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In the Reststrahlen region, between the transverse and longitudinal phonon frequencies, polar
dielectric materials respond metallically to light and the resulting strong light-matter interactions
can lead to the formation of hybrid quasiparticles termed surface phonon polaritons. Recent works
have demonstrated that when an optical system contains nanoscale polar elements these excitations
can acquire a longitudinal field component as a result of the material dispersion of the lattice, lead-
ing to the formation of secondary quasiparticles termed longitudinal-transverse polaritons. In this
work we build on previous macroscopic electromagnetic theories developing a full second-quantised
theory of longitudinal-transverse polaritons. Beginning from the Hamiltonian of the light-matter
system we treat distortion to the lattice introducing an elastic free energy. We then diagonalise the
Hamiltonian, demonstrating the equations of motion for the polariton are equivalent to the those of
macroscopic electromagnetism and quantise the nonlocal operators. Finally we demonstrate how to
reconstruct the electromagnetic fields in terms of the polariton states and explore polariton induced
enhancements of the Purcell factor. These results demonstrate how nonlocality can narrow, enhance
and spectrally tune near field emission with applications in mid-infrared sensing.

INTRODUCTION

Surface phonon polaritons (SPhPs) are hybrid light-
matter excitations, formed when a photon interacts with
the optical phonon modes of a polar lattice. Like plas-
mons in the visible spectral region they allow for minia-
turisation of photonic resonators below the diffraction
limit [1], with applications in mid-infrared sensing [2],
nonlinear optics [3–5] and the design of thermal emitters
[6–9] .
In a simple model of polar optics the lattice is considered
to be non-dispersive, and is described by a frequency-
dependant dielectric function parameterised by the opti-
cal phonon frequencies at zone-centre. This model works
extremely well in regimes where the dispersion of the op-
tic phonon branches can be neglected, however when the
system approaches the nanoscale this is no longer nec-
essarily the case. Systems where material dispersion is
important are termed optically nonlocal, meaning that
the applied field at one point can affect the response at
another. This is a consequence of energy transport in the
matter, for example through bulk plasma waves in nano-
plasmonic systems [10]. This transfer of energy from the
photon field leads to enhanced damping, spectral shifts
and ultimately places an upper-limit on how tightly the
field can be confined [11–14].
Nonlocal effects in polar systems are fundamentally dif-
ferent to those in plasmonic systems because of the oppo-
site dispersion of bulk optical phonon and plasma waves.
In the Reststrahlen region where the dielectric function
is negative and SPhPs exist, polar crystals also support
propagative LO phonon excitations, allowing for resonant
coupling between discrete LO phonon modes and SPhPs.
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These nonlocal effects in polar systems were first demon-
strated in a recent work which showed strong coupling be-
tween localised SPhPs in a 4H-SiC nanopillar and zone-
folded optical phonons [15]. The resulting excitations are
hybrid modes termed longitudinal-transverse polaritons
(LTPs), have a transverse electric field from their pho-
tonic component and a longitudinal one from the phonon
field. This unique property has led to LTPs being pro-
posed as a platform for mid-infrared optoelectronics as a
result of the possibility of exciting them through longitu-
dinal electrical currents, while still outcoupling to trans-
verse free-space radiation in the far-field [16].
A recent series of publications has studied LTPs in more
general systems, demonstrating them to be a general fea-
ture of polar resonators at the nanoscale [17–19] and a
similar phenomenology has also recently been observed
in a Yukawa fluid [20]. These works follow the approach
of nonlocal plasmonics, starting from the macroscopic
Maxwell equations, introducing new macroscopic fields
to describe phonon modes in the lattice and matching
fields at material boundaries considering the flow of en-
ergy in the system. They have been utilised to explain the
emergence of anomalous modes in complex crystal hybrid
structures, macroscopic systems comprised of hundreds
of nanoscopic polar layers [17, 21] and have proved able
to calculate the electromagnetic response.
Polariton systems are typically described in second-
quantisation formalisms [22–25] which are attractive be-
cause they allow for a transparent understanding of en-
ergy distribution between the different light and matter
excitations from which the polariton is composed, and
for calculation of nonlinear polariton-polariton [26–28]
or electron-polariton scattering [29]. Although recently a
second-quantisation theory of LTPs was presented, this
was based on a demonstration of equivalence between
Maxwell’s equations and a model Hamiltonian in a pla-
nar waveguide [30] and is not suitable for extension to
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describe the complex modal geometries typically utilised
in SPhP optics.
In this work we develop a full quantum theory of LTPs.
Starting from the Hamiltonian of a spectrally dispersive,
spatially inhomogeneous polar dielectric we introduce a
new free energy to account for the elastic energy of op-
tical phonons. We then diagonalise this Hamiltonian,
demonstrating that the resulting equations of motion for
the Hopfield fields are equivalent to the nonlocal Maxwell
equations [17]. Operators for the physical fields are re-
constructred from the Hopfield fields, the boundary con-
ditions satisfied by those fields are determined and the
quantisation conditions for the polaritonic modes are de-
rived. Finally we utilise our theory to demonstrate the
nonlocal emission from dipoles embedded near a polar
nanolayer.

I. THEORY

Our starting point is the Hamiltonian density in a lo-
cal, non-magnetic polar dielectric including spectral dis-
persion. We consider the material to be piecewise ho-
mogeneous such that we may employ Fourier analysis in
each region. The system’s quantum Hamiltonian is given
by

Ĥ0 =
D̂2

2ε0ε∞
+
µ0Ĥ2

2
+

Q̂2

2ρ
+
ρω2

LX̂2

2
− κD̂ · X̂

ε0ε∞
, (1)

where D̂ (Ĥ) is the electric displacement (magnetic)

field operator, X̂ is the ionic displacement operator, Q̂
is the momentum operator, ωL is the longitudinal op-
tical phonon frequency at zone-centre, ε∞ is the high-
frequency dielectric constant and ρ is the crystal mass
density [25]. The oscillator strength κ characterises the
width of the Reststrahlen that relates to the phonon fre-
quencies through

κ2

ρε0ε∞
= ω2

L − ω2
T = ω2

L

[
1− ε∞

εst

]
, (2)

where in the latter equality we utilised the Lydanne-
Sachs-Teller relation, linking the crystal’s transverse and
longitudinal optic phonon frequencies (ωT and ωL) using
the static dielectric function of the lattice εst [31]. The
Hamiltonian Eq. 1 accounts for the kinetic energy contri-
bution of ions oscillating in place through the term pro-
portional to the lattice momentum P. It does not account
for lattice distortion, or for energy transported in finite-
wavevector phonon waves. As propagating phonons are
analogous to propagating elastic waves we account for
this additional energy by considering an additional con-
tribution to the Hamiltonian of the lattice

F̂ = C̄ijklŜij Ŝkl, (3)

where C̄ijkl is an effective elasticity tensor satisfying the
symmetry conditions [18]

C̄ijkl = C̄jikl = C̄klji, (4)

and the Ŝij are scalar stresses operators defined as

Ŝij =
1

2

[
dX̂i

drj
+

dX̂j

dri

]
. (5)

Note that this is a first order approximation to the elastic
free energy, which will result in a quadratic phonon dis-
persion relation. This approximation is at the same level
as that utilised in classical theories of polar nonlocality
[17]. The full nonlocal Hamiltonian is a sum of the two
Hamiltonian densities

