot
𝜔rot

√
𝐼3
𝑑

. (17)

Note that is was very much a free choice in deciding to eliminate
𝜖 . In the case of mountains, if we had instead decided to eliminate 𝐼3
between equation (2) and (3) we would instead have

ℎ0,tr =
5𝐺
2𝑐3

¤𝜔rot
𝜔rot

1
𝜖𝑑

, (18)

i.e. we would obtain a constraint on the product 𝜖𝑑. Similarly, equa-
tion (3) gives a constraint on the combination 𝜖2𝐼3. Similar alternative
choices were possible in the case of r-modes.

2.3 Cosmological corrections

Previously we consider sources inside our Galaxy. Here we focus
on CGW emitter at much larger, cosmological distances. In the case
of such sources, redshift factors affect measurable parameters. This

effect, for binary inspirals, modifies equation (12) in the following
way (Schutz 1986; Marković 1993):

ℎ0,bin =
4𝜋2/3𝐺2/3

𝑐4
( 𝑓d,GWMd)5/3

1
𝑓d,GW

1
𝑑𝑙
, (19)

where 𝑑𝑙 is a luminosity distance and 𝑓d,GW is a frequency in the
detector frame, related to the frequency in the source frame 𝑓s,GW via
the redshift 𝑧 as 𝑓𝑠,𝐺𝑊 = 𝑓𝑑,𝐺𝑊 (1+ 𝑧).Md is a detector frame (i.e.
redshifted) chirp mass, related to the (non-redshifted) chirp mass as
Md = (1 + 𝑧)M. Additionally, the frequency evolution of the signal
is expressed as:

¤𝑓d,GW =
96
5
𝜋8/3

(
𝐺

𝑐3

)5/3
𝑓
11/3
d,GWM5/3

d , (20)

where the frequency derivative in the detector frame, ¤𝑓𝑑,𝐺𝑊 , is
related to the frequency derivative in the source frame, ¤𝑓s,GW, as
¤𝑓d,GW = ¤𝑓𝑠,𝐺𝑊 /(1 + 𝑧)2.
With the above equations one can deduce that it is not possible

to determine separately chirp mass (in a source frame), distance and
redshift - for these independent observation are needed, e.g. from the
electromagnetic telescopes.
Analogously, for the emission from triaxial neutron stars, cosmo-

logical corrections modify equation (16) in the following way:

ℎ0,tr =

√︂
5𝐺
2𝑐3

√︄
¤𝑓d,GW
𝑓d,GW

√︁
𝐼3,d
𝑑𝑙

, (21)

where we have introduced the detector frame moment of inertia,
𝐼3,d, related to its source frame value by 𝐼3,d = 𝐼3 (1 + 𝑧)3. In the
above equation we have three measurable quantities: ℎ0,tr, 𝑓d,GW,
¤𝑓d,GW and two unknown ones: 𝑑l and 𝐼3,d. The factor of (1 + 𝑧)3 is
readily understood, when one remembers that a moment of inertia
is essentially a mass weighted quadratically with distance, with each
factor of mass and length contributing one factor of 1 + 𝑧.
The effect of redshift for r-modes enters in the same way:

ℎ0,rm =

√︂
45𝐺
8𝑐3

√︄
¤𝑓d,GW
𝑓d,GW

√︁
𝐼3,d
𝑑𝑙

. (22)

2.4 Error estimation theory

Previously we made some assumptions that all of our star’s energy
loss goes into the CGW emission. Given this, one needs to attempt
to test this using the gravitational wave observations alone. The
parameter that gives information about the mechanism behind the
energy loss is the braking index, defined as:

𝑛 =
𝜔rot ¥𝜔rot

¤𝜔2rot
. (23)

For example, for the case of a mountain of constant size, 𝑛 = 5, while
for r-modes of fixed amplitude 𝑛 = 7.
To make quantitative estimates of how accurately we can measure

the parameters of a signal, we will use the signal model presented in
Jaranowski & Królak (1999). This models the frequency evolution as
a Taylor series, but neglects dependence of the signal on the source’s
sky location and on the orientation of its spin axis (seeDiscussion). In
this model the phase of the signal is given as a polynomial, including
terms up to the second frequency derivative:

