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We extend our linear-s
aling approa
h for the 
al
ulation of Hartree-Fo
k ex
hange en-

ergy using lo
alized, in situ optimized orbitals [Dziedzi
 et al., J. Chem. Phys. 139, 214103

(2013)℄ to leverage massive parallelism. Our approa
h has been implemented in the onetep

density fun
tional theory (DFT) framework, whi
h employs a basis of non-orthogonal gen-

eralized Wannier Fun
tions (NGWFs) to a
hieve linear s
aling with system size while re-

taining 
ontrollable, near-
omplete-basis-set a

ura
y. For the 
al
ulation of Hartree-Fo
k

ex
hange we use a resolution-of-identity (RI) approa
h, where an auxiliary basis set of

trun
ated spheri
al waves (SWs) is used to �t produ
ts of NGWFs. The fa
t that the ele
-

trostati
 potential of SWs is known analyti
ally, 
ombined with the use of a distan
e-based


uto� for ex
hange intera
tions, leads to a 
al
ulation 
ost that s
ales linearly with the

system size. Our new implementation, whi
h we des
ribe in detail, 
ombines distributed

memory parallelism (using the Message Passing Interfa
e (MPI)) with shared memory par-

allelism (OpenMP threads) to e�
iently utilize numbers of CPU 
ores 
omparable to, or

ex
eeding, the number of atoms in the system. We show how the use of multiple time-

memory tradeo�s substantially in
reases performan
e, enabling our approa
h to a
hieve

superlinear strong parallel s
aling in many 
ases, and ex
ellent, although sublinear, parallel

s
aling otherwise. We demonstrate that in s
enarios with low available memory, whi
h

pre
lude or limit the use of time-memory tradeo�s, the performan
e degradation of our

algorithm is gra
eful. We show that, 
ru
ially, linear s
aling with system size is maintained

in all 
ases. We demonstrate the pra
ti
ability of our approa
h by performing a set of fully-


onverged produ
tion 
al
ulations with a hybrid fun
tional on large imogolite nanotubes

up to over 1400 atoms. We �nish with a brief study of how the employed approximations

(ex
hange 
uto� and the quality of the SW basis) a�e
t the 
al
ulation walltime and the

a

ura
y of obtained results.
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I. INTRODUCTION

Owing to its favorable balan
e of a

ura
y and relatively low 
omputational 
ost, Kohn-Sham

(KS) density fun
tional theory (DFT) is a widely used te
hnique in many bran
hes of 
omputa-

tional 
hemistry and materials s
ien
e

1

. The a

ura
y of DFT depends 
ru
ially on the approx-

imations invoked in the ex
hange-
orrelation (XC) fun
tional used. Hybrid fun
tionals, whi
h

in
lude a fra
tion of Hartree-Fo
k ex
hange (HFx), are among the most a

urate fun
tionals in

use today, o�ering an elegant way of redu
ing the self-intera
tion error, and leading to a more

faithful des
ription of geometries and of several properties, su
h as bond energies and band gaps,

parti
ularly for metal oxides

2

.

Despite the 
ontinual in
rease in available 
omputing power, 
al
ulating the HFx energy term

remains 
omputationally expensive be
ause of its inherent non-lo
ality. In 
anoni
al KS-DFT the

HFx energy is given by

E
HFx

= −

NMO
∑

i=1

NMO
∑

j=1

zizj

¨

ψ∗

i (r)ψj(r)ψ
∗

j (r
′)ψi(r

′)

|r− r′|
drdr′, (1)

where {ψi} are the 
anoni
al mole
ular orbitals (MOs), zi are their o

upan
ies and NMO is the

total number of mole
ular orbitals present in the 
al
ulation. Given that MOs extend throughout

the entire system, and that the Coulomb operator is long-ranged, the 
ost of ea
h volume integra-

tion in Eq. 1 is proportional to the size of the system, whether measured by the number of atoms N

or the number of mole
ular orbitals NMO (whi
h is ∝ N). The presen
e of a double integral over

volume, together with a double sum over MOs makes a dire
t 
al
ulation of E
HFx

s
ale as O(N4).

In pra
ti
al 
al
ulations the MOs are expanded in terms of a �nite basis:

ψi(r) = ϕα(r)M
α
i, (2)

where we have assumed a summation over repeated Greek indi
es. The te
hniques for mitigating

the unfortunate quarti
 s
aling depend on the employed basis set {ϕα}.
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When lo
alized orbitals are used (e.g. Gaussian fun
tions or numeri
al atomi
 orbitals (NAOs)),

Hartree-Fo
k ex
hange energy 
an be re
ast as

E
HFx

= −Kβα (ϕαϕδ|ϕγϕβ)K
δγ , (3)

where (ϕαϕδ|ϕγϕβ) is the two-ele
tron, four-
enter ele
tron repulsion integral (ERI) in 
hemists'

notation:

(ϕαϕδ|ϕγϕβ) =

=

¨

ϕ∗

α(r)ϕδ(r)
1

|r− r′|
ϕ∗

γ(r
′)ϕβ(r

′)drdr′ (4)

=

ˆ

ϕ∗

α(r)ϕδ(r)uγβ(r)dr, (5)

where

uγβ(r) =

ˆ

ϕ∗

γ(r
′)ϕβ(r

′)

|r− r′|
dr′ (6)

is a Coulombi
 potential of a produ
t of lo
alized orbitals. The 
ontravariant matrix K is the

representation of the single-parti
le density matrix in the duals of the {ϕα}, and is known as the

density kernel. The density kernel is, in general, a spin-dependent quantity. Here, and in all the

text that follows, we will omit spin-dependen
e for 
larity and brevity of notation.

Pre-s
reening ERIs, that is, avoiding their evaluation if they are deemed to be zero or below

a given threshold forms the basis of a number of methods for redu
ing the 
omputational 
ost of

HFx, parti
ularly for Gaussian basis sets. Examples of su
h approa
hes in
lude LinK

3

and ONX

4

.

It has also been re
ognized that rigorous upper bounds for integrals are of se
ondary importan
e,

with tighter estimates of integral values permitting better 
ontrol of the pre
ision of 
al
ulating

HFx

5

. Another approa
h is to use a trun
ated Coulomb operator to evaluate the ERIs, whi
h

makes them short-range. The long range 
ontribution 
an then be re
overed in the form of a

systemati
ally improvable 
orre
tion

6

.

In the 
ontext of extended basis sets, su
h as plane waves, the non-lo
ality of the ex
hange

operator makes the 
al
ulation of HFx more 
hallenging. Nevertheless, suitable te
hniques have

4



been proposed for 
al
ulations on periodi
 systems

7�9

, some of them linear-s
aling

10,11

. Some

of these approa
hes employ mixed basis sets (e.g. Gaussians and plane waves

12,13

, or Wannier

fun
tions and plane waves

10,11

).

In the 
ontext of lo
alized, atom-
entered basis sets, su
h as Gaussians or NAOs, methods based

on the resolution of the identity (RI) are 
ommonly employed to make the 
omputational e�ort

asso
iated with 
omputing HFx more manageable. These te
hniques, pioneered in the 1970s

14,15

,

and parti
ularly popular in the �eld of 
orrelated wavefun
tion methods

16�18

, expand pair produ
ts

of atomi
 orbitals in an auxiliary basis whose fun
tions are similarly atom-
entered

19

.

One of the most notable developments in this area is the robust �tting formula of Dunlap

20,21

,

whi
h, when used instead of dire
tly repla
ing the pair produ
ts with their RI �ts, ensures the

resultant error is bilinear in the error of the �tted produ
ts

19

, with the linear error removed.

Dunlap and 
o-workers are also 
redited with establishing

22

that using the Coulomb metri
 in the

�tting o�ers more a

urate energies 
ompared to other metri
s, su
h as the overlap metri
.

In re
ent years 
ertain di�
ulties asso
iated with robust �tting have been re
ognized and so-

lutions or workarounds proposed. Merlot et al.

19

observed that the two-ele
tron integral matrix

is not manifestly positive semide�nite under 
ertain 
onditions. They proposed a pair-atomi
 res-

olution of identity (PARI) approa
h, based on lo
al �tting of either the bra or the ket side of

the ERI, 
ombined with the robust 
orre
tion, to a
hieve quadrati
 a

ura
y

20

. Tew

23

re
ently

proposed a �quasi-robust� lo
al density �tting approa
h that addressess issues with undesired long-

range behavior when the auxiliary basis is in
omplete. Sodt and Head-Gordon

24

proposed a lo
al

modi�
ation to RI that yields energies that are di�erentiable with respe
t to nu
lear positions.

In this paper we present a massively-parallel approa
h for the e�
ient 
al
ulation of Hartree-

Fo
k ex
hange in linear-s
aling time. The te
hnique employs the resolution of identity and uses

trun
ated spheri
al waves as the auxiliary basis, with only the ket side of Eq. 4 being �tted, while

the produ
ts in the bra are unexpanded. It is based on our previous developments

25

, where the

original implementation was serial. In se
tion II we �rst brie�y outline the basi
s of onetep �

the linear-s
aling reformulation of KS-DFT in whi
h our approa
h is implemented, following with

5



a des
ription of the theoreti
al basis of our method. In se
tion III we des
ribe the implementation

details of the algorithm, devoting parti
ular attention to the parallel data distribution and time-

memory tradeo�s that enable its e�
ient parallelization. A short se
tion IV des
ribes the set-up

of the 
al
ulations we performed to ben
hmark our method.

In se
tion V we show the results of these 
al
ulations � we demonstrate that our algorithm

is indeed linear-s
aling, we 
ompare 
al
ulation walltimes against non-hybrid fun
tionals, and

investigate how individual 
omponents of the 
al
ulation s
ale. We show ex
ellent strong and

weak parallel s
aling of our approa
h, with superlinear speed-ups in many 
ases. We brie�y

demonstrate how pre
onverging the 
al
ulation with a non-hybrid fun
tional before 
ontinuing

with a hybrid fun
tional signi�
antly shortens 
al
ulation time with negligible loss of a

ura
y.

We 
on
lude this se
tion with a demonstration of the feasibility of the proposed approa
h, by

performing 
al
ulations with the B3LYP hybrid fun
tional on imogolite nanotube systems with

1416 atoms. We �nish with se
tion VI, whi
h 
ontains 
on
lusions and thoughts about future

work. In supplementary information we show how the additional approximations (the use of a


uto�, �niteness of the auxiliary basis) are 
ontrollable and how the asso
iated errors are very

small.

II. THEORY

A. ONETEP

onetep

26

reformulates Kohn-Sham DFT

27

in terms of the single-parti
le density matrix,

ρ(r, r′). The density matrix is represented as:

ρ(r, r′) = ϕα(r)K
αβϕ∗

β(r
′), (7)

where the {ϕǫ} are the non-orthogonal generalized Wannier fun
tions (NGWFs)

28


entered at rǫ,

whi
h 
oin
ide with nu
lear 
oordinates (ǫ being a generi
 NGWF index). The NGWFs are stri
tly

lo
alized within spheri
al regions with radii {Rǫ}.
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K is the density kernel, a sparse 
ontravariant matrix, whose elements Kαβ
are nonzero only if

|rα − rβ| < r
K

, where r
K

a real-spa
e 
uto� length, known as the density kernel 
uto�.

The stri
t lo
alization of NGWFs means the NGWF overlap matrix S = {Sǫζ}, de�ned as

Sǫζ =

ˆ

ϕ∗

ǫ(r)ϕζ(r)dr (8)

is sparse.

The NGWFs are expanded as linear 
ombinations of psin
 fun
tions

29

, Dm(r) = D(r− rm):

ϕǫ(r) =

m∈LR(ǫ)
∑

m

D(r− rm)cmǫ, (9)

where the index m runs over the points of the real-spa
e Cartesian grid rm, whi
h are the 
enters

of the psin
 fun
tions, inside the lo
alization region of ϕǫ, LR(ǫ). The psin
 fun
tions form an

orthogonal basis and are related to plane waves by a Fourier transform, thus sharing many of their

desirable properties, notably the independen
e from the nu
lear 
oordinates and the ability of the

basis set to be systemati
ally improved by in
reasing a single parameter: the kineti
 energy 
uto�.

The total energy is minimized self-
onsistently with respe
t to the density kernel elements Kαβ

and the NGWF expansion 
oe�
ients cmǫ under the 
onstraints of the idempoten
y of the density

matrix and 
onservation of the number of ele
trons, N
e

.

In typi
al onetep 
al
ulations this is done in two nested loops. In the inner loopK is optimized

via a modi�ed Li-Nunes-Vanderbilt (LNV) algorithm

30�32

with the NGWFs �xed. The outer loop

optimizes the NGWF expansion 
oe�
ients cmǫ through gradient-based energy minimization. The

fa
t that the NGWFs remain �xed in the inner loop (and thus during the majority of energy

evaluations) will play a 
ru
ial role in the 
ode optimizations employed in the 
al
ulation of the

Hartree-Fo
k ex
hange energy.
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B. Hartree-Fo
k ex
hange in ONETEP

By introdu
ing an auxiliary quantity, the (
ovariant) ex
hange matrix X:

Xαβ = (ϕαϕδ|ϕγϕβ)K
δγ , (10)

we 
an express E
HFx

(Eq. 3) simply as

E
HFx

= −KβαXαβ. (11)

Dire
t evaluation of ERIs from Eq. 4 is impra
ti
able be
ause of the six-dimensional nature of the

integral. Pro
eeding via Eq. 5 is slightly more advantageous � uγβ(r) (Eq. 6) 
an be obtained in

re
ipro
al spa
e

33

or by solving the Poisson equation. Here the di�
ulty lies in the fa
t that this

has to be done for ea
h pair-atomi
 quantity ϕ∗

γ(r
′)ϕβ(r

′) and that the potential uγβ(r) is long-

ranged. The latter pre
ludes the use of onetep's traditional tool, the FFT box

34

, as the FFT

box would have to 
oin
ide with the entire simulation 
ell. This approa
h is quadrati
ally-s
aling

with a very large prefa
tor

34

. The use of a �nite ex
hange 
uto�, e.g. by assuming Xαβ to vanish

when |rα − rβ| < r
X

, where r
X

is the ex
hange 
uto� length, makes this approa
h linear-s
aling,

but the prefa
tor remains prohibitively large.