Ĥ =

∫
d3r
[
Ĥ0 + F̂

]
. (6)

A. Equations of Motion

The goal of this paper is to diagonalise Eq.6, writing
it in terms of a series of bosonic ladder operators which
describe the polaritonic eigenmodes of the system. To
that end following previous approaches [25] we introduce
the general polaritonic operator as a linear superposition
of the free fields

K̂ =

∫
d3r
[
α · D̂ + β · Ĥ + γ · X̂ + ζ · Q̂

]
, (7)

where Greek symbols are Hopfield fields describing the
weighting of the fields comprising the eigenmode. If K̂ is
an eigenmode of Ĥ it satisfies the equation of motion[

Ĥ, K̂
]

= ~ωK̂, (8)

where ω is the polariton frequency. The lengthy quanti-
sation procedure, carried out in Appendix A, yields equa-
tions of motion for the Hopfield fields of the polariton

ωθ = i
κζ

ε0ε∞
− ic2

ε∞
∇× β, (9a)

ωβ = i∇× θ, (9b)

ωζ =
i

ρ
γ, (9c)

ωγ = −iω2
Lρζ +

ic2κ

ε∞
∇× β + iρ−1∇ · τ̄ , (9d)

where τ̄ is the stress tensor of the polar lattice, related
to the effective elasticity tensor through

τij =
C̄ijklρ

4

(
∂ζk
∂rl

+
∂ζl
∂rk

)
, (10)

and we defined the composite field

θ = α+
[κζ]

L

ε0ε∞
. (11)

This field can be interpreted as the sum of the displace-
ment field associated with the polariton’s transverse pho-
tonic component, proportional to α and the longitudinal
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electric field associated with the polariton’s LO phonon
component, given by the latter term. The result is a new
field θ which acts as the full electric field of the polari-
ton.
Note that in these equations of motion we can imme-
diately identify the Hopfield fields as analogues of the
classical fields. The magnetic field analogue is β, while
the electric field is θ. The other coefficients refer to the
ionic position and momentum. It will be useful to the
reader to keep this interpretation in mind through the
rest of this manuscript. We now show that the equa-
tions of motion lead to the dispersion relations predicted
by classical approaches [17]. For simplicity we focus on
isotropic crystal structures, for which the components of
C̄ijkl are given by

λ1 = C̄1111 = C̄2222 = C̄3333, (12)

λ2 = C̄1122 = C̄1133 = C̄2233 = . . . , (13)

λ3 = C̄1212 = C̄2112 = C̄1313 = . . . , (14)

where the dots indicate other permutations of indices
through Eq. 4. These components relate to the longitu-
dinal and transverse phonon velocities in the quadratic
dispersion limit βL, βT introduced phenomenologically
in other works [17, 30] through

λ1 = ρβ2
L, (15)

λ2 = ρ
(
β2

L − 2β2
T

)
, (16)

λ3 = ρβ2
T. (17)

Finally through Eq. 10 the components of the effective
stress tensor can be derived

τ11 = ρ
[
β2

LS11 +
(
β2

L − 2β2
T

)
(S22 + S33)

]
, (18)

τ22 = ρ
[
β2

LS22 +
(
β2

L − 2β2
T

)
(S11 + S33)

]
, (19)

τ33 = ρ
[
β2

LS33 +
(
β2

L − 2β2
T

)
(S11 + S22)

]
, (20)

τ12 = τ21 = ρβ2
TS12, (21)

τ13 = τ31 = ρβ2
TS13, (22)

τ23 = τ32 = ρβ2
TS23, (23)

where the Sij are scalar stresses of the Hopfield field ζ

Sij =
ρ

2

[
dζi
drj

+
dζj
dri

]
. (24)

One class of solutions of Eq. 9a-9d are transverse fields,
for which the Hopfield field for the classical electric field
satisfies ∇·θ = 0. In this case we can solve the equations
of motion directly, recovering the nonlocal wave equation
for transverse fields

∇×∇× θ =
ω2εT (ω, k)

c2
θ. (25)

where εT is the transverse dielectric function of the lat-
tice, given by

εT (ω, k) = ε∞
ω2

L − ω2 − β2
Tk

2

ω2
T − ω2 − β2

Tk
2
, (26)

and βT can be interpreted as the transverse optical
phonon velocity in the quadratic limit.
The equations of motion also support longitudinal solu-
tions for which the classical electric Hopfield field satisfies
∇× θ = 0. This results in dispersion relation

εL (ω, k) = 0, (27)

where εL is the longitudinal dielectric function of the lat-
tice, given by

εL (ω, k) = ε∞
ω2

L − ω2 − β2
Lk

2

ω2
T − ω2 − β2

Lk
2
, (28)

where βL is the transverse optical phonon velocity. These
transverse and longitudinal dispersion relations are ex-
actly those predicted from the classical theory, validating
the approach taken in this section. The LTP excitations
which are the focus of this work are hybrid modes with
both transverse and longitudinal components, mixed by
the boundary conditions on the Hopfield fields α,β, γ, ζ
which must enforce the continuity of the quantum fields
as predicted in standard theories of polar nonlocality [17].
These boundary conditions are derived in Sec. I C

B. Field Construction

We can solve the equations of motion Eq. 9a-9d in
terms of a set of eigenmodes

|Ψn〉 = |αn,βn,γn, ζn〉, (29)

where the index n can be either discrete, or continuous,
depending on the mode and system under study with
associated eigenfrequencies ωn and wavevectors kn. Then
an arbitrary field operator Ŷ can be written as a sum over
the polaritonic operators as

Ŷ =
∑
n

[
fY
n K̂n + f̄Y

n K̂†n
]
, (30)

in which the expansion coefficients are given by

fY
n =

[
Ŷ, K̂†n

]
. (31)

The electric displacement field, magnetic field, ionic dis-
placement, electric field operator Ê and polarisation field
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operator P̂ can be written

D̂ = −
∑
n

~ωnε0εT (ωn, kn)
[
θ̄nK̂n + θnK̂†n

]
, (32a)

Ĥ = −
∑
n

~ωn
µ0

[
β̄nK̂n + βnK̂†n

]
, (32b)

X̂ = i~
∑
n

[
ζ̄nK̂n − ζnK̂†n

]
, (32c)

P̂ = i~κ
∑
n

[
ζ̄nK̂n − ζnK̂†n

]
= i~ε0

∑
n

ωn [ε∞ − εT (ωn, k)]
[
θ̄nK̂n − θnK̂†n

]
,

(32d)

Ê =
1

ε0ε∞

[
D̂− P̂

]
= −

∑
n

~ωn
[
θ̄nK̂n + θnK̂†n

]
,

(32e)

where in the final relation we used the relation between
the material polarisation density operator P̂ = κX̂ and
the following relation derived from Eq. 9a-9b by elimina-
tion of β

iκζ = ε0ω [ε∞ − εT (ω, k)]θ. (33)

Again note the physical significance of the polariton Hop-
field fields. The displacement field is proportional to the
electric Hopfield field θ multiplied by the system’s trans-
verse dielectric function, and the magnetic field operator
is proportional to the magnetic Hopfield field β.