Ψ = 𝜙0 + 2𝜋
[
𝑓GW𝑡 +

¤𝑓GW𝑡2

2
+

¥𝑓GW𝑡3

6

]
, (24)

MNRAS 000, 1–9 (2021)
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where 𝑡 is an arbitrary time and 𝜙0 is a initial phase, for simplicity
set to be 0.
By using the Fisher information matrix from Jaranowski & Królak

(1999), the variance of the braking index estimation from the CGW
detection is given by:

var(𝑛) = 1
(𝜌𝜋)2

[
300
𝑇2

¥𝑓 2GW
¤𝑓 4GW

+ 25920
𝑇4

𝑓 2GW
¥𝑓 2GW

¤𝑓 6GW

+ 25200
𝑇6

𝑓 2GW
¤𝑓 4GW

+ 5400
𝑇3

𝑓GW ¥𝑓 2GW
¤𝑓 5GW

+ 5040
𝑇4

𝑓GW ¥𝑓GW
¤𝑓 4GW

+ 50400
𝑇5

𝑓 2GW
¥𝑓GW

¤𝑓 5GW

]
,

(25)

where 𝑇 is the observation time.
Similarly, we can estimate the variance of the distance estimation

for the CGW triggered by the mountain on the NS surface:

var
(

𝑑
√
𝐼3

)
=
5𝐺
4𝑐3

1
(𝜌𝜋ℎ0,tr)2

[
75 ¤𝑓GW
𝑇2 𝑓 3GW

+ 1620
𝑇4 𝑓GW ¤𝑓GW

+ 𝜋2 ¤𝑓GW
𝑓GW

+ 675
𝑇3 𝑓 2GW

] (26)

and for the r-modes is:

var
(

𝑑
√
𝐼3

)
=
45𝐺
8𝑐3

1
(𝜌𝜋ℎ0,rm)2

[
75 ¤𝑓GW
𝑇2 𝑓 3GW

+ 1620
𝑇4 𝑓GW ¤𝑓GW

+ 𝜋2 ¤𝑓GW
𝑓GW

+ 675
𝑇3 𝑓 2GW

]
.

(27)

In the section 3 we present results in terms of standard deviations 𝜎,
which is a square root of the variances given in equations (25), (26)
and (27).
Note that some of the stars considered in the results below spin

down significantly over the duration of the observation. This Taylor
series-based error analysis will not be accurate for such stars. It will,
however, be accurate for those stars with smaller ellipticities and
lower birth frequencies that consequently spin down only a little.
Our analysis should therefore be robust at identifying the threshold
between those stars whose emission and spin down is strong enough
for our analysis to apply, and those where it is not.

2.5 Assumptions and parameter space

In the analysis presented in this work, we make the following as-
sumptions:

(i) To consider a signal as detectable, we require a signal-to-noise
ratio 𝜌 ≥ 20. Such a 𝜌 is currently quite optimistic for previously
unknown sources. However, in the future, when the ET will be oper-
ating, with corresponding increases in computational power available
for searches, the detection of such signals will be more realistic.
(ii) To confirm that the energy loss is transferred mostly to the

CGW radiation, the braking index has to be close to 5 (for the moun-
tains) or to 7 (for the r-modes). To enforce this, we require that braking
index estimation error 𝜎(𝑛) ≤ 0.5.
(iii) Herewe assume that the ellipticity 𝜖 and the r-mode amplitude

𝛼 are constant.
(iv) We assume that observation time in our simulations is equal

1 year, which is comparable with the previous LIGO and Virgo
observing runs.