We now brie�y re
ount the linear-s
aling approa
h a
tually used in onetep. For more details

we refer the reader to Ref. 25 where this approa
h was �rst des
ribed.

We �rst introdu
e the ele
trostati
 metri
 V with the elements:

Vps =

¨

f ∗

p (r)
1

|r− r′|
fs(r

′)drdr′ = (fp|fs) , (12)

where {fp(r)}
N

f

p=1 are a set of (in-general) non-orthogonal fun
tions. Using the elements V ps
of the

inverse metri
 matrix V
−1

we 
an de�ne a resolution-of-identity (RI) operator:

Î
V

= |fp) V
ps (fs| . (13)

Su
h RI operators are often used in 
omputational quantum 
hemistry software

14�18,20,22�24,35�39

with the aim of repla
ing four-
enter ERIs with more tra
table 3-
enter integrals.
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FIG. 1. NGWFs (lo
alized orbitals) featuring in the 
al
ulation of E
HFx

(Eq. 3). The intera
ting pair-

atomi
 quantities ϕ∗

α(r)ϕδ(r) and ϕ∗

γ(r
′)ϕβ(r

′) are shaded. All terms where the lo
alization sphere of α is

disjoint from that of δ vanish, and similarly all terms where the lo
alization sphere of β is disjoint from

that of γ vanish. This is a property of lo
alized orbitals. The non-lo
al nature of Hartree-Fo
k ex
hange

manifests in the fa
t that terms where the lo
alization sphere of α is disjoint from the lo
alization sphere

of β do not, in general, vanish.

By inserting the RI operator into Eq. 3, we obtain

25

:

E
HFx

= −Kβα (ϕαϕδ|fp)V
ps (fs|ϕγϕβ)K

δγ , (14)

whi
h is exa
t if the set of auxiliary fun
tions spans the same subspa
e as the produ
ts of NGWFs.

In pra
ti
e we will be working with �nite sets of auxiliary fun
tions, making Eq. 14 an approximate

equality; we will denote the resultant approximate Hartree-Fo
k ex
hange energy with Ẽ
HFx

and

the approximate ex
hange matrix whose elements are

X̃αβ = (ϕαϕδ|fp) V
ps (fs|ϕγϕβ)K

δγ
(15)

with X̃.
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The employed auxiliary basis should have two important properties � it should be able to

a

urately represent the �tted NGWF produ
ts, and it should enable the 
omputation of Coulomb

potentials (Eq. 6) in O(1) time per NGWF pair. One su
h basis set is formed by trun
ated

spheri
al waves (SWs), whi
h are solutions of the S
hrödinger equation for a parti
le in a sphere.

They are given by

f(r) =











jl (qr)Zlm (r̂) r < a,

0 r ≥ a
, (16)

where jl (qr) is a spheri
al Bessel fun
tion, Zlm (̂r) is a real spheri
al harmoni
, m is an integer

from the interval [−l, l], and a is the radius of the sphere where the zero boundary 
ondition is

imposed. In onetep's implementation we assume ∀ǫRǫ = a, that is, all NGWF lo
alization radii

are identi
al and equal to a. The value of q is 
hosen in su
h a way that jl (qa) = 0, and the

suitable values of q depend on the angular momentum index l. The maximum values of q and l

are limited by the kineti
 energy 
uto� and the 
orresponding grid spa
ing. In typi
al s
enarios

it is su�
ient to trun
ate the SW basis at lmax = 3 and qmax = 12, where qmax is the number of

di�erent values of q used for ea
h l. In the text that follows we will use a single index (p or s)

for the SWs for simpli
ity. This index 
overs all the possible 
ombinations of l, q and m and runs

from 1 to NSW. We will use up(r) to denote the potential of a SW (�SWpot� in further text):

up(r) =

ˆ

fp(r
′)

|r− r′|
dr′. (17)

This potential 
an be evaluated analyti
ally in O(1) time

33

.

In our te
hnique the produ
ts featuring in the ket of Eq. 4, that is ϕ∗

γ(r
′)ϕβ(r

′), are expanded,

while the produ
ts in the bra, that is ϕ∗

α(r)ϕδ(r), do not undergo expansion. The 
oe�
ients of

expansion {cpγβ}p=1...NSW

are given by:

cpγβ = V ps (fs|ϕγϕβ) . (18)

An important issue is the 
hoi
e of 
enters for the SWs used in the expansion of ϕ∗

γ(r
′)ϕβ(r

′).

Using SWs 
entered only on NGWF γ or only on NGWF β breaks symmetry in Eq. 4, be
ause

10



it leads to cγβ ≈ cβγ , rather than cγβ = cβγ. Using SWs 
entered on both β and γ alleviates

this problem, but there is still the problem of broken αδ ↔ γβ symmetry, i.e. the produ
ts in

the bra of the ERI Eq. 4 are then exa
t, while the produ
ts in the ket are approximate (�tted).

To formally satisfy all the symmetry requirements one 
an resort to using SWs 
entered on all

four atoms (α, β, γ, δ) in the expansion, whi
h keeps the �tting domain identi
al between all

permutations of α, β, γ, δ in the ERI. Su
h a �t is then robust in the sense of Ref. 20, that is, the

�tted integral does not 
ontain any terms linear in the error in the �tted densities. However, in

our 
ase this is impra
ti
able. Even though it maintains linear-s
aling, using four 
enters in the

expansion leads to prefa
tors that are prohibitively large, be
ause the produ
t ϕ∗

γ(r)ϕβ(r) then

needs to be re-expanded every time α or δ 
hanges in Eq. 14.

We solve the above problem by using a 2-
enter expansion (on β and γ) and re
overing the

αδ ↔ γβ symmetry by symmetrizing the approximate (SW-expanded) ex
hange matrix, X̃:

X̃αβ ←
1

2

(

X̃αβ + X̃βα

)

. (19)

This 
hange propagates to the expression for the Hartree-Fo
k energy, whi
h now reads

25

:

Ẽ
HFx

= −
1

2
Kβα

[

(ϕαϕδ|fp,γβ)V
ps (fs,γβ|ϕγϕβ) + (20)

(ϕαϕδ|fp,δα)V
ps (fs,δα|ϕγϕβ)

]

Kδγ .

Here we used additional indi
es to the SWs {f} to indi
ate where they are 
entered. While the

above expression formally in
ludes SWs 
entered on α and δ, we again stress that the symmetriza-

tion pro
edure (Eq. 19) makes it su�
ient to only expand using SWs on β and γ. We have shown

25

that in pra
ti
e any di�eren
es between the elegant, but prohibitively expensive 4-
enter �t and

the 2-
enter �t we employ are negligible, although our approa
h is no longer robust in the sense

of Ref. 20.

An important advantage of the 2-
enter expansion is that it only in
ludes SWs 
entered on atoms

whose NGWFs overlap, making the ele
trostati
 matrix in Eq. 12 e�e
tively sparse (even though

the potential of a SW is not lo
alized). This is ne
essary for the approa
h to be linear-s
aling.

11



We subsequently build linear 
ombinations of SWpots (
orresponding to expanded potentials

of NGWF pair produ
ts):

eγβ(r) =

NSW
∑

p=1

up(r)c
p
γβ = Îγβ |ϕγϕβ) (21)

(where Îγβ is de�ned in Eq. 24), and 
ontra
t them with the density kernel over the index γ and

a
t the resultant potential:

ũδβ(r) = Kδγeγβ(r) (22)

on the produ
t ϕ∗

α(r)ϕδ(r) that appears in the bra of the ERI of Eq. 3. Having repeated this step

for all requisite NGWFs δ, we obtain an element of the ex
hange matrix, X̃αβ (Eq. 15). In the

�nal step we 
ontra
t the ex
hange matrix with the negative of the density kernel K over α and

β, a

ording to (11) to obtain the Hartree-Fo
k ex
hange energy.

For every ex
hange matrix element (a pair of indi
es (α, β)) the 
ost of the above 
al
ulation is

asymptoti
ally 
onstant (independent of system size). This is be
ause all the NGWFs are stri
tly

lo
alized and their overlap matrix is sparse. For our approa
h to be linear-s
aling, the number of

pairs (α, β)must in
rease linearly with system size, i.e. the ex
hange intera
tion must be trun
ated.

This is standard prati
e in linear-s
aling methods

40

. Our method employs a simple distan
e-based


uto�, where the ex
hange matrix X is made sparse by negle
ting 
ontributions from pairs (α, β)

when |rα − rβ| > r
X

, where r
X

is an assumed real-spa
e 
uto� for ex
hange. We have shown

25

that

even in more demanding appli
ations r
X

≈20 a0, or even less, is su�
ient keep the trun
ation error

below 0.01%.

The fa
t that in onetep the NGWFs are optimized in situ ne
essitates 
al
ulating the gradient

of the energy with respe
t to the NGWF expansion 
oe�
ients (whi
h, mathemati
ally, is the

fun
tional derivative of the energy with respe
t to the 
omplex 
onjugate of some NGWF α). The

derivation of the relevant expression for Hartree-Fo
k ex
hange has been presented in Ref. 25; here,

for the sake of brevity we only re
ount the �nal form:

Gα(r) = Gα
1 (r) +Gα

2 (r) = 2ϕδ(r)K
βαKδγ Îγβ |ϕγϕβ) + 2ϕδ(r)Îδα

(

KβαKδγ |ϕγϕβ)
)

, (23)

12



where the fa
tor of 2 is due to the fa
t that the NGWFs are assumed to be real-valued, and the

operator Iκλ is the resolution of identity operator in terms of SWs 
entered on NGWFs κ and λ:

Îκλ = |fp,κλ) V
ps (fs,κλ| . (24)

The �rst term in Eq. 23 involves summing large numbers of expansions of pair NGWF produ
ts

ϕγϕβ in terms of SWs 
entered on these NGWFs. In the se
ond, more involved term linear


ombinations of NGWF produ
ts are expanded in SWs 
entered not on these NGWFs, but rather

on the NGWF with respe
t to whi
h we di�erentiate (α) and the NGWFs that overlap with it (δ).

The expression in Eq. 23 is the 
ontravariant gradient, whi
h 
annot be dire
tly used to update

NGWFs {ϕα}, whi
h are 
ovariant. To a
hieve tensorial 
orre
tness, it must be 
onverted to a


ovariant gradient: Gǫ(r) = Gα(r)Sαǫ.

C. Summary of trun
ation parameters

As an aid to the Reader, in se
tion IIB we re
ount and brie�y des
ribe the trun
ation parameters

used in onetep and in this work.

TABLE I. Summary of trun
ation parameters employed in the onetep approa
h and in our HFx algorithm.

Parameter Symbol Typi
al Used in Des
ription

value

Density kernel


uto�

r
K

50�100 a0 onetep Distan
e between two atomi
 
enters beyond whi
h

the density matrix is assumed to vanish.

NGWF lo
aliza-

tion radius

Rǫ 8�10 a0 onetep Radius of an atom-
entered sphere beyond whi
h the

NGWF is assumed to be stri
tly zero.

Ex
hange 
uto� r
X

20�25 a0 HFx method Distan
e between two atomi
 
enters beyond whi
h

the ex
hange matrix is assumed to vanish.
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III. IMPLEMENTATION

In this se
tion we des
ribe the parallel implementation of our algorithm, highlighting 
hoi
es of

parallel de
ompositions and time-memory tradeo�s that make it e�
ient and massively paralleliz-

able.

A. Preliminary 
omments and notation

We begin with a minor implementation detail that will gain more importran
e later in the text.

As mentioned earlier (
f. Eq. 9), in onetep the NGWFs are stored as psin
 expansion 
oe�
ients

on a Cartesian grid. In pra
ti
e we use a so-
alled parallelepiped representation, illustrated in

Fig. 2.

FIG. 2. Diagram of the PPD representation used in onetep (simpli�ed to 2D). Two example NGWFs are

shown (
ir
les). Grid data for NGWFs and their overlaps is stored as 
ontents of parallelepipeds (PPDs)

tiling the grid (shaded areas).
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The simulation 
ell is tiled into suitably-sized parallelepipeds (PPDs). Ea
h NGWF lo
alization

region is en
ompassed by a number of PPDs (shaded areas in the diagram). The psin
 
oe�
ients

are stored for all points in these PPDs, arranged into a 
ontinuous 1D array. Su
h a pa
ked

representation, while introdu
ing some overhead (points within PPDs but outside of the NGWF

sphere), makes it easy to pass NGWF data between MPI ranks and enables e�
ient pro
essing.

In the 
urrent implementation of HFx this representation is also used for NGWF overlaps (dark-

shaded area in the diagram).

In the text that follows we will use a 
onvention where 
apital letters (A, B, C, D, I, J , M)

denote atoms. Lower
ase letters (a, b, c, d) will be used to index NGWFs on a 
orresponding

atom, for example a will 
ount NGWFs on atom A. For indexing NGWFs globally we will use

Greek letters (α, β, γ, δ, ǫ, ζ) like we have already done in the introdu
tion. We will o

asionally

swit
h between these two ways of indexing NGWFs (Aa ≡ α, et
.) as some 
on
epts are easier

explained using one notation or the other. Also, impli
it summation will be assumed only over

repeated Greek indi
es.

Matrix sparsity plays an important role in the algorithm we present. The sparsity of S (due

to stri
t lo
alization of NGWFs), the sparsity of K (due to the assumed kernel 
uto�), and the

sparsity of X̃ (due to the assumed ex
hange 
uto�) are all 
ru
ial for a
hieving linear s
aling. In

the text that follows it will often be useful to think of matrix sparsity patterns in terms of pairs

of atoms that are either within a sparsity pattern of a matrix (meaning the 
orresponding matrix

element is non-zero), or outside it (meaning the 
orresponding element is zero and is not stored).