C. Boundary Conditions

We have derived the equations of motion for the non-
local polariton system Eq.9a-9d. This equation set de-
scribes the relation between the Hopfield fields in a ho-
mogeneous system. To solve a physical problem we also
need to derive boundary conditions, describing how po-
laritonic Hopfield fields behave at material interfaces. As
has been discussed at length in previous works the stan-
dard boundary conditions utilised in electromagnetic the-
ory are insufficient to describe nonlocal systems due to
the introduction of additional fields describing the lattice
distortion [17]. The appropriate new boundary condi-
tions can be derived starting from the classical Poynting
relation which links the rate of change of electromagnetic
energy density in a volume Ω with the energy flux pass-
ing through enclosing surface dΩ with outgoing surface
normal unit vector −→n , given by∫

dΩ

[
Ê× Ĥ

]
· −→n dS

= −
∫

Ω

[
ε0ε∞Ê · ˙̂

E + κÊ · ˙̂
X + µ0Ĥ · ˙̂

H
]

dV, (34)

where we utilised the standard constitutive relation for
a nonlocal dielectric to eliminate the displacement field

[17]. In this equation terms proportional to a field multi-
plied by it’s time derivative describe the rate of change of
energy densities in Ω. The term on the right proportional
to κ can be expressed as the sum of such a density and
a transport term utilising the following relation, derived
by elimination of γ,β from Eq. 9d

iωκθ = ρ
[
ω2

T − ω2
]
ζ + ρ∇ · τ̄ , (35)

to obtain

κÊ · ˙̂
X = −

∑
n

ωn~2κθn · ζ̇n K̂†nK̂†n + . . .

=
∑
n

i~
[
ρ
[
ω2

T − ω2
n

]
ζn + ρ∇ · τ̄n

]
· ζ̇n K̂†nK̂†n + . . . .

(36)

The dots represent terms proportional to the remain-
ing combinations of operators (K̂†nK̂n, K̂nK̂†n, K̂nK̂n). For
Eq. 34 to be valid terms proportional to each permuta-
tion of operators on each side must balance. Rewriting
the volume integral of the second term we find∫

Ω

dVρ∇ · τ̄n,i · ζ̇n,i

=

∫
Ω

dVρ
[
∇ ·
(
ζ̇n,iτ̄n,i

)
− τ̄i∇ζ̇n,i

]
=

∫
dΩ

dSρ
[
ζ̇n,iτ̄n,i

]
· −→n −

∫
Ω

dVρτ̄n,i · ∇ζ̇n,i,

(37)

where index i refers to the cartesian components of ζn.
The remaining volume integral describes energy stored in
elastic distortions of the lattice, while the surface integral
describes energy transported in finite wavevector phonon
modes. Bringing the surface integral over to the left write
a composite Poynting-like vector for the Hopfield fields

σn =
~2

µ0
ω2
n (θn × βn) + ρτ̄nζ̇n, (38)

where we collected the components proportional to K̂†nK̂†n
and expanded the electromagnetic Poynting vector util-
ising Eq. 32b, 32e as[

Ê× Ĥ
]
· −→n =

~2

µ0

∑
n

ω2
n (θn × βn) · −→n K̂†nK̂†n + . . . ,

(39)
where as for the right hand side we collect terms propor-
tional to K̂†nK̂†n. Continuity of σn requires that tangential
components of θn,σn are continuous across material in-
terfaces. As can be seen from inspection of Eq. 32a-32b
these are the standard Maxwell boundary conditions on
the electromagnetic fields E,H. The second term fixes
the additional boundary conditions for the nonlocal prob-
lem, requiring that ζn and the normal component of τ̄n
are continuous. The former from Eq. 32c enforces con-
tinuity of the lattice ionic displacement, while the latter
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constrains the parallel and perpendicular components of
the stress at the interface, both in agreement with clas-
sical theories of polar nonlocality [17]. Physically the
additional nonlocal boundary conditions are required to
describe the additional phonon fields in the dielectric,
and to weight them with respect to the photonic fields.
They determine the degree of nonlocal mixing.

D. LTP Quantisation

Now we have all the tools necessary to find the Hop-
field fields for a given inhomogeneous system. There is
still one step remaining, as for operators K̂n to describe
fundamental bosonic excitations of the nonlocal system
they also need to be quantised as bosonic fields [25][

K̂m, K̂†n
]

= δmnsgn (ωn) , (40)

where the sign function yields sgn (ωn) = ωn/|ωn|. Util-
ising the definition of the polaritonic operators in terms
of the quantum fields, we derive the result

i~
∫

d3r

[
1

µ0
αm ·

(
∇× β̄n

)
− 1

µ0
(∇× βm) · ᾱn

+
1

ρ

(
γm · ζ̄n − ζm · γ̄n

)]
= δmnsgn (ωn) .

(41)

To proceed it is useful to introduce a further layer of
abstraction. Although an LTP is comprised of distinct
longitudinal and transverse parts this is not captured by
the Hopfield fields |Ψn〉 = |αn,βn,γn, ζn〉 which describe
the fully-coupled fields of the polariton. We can obtain
a more physically meaningful result by segregating the
fields into longitudinal and transverse components whose
electric Hopfield fields satisfy ∇·θT

n = 0 and ∇×θL
n = 0

respectively. We can then quantise these components
separately. For transverse fields utilising the transverse
dielectric function defined in Eq. 26, we find

sgn (ωn)

= ~ωnε0
∫

d3r|θT
n |2
[
εT (ω, k) +

∂ [ωεT (ω, k)]

∂ω

]
ω=ωn

.

(42)

Note that utilising

ω2|βT|2 =
[
∇× θT

] [
∇× θT∗] =

ω2εT (ω, k)

c2
|θT|2,

(43)

we can re-write this as in terms of both the electric and
magnetic Hopfield fields as

sgn (ωn)

= 4~ωn
∫

d3r

[
ε0
4

∂ [ωεT (ω, k)]

∂ω
|θT
n |2+

1

4µ0
|βT
n |2
]
ω=ωn

,

(44)

which in the local limit k → 0 is the transverse field
energy density in a dispersive dielectric [32].
For longitudinal fields the Hopfield field βT

n , which gives
the magnetic field contribution to the polariton goes to
zero so we can write

2~ωnε0
∫

d3r
ε∞ω

2
n

[
ω2

L − ω2
T

]
[ω2
n − ω2

T + β2
Lk

2
n]

2 |θ
L
n|2 = sgn (ωn) , (45)

where we assumed an isotropic lattice. Note that for
a pure longitudinal excitation, whose frequency satisfies
εL (k, ω) = 0 this can be simplified to

4~ωnε0
∫

d3r
ερω

2
n

2ω2
L

|θL
n|2 = sgn (ωn) , (46)

where we defined the Fröhlich coupling constant utilising
the Lydanne-Sachs-Teller relation in Eq. 2

ερ =

[
1

ε∞
− 1

εst

]−1

. (47)

It is important to make clear that in these quantisation
relations the frequencies are those of the hybrid LTP,
determined by application of the full boundary condi-
tions, not the individual longitudinal or transverse fields
[16]. Finally having quantised these excitations we intro-
duce additional polariton-like Hopfield fields describing
the longitudinal (transverse) composition of the nth LTP
mode Li,n (Tj,n) which satisfy the normalisation∑

i

|Li,n|2 +
∑
j

|Tj,n|2 = 1, (48)

where the index i rules over all the longitudinal compo-
nents and j over all transverse components of the polari-
ton. Then if we expand the index of the Hopfield fields
to consider both the LTP branch n and the contributing
mode ij as αL

i,n,α
T
j,n satisfy Eq. 41 the full polariton field

given by

αm =
∑
i

Li,mα
L
i,m +

∑
j

Tj,mα
T
j,m, (49)

is also quantised.