Additionally, we will consider a broad range of possible birth spin
frequencies. The maximum allowed spin frequency, above which
the centrifugal forces causes mass shedding and destroy the star, is
known as the Keplerian frequency. Its exact value is not known, as it
depends on the equation of state of the NS, however it is reasonable
to limit ourselves to 1500 Hz; see e.g. Haensel et al. (2007). For
the mountain case, the rotational frequency 𝑓rot is related to the GW
frequency 𝑓GW as 𝑓GW = 2 𝑓rot and for r-modes as 𝑓GW = 4

3 𝑓rot,
so we limit our simulations to (initial) GW frequencies of 3000 Hz
and 2000 Hz, respectively. We do not consider the effect of proper
motion of the source; this would be important only for very close/high
velocity stars; see Covas (2021).
We also consider a broad range of possible ellipticities, 𝜖 . There

have been several studies of the maximal ellipticity, for multiple
equations of states, for Newtonian and relativistic stars, see e.g.
Ushomirsky et al. (2000); Owen (2005); Haskell et al. (2007);
Mannarelli et al. (2007); Knippel & Sedrakian (2009); Glampedakis
et al. (2012); Johnson-McDaniel & Owen (2013); Gittins et al.
(2021); Gittins & Andersson (2021). For a ‘typical’ NS a maximum
ellipticity in the range 10−6 − 10−7 seems reasonable. However, for
more exotic states of matter (like superconducting quark matter), the
maximum ellipticity can reach value of 10−1. For this reason, we con-
sider ellipticities in the range between 10−1 up to 10−7 in this work.
Note that the above estimates are formaximum ellipticities; the actual
ellipticity depends upon the geological history and/or magnetic field
configuration of the star.
Similarly, the value of the r-mode amplitude 𝛼 is a not tightly

constrained from theory; see Arras et al. (2003); Brink et al. (2004);
Bondarescu et al. (2009). Here we investigated possible values of 𝛼
from 10−1 to 10−6; see Discussion for further comment.

3 RESULTS

We simulated the expected signal-to-noise ratio 𝜌 for the wide range
of possible triaxial stars and stars with r-modes. For triaxial stars,
we considered a range of ellipticities (𝜖 = 10−1 − 10−7) and GW
initial frequencies - frequencies at the beginning of observations
( 𝑓GW,beg = 100−3000Hz). For r-modes we assumed some canonical
parameters of theNS in the (𝛼𝑀𝑅3𝐽) expression: according toOwen
et al. (1998b), we put 𝐽 = 1.635 · 10−2, 𝑀 = 1.4 M� , 𝑅 = 12.53 km,
and 𝐼3 = 1045 g·cm2. We allowed 𝛼 to be in range between 10−1 to
10−6. For the r-modes we had 𝑓GW,beg ranging from 70 to 2000 Hz.
For both mountains and r-modes, we made a strong assumption

that all energy loss is only due to the CGW emission, as well as
assuming that the amplitude parameters - 𝜖 and 𝛼 - are constant in
time. We considered a few different distances, all corresponding to
sources inside our Galaxy (𝑑 < 30 kpc).
The results presented in the figures in this section were produced

for the ET sensitivity curves. However, we also performed simula-
tions for the aLIGO sensitivity curve (design sensitivity) and these
results are discussed later in this section. Signal-to-noise ratios for the
broad ranges of parameters, for the mountains and r-modes cases, are
shown in figures 1 and 2, respectively. For the large 𝜖 and 𝛼 values,
signals generate large 𝜌 for all considered distances and should be
clearly visible in the GW detectors. Typically, results of the 𝜌 value
for the aLIGO are about order of magnitude smaller in comparison
with those for ET. Note that the plots corresponding to the four dif-
ferent source distances in Figures 1 and 2 are simple re-scalings of
one another; we present them anyway for the reader’s convenience,
as the results given for the same four star distances in all later plots
are not simple re-scalings of one another.
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Figure 1. Expected signal-to-noise ratio 𝜌 (colourbar and z-axes) in the ET
for the wide range of possible 𝜖 and 𝑓GW,beg, for the mountain case, at four
different distances 𝑑.
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Figure 2. Same as in figure 1, but for the r-modes case, for the wide range of
possible 𝛼 and 𝑓GW,beg.