We will use the following terminology to des
ribe this: two atoms whose NGWFs overlap (and so

the 
orresponding S element is non-zero) will be termed S-neighbors. Two atoms whose 
enters

are within the ex
hange 
uto� (and so the 
orresponding X̃ element is non-zero) will be termed

X-neighbors. The relations of being an S-neighbor or X-neighbor are 
ommutative. Finally, by

saying an atom I is an X-S-neighbor of atom J we will mean that there exists an atom M su
h

that J and M are X-neighbors, and M and I are S-neighbors. This is best understood referring
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to Fig. 1, where atom D (NGWF δ) is an X-S-neighbor of atom B (NGWF β). Note that this

relation is not, in general, 
ommutative.

B. Hybrid MPI-OpenMP parallelism

onetep employs hybrid parallelism for all its major algorithms

41

. Distributed-memory, pro
ess-

based (MPI

42

) parallelism is used in two ways: for the geometri
 de
omposition of the simulation


ell (where ea
h MPI rank deals with a number of slabs 
omprising the 
ell), and to divide atoms

a
ross MPI ranks (ea
h MPI rank �owns� or is responsible for a subset of atoms). Su
h a s
heme is

naturally limited in the number of MPI ranks that 
an be used � performan
e begins to deteriorate

on
e the number of MPI pro
esses ex
eeds the number of slabs in the 
ell (be
ause some ranks no

longer have any work to do), or when the number of MPI ranks ex
eeds the number of atoms in

the system (at whi
h point onetep 
annot be run). This problem 
an be alleviated by redu
ing

the number of MPI ranks and instead having ea
h rank spawn a number of threads to saturate

the available CPU 
ores.

Shared-memory, thread-based parallelism (OpenMP

43

) is then used on a �ner s
ale to subdivide

larger work grains into threads. There are two main advantages to using su
h a hybrid model.

One is being able to utilize large number of CPU 
ores without signi�
ant loss of performan
e.

Another stems from the fa
t that threads share an address spa
e, so the memory load asso
iated

with quantities that would normally be repli
ated a
ross MPI ranks is lowered sin
e fewer MPI

ranks are used. This se
ond advantage does not play a large role in onetep, as the most memory-

intensive quantities are distributed, not repli
ated, a
ross MPI ranks.

The main two bottlene
ks in onetep's approa
h to Hartree-Fo
k ex
hange are (a) the eval-

uation of SWpots (Eq. 17) from analyti
al expressions involving trigonometri
 and radial terms

(see Ref. 33 for details), and (b) the evaluation of SW-expanded potentials of NGWF pair produ
ts

(Eq. 21). Both of these are performed repeatedly, often for the same parameters. For example,
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Eq. 21 will be evaluated with the same γ and β for multiple 
ombinations of α and δ, of whi
h it

is independent.

Naturally, this opens up opportunities for time-memory tradeo�s, where already 
al
ulated re-

sults are 
a
hed in memory and subsequently reused, redu
ing the 
omputational 
ost to mere

look-ups. However, this has to be done 
arefully. Both quantities 
onsidered here (SWpots and

expanded potentials) require very large amounts of memory to store. Further in the text (se
-

tion III E) we outline how the requirements s
ale with the system size, here we will only provide

an estimate � in typi
al s
enarios this memory requirement begins to ex
eed 1TB at about 400

atoms, just at the onset of linear s
aling in the evaluation of HFx. This is a requirement on total

memory, and so it 
ould in prin
iple be divided a
ross multiple 
ompute nodes. In today's high

performan
e 
omputing environments, using this quantity of distributed memory is pra
ti
al, sin
e


ompute nodes are routinely equipped with 128 to 512GB of memory.

Not to be negle
ted, however, is the 
ost to a

essing su
h distributed 
a
hed data � a

essing

data that is not lo
al to an MPI rank entails interpro
ess 
ommuni
ation. The 
al
ulation of

SWpots in onetep has been extensively optimized � 
al
ulating ≈ 200 SWpots that are required

in typi
al s
enarios in one PPD that 
ontains 125 grid points takes only about 5 µs, and so any

attempt to a

ess a 
a
hed 
opy from a remote MPI rank would be mu
h slower. For this reason

our algorithm relies on 
a
hing all relevant data lo
ally (within the same MPI rank), even if this

means repli
ating some data a
ross ranks.

To minimize this repli
ation and to in
rease the available RAM for the 
a
he it stands to reason

to use as many OpenMP threads as possible and as few MPI ranks, as threads 
an then share a

large 
a
he without any need for message passing. Suitable thread syn
hronization me
hanisms

must be used when populating the 
a
he to avoid data ra
es, but on
e the 
a
he is populated and

be
omes read-only there is no need for syn
honization.

For the above approa
h to be e�
ient, our algorithm had to be optimized for large numbers

of threads. This is a

omplished by ordering operations in su
h a way as to move OpenMP

parallelism as high in the loop stru
ture as possible, making 
omputational grains larger, and by
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avoiding syn
hronization me
hanisms (
riti
al se
tions) whenever possible. As we will demonstrate

in se
tion V, the result is an algorithm that s
ales well to at least tens of OpenMP threads per

pro
ess and at least thousands of CPU 
ores.

Another 
omponent 
ru
ial for massive parallelism is load balan
ing. As des
ribed above,

onetep distributes atoms a
ross MPI ranks. Looking at relevant expressions (e.g. Eqs. 18, 21

and 23), it be
omes apparent that the key quantity being pro
essed are the kets |ϕγϕβ) . For

this reason, our algorithm distributes atom pairs (B,C) rather than atoms as in onetep's orig-

inal parallel distribution

44

. In the text that follows we will term onetep's original distribution

�s
heme 1�, while the s
heme used by the HFx algorithm will be termed �s
heme 2�. The quantities

that are inputs to the algorithm, su
h as NGWFs, density kernel elements and the metri
 matrix

V, will need to re-distributed from s
heme 1 to s
heme 2 before a
tual pro
essing begins, and the

quantities produ
ed by the algorithm (the ex
hange matrix X̃ and the NGWF gradients Gα(r))

will have to be re-distributed from s
heme 2 ba
k to s
heme 1 before they 
an be used by the rest

of onetep ma
hinery. The walltime 
ost of these operations is very modest, below 0.5%. The

asso
iated memory 
ost (due to having to store additional NGWFs and density kernel elements)

is also a

eptable, at a level below 1 MB/atom per MPI rank.

C. Algorithm overview

Examining expressions in Eqs. 18 and 21 makes it 
lear that they are independent of the density

kernel, and involve only the NGWFs. This means that the 
al
ulation of Ẽ
HFx


an be broken up

into two distin
t stages � one that is independent of the density kernel, and one that is density-

kernel-dependent. The �rst stage, whi
h involves 
al
ulating expansion 
oe�
ients of NGWF pair

produ
ts (Eq. 18) and the potential of these expansions (Eq. 21) does not need to be repeated in

the inner (kernel optimization, LNV) loop. The se
ond stage (Eq. 22, subsequent 
al
ulation of

the elements of X̃, and of Ẽ
HFx

itself (Eq. 11)) must be repeated every time K 
hanges, that is,

multiple times in the inner loop.
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The density-kernel-independent stage will be des
ribed in se
tion IIID, and the density-kernel-

dependent stage, whi
h entails the a
tual 
al
ulation of Ẽ
HFx

� in se
tion III E.

The last 
omponent is the 
al
ulation of the gradient of Ẽ
HFx

with respe
t to the NGWFs,

whi
h is required for in situ optimization of NGWFs. It will be des
ribed in se
tion III F.

D. Density-kernel-independent stage

Algorithm 1 Density-kernel-independent stage

1: Distribute (B,C) pairs a
ross MPI ranks

2: Determine B and C atoms for ea
h MPI rank

3: Determine A atoms for ea
h MPI rank

4: Determine D atoms for ea
h MPI rank

5: Redistribute the matrix V from s
heme 1 to s
heme 2

6: Redistribute NGWFs from s
heme 1 to s
heme 2

7: Determine the set of all PPDs where SW expansions of the potential will be needed for ea
h MPI rank

8: Populate the SWpot 
a
he on ea
h MPI rank (→Alg. 1B)

9: Populate the NGWF produ
t 
a
he (→Alg. 1C)

10: Expand NGWF pair produ
ts (→Alg. 1D)

The density-kernel-independent stage is des
ribed in Algorithm 1. In step 1, the workload

asso
iated with all kets in Eq. 14, that is the set of all (B,C) atom pairs in the 
al
ulation, is dis-

tributed a
ross MPI ranks. During load-balan
ing, we assume the 
omputational e�ort asso
iated

with a (B,C) atom pair to be proportional to the produ
t of the number of NGWFs on atoms B

and C. This is justi�ed by the fa
t that the algorithm deals with produ
ts of pairs of NGWFs on

these atoms. In the �nal distribution ea
h MPI rank has a subset of (B,C) atom pairs and these

subsets are mutually disjoint, i.e. a given (B,C) pair is only found on one MPI rank.

In step 2, ea
h MPI rank 
onstru
ts a set of all B atom indi
es, and a set of all C atom indi
es

present in its set of (B,C) pairs. We will refer to these as the rank's B atoms, and rank's C
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atoms. Unlike (B,C) pairs, more than one MPI rank 
an have the same B or C atom in its subset

(i.e. the subsets are not disjoint).

In step 3, ea
h MPI rank determines the set of its A atoms, whi
h we de�ne as all atoms that are

X-neighbors to any B atom the MPI rank owns. Similarly, in step 4, ea
h MPI rank determines

the set of its D atoms, whi
h we de�ne as all atoms that are X-S-neighbors to any B atom the

MPI rank owns.

In step 5, the ele
trostati
 metri
 matrix V (Eq. 12) is redistributed from s
heme 1 (whi
h was

used during its 
al
ulation) to s
heme 2 (whi
h is used in all subsequent 
al
ulations). This also

involves a 
hange of the underlying datastru
ture � from a distributed sparse matrix, to rank-lo
al

hash tables.

In step 6, the NGWFs themselves are redistributed from s
heme 1 to s
heme 2. Ea
h MPI rank

requests s
heme-1-owners of all NGWFs it is going to need to send them (in PPD format), and,

simultaneously, ea
h MPI rank listens for requests addressed to it and satis�es them by sending the

NGWFs it s
heme-1-owns. Following this step, ea
h MPI rank has all the NGWFs it is going need

in the 
al
ulation of HFx lo
ally. No further 
ommuni
ation of NGWFs is going to be ne
essary.

This is an important tradeo� � we sa
ri�
e some memory (be
ause most NGWFs are now repli
ated

on more than one rank), but in return we avoid interspersing 
al
ulation with 
ommuni
ation in

all subsequent stages of the 
al
ulation. Our algorithm will thus be free of any idle waits of a rank

for 
ommuni
ation with another rank, and of any potential 
onvoy e�e
ts. The memory 
ost of

this overhead is a

eptable � below 1 MB/atom on ea
h MPI rank, in
reasing linearly with system

size (owing to the sparsity of S and X). We use the same approa
h for 
ommuni
ating elements

of the density kernel (see Alg. 2, step 1 further in the text).

In step 7, ea
h MPI rank establishes the set of PPDs where SW-expanded potentials of ket

NGWF pairs will be required. This is a union of the sets of PPDs on all of the rank's atoms A.

In step 8, ea
h MPI rank populates its SWpot 
a
he, following Algorithm 1B.

In step 9, ea
h MPI rank populates its NGWF produ
t 
a
he, following Algorithm 1C.

Finally, in step 10 NGWF pair produ
ts are expanded in terms of SWs, following Algorithm 1D.
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This 
ompletes the des
ription of the density-kernel-independent stage. We now brie�y des
ribe

the algorithms used in the last three steps.

The SWpot 
a
he is populated a

ording to Algorithm 1B.

Algorithm 1B Populate the SWpot 
a
he

1: Perform a dry-run of the 
al
ulation, where only the numbers of a

esses to ea
h SWpot are 
ounted

(for every MPI rank separately)

2: Determine how many SWpots 
an be 
a
hed before the user-spe
i�ed memory limit is rea
hed, Nmax

SWpot

3: Pre
al
ulate the Nmax

SWpot

most a

essed SWpots and store them in a hash table

Algorithm 1C Populate the NGWF produ
t 
a
he

1: n
pairs

= 0

2: for all my A atoms do ⊲ Count (A,D) pairs

3: for all D atoms that are S-neighbors of this A do

4: n
pairs

= n
pairs

+ 1

5: end for D

6: end for A

7: OMP for i
pair

= 1 to n
pairs

do ⊲ Pro
ess (A,D) pairs

8: for all NGWFs d on atom D in pair do

9: for all NGWFs a on atom A in pair do

10: if room left in NGWF produ
t 
a
he then

11: Compute and store ϕAaϕDd in PPDs

12: else

13: exit OMP for

14: end if

15: end for a

16: end for d

17: end OMP for i
pair

The NGWF produ
t 
a
he is populated following Algorithm 1C. First, ea
h rank 
ounts and

enumerates the atom pairs (A,D) relevant to it, building a list of pairs. This is done to swit
h from
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atom indi
es to a fused (pair) index, whi
h lends itself better to OMP parallelization. Subsequently,

for all the atom pairs the produ
ts of their NGWFs are 
al
ulated and stored, with the pair loop

parallelized over OpenMP threads. If at any time the user-spe
i�ed maximum size of the produ
t


a
he is rea
hed, the loop terminates early. That means that we only store as many NGWF

produ
ts as possible, with the memory requirement stri
tly bounded. In subsequent steps produ
ts

that are not found in the 
a
he will simply be re
al
ulated on the �y. This pre
ludes runaway

memory use and ensures gra
eful performan
e degradation in low-memory s
enarios.