II. PURCELL ENHANCED EMISSION NEAR
AN EPSILON-NEAR-ZERO WAVEGUIDE

Now we apply our theory to a physical system. We
focus on the system of an isotropic polar dielectric film
of thickness d sandwiched between positive dielectric
cladding layers. For simplicity we consider the case
where only nonlocal longitudinal excitations are present
in the system, a good approximation for systems driven
near the LO phonon frequency where the TO phonon
dispersion does not extend. The system under study
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In-plane Wavevector (units of ωL/c)

FIG. 1: a) A sketch of the thin film-emitter system. A
negative dielectric film with transverse dielectric function
ε2 < 0 sits between −d < z < 0. Symmetric positive

dielectric cladding with dielectric constant ε1 occupies
z < −d and z > 0. The film supports an SPhP excitation

(red) and a discrete spectrum of localised LO phonon modes
(blue) which are hybridised through the film boundaries with
coupling frequency Ω. We consider an emitter embedded in
the upper, positive dielectric, halfspace, separated from the

film by a height h. b) The inverse of the polariton dispersion
G as defined in Appendix D for a 10nm 3C-SiC film between

two high-index (nC = 2.6) cladding regions. Dark regions
illustrate the modal frequencies. Horizontal dashed green
lines indicate the LO phonon branches, black dashed line

indicates the epsilon near zero dispersion. Polariton
frequencies are shown by the blue solid lines.

is shown in Fig. 1a. The film, considered to occupy
−d < z < 0 has dispersive dielectric function ε, while the
cladding regions defined as z < −d, z > 0 have frequency
independent dielectric constant εC.
In the thick film limit this kind of symmetric planar
waveguide supports two spectrally degenerate SPhP
modes, with the standard dispersion for the evanescent
waves on a planar bilayer. When the film thickness d is
less than the skin depth of the modes the SPhPs on each

interface hybridise into symmetric and antisymmetric
superpositions, lifting the spectral degeneracy. As a
result of repulsion between like charges on each side
of the film the symmetric mode blue shifts toward the
LO phonon frequency which marks the upper edge of
the Reststrahlen region, in which evanescent modes are
supported. In the thin film limit this mode sits close to
the LO phonon frequency where the polar film’s local
dielectric function goes to zero. For this reason it is
termed an epsilon-near-zero excitation. These modes
are especially interesting in nanophotonics as they allow
for strong enhancement of the out-of-plane field in the
nanolayer with applications in sensing and mid-infrared
nano-waveguiding [33, 34]. These systems are especially
interesting in optical nonlocality, where classical studies
ahve demonstrated hybridisation between them and
localised longitudinal phonons in the nanolayer [17, 30].

A. Modes of the System

We construct the eigenmode of the epsilon-near-zero
mode to satisfy the Maxwell boundary condition on the
magnetic Hopfield field β as the LO field has no associ-
ated β field. The eigenmode is a sum of SPhPs localised
at each film/cladding interface. We denote the wavevec-
tor in the plane of the waveguide as k = kx

−→x + ky
−→y ,

and for brevity write the 3D wavevector in form [k, kz]
where kz is the out-of-plane component and the position
[r, z]. The electric Hopfield field θ associated with the
SPhP localised at z = −d is given by

θu,k =


−αCε
αεC

[
k
|k| ,−

i|k|
αC

]T
eαC(z+d)eik·r z < −d,[

k
|k| ,

i|k|
α

]T
e−α(z+d)eik·r −d < z < 0,

αCε
αεC

[
k
|k| ,

i|k|
αC

]T
e−αCz−αdeik·r z > 0,

(50)
while that located at z = 0 has

θl,k =


−αCε
αεC

[
k
|k| ,−

i|k|
αC

]T
eαC(z+d)−αdeik·r z < −d,

−
[

k
|k| ,−

i|k|
α

]T
eαzeik·r −d < z < 0,

αCε
αεC

[
k
|k| ,

i|k|
αC

]T
e−αCzeik·r z > 0,

(51)
In the above equations α (αC) is the out-of-plane
wavevector in the film (cladding)

α =

√
|k|2 − εω

2

c2
, (52)

αC =

√
|k|2 − εC

ω2

c2
. (53)

The total symmetric field electric field coefficient in the
waveguide is the linear superposition θT = θu,k + θl,k.
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This collective excitation is quantised in Appendix B,
and can be written in form

θT
k = AT

kuk (z) eik·r, (54)

where AT
k is the quantisation factor, calculated by

independent quantisation of the transverse field, and
uk (z) are unit vectors describing the out-of-plane mode
functions of the coupled excitations.

As the cladding layers are phonon-inactive the thin film
also acts as a closed cavity for LO phonons, supporting
modes with frequencies

ωL
k,n =

√
ω2

L − β2
L (|k|2 + ξ2

n), (55)

where n is an integer defining the mode number, ξn =
nπ/d is the quantised out-of-plane wavevector of the
phonon and k is the wavevector in the plane of the film.
If we consider only symmetric modes in the waveguide
n ∈ odd the electric Hopfield field θ of the phonons can
be written

θL
k,n = BL

k,n∇
{
eik·r sin [ξn(z + d/2)]

}
, (56)

where BL
k,n is a constant determined from the quantisa-

tion Eq. 45 derived in Appendix C and given by

BL
k,n =

√
ω2

L

~ω3
k,nε0ερSLL

k,n

, (57)

where S is the quantisation surface and LL
k,n is a quanti-

sation length for the mode also defined in Appendix C
which accounts for the frequency shift of the mode from
zone-centre.

Both sets of excitations are hybridised through the
Maxwell boundary condition on the tangential compo-
nent of θ and the additional boundary conditions dis-
cussed in Section I-C. In keeping with classical studies of
polar nonlocality we utilise the additional boundary con-
dition on the normal component of ζ, which can be recast
as a constraint on the normal component of ε∞θ. Ap-
plication of these boundary conditions yields dispersion
relation

tanh

(
αd

2

)
+
αCε

αεC
= − tanh

(
ξnd

2

)(
ε

ε∞
− 1

)
|k|2

ξnα
,

(58)
which can be manipulated into form [30]

1 =
ω2

L − ωT 2
k

ωT 2
k − ω2

∑
n

8β2
L/d

2

ωL 2
k,n − ω2

. (59)

by expanding the hyperbolic functions into Mittag-Leffler
series and exploiting the analytic dispersion of the SPhP
ωT
k in the local limit. As has previously been noted

this is the dispersion relation arising from a Hamiltonian

where a single photonic mode is coupled to a bath of LO
phonons with coupling frequency [30]

|Θk,n|2 =
ω2

L − ωT 2
k

ωT
kω

L
k,n

8β2
L

d2
. (60)

As discussed in Appendix D the full field of the polariton
can be constructed from the separately quantised longi-
tudinal and transverse fields of the LTP constituents by
introduction of the weighting coefficients Tk,Lk. Then
the total electric Hopfield field of the LTP is given by

θk = Tkθ
T
k +

∑
n

Lk,nθ
L
k,n, (61)

where the transverse and longitudinal mode functions
θT
k ,θ

L
k are defined and quantised individually in Ap-

pendix B and C respectively and the index n runs over
the discrete longitudinal phonon branches.