Weexamined signals forwhich it is possible to estimate the braking
index 𝑛 with satisfactory accuracy. We assumed that 𝜎(𝑛) should be
smaller or equal 0.5 to confirm that the energy loss is due to the purely
mountain emission (𝑛 = 5± 0.5) or due to the r-modes (𝑛 = 7± 0.5).
Additionally, we require the signal to be detectable, with 𝜌 ≥ 20.
Results for the mountains and r-modes cases are shown on figures 3
and 4, respectively. All NSs in our Galaxy with 𝜖 ≥ 10−4, as well
as with 𝛼 ≥ 10−1 fulfil our assumptions. Results for the aLIGO are
very similar.
We simulated estimation errors of the degenerate combination

𝑑/
√
𝐼3, for the signals that fulfil our assumptions (𝜌 > 20 and𝜎(𝑛) <

0.5). Results for themountains and r-modes cases are on figures 5 and
6, respectively. For all detectable signals (𝜌 > 20 and 𝜎(𝑛) < 0.5),
in both cases, the relative error 𝜎 (𝑑/

√
𝐼3)

𝑑/
√
𝐼3
is smaller than 1%. In the

case of aLIGO this relative error increase to 10%.
We also investigated how inclusion of the redshift factor 𝑧 may

influence the detectability of the signals, in the case of the sources at
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Figure 3. Estimation errors of the braking index 𝜎 (𝑛) for different Galactic
distances 𝑑, initial GW frequencies 𝑓GW,beg and ellipticities 𝜖 , for the NSs
with mountains. Thick transparent lines denote detectable signals, with 𝜌 >

20 (with the assumption that 100% of the energy loss is transferred to the
CGW emission). Black dashed horizontal line corresponds to the threshold
𝜎 (𝑛) = 0.5.
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Figure 4. Same as figure 3 but for the r-mode case.

large, cosmological distances. By using equation (9) we calculated
the signal-to-noise ratio for the NSs with the highest CGW amplitude
within our frequency range ( 𝑓GW,beg = 3000 Hz for the mountains
and 𝑓GW,beg = 2000 Hz for the r-modes), for various 𝜖 and 𝛼.
To consider the signal as a detectable one we put 𝜌 threshold to
be 20. Results for the ET sensitivity curve and triaxial ellipsoid
model are shown on figure 7. For the detectable sources, maximal

MNRAS 000, 1–9 (2021)



6 M. Sieniawska & D. I. Jones

0 1000 2000 3000
8

6

4

2

0

2

lo
g 1

0(
(d

/
I 3

)/(
d/

I 3
)) 

[-]

d = 30 [pc]

= 10 1

= 10 2
= 10 3

= 10 4
= 10 5

= 10 6
= 10 7

0 1000 2000 3000
8

6

4

2

0

2

d = 300 [pc]

0 1000 2000 3000
fGW, beg [Hz]

8

6

4

2

0

2

lo
g 1

0(
(d

/
I 3

)/(
d/

I 3
)) 

[-]

d = 3 [kpc]

0 1000 2000 3000
fGW, beg [Hz]

8

6

4

2

0

2

d = 30 [kpc]

Figure 5. Relative estimation errors of the quantity 𝜎 (𝑑/
√
𝐼3 )

𝑑/
√
𝐼3
, in the case of

CGW from a mountain. The thick transparent lines denote signals possible to
detect, with 𝜌 > 20 and 𝜎 (𝑛) < 0.5.
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Figure 6. Same as for figure 5 but for the r-mode case.

corresponding distances 𝑑max and redshifts3 (for the assumed 𝐻0 =
67.04, Ω𝑚 = 0.3183 and ΩΛ = 0.6817) are shown in table 1.
Also, in table 1 we show the percentage change in the CGW

amplitude estimation due to the cosmological corrections. As ℎ0 is
proportional to 𝜌, the same change will we visible in signal-to-noise
ratio. Note that the distances to these sources are sufficiently small
that it would be important to correct for peculiar velocities when
attempting to measure 𝐻0, as was the case for the binary neutron star
detectionGW170817 (Abbott et al. 2017c). Clearly, the cosmological
corrections are at most a few percent for the scenarios considered

3 https://www.kempner.net/cosmic.php
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Figure 7. Expected signal-to-noise ratio 𝜌 as a function of distance 𝑑 for the
NSs with 𝑓GW,beg = 3000 Hz, for various 𝜖 values. The threshold 𝜌 = 20
is marked with the dashed line. Intersections between the dashed line and
coloured ones correspond to the maximal detectable distance, for a given 𝜖 .
Corresponding redshifts are annotated on the plot.