Algorithm 1D Expand NGWF pair produ
ts

1: for all (B,C) pairs owned by this MPI rank do

2: for all NGWFs b on atom B in pair do

3: for all NGWFs c on atom C in pair do

4: Compute ϕBbϕCc in PPDs

5: OMP for all PPDs in produ
t ϕBbϕCc do

6: Cal
ulate bs,γβ = (fs|ϕγϕβ) for all SWs s

7: For all SWs p, obtain expansion 
oe�
ients

cpγβ = V psbs,γβ by solving a linear

equation system Vspc
p
γβ = bs,γβ

8: end OMP for PPD

9: end for c

10: end for b

11: end for (B,C)

NGWF pair produ
ts are expanded in terms of SWs following Algorithm 1D. For all NGWF

pairs on all (B,C) atom pairs owned by an MPI rank we �rst 
al
ulate the produ
ts of the NGWFs,

and then 
al
ulate their overlaps with all SWs s (
entred on B and C). The overlaps are then

used as the 
onstant term in a system of linear equations to determine the expansion 
oe�
ients

(step 7). OpenMP parallelism is employed over PPDs in the produ
t.
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E. Density-kernel-dependent stage

In this stage the Hartree-Fo
k ex
hange energy Ẽ
HFx

is 
al
ulated using the SW expansion of

NGWF produ
ts obtained from Algorithm 1. Unlike the previous stage, this one depends on the

values of the density kernel and as su
h it needs to be performed multiple times within the kernel

optimization loop. The pro
edure is outlined in Algorithm 2, and will now be des
ribed.

In step 1, the density kernel matrix K is redistributed from s
heme 1 (whi
h is used in the rest

of onetep) to s
heme 2 (whi
h is used in all subsequent 
al
ulations). This also involves a 
hange

of the underlying datastru
ture � from a distributed sparse matrix, to rank-lo
al hash tables.

Next, ea
h MPI rank pro
esses the atom pairs (B,C) it was assigned. The result of this

pro
essing are the expanded potentials of NGWF produ
ts eγβ for all NGWFs on atoms B and C

in ea
h pair. The expanded potentials are 
al
ulated at all points where they will later be required,

that is in the PPDs of all atoms A that are X-neighbors to atom B. This set of PPDs (termed

�PPDs relevant to atom B�) is established in step 3.

Subsequently, we iterate over all the NGWF pairs on atoms B and C. The previously 
al
ulated

SW expansion 
oe�
ients cpγβ for the NGWF produ
ts are retrieved (step 6) and the expanded

potential is 
al
ulated (step 8) in all relevant PPDs. OpenMP parallelism is leveraged for the loop

over PPDs. The expanded potential is stored in a hash table termed the �expansion 
a
he�.

Storing all the expanded potentials would require enormous amounts of memory � for all but

the smallest systems, they need to be 
al
ulated in a sphere with a radius r
X

+ a (where r
X

is

the ex
hange 
uto� and a is the NGWF lo
alization radius). At typi
al settings this translates

to about 6.5 MB of storage per single expansion. The number of expansions on an atom B is

nBnCN
S

B, where nB and nC are the numbers of NGWFs on atoms B and C, respe
tively, and NS

B

is the number of C atoms that are S-neighbors of atom B. At typi
al settings this number is

about 800. For typi
al nB and nC we arrive at a value of about 5 GB per atom, whi
h is 
learly

ex
essive even if we assume this 
ost to be distributed a
ross 
ompute nodes. For this reason we set

a user-adjustable upper bound on the size of the expansion 
a
he. On
e the 
a
he is full, the loop
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Algorithm 2 Cal
ulation of Ẽ
HFx

from previously (Alg. 1) expanded NGWF produ
ts

1: Redistribute K from s
heme 1 to s
heme 2

2: for all (B,C) pairs owned by this MPI rank do

3: Find the PPDs relevant to atom B from the pair.

This is a union of the sets of PPDs of all atoms A that are X-neighbors with this atom B

4: for all NGWFs b on atom B in pair do

5: for all NGWFs c on atom C in pair do

6: Retrieve expansion 
oe�
ients for ϕBbϕCc

7: OMP for all PPDs relevant to atom B do

8: Cal
ulate the expanded potential

eγβ =
NSW
∑

p=1
cpγβup(r) in PPD i

9: if room left in expansion 
a
he then

Store eγβ in expansion 
a
he

10: else

11: exit (B,C) loop

12: end if

13: end OMP for PPD

14: end for c

15: end for b

16: end for (B,C)

17: for all my B atoms do

18: Find the PPDs relevant to atom B like in step 3

19: Cal
ulate ũδβ =
∑

γ
Kδγeγβ in all relevant PPDs, thereby eliminating index γ (→Alg. 2A)

20: Cal
ulate 
ontribution to X̃ from atom B, thereby eliminating index β (→Alg. 2B)

21: if NGWF gradient needed then

22: A

umulate 
ontribution to 
ontravariant gradient G1 from this atom B (→Alg. 3A)

23: end if

24: end for B

25: Redistribute X̃ from s
heme 2 ba
k to s
heme 1

26: if NGWF gradient needed then

27: Finalize NGWF gradient term G1 (→Alg. 3B)

28: Cal
ulate the NGWF gradient term G2 (→Alg. 3)

29: end if

30: Symmetrize X̃ (Eq. 19)

31: Cal
ulate Ẽ
HFx

(Eq. 20)
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exits (step 11). Expanded potentials that did not �t in the 
a
he are later (Alg. 2A) 
al
ulated

on the �y. This pre
ludes runaway memory use and ensures gra
eful performan
e degradation in

low-memory s
enarios.

On
e all the expanded potentials are 
al
ulated or the expansion 
a
he 
annot a

ommodate

more elements, ea
h MPI rank iterates over all its B atoms (step 17). First, PPDs relevant

to 
urrent atom B are identi�ed, similarly as was done in step 3. Subsequently the expansion


oe�
ients are 
ontra
ted with the density kernel over index γ, eliminating this index from further


omputation (step 19). This is done by Algorithm 2A, des
ribed further in se
tion III E.

Next, the 
ontribution from 
urrent atom B to all elements of the ex
hange matrix X̃ is 
al
u-

lated (step 20). This is done by Algorithm 2B, des
ribed further in this se
tion. Similarly, 
on-

tributions to the NGWF gradient from atom B are a

umulated. This is done by Algorithm 3A,

des
ribed in se
tion III F.

In step 25 the ex
hange matrix is redistributed from s
heme 2 ba
k to s
heme 1 to make it

possible to use standard sparse algebra routines on it in the rest of onetep.

The main part of the NGWF gradient 
al
ulation takes pla
e in step 27, this is 
arried out by

Algorithm 3, des
ribed in se
tion III F.

Finally, the ex
hange matrix X̃ is symmetrized (
f. Eq. 19) and the Hartree-Fo
k ex
hange

energy is 
omputed a

ording to Eq. 20.

This 
on
ludes the general des
ription of the density-kernel-dependent stage. We will now

brie�y des
ribe subalgorithms Alg. 2A and Alg. 2B.

Algorithm 2A pro
esses a single atom B owned by a given MPI rank. It iterates over all the C

atoms that are S-neighbors of B and are assigned to this MPI rank. Thus, the loop body is exe
uted

for a (B,C) pair. First (steps 2-8), the expanded potentials for all 
ombinations of NGWFs on

atoms B and C are retrieved from the expansion 
a
he into a lo
al array for e�
ient a

ess later

on. This is done for all the PPDs relevant to atom B, and OpenMP parallelism is leveraged for the

loop over PPDs. Subsequently, for all the PPDs (again leveraging OpenMP parallelism) and all

25



Algorithm 2A Eliminate index γ for a single atom B
1: for all atoms C in my (B,C) pair list for 
urrent B do

2: for all NGWFs b on atom B do

3: for all NGWFs c on atom C do

4: OMP for all PPDs relevant to atom B do

5: Retrieve from 
a
he or 
al
ulate eγβ
6: end OMP for PPD

7: end for c

8: end for b

9: OMP for all PPDs relevant to atom B do

10: for all atoms D parti
ipating in this PPD do

11: for all NGWFs d on atom D do

12: for all NGWFs b on atom B do

13: for all NGWFs c on atom C do

14: ũδβ = ũδβ +KδCceCcβ

15: end for c

16: end for b

17: end for d

18: end for D

19: end OMP for PPD

20: end for C

the atoms D whose lo
alization sphere features this PPD the quantity ũδβ, whi
h is a 
ontra
tion

of expanded potentials with the density kernel over the index γ, is a

umulated (step 14). As the

density kernel depends on another index (δ), ũδβ is a two-
enter quantity. As it is stored only for

a single atom B before being pro
essed (via Algorithm 2B) and dis
arded, the asso
iated memory

requirement remains modest. Algorithm 2A �nishes after 
al
ulating and storing all requisite ũδβ

for a given atom B.

The next stage (Algorithm 2B) eliminates index β from the 
al
ulation. Like Alg. 2A, it is

also performed for a single atom B. The algorithm pro
esses all PPDs relevant to this atom

in an OpenMP-parallelized loop. For ea
h PPD the algorithm iterates over all atoms D whose

lo
alization sphere spans this PPD and all atoms A owned by the MPI rank whose lo
alization
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Algorithm 2B Eliminate index β
1: OMP for all PPDs relevant to atom B do

2: for all atoms D parti
ipating in this PPD do

3: for all my atoms A parti
ipating in this PPD do

4: for all NGWFs d on atom D do

5: for all NGWFs a on atom A do

6: Retrieve from 
a
he or 
al
ulate

pAaDd = ϕAaϕDd in 
urrent PPD

7: end for a

8: for all NGWFs b on atom B do

9: for all NGWFs a on atom A do

10: X̃AaBb = X̃AaBb +
PPD

∑

r

pAaDd(r)ũ
Dd
Bb

11: if NGWF gradient needed then

12: kBb = kBb + ϕDdũ
Dd
Bb

13: end if

14: end for a

15: end for b

16: end for d

17: end for A

18: end for D

19: end OMP for PPD

sphere spans this PPD. The unusual loop ordering with the loop over PPDs being outermost is


umbersome programati
ally, but was found to lead to best performan
e, allowing for OpenMP

parallelism to be leveraged for largest grain sizes and for any parallel 
ontention to be avoided.

No thread syn
hronization is required in this loop.

First (step 6), the algorithm retrieves all NGWF produ
ts for the atom pair (A,D) from the

NGWF produ
t 
a
he. Ca
he misses lead to re
al
ulation of the produ
ts on the �y. Subsequently,

(steps 8-11) elements of the ex
hange matrix are a

umulated in a loop over NGWFs on atoms B

and A and over all points in the PPD. The a

umulated quantity is the produ
t ϕαϕδ multiplied

by ũδβ =
∑

p

∑

s

up(r)V
ps (fs|ϕγϕβ)K

δγ
, whi
h 
ompletes the integration required for obtaining the
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ex
hange matrix element X̃αβ (
f. Eq. 15). On
e the algorithm 
ompletes, a 
olumn stripe of the

ex
hange matrix 
orresponding to atom B has been 
al
ulated.

F. Gradient with respe
t to the NGWFs

The last 
omponent of our algorithm is the 
al
ulation of the fun
tional derivative of Ẽ
HFx

with

respe
t to an NGWF � a rather involved pro
edure required for in situ optimization of NGWFs.

The 
al
ulation is split into two terms, Gα
1 and Gα

2 , where α is the NGWF with respe
t to whi
h

we di�erentiate, as de�ned by Eq. 23.

Algorithm 3A A

umulate 
ontravariant gradient GAa
1 for one atom B owned by this MPI rank

1: for all PPDs relevant to atom B do

2: for all my atoms A parti
ipating in this PPD do

3: if atom A is an X-neighbor of atom B then

4: for all NGWFs b on atom B do

5: for all NGWFs a on atom A do

6: GAa
1 = GAa

1 + kBbK
BbAa

7: end for a

8: end for b

9: end if

10: end for A

11: end for PPD

Cal
ulating the G1 term is straightforward, beginning already in step 12 of Algorithm 2B,

where the auxiliary quantity kBb is 
al
ulated for every atom B o

urring in the atom pairs (B,C)

assigned to an MPI rank. Subsequently, in step 22 of Algorithm 2, Algorithm 3A is invoked

for every atom B owned by the MPI rank. This is a simple algorithm, 
ontra
ting the auxiliary

quantity kBb with the density kernel over the index Bb. Following its 
ompletion, the 
ontravariant

version of term G1 has been 
al
ulated.
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Algorithm 3B Finalize NGWF gradient term Gi (i = 1, 2)
1: Redistribute the 
ontravariant gradient Gi from s
heme 2 ba
k to s
heme 1.

2: for all atoms A s
heme-1-lo
al to this MPI rank do

3: for all NGWFs a on atom A do

4: for all PPDs spanned by NGWF Aa do

5: Zero points outside of NGWF sphere

6: Apply prefa
tor

7: end for PPD

8: Convert GAa
i to 
ovariant form

9: Perform re
ipro
al-spa
e pre
onditioning

10: end for a

11: end for A

The 
al
ulation is �nalized in step 27 of Algorithm 2, where Algorithm 3B is invoked. Here,

the 
al
ulated NGWF gradient is prepared for subsequent use outside of the HFx 
ode. First,

the 
al
ulated 
ontravariant gradient is redistributed ba
k to s
heme 1, that is, to the atom-based

distribution. Ea
h MPI rank obtains the gradient for the NGWFs of the atoms lo
al to it. Next,

the points within the PPDs but outside of the NGWF lo
alization radius are zeroed (�shaved�),

as they 
annot 
ontribute to the gradient, having only been 
al
ulated for numeri
al 
onvenien
e.