B. Nonlocal Purcell Enhancement

It is well known that emitters placed near to in-
terfaces supporting plasmon polaritons can exhibit en-
hanced spontaneous emission due to the strong local field
enhancement [35]. The enhancement can be described
utilising the Purcell factor, which is the ratio of the emis-
sion rate of a dipole near to a photonic structure to that
of the same dipole embedded in a homogeneous medium.
It describes the enhancement in spontaneous emission
induced by the resonator and is an especially interesting
quantity in systems containing nanoscale features. In
these systems predictions of large Purcell enhancements
obtained with local optical theories can be modified when
nonlocality is taken into account. Studies of plasmonic
systems have demonstrated that the effect of nonlocality
is to strongly diminish the achievable Purcell factor as a
consequence of nonlocal quenching and transfer of energy
out of the electromagnetic field into the kinetic energy
of free electrons [36, 37], possibly altering the emission
regime [38, 39]. Nonlocality is expected to have a qualita-
tively different effect in polar systems, mostly because of
the propagative nature of LO phonon modes within the
Reststrahlen region. This allows energy transferred from
an emitter into the system’s matter degrees of freedom to
be coherently recycled as part of the LTP mode. Addi-
tionally, as the Purcell factor can be particularly strong
in regions where the polariton group velocity is low, LTP
systems could allow for enhanced spontaneous emission
around their localised LO phonon frequencies, leading to
large Purcell factors which can be tuned across the Rest-
strahlen region.
To demonstrate this we apply our theory to the calcula-
tion of the Purcell enhancement for the system studied
in the previous section. An example spectrum, calcu-
lated from the dispersion relation found in Appendix D
is shown in Fig. 1 for a 10nm 3C-SiC film embedded be-
tween two high-index cladding regions. The epsilon-near-
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FIG. 2: Calculated Purcell enhancement for a 10nm (upper row), 5nm (middle row) and 2nm (bottom row) 3C-SiC films for
a dipole located 50nm (left column), 25nm (middle column) and 10nm (right column) above the film. Green curves indicate
the local enhancement, while red curves show the nonlocal. Enhancement for dipoles polarised parallel and perpendicular to

the interface are indicated by solid and dashed lines respectively.

zero SPhP dispersion red-shifts with increasing wavevec-
tor [34] undergoing avoided crossings [40] with each cou-
pled LO phonon branch [30]. As each polariton branch
heads toward it’s asymptotic frequency its group velocity
tends to zero.
In general we can write the quantised transverse electric
field operator of the LTP as

Êk = ~ωkθ̄
T
k K̂k + h.c = ~ωkTkCkuk (z) eik·rK̂k + h.c.,

(62)

where h.c. refers to the Hermitian conjugate, k is the
wavevector in the waveguide plane, Tk is the transverse
weighting derived in Appendix D, Ck is the quantisation
constant derived in Appendix B, uk is the out of plane

mode function derived in Appendix D and ωk is the LTP
frequency derived from the nonlocal boundary conditions
on the Hopfield equations in Appendix D.
We consider an emitter embedded in the upper positive
dielectric halfspace, separated from the nonlocal film by
a distance h. To derive meaningful results we need to
include broadening for the LTP modes. Although this
could have been achieved extending the nonlocal theory
in the prior section through coupling the coherent system
to a continuum of bath modes and Fano diagonalising
the polariton system [25, 41], this is beyond the scope
of this paper and is nevertheless not crucial due to the
large quality factors of SPhPs and LTPs. Here we instead
include losses phenomenologically through a Lorentzian
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density of states for the transition X . The emission rate
is given by

γ =
2π

~
∑
k

MkX (E2 − E1 − ~ωk) , (63)

in which the transition matrix element is given by

Mk = |〈1, nk + 1|d̂ · Êk|2, nk〉|2, (64)

where d̂ is the dipole moment, states are labelled |i, j〉
where i labels the level of the dipole and j the LTP sys-
tem and nk is the LTP population. Using Eq. 62, defining

d̂12 = 〈1|d̂|2〉 and using the definition of the electric field
Eq. 62 we can write

Mk =
~ωk|Tk|2

4ε0LT
kS
|d12 · uk (z)|2 (nk + 1) (65)

Here the nk term accounts for stimulated emission and
the unity term for spontaneous emission. Ignoring the
stimulated emission, we find the spontaneous emission
rate for a dipole with transition frequency ω0 = E2 −E1

is given by

γsp =
2π

~

∫ ∞
0

dkk
S

(2π)
2

~ωk|Tk|2

4ε0S
F (E2 − E1 − ~ωk)∫ 2π

0

dθ
|d12 · uk (z)|2

LT
k

. (66)

Evaluating the inner integral we obtain∫ 2π

0

dθ
|d12 · uk (z)|2

LT
k

=
2π|d12|2

LT
k (z,d12, ωk)

, (67)

where we defined unitless projections of the dipole

moment operator d12,‖ and d12,z using d12,‖ · k̂ =
d12d12,‖ cos θ and defined d12,z = d12d12 · ẑ, d12,‖ =
d12 − d12ẑ and the effective length

1

LT
k (z,d12, ω)

=
e−2αCz

|εC|2LT
k

[
1

2
|d12,‖|2

|αC|2

|k|2
+ |d12,z|2

]
×
∣∣∣∣1 + e−αd

∣∣∣∣2. (68)

Dividing by the spontaneous emission rate of a dipole
embedded in an infinite medium

γ0
sp =

ω3
0 |d12|2

3πε0~c3
, (69)

we recover the Purcell factor

F =
γsp

γ0
sp

. (70)

To demonstrate this result we calculate the Purcell fac-
tor for the thin-nonlocal film system for a few dipole-film

separations. We have previously demonstrated that de-
creasing the thickness of a nonlocal film leads to a spec-
tral spreading of the longitudinal mode frequencies away
from the zone-centre longitudinal phonon, in conjunction
with an increase in the LTP coupling strength as a re-
sult of the enhanced electromagnetic fields at the film
interfaces [16]. The results are shown in Fig. 2: where
rows demarcate the different film thicknesses (10nm,
5nm, 2nm) and columns the for film-emitter separations
(50nm, 25nm and 10nm). Emission rates for dipoles po-
larised perpendicular to the film are shown by dashed
lines, while those parallel to the film are indicated by
solid lines. In the local case (red curves) the Purcell en-
hancement exhibits a single peak for each combination
of film thickness and separation, this represents the fre-
quency where the photonic modes overlap with the emit-
ter is strongest. The result is a peak because the field con-
finement increases with increasing in-plane wavevector
(lower frequency), until at large enough in-plane wavevec-
tor the emitter no longer sits in the near-field of the mode.
In the nonlocal case (green curves) the Purcell enhance-
ment breaks into distinct narrow peaks, these result from
emission into the different polaritonic branches of the sys-
tem. For the 10nm film there are many branches as the
LO modes of the nanolayer are spectrally close. As the
emitter-film separation decreases the number of peaks
decreases and nonlocal emission outpaces the local re-
sult. This is because emitters very close to the nanolayer
can emit into the low group-velocity flatband polariton
regions where the density of final states is large. These
flatband regions correspond to the peaks for 10nm sep-
aration. Similar physics is observed for the 5nm film in
the middle row. There are less peaks in the nonlocal
emission spectrum because the LO modes of the layer
are more spaced out. For the 2nm film the LO modes
are very far apart in frequency, and only one mode re-
mains on the plot. As the emitter moves closer to the
film the nonlocal peak red-shifts toward the flatband po-
lariton region. This is a result of an enhanced density
of states at the flatband polariton region, however there
the fields become increasingly evanescent, only coupling
to nearby emitters. This however happens more slowly
as the LTP modes remain dispersive to larger in-plane
wavevector for thinner layers [19].
This plot shows that although the LTP is less photonic
in nature (|Tk‖ |2 < 1) than the local ENZ excitation it
is able to enhance the Purcell factor. This is because
near to the avoided crossing regions of the dispersion,
and at large in-plane wavevectors the LTP group veloc-
ity drops enhancing the density of LTP states and leading
to a peak in emission. In the regions between polariton
branches emission is suppressed leading to a multi-peak
Purcell spectra. In thinner films where coupling between
LO phonons and SPhPs is enhanced this results in the
narrowband emission enhancement.
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CONCLUSION