Table 1. Maximal distance 𝑑max of the detectable CGW source for a given
ellipticity 𝜖 or r-mode amplitude 𝛼, corresponding redshift 𝑧 and its influence
on the CGW amplitude measurement error.

Mountains

𝜖 [-] 𝑑max [Mpc] 𝑧 [-] ℎ0,tr error

10−1 137 0.03 ≈ 9%
10−2 120 0.0265 ≈ 8%
10−3 74 0.0165 ≈ 5%
10−4 29 0.0065 ≈ 2%
10−5 6 0.0013 < 1%
10−6 < 1 < 0.00025 << 1%
10−7 < 1 < 0.00025 << 1%

R-modes

𝛼 [-] 𝑑max [Mpc] 𝑧 [-] ℎ0,rm error

10−1 86 0.019 ≈ 6%
10−2 45 0.01 ≈ 3%
10−3 18 0.004 ≈ 1%
10−4 3 0.0007 < 1%
10−5 < 1 < 0.00025 << 1%
10−6 < 1 < 0.00025 << 1%

here, and so will not be very important for such detections. We will
therefore not consider such corrections any further here.

4 DISCUSSION

We have shown that measurement of CGWs can allow estimation of
combinations of distance, NS moment of inertia 𝐼3 and ellipticity
𝜖 (or r-mode amplitude 𝛼). If one chooses to eliminate the highly
uncertain 𝜖 (or𝛼), we are left with an estimate of 𝑑/

√
𝐼3. This analysis

is only applicable in situations were the spin-down is entirely (or
almost entirely) driven by the CGW emission. This means it would
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not make sense to apply our results to the (future) detection of GWs
from a known young pulsar (e.g. the Crab, or Vela), where we already
know from current CGW non-detections that only a fraction of the
total spin-down energy can be radiated via the CGW channel (Abbott
et al. 2008; Abadie et al. 2011; Abbott et al. 2020b). The situation for
known millisecond pulsars is less clear. The fact that we see them as
pulsars at all indicates that at least some of their spin-down energy
is radiated electromagnetically, but the possibility of this being only
a small fraction of the total energy budget cannot be discounted.
Indeed, Woan et al. (2018) recently advanced tentative evidence that
the fastest spinning pulsars, located at the bottom left of the well
known 𝑃– ¤𝑃 diagram, may be mainly spin-down via CGWs due to
a minimum ellipticity of the order of a few times 10−10. However,
given the impossibility of measuring braking indices for such slowly
spinning-down objects (small ¤𝑃), independent confirmation of the
CGW-dominance of the energy budget would seem to be difficult to
obtain, so direct gravitational wave detection may be the only avenue
for progress (Abbott et al. 2020b).
Rather, our results aremost likely to be useful for stars that are elec-

tromagnetically quiet, certainly with no significant magnetic dipole
spin-down. Such stars are often known as “gravitars” (Palomba 2005).
In the event of such a detection, the real interest of our results lies in
the extent to which one can use additional information to constrain
the individual values of 𝑑, 𝐼3 and 𝜖 , as (for instance) the combination
𝑑/

√
𝐼3 is of little interest in itself.
A number of CGW searches have targeted small well-localised re-

gions of the Galaxy. These so-called directed searches have targeted
globular clusters (Abbott et al. 2017a), the Galactic Centre (Aasi
et al. 2013; Piccinni et al. 2020), and supernova remnants (Abbott
et al. 2019c; Lindblom & Owen 2020; Papa et al. 2020; Abbott et al.
2021a). In the event of a detection from such a search, and assum-
ing the signal is consistent with GW driven spin-down, one could
then combine the estimated value of 𝑑/