Finally, a prefa
tor is applied (the 2 that is in Eq. 23, together with a grid weight), the 
ontravariant

gradient is 
onverted to 
ovariant form, and re
ipro
al-spa
e pre
onditioning

29

is performed on the

gradient. At this point the 
al
ulation of the �rst term, in its �nal form, is 
ompleted.

Cal
ulation of the se
ond term G2 is more involved. It is performed entirely by Algorithm 3,

invoked in step 28 of Algorithm 2. The algorithm is best understood by referring to the se
ond

term of Eq. 23. This term, 
ru
ially, involves a version of the resolution-of-identity operator Îδα

that employs SWs 
entered on atoms D and A that feature in the bra of the ERIs in Eqs. 3

and 4. This is unfortunate be
ause, as explained earlier, our algorithm divides the workload by

distributing kets (atom pairs (B,C)) a
ross MPI ranks. Furthermore, in the evaluation of HFx

energy and the �rst term of the gradient (Algorithm 1D, step 6; and Algorithm 2, step 8) our
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algorithm always operates on SWs 
entered on ket atoms (B and C), and it is those SWs that

are 
a
hed. Fortunately, we 
an simply rename dummy indi
es in the sums to arrive at a less


umbersome expression for the se
ond term in the gradient. On
e we rename Aaα↔ Bbβ and

Ddδ ↔ Ccγ, we arrive at (where we expli
itly indi
ate summations for 
larity) :

Gβ
2 (r) = 2

∑

γ

ϕγ(r)Îγβ

(

∑

α

Kαβ
∑

δ

Kγδ|ϕδϕα)

)

. (25)

This expression is more amenable to our approa
h, sin
e its RI operator involves SWs 
entered

on ket atoms, as in the previous steps of the 
al
ulation. The fa
t that we now obtain a gradient

term for NGWF β and not NGWF α does not matter, as we will need to redistribute the 
al
ulated

gradients to s
heme 1 in any 
ase. The fa
t that we will operate on ϕα and ϕδ is also not a problem,

sin
e our algorithm already requires them (
f. Alg. 2B, step 10).

We will now des
ribe Algorithm 3, whi
h 
al
ulates the se
ond term in the NGWF gradient.

The main loop iterates over atoms C owned by an MPI rank, 
orresponding with the sum over γ

in Eq. 25. For ea
h atom C in the sum the algorithm �rst determines the atoms B with respe
t

to whose NGWFs the gradient needs to be 
al
ulated. These are S-neighbors of atom C whi
h

are in the list of (B,C) pairs assigned to this MPI rank and will be termed �B atoms relevant to

atom C�. Similarly, the atoms A featured in the se
ond sum (over α) in Eq. 25 are determined.

These atoms, whi
h we term �A atoms relevant to atom C� are all atoms that are X-neighbors of

relevant B atoms.

For all su
h atoms A the algorithm then (steps 4-6) 
al
ulates an auxiliary quantity:

P γ
α (r) = ϕα(r)

∑

δ

Kγδϕδ(r) (26)

in PPDs spanned by atom A (
f. last sum in Eq. 25). This is done by a very simple Algorithm 3C,

whi
h we present below. The algorithm is a simple a

umulation of linear 
ombination of NGWF

produ
ts. The loop over A leverages OpenMP parallelism to make this operation e�
ient, requiring

Alg. 3C itself to be thread-safe. Given that every instan
e of Alg. 3C operates on a di�erent Aa,
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Algorithm 3 Cal
ulate the NGWF gradient term G2 (Eq. 23)

1: for all my C atoms do

2: Determine atoms B relevant to this atom C

3: Determine atoms A relevant to this atom C

4: OMP for all relevant A atoms do

5: Cal
ulate auxiliary quantity P γ
α = ϕα

∑

δ

Kγδϕδ,

thereby eliminating index δ (→Alg. 3C)

6: end OMP for A

7: for all NGWFs c on atom C do

8: OMP for all atoms B relevant to atom C do

9: for all atoms A relevant to atom C do

10: if A is not an S-neighbor of B then

11: next A

12: end if

13: for all NGWFs b on atom B do

14: QCcBb = QCcBb +
∑

a
PCc
AaK

AaBb

15: end for b

16: end for A

17: end OMP for B

18: for all atoms B relevant to atom C do

19: for all NGWFs b on atom B do

20: Expand QCcBb
in SWs on B and C

21: OMP for all PPDs in B ∩C do

22: Cal
ulate the expanded potential ECcBb

of QCcBb
in PPD

23: end OMP for PPD

24: for PPDs in B ∩C do

25: A

umulate GBb
2 = GBb

2 + ϕCcE
CcBb

26: end for PPD

27: end for b

28: end for B

29: end for c

30: end for C

31: Finalize NGWF gradient term G2 (→Alg. 3B)
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this 
an be a

omplished without resorting to syn
hronization me
hanisms. On
e this is 
omplete,

index δ has been eliminated from further 
al
ulations.

Algorithm 3C Cal
ulate P γ
α = ϕα

∑

δ

Kγδϕδ

for a given atom pair (A,C)
1: for all atoms D that are S-neighbors of atom A do

2: for all NGWFs d on atom D do

3: for all NGWFs a on atom A do

4: Compute ϕDdϕAa

5: for all NGWFs c on atom C do

6: PCc
Aa = PCc

Aa +KCcDdϕDdϕAa

7: end for c

8: end for a

9: end for d

10: end for D

We note in passing that the same P γ
α 
an be 
al
ulated on more than one MPI rank, sin
e

there is some overlap between C atoms in (B,C) atom pairs assigned to MPI ranks. Even so, as

will be shown in se
tion VC, the 
ost of this stage of the algorithm is almost negligible, ex
ept in


ondu
tion 
al
ulations, where it a

ounts for ≈20% of the total 
ost � a result of large numbers

of NGWFs per atom and lower overlap matrix sparsity.

The main Algorithm 3 then pro
eeds to move left through Eq. 25, taking 
are of the sum over

α (steps 13-15). In this way another auxiliary quantity is 
al
ulated:

Qγβ(r) =
∑

α

ϕα(r)K
αβ
∑

δ

Kγδϕδ(r), (27)

whi
h should be 
ompared with the quantity in parentheses in Eq. 25. This eliminates the index

α from further 
al
ulations.

The next stage is the appli
ation of the RI operator Îγβ, that is, the 
al
ulation of the SW-

expanded potential of Qγβ
in all PPDs spanned by the interse
tion of lo
alization spheres of
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atoms B and C. Qγβ
is �rst expanded in SWs (step 20), similarly to what was done earlier

to NGWF pair produ
ts (steps 5-8 of Algorithm 1D). The expanded potential itself (denoted

ECcBb
) is 
al
ulated in steps 21-23 in the same PPDs, leveraging OpenMP parallelism. Finally,

the 
ontributions are multiplied by ϕγ(r) and summed over γ in steps 24-26, 
orresponding to the

leftmost operation in Eq. 25. The gradient is �nalized (�shaved�, 
onverted to 
ovariant form and

pre
onditioned) through the appli
ation of Algorithm 3B, just as was done to its �rst term.

G. Condu
tion 
al
ulations

Apart from the usual mode of operation where only o

upied states are 
onsidered, onetep

has the 
apability to perform 
ondu
tion 
al
ulations, whi
h �nds use e.g. in 
al
ulating opti
al

absorption spe
tra. Condu
tion 
al
ulations optimize an energy expression involving a separate

(
ondu
tion) density kernel and a proje
ted 
ondu
tion Hamiltonian

45

. They typi
ally use larger

numbers of NGWFs (i.e. not a minimal basis), and larger lo
alization radii of the NGWFs (by a

fa
tor of ≈ 1.5), whi
h means the overlap matri
es are not as sparse as in 
ondu
tion 
al
ulations.

This, 
oupled with the fa
t that in 
ondu
tion 
al
ulations with hybrid fun
tionals the inner (LNV)

loop does not involve HFx, leads to a shift of the 
omputational bottlene
ks to di�erent parts of the

algorithm. Be
ause of the larger NGWF basis the memory requirement of 
ondu
tion 
al
ulations

is also in
reased relative to valen
e 
al
ulations. For these reasons we will ben
hmark 
ondu
tion


al
ulations separately, and only for the polymer systems, where they are more relevant.

H. Pre
onverging with a non-hybrid fun
tional

A simple, 
ommonly used optimization is to pre-
onverge the 
al
ulation with a non-hybrid

(typi
ally a GGA (generalized gradient approximation) fun
tional) and, on
e it is 
onverged, to


ontinue it with a hybrid. The expe
tation here is for the pre-
onverged 
al
ulation to rea
h


onvergen
e faster than when starting from the initial guess, thus redu
ing the number of expensive
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(hybrid fun
tional) self-
onsisten
y iterations. The 
ost asso
iated with the initial steps performed

with a GGA is typi
ally mu
h lower.

We brie�y examined two su
h optimizations � in the �rst one (referred to in the text as

B3LYP-1), we pre-
onverged the 
al
ulation with the PBE

46

fun
tional, and, on
e 
onvergen
e

has been obtained, we 
ontinued it with B3LYP, optimizing both the density kernel and the NG-

WFs. In the se
ond optimization (referred to in the text as B3LYP-2), we similarly pre-
onverged

with PBE, but then we kept the NGWF basis �xed, only optimizing the density kernel. This 
or-

responds to running a �xed-NGWF 
al
ulation in a GGA-optimized NGWF basis. In this s
enario

onetep operates similarly to other �xed-atomi
-orbital-basis ele
troni
 stru
ture 
odes, but with

the advantage of using a pre-optimized minimal set of atomi
 orbitals (NGWFs).

We demonstrate the ex
ellent a

ura
y of both optimizations and signi�
ant performan
e gains

in Se
tion VH.

IV. CALCULATION DETAILS

We demonstrate the behavior and performan
e of our implementation on two 
lasses of systems.

The �rst 
lass 
omprises roughly spheri
al �s
oops� of a protein (
GMP-spe
i�
 phosphodiesterase

type 5, PDE5) of in
reasing size, suitably trun
ated and protonated. These range from 44 atoms

(≈12Å a
ross) to 4048 atoms (≈54Å a
ross), and 
onstitute a good model of a typi
al, three-

dimensional system of interest in bio
hemi
al appli
ations. The se
ond 
lass 
omprises sta
ked

polymer 
hains of in
reasing length (four 
hains of PBTZT-stat-BDTT-8 polymer analog, as stud-

ied in Ref. 47). These range from 228 atoms (≈21Å in length) to 2868 atoms (≈265Å in length),

and are a good model of typi
al systems of interest in materials s
ien
e. The two 
lasses di�er in

topology (true 3D systems vs. 1D 
hains) and 
omposition (H-dominated vs. C-dominated).

Unless stated otherwise, all 
al
ulations used a kineti
 energy 
uto� of 827 eV, an NGWF lo
al-

ization radius of 8 a0 (≈4.2Å) and a minimal NGWF basis (1 NGWF on H, 4 NGWFs on p-blo
k

elements). 8 inner loop (LNV) iterations were used throughout. The SW basis quality was l
max

= 3
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and q
max

= 12, and an ex
hange intera
tion 
uto� of 20 a0 (≈10.6Å) was used. Cal
ulations on

polymer 
hains employed density kernel trun
ation with a 
uto� of 50 a0 (≈26.5Å), while the 
al-


ulations on proteins did not employ kernel trun
ation. Be
ause the size of the polymer systems


ould easily be in
reased in uniform steps, we will use these to demonstrate weak parallel s
aling

(where the system size is proportional to the number of CPU 
ores). Strong parallel s
aling (where

the system size remains 
onstant and the number CPU 
ores is in
reased) will be demonstrated

for both 
lasses of systems.

Additionally, for the polymer systems we ben
hmarked 
al
ulations of 
ondu
tion states, where,

as explained in se
tion III, the 
omputational bottlene
ks are expe
ted to be di�erent. Here, to

a

ount for the expe
ted orbital delo
alization, we in
reased the NGWF radius to 12 a0 (≈6.35Å),

used an extended basis (5 NGWFs on H, 13 NGWFs on p-blo
k elements), and in
reased the

number of inner loop iterations to 12, re�e
ting typi
al settings used for 
ondu
tion 
al
ulations

in onetep.

V. RESULTS

All walltimes shown in this se
tion 
orrespond to fully-
onverged 
al
ulations with default


onvergen
e thresholds, and so are good representations of real-life s
enarios. However, we feel

obliged to note two important points. First, in the interest of redu
ing the load on the HPC fa
ility,

we only ran 
al
ulations for one outer loop (NGWF) iteration and 
arefully extrapolated the

timings to a fully 
onverged 
al
ulation from these measurements, separately taking into a

ount

the measured 
onstant overhead and the measured per-iteration time. The number of iterations

was taken from GGA 
al
ulations that 
ould be run at a fra
tion of the 
ost. Cross-
he
ks with full

hybrid fun
tional 
al
ulations that were a
tually run to 
onvergen
e (for a subset of the systems)

validated our estimates to be within 0.5% of the true walltimes.

Se
ond, in the interest of 
larity, we show results normalized to a 
onstant number of outer

loop iterations (e.g. 12 for the protein systems), whereas in reality the a
tual number of iterations
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di�ered slightly (σ = 3.0) between individual systems (for 
al
ulations with a GGA and hybrid

fun
tional alike). This slight di�eren
e in the number of iterations was not systemati
, but rather

it re�e
ted statisti
al noise from how the fragments of the total protein were 
arved out and

trun
ated, obs
uring the linear-s
aling behavior that we set out to demonstrate. For the polymer

systems the e�e
t was less pronoun
ed (N̄
iter

= 10, σ = 2.2), but also present. To disentangle this

statisti
al noise from the a
tual performan
e of our algorithm, we 
hose to show values normalized

to the same number of outer loop iterations in all 
ases.