In this work we have presented a full quantum theory of
longitudinal transverse polaritons, derived directly from
consideration of the free fields in an inhomogeneous non-
local medium. We derived the equations of motion for
the Hopfield fields of the polariton, demonstrating them
to be equivalent to the nonlocal macroscopic Maxwell
equations shown previously. This point is important be-
cause it means that these equations can be solved by
standard numerical means, allowing our theory to be in-
tegrated with the finite element or finite difference time
domain solvers typically used to study SPhP resonators
[25]. We also derived equations which allow for the quan-
tisation of LTP modes. Finally we derived the nonlocal
Purcell enhancement for a simple one-dimensional waveg-
uide, demonstrating enhanced emission for dipoles close
to the nonlocal layer. This is an example of how the tune-
ability of the LTP system could be exploited for enhanced
light-matter interaction. The quantum theory developed
in this Paper is important for the study of novel and
emergent phenomena in LTP systems. In a polar system
nonlinear electron-electron scattering can be mediated by
the charged ions comprising the lattice, leading to emis-
sion of LO phonons. If these LO phonons are part of an
LTP this could permit direct electrical excitation or de-
tection of SPhP modes, potentially underpinning a novel
generation of mid-infrared optoelectronic devices [42]. A
quantum theory such as that presented here is necessary

to calculate this emission rate. Similarly it can also be
applied to descriptions of nonlinear LTP-LTP scattering
mediated by anharmonic interactions between the under-
lying optical phonons, something which could allow for
the formation of an LTP condensate analogous to the
exciton-polariton condensates observed in the previous
decade in the visible spectral region [43].
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Appendix A: Nonlocal Quantisation

In this section we derive the nonlocal equations of mo-
tion for the Hopfield fields, given in the main body of the
manuscript by Eq. 9a-9d. To achieve this we require the
standard commutation relations between the canonical
variables of the local Hamiltonian Eq. 1 which are given
by [25] [

D̂ (r) , Ĥ (r′)
]

=
i~
µ0
∇′ × δ (r− r′) , (A1a)[

X̂ (r) , Q̂ (r′)
]

= i~δ (r− r′) , (A1b)

where the differential operator ∇′ operates on r′. These
equations allow us to calculate the commutator of the po-
laritonic operator Eq. 7 with the local Hamiltonian Eq. 1.
As the commutation relation Eq. 8 is lengthy we proceed
term by term, calculating the commutator of each po-
lariton component with the Hamiltonian. Utilising the
commutator between the electromagnetic fields Eq. A1a
we can find the following contributions to the polariton
equation of motion Eq. 8
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∫
d3r′

[
α (r) · D̂ (r) ,

µ0Ĥ (r′)
2

2

]
= i~ [∇×α (r)] · Ĥ (r) , (A2a)

∫
d3r′

[
β (r) · Ĥ (r) ,

D̂ (r′)
2

2ε0ε∞ (r′)
,

]
= − i~c2

ε∞ (r)
[∇× β (r)] · D̂ (r) , (A2b)

−
∫

d3r′
κ (r)

ε0ε∞ (r′)

[
β (r) · Ĥ (r) , D̂ (r′) · X̂ (r′)

]
= i~c2

κ

ε∞
[∇× β (r)] · X̂ (r) , (A2c)

and furthermore through Eq. A1b we can find∫
d3r′

1

2ρ (r′)

[
γ (r) · X̂ (r) , P̂ (r′)

2
]

=
i~
ρ (r)

γ (r) · Q̂ (r) , (A3a)∫
d3r′

ρ (r′)ωL (r′)
2

2

[
ζ (r) · Q̂ (r) , X̂ (r′)

2
]

= −i~ωL (r)
2
ρ (r) ζ (r) · X̂ (r) , (A3b)

−
∫

d3r′
κ (r′)

ε0ε∞ (r′)

[
ζ (r) · Q̂ (r) , D̂ (r′) · X̂ (r′)

]
= i~

[κ (r) ζ (r)]
T

ε0ε∞ (r)
· D̂ (r) . (A3c)

If we now collect terms proportional to the remaining
operators to form Eq. 8 we find four local equations of
motion

ωα = i
[κζ]

T

ε0ε∞
− ic2

ε∞
∇× β, (A4a)

ωβ = i∇×α, (A4b)

ωζ =
i

ρ
γ, (A4c)

ωγ = −iω2
Lρζ +

ic2κ

ε∞
∇× β. (A4d)

These equations can be solved by introduction of the
novel electric Hopfield field θ

θ = α+
[κζ]

L

ε0ε∞
. (A5)

The equation of motion for θ can be derived combining
the Eq. A4c, A4d to find

(
ω2

L − ω2
)
ζ =

c2κ

ε∞ρ
∇× β, (A6)

and eliminating ζ from Eq. A4a

ωθ =
ic2

ε∞

[
ω2

L − ω2
T

ω2
L − ω2

− 1

]
∇× β

= − c2

ωε∞

[
ω2

L − ω2
T

ω2
L − ω2

− 1

]
∇×∇× θ. (A7)

Finally on inversion this leads to

ε (ω)
ω2

c2
θ = ∇×∇× θ, (A8)

where we recognised the local dielectric function of the
polar lattice in the lossless limit

ε (ω) = ε∞
ω2

L − ω2

ω2
T − ω2

. (A9)

We can extend this theory to the nonlocal case, consid-
ering also commutation between the polaritonic operator
K̂ and the nonlocal component of the Hamiltonian Eq. 6.
To do this we need to derive additional commutation re-
lationships between the ionic displacement field and it’s
spatial derivatives, which enter into the nonlocal compo-
nent of the Hamiltonian. In the general case we can the
commutator between momentum and the first derivative
of the ionic position∫

d3r′
[
Q̂i (r) , ∂′mX̂l (r

′)
]

=

∫
d3r′

[
Q̂i (r) , ∂′m

]
X̂l (r

′) + ∂′m

[
Q̂i (r) , X̂l (r

′)
]

= −i~δil∂′mδ (r− r′) , (A10)

where we noted that the derivative operator ∂′m oper-
ates on r′ rather than r and therefore commutes with
functions of r. We also need to calculate commutation
relations involving the stresses Ŝij . Writing the nonlocal
Hamiltonian density entering Eq. 6 fully