√
𝐼3 with the independently

estimated distance to the region in question to obtain a constraint on
𝐼3 and 𝜖 . To give an idea of what might be possible, we note that
the distance to the Galactic centre is known to within ∼ 5% (Fran-
cis & Anderson 2014). The distance to a typical globular cluster is
know to ∼ 6% (Chaboyer 2008), while distances to some supernova
remnants are reported with errors of ∼ 5% or better (Ranasinghe
& Leahy 2018). These uncertainties would then combine with the
uncertainty in 𝑑/

√
𝐼3 from the CGW detection (figures 5 and 6) to

give uncertainties in 𝐼 and 𝜖 .
A number of other CGWsearches have performed so-called all-sky

analyses, searching over all possible search directions, for currently
unknown NSs (Abbott et al. 2019b; Abbott et al. 2021b,c; Steltner
et al. 2021). In the event of a detection from such a search, and
assuming the signal is consistent withGW-driven spin-down, it is less
easy to make progress. A priori, a galactic NS might lie anywhere
from tens of parsecs to tens of kiloparsecs from Earth, while its
moment of inertia probably lies somewhere in the relatively small
range 1–2 × 1045 g cm2 (Worley et al. 2008). This means one could
at least constrain the highly uncertain distance and ellipticity (or r-
mode amplitude) to within a factor of

√
2 or so. Alternatively, and

probably rather optimistically, targeted follow-up electromagnetic
observations could conceivably yield more information. If the star
is young and therefore hot, blackbody radiation might be detected.
Such electromagnetic emission would play no role in the spin-down
energy budget, but, if one assumed blackbody emission over the
entire stellar surface, gives an estimate of 𝑑/𝑅 (Özel & Freire 2016).
The estimates of 𝑑/

√
𝐼3 and 𝑑/𝑅 could then be combined to give an

estimate of 𝑅/𝐼3, which can then be use to constrain the equation of
state.

Our method will also be of use if CGWs were detected from
the post-merger remnant left behind after the merger of two NSs
(Abbott et al. 2019d; Sarin & Lasky 2021), assuming that the post-
merger CGW emission is consistent with GW-driven spin-down. If
the inspiral/merger itself were detected via GWs, a distance estimate
would already be available from the inspiral/merger phase (Schutz
1986; Abbott et al. 2017c), allowing us to break the degeneracy
between 𝑑 and 𝐼3, i.e. allow estimation of 𝐼3 and 𝜖 of the post-merger
remnant. The inspiral/merger phase would also give information on
the stellar masses of the two pre-merger stars (Abbott et al. 2017b),
and therefore give an upper limit on the mass of the NS remnant. The
combination of 𝐼3 and an upper limit on mass 𝑀 would then provide
a constraint on the equation of state.
Wehavemade somevery strong assumptions in our analysis,which

we will now briefly critique. We have of course assumed entirely
CGW-driven spin-down. This is a strong assumption, but one that
might be realised if at least some NSs are born with no significant
external magnetic fields, or have their magnetic fields buried during
a prolonged phase of accretion. In such cases there would be no
electromagnetically-driven spin-down.
We have also used a highly simplified signal model (see section

2.4) that neglected the dependence of the signal on the source’s sky
location and on the orientation of its spin axis. Sky location can be
expected to be measured extremely accurately in CGW, as errors in
sky location affect the phase of the received signal. However, the
absence of the inclination angle 𝜄 from our signal model is probably
more serious. In the case of compact binary coalescence there is
a significant degeneracy between distance measurement and 𝜄, and
was a significant factor in determining the accuracy of the measure-
ment of the Hubble constant following the binary NS coalescence
GW170817 (Abbott et al. 2017d). Inclusion of this inclination angle
would presumably increase the errors in our analysis, although the
increase will be small for the strongest signals we consider.
We have also assumed that the asymmetry in the star, responsible