A. Linear s
aling with system size

We begin by demonstrating that our approa
h is indeed linear-s
aling, i.e. that the beyond a


ertain system size (�onset of linear s
aling�) the walltime of the 
al
ulation is linearly proportional

to the number of atoms in the system. First, however, we stress an important point regarding

memory s
aling. The performan
e of our approa
h depends heavily on the amount of available

memory, with maximum performan
e attained with a greedy algorithm that allo
ates as mu
h

memory as it needs to 
a
he all requisite quantities. The RAM requirement of su
h a greedy

approa
h in
reases superlinearly with the size of the system, at least for system sizes 
onsidered

here, and qui
kly ex
eeds typi
al RAM sizes available on today's 
omputing nodes � this happens

already at about 150 atoms. Thus, to ensure a fair and realisti
 ben
hmark, in this work we employ

the 
onditions of linear s
aling in memory, i.e. we settle on a 
onstant memory requirement per

atom and limit the RAM use to this value. We 
hoose this value in su
h a way as to be able to

perform the largest 
al
ulations demostrated here without ex
eeding the available RAM on the

Iridis5 system at University of Southampton. We will term this the standard memory requirement.

Additionally, we will show how our implementation s
ales at a quarter of this value (mimi
king a

low-memory environment), and with four times as mu
h RAM (mimi
king typi
al high-memory

nodes often available on HPC systems), giving an idea of how the employed time-memory tradeo�s

perform. The detailed values are given in Table II.
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TABLE II. The assumed memory requirement of the HFx engine (in MB/atom per MPI rank) for valen
e


al
ulations.

Memory SWpot Expansion NGWF produ
t Total

requirement 
a
he 
a
he 
a
he

Low (×0.25) 2.5 1.25 0.25 4

Standard 10 5 1 16

High (×0.4) 40 20 4 64

For demonstrating the e�e
t of available RAM on 
al
ulation walltime we 
hose a set-up, where

all 
al
ulations are run on 16 
ompute nodes (40 CPU 
ores ea
h). In order to maximize the size

of the 
a
hes shared by threads, we use the maximum number of OMP threads per NUMA region,

that is, we run with 32 MPI ranks, ea
h spawning 20 OMP threads. In this way ea
h node holds

only 2 MPI ranks, and ea
h of the node's two NUMA regions is fully populated by OMP threads.

Fig. 3 shows the s
aling of the total time for the protein systems. Linear s
aling is a
hieved in

all 
ases, with the onset at about 400 atoms. In the low-memory s
enario (green squares) all 
al-


ulations were feasible, although the largest ones barely 
ompleted one outer loop iteration within

the maximum job walltime on Iridis5 (60h). Cal
ulations that 
annot 
omplete even one iteration

within this limit (and thus 
annot be 
he
kpointed and 
ontinued later) we deem infeasible. Given

that the total 
al
ulation runs for 12 iterations, we marked a �walltime limit� on the plot at 720h.

We 
an thus estimate the maximum system size feasible on 16 Iridis5 nodes to be about 4200

atoms.

At standard memory requirements (blue 
rosses) all 
al
ulations ran 17�29% faster, but an

out-of-memory 
ondition prevented jobs larger than 3328 atoms from running, 
orresponding to

a memory requirement of ≈100GB per node. This means that with standard memory memory

requirement the maximum limit on job size is di
tated not by the available job time, but by

available memory per node.
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FIG. 3. Total 
al
ulation walltime (on 16 
ompute nodes) for protein systems of di�erent sizes, assuming

12 outer loop iterations, for di�erent memory requirements (see text). For high and standard memory

requirements maximum system size is bounded by available RAM. For low memory requirements all

systems (up to 4048 atoms) were feasible on 16 
ompute nodes.

At high memory requirements a further speedup of 15�50% was a
hieved, but the maximum

job size was only 909 atoms before available RAM was exhausted.

Fig. 4 demonstrates linear s
aling for the polymer systems. Here, it was feasible to run all

systems studied (up to 2868 atoms) with low and standard memory requirements, with all 
al-


ulations 
ompleting in well under 200 h. Compared to the low-memory s
enario, the gain from

having standard memory requirements was almost 
onstant for all system sizes and averaged at a

sizeable 26%. In a high-memory s
enario a further speedup of about 20% was a
hieved, but the

largest system that did not run out of memory was 1108 atoms.

We now turn our attention to the performan
e of 
ondu
tion state 
al
ulations. Be
ause of

the di�erent way the energy minimization is stru
tured 
ompared to valen
e 
al
ulations (
f. se
-

tion III), we note that there is no bene�t to 
a
hing NGWF expansions in this 
ase, as NGWFs
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FIG. 4. Total 
al
ulation walltime (on 16 
ompute nodes) for polymer 
hains of di�erent lengths, assuming

10 outer loop iterations, for di�erent memory requirements (see text). For high memory requirements

maximum system size is bounded by available RAM. At low and standard memory requirements all

systems (up to 2868 atoms) were feaisble on 16 
ompute nodes.

always 
hange between invo
ations of the HFx engine. Also, be
ause of the vastly in
reased num-

ber of NGWFs per atom and the in
reased NGWF lo
alization radius, 
a
hing NGWF produ
ts

be
omes 
ounterprodu
tive, as the 
a
he hit ratio a
hieved with default memory allowan
e is very

low (in the order of 1�2%). For the above reasons when ben
hmarking 
ondu
tion 
al
ulations

we de
ided to devote the entire memory allowan
e to the SWpot 
a
he, while keeping the total

amount of RAM per atom the same as in valen
e 
al
ulations. This is summarized in Table III.

Fig. 5 shows the s
aling of the total walltime for a 
ondu
tion 
al
ulation on the polymer

systems. The largest system that was feasible on 16 nodes had 1768 atoms, and beyond that


al
ulations with the low memory requirements 
ould not 
omplete a single iteration within the

60 h job time window. With standard memory requirements 
al
ulations ran about 22% faster,

but beyond 1548 atoms they ran out of memory. With high memory requirements further gains
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TABLE III. The assumed memory requirement of the HFx engine (in MB/atom per MPI rank) for 
on-

du
tion 
al
ulations.

Memory SWpot Expansion NGWF produ
t Total

requirement 
a
he 
a
he 
a
he

Low (×0.25) 4 0 0 4

Standard 16 0 0 16

High (×0.4) 64 0 0 64
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FIG. 5. Total 
al
ulation walltime (on 16 
ompute nodes) for a 
ondu
tion 
al
ulation on polymer 
hains

of di�erent lengths, assuming 11 outer loop iterations, for di�erent memory requirements (see text). For

high and standard memory requirements maximum system size is bounded by available RAM. At low

memory requirements the walltime limit in 
ondu
tion 
al
ulations is rea
hed at about 1800 atoms.

were very modest and the maximum system size was limited to only 448 atoms. Linear s
aling

was a
hieved in all 
ases.
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In summary, we �nd that 16 
ompute nodes, with about 100GB RAM on ea
h node devoted

to HFx engine 
a
hes, were su�
ient to perform valen
e 
al
ulations on systems up to about 4000

atoms, and 
ondu
tion 
al
ulations up to about 1800 atoms. These 
al
ulations were performed

with linear-s
aling CPU e�ort and linear-s
aling memory.

We highlight that smaller 
al
ulations (up to several hundred atoms) 
ould be made faster in

pra
ti
e by not limiting their memory as mu
h. We demonstrate this brie�y in Fig. 6, where we

show the 
al
ulation walltime for a 443-atom protein system as a fun
tion of memory devoted to

HFx 
a
hes. This parti
ular 
al
ulation 
ould be made just over twi
e as fast by using a generous

memory allowan
e.

FIG. 6. Total 
al
ulation walltime (on 16 
ompute nodes) for a 443-atom protein system, as a fun
tion of

RAM devoted to HFx 
a
hes (log s
ale).
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B. Cal
ulation walltime 
ompared to a GGA 
al
ulation

To give a better idea about the 
ost of HFx 
al
ulations, in Figs. 7 and 8 we show 
al
ulation

walltimes relative to a 
al
ulation with a GGA fun
tional (PBE), for the protein systems and

polymer systems.
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FIG. 7. Total 
al
ulation walltime (on 16 
ompute nodes), relative to a 
al
ulation with a GGA fun
tional,

for protein systems of di�erent sizes, assuming 12 outer loop iterations, for di�erent memory requirements

(
f. Fig. 3). Lower is better.

For the protein systems (Fig. 7) the 
omputational e�ort plateaus at ≈ 100 (for standard

memory requirements), meaning that for larger systems hybrid 
al
ulations should be expe
ted to

be two orders of magnitude slower 
ompared to 
al
ulations with a GGA fun
tional. Using less or

more memory has the e�e
t dis
ussed already in se
tion VA. For small systems (below 100 atoms)

hybrid 
al
ulations are only about an order of magnitude slower than 
al
ulations with a GGA

fun
tional. The reason for that is that ex
hange matrix sparsity is rea
hed later than NGWF

overlap sparsity, whi
h puts larger HFx 
al
ulations at a bigger disadvantage.
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FIG. 8. Total 
al
ulation walltime (on 16 
ompute nodes), relative to a 
al
ulation with a GGA fun
tional,

for polymer 
hains of di�erent lengths, assuming 10 outer loop iterations, for di�erent memory requirements

(
f. Fig. 4). Lower is better.

For the polymer systems (Fig. 8) HFx performs somewhat better, being 
onsistently slower than

a GGA by a fa
tor of ≈ 60 for all system sizes, for standard memory requirements. Using less or

more memory has the e�e
t dis
ussed already in se
tion VA. The reason for better performan
e

here is the one-dimensional nature of the polymer systems, whi
h enables ex
hange matrix sparsity

to be rea
hed already for the smallest system, and a more homogeneous stru
ture whi
h makes

load balan
ing easier.

Lastly, we turn to the 
ondu
tion state 
al
ulations on the polymer systems. A 
omparison

against a GGA 
al
ulation is shown in Fig. 9. We observe that overall HFx does not perform as

well as it did for valen
e 
al
ulations on the same systems, but relative performan
e 
learly improves

systemati
ally as the systems be
ome bigger. This indi
ates that the employed algorithm s
ales

better with system size than standard (GGA) onetep, at least at this range of system sizes. For

the largest systems the 
ost of a hybrid 
al
ulation is ≈ 50-60 times larger than for a GGA.
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FIG. 9. Total 
al
ulation walltime (on 16 
ompute nodes), relative to a 
al
ulation with a GGA fun
tional,

for 
ondu
tion state 
al
ulations on polymer 
hains of di�erent lengths, assuming 11 outer loop iterations,

for di�erent memory requirements (
f. Fig. 5). Lower is better.

We note that all 
al
ulations shown in this subse
tion were performed with the maximum

number of OMP threads (20), whi
h is optimal for HFx, but suboptimal for standard GGA 
al-


ulations with onetep. This is be
ause the s
aling with the number of threads is mu
h better

for the HFx engine than for the rest of onetep, with the latter typi
ally a
hieving optimum

performan
e at 4 − 5 OMP threads. Indeed, on
e the GGA 
al
ulations are swit
hed from an

N
MPI

= 32, N
OMP

= 20 setup to a more favorable N
MPI

= 160, N
OMP

= 4, their performan
e

in
reases almost exa
tly by a fa
tor of 2 for all systems. Thus, in pra
ti
al s
enarios, the reported

slowdown of HFx relative to GGA would be twi
e as big.
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C. Individual 
omponents of 
omputational e�ort

We will now provide a detailed breakdown of whi
h 
omponents of the 
al
ulation are responsible

for most of the 
omputational e�ort for the 
lasses of systems under study, demonstrating that

ea
h 
omponent separately also s
ales linearly with system size.

The majority of 
omputational e�ort in HFx 
al
ulations with onetep is asso
iated with the

following stages of the 
al
ulation:

1. Evaluating SWpots � 
al
ulating the values of the spheri
al wave potentials

33

originating

on atomi
 
enters at Cartesian grid points of NGWFs whose 
enters are within the ex
hange


uto�. Although this stage has been extensively optimized, it remains a bottlene
k in all

studied systems. This e�ort is mitigated by the SWpot 
a
he.

2. Expansions � 
orresponds to evaluating the linear 
ombinations (
f. Algorithm 2, step 8)

of SWpots originating on atomi
 
enters at Cartesian grid points within the ex
hange 
uto�.

This e�ort is mitigated by the expansion 
a
he.

3. Sum over Cc � 
al
ulation of the sums over Cc (
f. Algorithm 2, step 19; and Algorithm 2A).

4. Gradient P � 
al
ulation of the auxiliary term P in the ex
hange NGWF gradient, Eq. 26.

5. Load imbalan
e � represents idle time spent waiting for other MPI ranks to �nish their

share of 
al
ulations. This 
omponent would be zero if load 
ould be balan
ed perfe
tly.

6. MPI 
omms � time spent on message passing (
ommuni
ation between MPI ranks).

7. HFx other � all the remaining stages of evaluating the HFx energy and gradient, ex
luding

initialization (
al
ulation of the metri
 matrix).

8. Rest of onetep � all the non-HFx related 
al
ulations performed within onetep, ex
lud-

ing initialization.
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9. Initialization � 
onstant overhead, independent of the number of energy evaluations, HFx-

related and HFx-unrelated alike, e.g. 
al
ulating the metri
 matrix, stru
ture fa
tor, setting

up the parallel distribution, 
al
ulating the Ewald energy term, initialization of radial Bessel

fun
tions.
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FIG. 10. Individual 
omponents of the total 
al
ulation walltime (on 16 
ompute nodes) for protein

systems of di�erent sizes, assuming 12 outer loop iterations, for standard memory requirement.