F̂ =
C̄ijkl

4

[
∂X̂i

∂xj
+
∂X̂j

∂xi

][
∂X̂k

∂xl
+
∂X̂l

∂xk

]
, (A11)

we commute
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∫
d3r
′ C̄′ijkl

4

[
ζ · Q̂,

(
∂X̂′i
∂x′j

+
∂X̂′j
∂x′i

)(
∂X̂′k
∂x′l

+
∂X̂′l
∂x′k

)]

=

∫
d3r
′ C̄′ijkl

4

{[
ζ · Q,

∂X̂′i
∂x′j

+
∂X̂′j
∂x′i

](
∂X̂′k
∂x′l

+
∂X̂′l
∂x′k

)
+

(
∂X̂′i
∂x′j

+
∂X̂′j
∂x′i

)[
ζ · Q̂,

∂X̂′k
∂x′l

+
∂X̂′l
∂x′k

]}

=
i~C̄ijkl

4

{(
∂2X̂k

∂xl∂xj
+

∂2X̂l

∂xk∂xj

)
ζi +

(
∂2X̂k

∂xl∂xi
+

∂2X̂l

∂xk∂xi

)
ζj +

(
∂2X̂i

∂xj∂xl
+

∂2X̂j

∂xi∂xl

)
ζk +

(
∂2X̂i

∂xj∂xk
+

∂2X̂j

∂xi∂xk

)
ζl

}
,

(A12)

in which we utilised the commutation relation Eq. A10[ ∑
y=mno

ζyQ̂y,
∂X̂′i
∂x′j

]
= −i~∂′jδ (r− r′)

∑
y=mno

ζyδyi,

(A13)
and the identity∫

dxf (x) δ′ (x− x0) = −f ′ (x0) . (A14)

Note that in Eq. A12 our underlying assumption of
piecewise homogeneity prevented any material parame-
ters contributing to the right hand side.

Unfortunately the derivatives in Eq. A12 are on the
field operators X rather than the Hopfield field ζ which
precludes us from calculating the equation of motion. We
can overcome this problem, collecting terms proportional
to ζi to find the integrated quantity∫

d3r
i~C̄ijkl

4
ζi

∂

∂xj

(
∂X̂k

∂xl
+
∂X̂l

∂xk

)

= −
∫

d3r
i~C̄ijkl

4

∂ζi
∂xj

(
∂X̂k

∂xl
+
∂X̂l

∂xk

)

=

∫
d3r

i~C̄ijkl
4

(
∂2ζi
∂xj∂xl

X̂k +
∂2ζi

∂xj∂xk
X̂l

)
, (A15)

where we assumed that the Hopfield field and it’s deriva-
tives vanish at the boundaries of the system. Similar re-
sults are derivable for the other terms in Eq. A12. Finally
if we define the elements of the material stress tensor τ
as

τij =
C̄ijklρ

4

(
∂ζk
∂xl

+
∂ζl
∂xk

)
, (A16)

we can re-write the result of Eq. A12

i~C̄ijkl
4

{
∂2ζi
∂xl∂xj

X̂k +
∂2ζi

∂xk∂xj
X̂l +

∂2ζj
∂xl∂xi

X̂k +
∂2ζj
∂xk∂xi

X̂l +
∂2ζk
∂xj∂xl

X̂i +
∂2ζk
∂xi∂xl

X̂j +
∂2ζl

∂xj∂xk
X̂i +

∂2ζl
∂xi∂xk

X̂j

}
= i~ρ−1

{
∂τkl
∂xl

X̂k +
∂τkl
∂xk

X̂l +
∂τij
∂xj

X̂i +
∂τij
∂xi

X̂j

}
= i~ρ−1

{
∂τlk
∂xl

X̂k +
∂τkl
∂xk

X̂l +
∂τji
∂xj

X̂i +
∂τij
∂xi

X̂j

}
= i~ρ−1

{
(∇ · τ̄ )k X̂k + (∇ · τ̄ )l X̂l + (∇ · τ̄ )i X̂i + (∇ · τ̄ )j X̂j

}
, (A17)

where we noted the major symmetry of the stiffness ten-
sor C̄ijkl = C̄klij , the minor symmetries of the stiffness
tensor C̄ijkl = C̄jikl = C̄ijlk and in the final step utilised

the tensor divergence

(∇ · σ̄)i =
∂σki
∂xk

. (A18)
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This modifies the fourth polaritonic equation of motion
to

ωγ = −iω2
Lρζ +

ic2κ

ε∞
∇× β + iρ−1∇ · τ̄ , (A19)

which is that utilised in the main body of the manuscript.

Appendix B: Quantisation of the ENZ

The epsilon-near-zero (ENZ) mode is a linear superpo-
sition of SPhPs at each interface of the thin film studied
in the main body of the paper. The electric Hopfield field
of the two SPhPs comprising the ENZ are defined in the
main body of the Paper as

θu,k =


αCε
αεC

[
k
|k| ,−

i|k|
αC

]T
eαC(z+d)eik·r z < −d,

−
[

k
|k| ,

i|k|
α

]T
e−α(z+d)eik·r −d < z < 0,

−αCε
αεC

[
k
|k| ,

i|k|
αC

]T
e−αCz−αdeik·r z > 0,

(B1)

θl,k =


αCε
αεC

[
k
|k| ,−

i|k|
αC

]T
eαC(z+d)−αdeik·r z < −d,[

k
|k| , ,−

i|k|
α

]T
eαzeik·r −d < z < 0,

−αCε
αεC

[
k
|k| ,

i|k|
αC

]T
e−αCzeik·r z > 0,

(B2)
while the total transverse field is θT

k = θl,k + θu,k. The
magnetic Hopfield field β = i

ω∇× θ can be written as

βu,k =
iωε

c2α

[
−→z × k

|k|
, 0

]T

eik·r


eαC(z+d) z < −d,
e−α(z+d) −d < z < 0,

e−αCz−αd z > 0,

(B3)

βl,k =
iωε

c2α

[
−→z × k

|k|
, 0

]T

eik·r


eαC(z+d)−αd z < −d,
eαz −d < z < 0,

e−αCz z > 0,

(B4)
which as mentioned in the main body is continuous at
material boundaries, while the tangential electric Hop-
field field θ is not. In the local case we would apply
continuity of −→z × θ at the film interfaces, recovering the
dispersion relation for odd-parity modes in the planar
waveguide

i tan

(
αd

2

)
=
εαC

εCα
. (B5)

As we are interested in LTP modes we instead derive
the quantisation condition in the general case. We start

by integrating the fields in the barriers∫
z∈C

dr

{
~ω
µ0
|βT

k |2 + ~ωε0εC|θT
k |2
}

=
8ε0S|ε|2~ω
α3εC<{αC}

(1− d<{α})
[
iα2

C={α}+ |k|2<{α}
)
,

(B6)

where we expanded in powers of d and retained terms to
linear order. Here S is the in-plane quantisation surface.
Finally we integrate over the film∫

z/∈C

dr

{
~ω
µ0
|βT

k |2 + ~ωε0
∂ (εω)

∂ω
|θT

k |2
}

= 4ε0S~ωd
[
−αε

∗

α∗
+
|k|2

|α|2

(
∂ (εω)

∂ω
+ ε∗

)]
=

4ε0S~ωd
|α|2

[
−α2ε∗ + |k|2

(
ω
∂ε

∂ω
+ 2<{ε∗}

)]
, (B7)

where again terms up to order d were retained. In the
lossless cladding ={αC} = 0, <{αC} = αC and similarly
for the film so