for producing the CGWs, does not change in time, i.e. constant 𝜖 for
mountains, and constant 𝛼 for r-modes. Given that some of our stars
spin-down significantly over the course of a typical observation pe-
riod (∼ 1 year), this is questionable. Indeed, glitch activity in known
pulsars is known to correlate with spin-down rate (Espinoza et al.
2011). In terms of the stellar structure, for mountains, the ellipticity 𝜖
is likely to be sustained either by strains in an elastic crust (or core), or
by strong internal magnetic fields (see e.g. Jones (2002)). The solid
crust may well crack in response to the decreasing centrifugal defor-
mation (Baym & Pines 1971). For CGWs from elastic mountains,
this would lead to a more complex waveform, with separate sections
having different amplitudes and spin-down parameters (Ashton et al.
2017). This would complicate the detection (Ashton et al. 2018), but
as long as the ellipticity were constant within each inter-glitch section
then our method can still be applied. Mountains sustained by internal
magnetic field may be more robust to spin-down, although if the
core neutrons are superfluid and core protons superconducting, the
outward migration of neutron vortices that the spin-down requires
may cause the superconducting flux tubes to be dragged outwards
(Ruderman et al. 1998). This would alter the internal magnetic field
structure, which may in turn alter the ellipticity. Such a process could
manifest itself as some departure from the canonical 𝑛 = 5 braking
index, and would complicate application of our method.
The assumption of a constant 𝛼 for r-modes is also crude. For

our spinning down stars, if the r-mode is active at all, it is probably
because it is subject to the Chandrasekhar-Friedman-Schutz (CFS)
instability (Andersson 1998; Lindblom et al. 1998). In such a case,
the mode would have grown it is so-called saturation amplitude 𝛼s
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(Owen et al. 1998b). While early models assumed a constant value
for 𝛼s (Owen et al. 1998b), more detailed modelling indicate more
complex behaviour, with different analyses coming to somewhat dif-
ferent conclusions (Arras et al. 2003; Brink et al. 2004; Bondarescu
et al. 2009). If 𝛼s were to change only on timescales long compared
to the spin-down timescale, our method can be employed straightfor-
wardly. If instead 𝛼s were to vary more rapidly, but a simple model
of how it varies were to be used, perhaps of the form 𝛼s = 𝛼s ( 𝑓rot),
one could still use our method, simply amending the formulae for
ℎ0 and the energy conservation calculation for 𝑓rot (𝑡) to allow for
non-constant 𝛼.
Clearly, out assumption of constant 𝜖 or 𝛼 is a strong one, but is

at least testable via a measurement of braking index.

5 CONCLUSIONS

We have shown that CGW emission from a spinning NS can be
used to make measurements of combinations of the star’s distance 𝑑,
moment on inertia 𝐼3 and ellipticity 𝜖 (or mode amplitude 𝛼, in the
case of r-modes). This requires that the star be spinning down entirely
through GW emission, and that the size of the deformation producing
the GWs remains constant throughout the observation, i.e. constant
ellipticity for mountains, constant mode amplitude for r-modes. Our
criteria for when our analysis can be applied to a real detection is
that the signal is both detectable and that the braking index 𝑛 can be
measured sufficiently accurately. This last criterion is necessary so
that one could have confidence that the evolution in spin frequency is
indeed driven by CGW emission from a constant size deformation.
Given these assumptions and constraints we gave estimates of

the accuracy to which the combination 𝑑/
√
𝐼3 could be measured

by GW means alone. As shown in figures 5 and 6, the achievable
accuracies are a function of distance, birth frequency, and (very
strongly) of the size of the deformation. To give a few plausible
examples, for a star at a distance of 3 kpc, with birth spin frequency
500Hz, and ellipticity 10−6, a fractional accuracy of 10−3 is possible.
For a similar star emitting GWs via r-modes with 𝛼 = 10−4, the
corresponding fractional accuracy is at a similar level.
In the absence of any further information, the factor of two or

so uncertainty in 𝐼3 allows such measurements to be translated into
factor of two or-so uncertainties in distance and ellipticity. If fur-
ther information is available, further conclusions could be drawn,
e.g. an electromagnetically derived distance estimate would allow
measurement of moment of inertia and ellipticity themselves.
Clearly, while CGW emission from spinning NS does not provide

the clean strand siren measurements of compact binary coalescence,
one can still extract some useful distance information from such GW
detections.
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