Fig. 10 shows a breakdown of the total 
al
ulation walltime for the protein systems, on 16


ompute nodes, under standard memory requirements. The same data is presented in a 
umulative

per
entage form in Fig. 11. It is 
lear that all individual 
omponents are linear-s
aling with the

size of the system, and that the evaluation of SWpots (red) 
onstitutes the most 
omputationally

intensive part of the 
al
ulation, a

ounting for about half of the walltime. For these systems, at

standard memory requirements, only (2.6± 1.0)% SWpots 
an be stored in the 
a
he. Sin
e the

SWpots are heavily reused and are stored in the order of reusability, a
tual SWpot 
a
he hit ratios

are mu
h higher here, at (42.6± 4.2)%, but this still means that in over half of the 
ases SWpots

have to be re-evaluated. This 
ost 
an be mitigated by in
reasing the memory allowan
e for the
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FIG. 11. As in Fig. 10, shown as 
umulative per
entages of the total.

SWpot 
a
he, but after a 
ertain point this strategy yields diminishing returns � SWpots evaluated

at the outer edges of the system, where there is little NGWF overlap, are ne
essarily less often

reused, and 
a
hing them o�ers less bene�t 
ompared to SWpots evaluated at grid points where

many NGWFs overlap.

Load imbalan
e (light green) a

ounted for (17.4± 4.8)% of the 
al
ulation walltime. This

relatively large value re�e
ts the fa
t that the protein 
onstitutes a rather heterogeneous system,

where it is di�
ult to simultaneously a
hieve a good load balan
e for the energy 
al
ulation and for

the NGWF gradient 
al
ulation. Here it is the imbalan
e in the energy 
al
ulation that a

ounts

for ≈80% of the total load imbalan
e. This is mostly 
aused by the di�eren
es in SWpot 
a
he hit

ratios between MPI ranks � the 
urrent balan
ing algorithm strives to balan
e the total number

of Bb-Cc NGWF produ
ts, without a

ounting for the fa
t that SWpots on the outer edges of the

system are unlikely to be 
a
hed.

Cal
ulating expansions of NGWF produ
ts in terms of SWs (
f. Algorithm 2, step 8) (blue)

a

ounted for (14.5± 1.0)% of the 
al
ulation walltime. This 
ost 
an be mitigated by in
reasing
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the allowan
e for the expansions 
a
he, but the asso
iated memory requirement grows superlinearly,

meaning that with linear-s
aling memory allowan
e 
a
he hit ratios will de
rease as the systems

are made bigger. Here, in the smallest (44-atom) system 
a
he hit ratio was 46%, while in the

largest (3228-atom) system it was only 2.8%.

Summing over the index Cc (
f. Algorithm 2, step 19; and Algorithm 2A) and all the remaining

HFx operations were minor 
ontributions, a

ounting for less than 7% of the total walltime ea
h.

The remaining terms (MPI 
ommuni
ation, 
al
ulation of the NGWF gradient term P , non-HFx

operations and initialization) were almost negligible, below 2% ea
h.
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FIG. 12. Individual 
omponents of the total 
al
ulation walltime (on 16 
ompute nodes) for polymer


hains of di�erent lengths, assuming 10 outer loop iterations, for standard memory requirement.

We now turn our attention to the polymer systems, where 
orresponding plots are shown in

Figs. 12 and 13. Qualitatively, the breakdown of timings resembles that for the protein systems, and

all 
omponents retain their linear-s
aling behavior. Evaluating SWpots remains the most 
ostly


omponent, a

ounting for (53.7± 1.7)% of the walltime. The main di�eren
e is the redu
ed load

imbalan
e (light green) and an in
rease in the 
ost of generating the SW expansions (blue). The

polymer systems are 
omposed of identi
al repeat units and in
rease only along one dimension,
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FIG. 13. As in Fig. 12, shown as 
umulative per
entages of the total.

whi
h explains the mu
h easier load balan
ing � asso
iated overheads were below 9%, ex
ept

for the smallest systems. Higher e�ort asso
iated with SW expansions, 
ompared to the protein

systems, is a 
onsequen
e of a higher average number of NGWFs per atom (≈ 3.0 vs. ≈ 2.5).

Other 
ontributions to the walltime, similarly as for the protein systems, are mu
h smaller. The

slight anomaly for the �nal data point, where the 
ost of evaluating SWpots de
reases despite the

in
rease in the size of the system is a result of fortuitous load balan
ing in
reasing the average

SWpot 
a
he hit ratio from 50.0% to 54.5%.

For 
ondu
tion state 
al
ulations the distribution of the 
omputational e�ort is somewhat dif-

ferent. The main reasons are: the use of mu
h bigger NGWF lo
alization regions (whi
h lead to

a de
rease in metri
 matrix and overlap matrix sparsities), the use of a large number of NGWFs

per atom (vastly in
reasing the number of Bb-Cc NGWF produ
ts), and the fa
t that inner loop

(LNV) iterations do not require the evaluation of HFx energy in 
ondu
tion NGWF optimization.

The plots for 
ondu
tion state 
al
ulations on the polymer 
hains are shown in Figs. 14 and 15.

Linear-s
aling behavior is retained for all the 
omponents of the algorithm. Evaluating SWpots
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FIG. 14. Individual 
omponents of the total 
al
ulation walltime (on 16 
ompute nodes) in a 
ondu
tion

state 
al
ulation for polymer 
hains of di�erent lengths, assuming 11 outer loop iterations, for standard

memory requirement.
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entages of the total.
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remains the bottlene
k, but its 
ost is slightly redu
ed to (37.9± 2.4)%. One reason is the relative

in
rease in the SWpot 
a
he memory allowan
e (
f. Table III), another one is the in
rease in the

e�ort asso
iated with other 
omponents, parti
ularly those asso
iated with the NGWF gradient

term.

The main di�eren
e from the valen
e 
al
ulation is the in
reased 
ost of �HFx: other� (or-

ange diamonds), from (7.5± 0.2)% to (17.3± 1.8)%. This in
rease is driven by the in
reased

NGWF overlap, leading to larger e�orts asso
iated with 
omputing SWpot-NGWF-produ
t over-

laps (
f. Algorithm 1D, step 6) and the auxiliary term Q in the NGWF gradient (Eq. 27). The

same reason drives the signi�
ant in
rease in the e�ort asso
iated with 
al
ulating the term P ,

whi
h in
reased to (16.0± 3.4)% from (1.0± 0.4)% for the valen
e 
al
ulation, be
oming more


ostly on average than the 
al
ulation of SW expansions.

The 
ost of evaluating SW expansions is signi�
antly de
reased ((21.4± 2.3)% in the valen
e


al
ulation to (12.8± 1.9)% here), whi
h is a dire
t 
onsequen
e of the fa
t that inner loop it-

erations in a 
ondu
tion 
al
ulation do not involve HFx. The 
ost of imperfe
t load balan
ing

is similar ((9.3± 3.0)%), but here it is mostly the NGWF gradient 
al
ulation that is less than

optimally balan
ed. Finally, the non-HFx 
omponents of the 
al
ulation (�rest of onetep�) are

no longer negligible, a

ounting for (1.4± 0.3)% of the total 
al
ulation walltime.

In summary, we showed that all 
omponents of the 
al
ulation s
ale linearly with the system

size, that evaluating SWpots is the bottlene
k in all types of 
al
ulations, that the relative e�ort

asso
iated with other 
omponents depends on the type of 
al
ulation (valen
e vs. 
ondu
tion) and

type of system, that 
ommuni
ation overheads are negligible, and that load balan
ing 
ould be

improved for more di�
ult systems.

D. Cal
ulation walltime and feasibility depending on number of 
ompute nodes

Here we brie�y demonstrate how the total walltime of HFx 
al
ulations depends on the number

of 
ompute nodes and what system sizes are feasible. In Fig. 16 we plot the walltimes of 
al
ulations
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FIG. 16. Total 
al
ulation walltime (on 4, 8, 16 and 32 
ompute nodes) for protein systems of di�erent

sizes, assuming 12 outer loop iterations.

for protein systems, with standard memory requirements (
f. Fig. 3), run on 4, 8, 16 and 32 Iridis5


ompute nodes (160, 320, 640 and 1280 CPU 
ores, respe
tively). The 
omputational e�ort is

linear-s
aling (with an onset at ≈ 400 atoms) in all 
ases. Cal
ulations on 4 and 8 nodes rea
h the

walltime limit (60 h per outer loop iteration) beyond 1396 and 2486 atoms, respe
tively. Larger


al
ulations would only be possible on these 
on�gurations only if the memory allowan
e 
ould be

in
reased signi�
antly or if the walltime window per job 
ould be in
reased beyond 60 h.

On 16 and 32 nodes the maximum system size is mu
h larger (3228 and 3622 atoms, respe
tively)

and in this 
ase is bounded by available RAM. Larger 
al
ulations would be possible on these


on�gurations if memory allowan
e was de
reased. Indeed, we showed in Fig. 3 that all the

studied systems (up to 4048 atoms) 
ould be already run on 16 
ompute nodes under low memory

requirements.

For the polymer 
hain systems we show an equivalent plot in Fig. 17. Again, the 
al
ulation

is linear-s
aling (with the onset already at the smallest system). Here, owing to the fa
t that the

systems are e�e
tively one-dimensional, and thus ex
hange matrix sparsity is rea
hed very early, all
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FIG. 17. Total 
al
ulation walltime (on 4, 8, 16 and 32 
ompute nodes) for polymer 
hains of di�erent

lengths, assuming 10 outer loop iterations.

the studied systems �t within the walltime limit (60 h per outer loop iteration) even on 4 
ompute

nodes, and available RAM is not exhausted under standard memory 
onditions.
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E. Strong parallel s
aling

We now turn our attention to arguably the most important metri
 for des
ribing how the


omputational e�ort of a 
al
ulation 
hanges with the allo
ated resour
es. Strong parallel s
aling


hara
terizes the speedup obtained when the same 
al
ulation is run on in
reasingly larger number

of CPU 
ores. Parallel speedup is de�ned as

S(N

ores

) =
t(1)

t(N

ores

)
, (28)

where t(N

ores

) is the walltime of the 
al
ulation on N

ores

CPU 
ores. Sin
e in many s
enarios it

is not feasible to run the 
al
ulation on one CPU 
ore, speedup relative to a �xed number of 
ores

N0

ores

is often used instead:

SN0

ores

(N

ores

) =
t(N0


ores

)

t(N

ores

)
. (29)

Well-parallelized algorithms a
hieve near-linear speedup, whi
h usually be
omes sublinear and

then plateaus for larger N

ores

, due to small, but non-zero fra
tions of the algorithm that 
ould not

or have not been parallelized, an e�e
t 
aptured by Amdahl's law

48

. Non-negligible 
ommuni
ation

overheads and imperfe
t load balan
ing also play a role. A linear speedup is typi
ally termed perfe
t

or optimal s
aling, be
ause it 
orresponds to a s
enario where all the overheads vanish and the

fra
tion of the algorithm that has not been parallelized is zero.

In the 
ase of our implementation this simpli�ed analysis does not stri
tly hold, be
ause our

algorithm makes good use of the extra memory that be
omes available as additional 
ompute nodes

are allo
ated to the 
al
ulation. We showed in se
tion VA (see e.g. Fig. 6) that the performan
e

of our implementation strongly depends on the amount of memory that 
an be devoted to the


al
ulation. This parti
ular feature allows our approa
h to ex
eed what is typi
ally deemed to

be perfe
t parallel s
aling by improving the degree of 
a
hing as more CPU 
ores are added.

We demonstrate this for representative protein systems (one small, one large, Fig. 18) and for

representative polymer systems (one small, one large, Fig. 19). We show parellel speedups relative
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FIG. 18. Strong parallel s
aling for two representative protein systems: small (top) and large (bottom).

Higher is better.

55



FIG. 19. Strong parallel s
aling for two representative polymer 
hains: small (left) and large (right).

Higher is better.

to 160 CPU 
ores (4 nodes), or, where the system is too large to run on 4 nodes, relative to

320 CPU 
ores (8 nodes).

For the small protein system (Fig. 18, top) we modestly ex
eed perfe
t s
aling, ex
ept for the

last two data points, where the speedup be
omes marginally worse than linear. This happens due

to imperfe
t load balan
ing, whi
h is di�
ult to a
hieve when the number of CPU 
ores ex
eeds

the number of atoms by a fa
tor of about 7. For the large protein system (Fig. 18, bottom) we

ex
eed perfe
t s
aling in all 
ases, even for the largest number of CPU 
ores, where at 1280 
ores

we a
hieve a 4.17-fold speedup over 320 
ores.
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FIG. 20. Strong parallel s
aling for two representative polymer 
hains: small (top) and large (bottom) in

a 
ondu
tion state 
al
ulation. Higher is better.
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The polymer 
hains, being more homogeneous and pra
ti
ally one-dimensional, 
onstitute an

easier system for our approa
h, whi
h a
hieves better-than-perfe
t s
aling at least until 1280 CPU


ores for a smaller and a larger system alike (Fig. 19). For the larger system in parti
ular the

gains are substantial � an 8-fold in
rease in the number of CPU 
ores (from 160 to 1280) yields a

10.2-fold speedup.

For 
ondu
tion state 
al
ulations our algorithm does not s
ale superoptimally (see Fig. 20),

but the s
aling remains respe
table. For a small system (228 atoms) an eight-fold in
rease in the

number of CPU 
ores o�ers a 4.22-fold speedup, 
orresponding to a parallel e�
ien
y of 0.53. For

a larger system (888 atoms), whi
h was ben
hmarked against 320 
ores, a four-fold in
rease in the

number of CPU 
ores yielded a 2.72-fold speedup (e�
ien
y of 0.68). The main 
ulprit responsible

for the worse s
aling of 
ondu
tion 
al
ulations is parallel load imbalan
e in the NGWF gradient

part. A more 
areful load balan
ing s
heme, perhaps one dedi
ated to the parti
ular requirement

of 
ondu
tion 
al
ulations, might be able to mitigate the problem.