4ε0S~ω|k|2ε2

α2

[
2

εCαC
(1− dα) + d

(
− α2

ε|k|2
+

1

ε2
∂ε

∂ω
+

2

ε

)]
,

(B8)
and if we define the quantisation length

LT
k =

2

εCαC
(1− dα) + d

(
− α2

ε|k|2
+
ω

ε2
∂ε

∂ω
+

2

ε

)
, (B9)

we can write, for example, the quantised electric field
coefficients

θu,k = Cke
ik·r


αC

εC

[
k
|k|2 ,−

i
αC

]T
eαC(z+d) z < −d,

−αε
[

k
|k|2 ,

i
α

]T
e−α(z+d) −d < z < 0,

−αC

εC

[
k
|k|2 ,

i
αC

]T
e−αCz−αd z > 0,

(B10)

θl,k = Cke
ik·r


αC

εC

[
k
|k|2 ,−

i
αC

]T
eαC(z+d)−αd z < −d,

α
ε

[
k
|k|2 ,−

i
α

]T
eαz −d < z < 0,

−αC

εC

[
k
|k|2 ,

i
αC

]T
e−αCz z > 0,

(B11)
where we defined

Ck =
1√

4ε0~ωLT
kS
. (B12)

Note that in the main body of the text we denote the
quantised transverse field by

θT
k = θl,k + θu,k = Cke

ik·ru (z) , (B13)

where u (z) is the out-of-plane mode function of the ex-
citation.
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Appendix C: Nonlocal Quantisation

We consider a single longitudinal phonon branch in the
central layer. The electric potential associated with LO
phonons localised in the thin film −d < z < 0 is given by

φL
k = eik·r


0 z < −d,
sin [ξ (z + d/2)] −d < z < 0,

0 z > 0,

(C1)

where k is the in-plane wavevector and ξ is the out-
of-plane wavevector. This relates to the electric field
through E = −∇φ. If the cladding layers act as hard bar-
riers for the phonon the out-of-plane wavevector of the
mode will be quantised, as for photons in a Fabry-Pèrot
cavity, characterised by integer index n and out-of-plane
wavevector ξn = nπ/d. We hypothesise an an electric
Hopfield field of form

θL
k,n = BL

k,ne
ik·r


0 z < −d,[
i k
|k| sin (ξn (z + d/2)) , ξn|k| cos (ξn (z + d/2))

]T
−d < z < 0,

0 z > 0,

(C2)

where Bk,n is a normalisation constant to be determined
from the quantisation conditions. As the phonon is en-
tirely localised within region 2 it can be quantised con-
sidering only the energy in the film yielding

sgn [ω] = 2~ωε0ε∞
ω2
[
ω2

L − ω2
T

]
[ω2 − ω2

T + β2
L(|k|2 + ξ2

n)]
2

∫
d3r|θL

k,n|2

= 2~ε0ερ
ω3ω2

L

[
1− ω2

T/ω
2
L

]2
[ω2 − ω2

T + β2
L(|k|2 + ξ2

n)]
2

∫
d3r|θL

k,n|2.

(C3)

Now we can utilise that for real ξ, valid for frequencies
ω < ωL and for odd values of n∫

d3r|θL
k,n|2 =

S

2|k|2

[ (
ξ2
n − |k|2

)
d

]
. (C4)

This result allows us to identify a quantization factor
similarly to that for the pure longitudinal modes on the
LO phonon dispersion relation

BL
k,n =

√
ω2

L

~ω3ε0ερSLL
k,n

, (C5)

where we defined the effective mode length as

LL
k,n = d

[
ξ2
n

|k|2
− 1

] (
ω2

L − ω2
T

)2
[ω2 − ω2

T + β2
L (|k|2 + ξ2

n)]
2 . (C6)

Here the first term collects the wavevector dependent
components from the integral, and the latter accounts
for the modal drift away from zone centre ωL.

Finally we define a quantisation constant suitable for
all non-quantised (continuous) values of ξ, given by

BL
k =

√
ω2

L

~ω3ε0ερSLL
k

, (C7)

where

LL
k = d

[
ξ2

|k|2
− 1 +

(
ξ2

|k|2
+ 1

)
sin (ξd)

ξd

]
×

(
ω2

L − ω2
T

)2
[ω2 − ω2

T + β2
L (|k|2 + ξ2)]

2 . (C8)

We derived this quantity by carrying out the same cal-
culation but not assuming that the integral over the film
simplifies as in Eq. C4. This is necessary to calculate the
longitudinal and transverse Hopfield fields in Appendix
D.

Appendix D: Nonlocal Dispersion

To uniquely determine the LTP dispersion relation we
need to consider the longitudinal and transverse Hop-
field fields together and apply the boundary conditions
on them as discussed in Section I-C of the main body. In
Appendix B we constructed the ENZ field so as it’s mag-
netic field coefficient β is continuous. As the LO modes
constructed in Appendix C are curl free they have no
associated β. We therefore need to construct the fields
to satisfy the second Maxwell boundary condition on the
parallel electric field coefficient θ ×−→z and an additional
nonlocal boundary condition. As discussed in the main
body the appropriate choice of additional condition is on
ε∞θ·−→z . The boundary condition on θ×−→z can be written

iBk|k| sin (ξd/2) Lk +
α

ε

[
1− e−αd

]
CkTk

= −αC

εC

[
1 + e−αd

]
CkTk, (D1)

where Lk,Tk are expansion coefficients weighting the lon-
gitudinal and transverse components of the LTP. Note
that in the transverse limit L→ 0 this gives

1− αεC − αCε

αεC + αCε
e−αd = 0, (D2)
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which is the standard dispersion relation for the ENZ
mode in a symmetric trilayer waveguide [34]. The bound-
ary condition on ε∞θ · −→z gives

ε∞Bk
ξ

|k|
cos (ξd/2) Lk − i

ε∞
ε

[
1 + e−αd

]
CkTk

= −i
[
1 + e−αd

]
CkTk. (D3)

Dividing through and defining ξ′ = iξ we find the stan-
dard dispersion for symmetric modes in a trilayer nonlo-
cal waveguide [16]

|k|2

ξ′α

[
1− ε

ε∞

]
tanh (ξ′d/2) =

[
tanh (αd/2) +

εαC

αεC

]
,

(D4)
which is the form given in the main body. This equation
uniquely determines the relationship between the modes

frequency and wavevector. To find the transverse electric
field we also need to determine the Lk,Tk longitudinal-
transverse expansion coefficients. This can be done using
either equation, for example

Lk =
1

Bk sinh (ξ′d/2)

×
[
α

ε

[
1− e−αd

]
+
αC

εC

[
1 + e−αd

]] CkTk

|k|
, (D5)

and the normalisation condition

1 = |Lk|2 + |Tk|2, (D6)

derived in the main body under the assumption that the
longitudinal and transverse fields are quantised. This
gives

|Tk|2 = 1− |Lk|2 = 1− |Ck|2

|Bk|2|sinh (ξ′d/2)|2

∣∣∣∣αε [1− e−αd]+
αC

εC

[
1 + e−αd

]∣∣∣∣2 1

|k|2
|Tk|2, (D7)

which yields the expansion coefficients for the transverse
field of the LTP, for example

θT
k = Tk [θl,k + θu,k] , (D8)

where θl,k,θu,k are the quantised transverse fields given
by the final equations in Appendix B.