F. Weak parallel s
aling

We will now look at how the 
omputational e�ort of our approa
h 
hanges as both the size of

the system and the available resour
es (CPU 
ores and RAM) are uniformly in
reased. This is

known as weak parallel s
aling and it is easiest to illustrate using parallel speedup relative to the

number of CPU 
ores on whi
h this speedup has been obtained, also known as parallel e�
ien
y :

e(N

ores

) =
s(N


ores

)

N

ores

. (30)

Sin
e in many s
enarios it is not feasible to run the 
al
ulation on one CPU 
ore, e�
ien
y relative

to a �xed number of 
ores N0

ores

is often used instead:

eN0

ores

(N

ores

) =
sN0


ores

(N

ores

)

N

ores

/N0

ores

. (31)

Here we will perform a rather stringent test of performan
e, showing parallel e�
ien
y relative to

160 CPU 
ores, with a fairly small (and thus di�
ult) number of atoms per 
ore (≈ 1.4).
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From the de�nition of e�
ien
y and the dis
ussion in se
tion VE it follows that perfe
t s
aling

will 
orrespond to e = 1. In typi
al s
enarios Amdahl's law together with load imbalan
e and


ommuni
ation overheads will 
ause e�
ien
y to drop below 1 for larger 
ore 
ounts. As our

algorithm 
an make good use not only of the additional CPU 
ores, but also the additional RAM,

we expe
t it to a
hieve �superoptimal� e�
ien
y at least in some s
enarios.

When investigating weak parallel s
aling one must be able to in
rease the system size in a

uniform fashion, so that the number of atoms per CPU 
ore is 
onstant. For this reason we will

only show weak s
aling for the polymer systems, where this 
an be a
hieved by adding identi
al

units to the system.
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FIG. 21. Weak parallel s
aling for the polymer systems (higher is better). Solid lines 
orrespond to a


al
ulation with a hybrid, and dashed lines show a GGA 
al
ulation for 
omparison. System sizes range

from 228 to 1768 atoms, for ≈ 1.4 atoms per CPU 
ore.
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Results of our measurements are presented in Fig. 21, whi
h shows plots of e�
ien
y (relative

to 160 CPU 
ores) for both the valen
e and 
ondu
tion state 
al
ulations. For valen
e 
al
ulations

s
aling is near-optimal at lower system sizes and 
ore 
ounts, slightly ex
eeding perfe
t s
aling

for larger systems, whi
h is an ex
ellent result. Standard GGA 
al
ulations do not s
ale as well,

although their performan
e is still good, with e�
ien
ies of about 0.8 for all setups.

For 
ondu
tion 
al
ulations s
aling is suboptimal, but respe
table, a
ross the board, with

e ≈ 0.7-0.8, whi
h is still mu
h better than GGA 
ondu
tion 
al
ulations, where e�
ien
y drops

to below 0.4 for the largest 
ore 
ounts. Several fa
tors are responsible for the worse s
aling per-

forman
e of 
ondu
tion 
al
ulations 
ompared to valen
e 
al
ulations. Firstly, be
ause of how


ondu
tion 
al
ulations are stru
tured (
f. se
tion III), there is no bene�t to 
a
hing NGWF ex-

pansions in this 
ase, as NGWFs always 
hange between invo
ations of the HFx engine. This

means that the SW expansion stage does not bene�t from the additional RAM at higher 
ore


ounts. Se
ondly, the 
al
ulation of the P term in the NGWF gradient does not s
ale as well as

the other 
omponents, presumably be
ause NGWF produ
ts are not 
a
hed either in this 
ase.

The additional RAM is not wasted, it is devoted to 
a
hing SWpots (see Table III), and this

stage does a
hieve e > 1. Finally, and most importantly, the impa
t of parallel load imbalan
es

in
reases as the 
al
ulations move to larger 
ore 
ounts. In 
ontrast to valen
e 
al
ulations, here

it is the NGWF gradient 
al
ulation stage that be
omes in
reasingly poorly balan
ed. This again

(
f. the end of se
tion VE) suggests that taking the NGWF gradient stage into a

ount in the

load balan
ing s
heme would be worth pursuing.

G. Cal
ulation walltime vs. MPI/OMP balan
e

We will now brie�y 
onsider how the 
al
ulation walltime depends on the division of work a
ross

MPI ranks and OMP threads. onetep supports so-
alled hybrid parallelism, that is, it runs on

multiple MPI pro
esses (termed ranks), ea
h of whi
h spawns OMP threads. Pro
esses reside in

separate address spa
es (and often on distin
t physi
al ma
hines, termed nodes), while threads
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spawned from a single rank share memory. All large data stru
tures are thus distributed a
ross

ranks, but shared a
ross threads. It is up to the user to divide the pool of available CPU 
ores

N

ores

a
ross N
MPI

ranks and N
OMP

threads, su
h that N

ores

= N
MPI

N
OMP

. The maximum number

of ranks is limited by system size. Roughly speaking, the number of atoms must be larger than

N
MPI

, and in pra
ti
e load balan
ing issues 
ause performan
e to deteriorate when the number

of atoms per rank be
omes small. The maximum number of threads is limited by the number of

CPU 
ores on a node.
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FIG. 22. E�e
t of MPI-OMP balan
e on 
al
ulation walltime for a small protein system (blue squares),

and a large protein system (red 
rosses), run on 16 
ompute nodes (40 CPU 
ores ea
h). The x axis shows

N
OMP

, and N
MPI

= (16× 40) /N
OMP

. Lower is better.

Standard (non-hybrid) onetep 
al
ulations typi
ally attain best performan
e at 4 or 5 OMP

threads, where load balan
ing overheads are balan
ed between MPI ranks and OMP threads

41

.

The HFx engine, however, bene�ts from additional memory that be
omes available when the

MPI/OMP balan
e is shifted towards using more OMP threads and fewer MPI ranks. For instan
e,

on a typi
al 128GB node with 32 CPU 
ores, one 
ould allo
ate 16GB of memory per MPI rank

when using N
MPI

= 8, N
OMP

= 4, but as mu
h as 64GB per MPI rank when using N
MPI

=

61



2, N
OMP

= 16 (negle
ting the memory used by the OS and supporting software ar
hite
ture).

The additional memory devoted to HFx engine 
a
hes will substantially in
rease performan
e

(
f. Fig. 6). However, for this to happen the algorithm needs to s
ale well with the number of

OMP threads.

In Fig. 22 we show how the 
al
ulation walltime 
hanges with the number of OMP threads.

Cru
ially, total memory use of the HFx engine has been kept 
onstant a
ross all data points in

ea
h of the two 
urves. Clearly, for both systems the 
al
ulation is fastest when 20 OMP threads

are used, be
oming somewhat slower as balan
e is shifted towards lower numbers of threads. The

performan
e de
rease at 40 OMP threads, despite allo
ating all of the node's memory to a single

MPI rank, is due to the fa
t that Iridis5 nodes en
ompass two NUMA regions, and splitting a

pro
ess a
ross two regions results in a severe performan
e hit due to nonlo
al memory a

esses.

This is a typi
al situation on many HPC ma
hines. We did not run the small system with 1 or 2

OMP threads, be
ause the system was too small for the resulting large N
MPI

. The large system


ould not be run with 4 or fewer OMP threads be
ause the resulting large number of MPI ranks

per node led to an out-of-memory 
ondition due to the 
ost of non-HFx 
omponents of onetep.

In summary, we 
on�rmed our expe
tation that our algorithm performs best at the highest

possible number of OMP threads, provided that pro
esses do not 
ross NUMA boundaries. This

also 
on�rms ex
ellent OMP s
aling of the algorithm, without whi
h the above result would not

have been possible.

H. Pre
onverging with a non-hybrid fun
tional

We now brie�y show how the performan
e of hybrid fun
tional 
al
ulations 
an be improved by

employing the optimization des
ribed in Se
tion IIIH and we assess the e�e
t of this optimization

on energies.

We begin by demonstrating that the error in the energies asso
iated with restarting from a pre-


onverged 
al
ulation is pra
ti
ally negligible (and 
ertainly mu
h smaller than the error introdu
ed

62



by swit
hing to PBE) in both s
enarios � when the 
al
ulation is 
ontinued with a hybrid fun
tional,

optimizing both the density kernel and the NGWFs (�B3LYP-1�); and when only the density kernel

is optimized (�B3LYP-2�) � with the latter approa
h avoiding the NGWF gradient 
omputation

stage entirely.

As the investigated energies we use (a) the bond-stret
h energy 
urve of ethene, (b) the intera
-

tion energy 
urve of water with a 
hloride ion, (
) the intera
tion energy of a sodium 
ation with

its �rst solvation shell, for a number of snapshots obtained from 
lassi
al mole
ular dynami
s, and

(d) the HOMO-LUMO gap of an 888-atom polymer system investigated earlier in the text and

shown in Fig. 20. In this way we probe not only bonded, but also non-bonded intera
tions, and

we investigate small systems (a-
) and large systems (d).

The smallest systems were run using 
orrespondingly modest 
omputational resour
es � 2 MPI

pro
esses with 4 OpenMP threads ea
h for ethene and H2O:Cl
−
, and 8 MPI pro
esses with 5

OpenMP threads ea
h for Na

+
:6H2O. Memory load did not ex
eed 4GB per MPI pro
esses and

as su
h it was not 
apped. The 888-atom polymer system was run on 16 Iridis5 nodes (2 MPI

pro
esses per node, with 20 OpenMP threads ea
h), with memory 
apped to 50GB per MPI

pro
esses.

Results are shown in Figs. 23 to 25 and in Tables IV to VI. For ethene (Fig. 23) the bond-stret
h


urves are pra
ti
ally indistinguishable between the full B3LYP 
al
ulation and both approa
hes

based on restarts, with mean errors in the order of 0.1 kcal/mol or less, while PBE 
onsistently

overbinds by as mu
h as 17 kcal/mol (Table IV). For the H2O:Cl
−
system (Fig. 24) the intera
-

tion energy 
urves are also very similar between the full B3LYP 
al
ulation and both approa
hes

based on restarts, with errors never ex
eeding 0.1 kcal/mol, while PBE overbinds by 1�2 kcal/mol

(Table IV). In the Na

+
:6H2O system PBE underbinds by 1�2.5 kcal/mol, and again the results

of the two restart-based approa
hes are almost always within 0.1 kcal/mol from the full B3LYP


al
ulation. For these very small systems (N
atoms

< 20) the e�
ien
y gains from using a restart-

based approa
h are either very modest or non-existent (Table V). This is due to the fa
t that

for small systems all requisite SWs and expansions 
an be 
a
hed in RAM making the employed
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at regular intervals from a mole
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s run. Results 
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onverging with PBE (orange 
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k plusses � see text),

and PBE (blue squares) are 
ompared against the referen
e (B3LYP) results.

time-memory tradeo�s very e�
ient and the 
al
ulation of HFx near-optimal. As shown earlier

in Figs. 3 and 4, the memory load of 
a
hing everything qui
kly be
omes prohibitive, and indeed

the e�
ien
y gains from using a restart-based approa
h for a large polymer system be
ome quite

signi�
ant � over twofold for B3LYP-1 and over 19-fold for B3LYP-2 (Table V). As we did not

look at the energy of binding for the polymer system, we instead 
al
ulate its HOMO-LUMO gap

to assess the a

ura
y of the restart-based approa
h. Table VI shows that the asso
iated error was

in the order of 0.02 eV (less than 2%), again mu
h smaller than the one asso
iated with swit
hing

to PBE for the entire 
al
ulation.
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We thus 
on
lude that it is pra
ti
able, and su�
iently a

urate, to signi�
antly redu
e the


ost of hybrid fun
tional 
al
ulations by �rst pre
onverging with a GGA for all systems ex
ept the

smallest ones.

TABLE IV. Errors in the intera
tion energy � mean signed, root mean square, and maximum � relative

to the B3LYP referen
e, averaged over all data points.

System Model Mean signed RMS Maximum

error error error

(k
al/mol) (k
al/mol) (k
al/mol)

PBE -17.017 17.268 21.651

C2H4 B3LYP-1 -0.016 0.035 0.091

B3LYP-2 0.110 0.121 0.159

PBE -1.046 1.121 1.953

H2O:Cl
−

B3LYP-1 0.021 0.022 0.030

B3LYP-2 0.085 0.085 0.096

PBE 1.650 1.689 2.490

Na

+
:6H2O B3LYP-1 -0.087 0.091 0.148

B3LYP-2 -0.012 0.042 0.111
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TABLE V. Speed-up (redu
tion in walltime) of the two restart-based approa
hes relative to a full B3LYP


al
ulation: s = t
B3LYP

/t
B3LYP-[12℄

. Higher is better.

System Model Speed-up relative

to a full B3LYP


al
ulation

C2H4 B3LYP-1 0.75

B3LYP-2 1.02

H2O:Cl
−

B3LYP-1 0.71

B3LYP-2 1.01

Na

+
:6H2O B3LYP-1 1.10

B3LYP-2 1.72

888-atom polymer B3LYP-1 2.21

B3LYP-2 19.44

TABLE VI. HOMO-LUMO gaps for the 888-atom polymer system � 
al
ulated with PBE, B3LYP and

the two restart-based approa
hes, and their errors relative to a full B3LYP 
al
ulation.

Model HOMO-LUMO Error relative Error relative

gap (eV) to B3LYP (eV) to B3LYP (%)

PBE 0.482 −0.810 −62.69 %

B3LYP 1.293 0.000 0.00 %

B3LYP-1 1.267 −0.026 −2.01 %

B3LYP-2 1.281 −0.012 −0.89 %
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FIG. 26. Stru
ture of the largest studied imogolite nanotube (7 units), indi
ating the positions of the

nu
lei (spheres) and the impli
it solvent diele
tri
 
avity (surrounding bubbles).

I. Demonstration of pra
ti
ability � example 
al
ulations on large imogolite

nanotube systems

We �nish with a demonstration of the pra
ti
ability of the presented approa
h for 
al
ulating

Hartree-Fo
k ex
hange, by showing fully 
onverged results obtained with B3LYP for large nanotube

systems (up to 1416 atoms). The potential of these aluminosili
ate nanotubes and their deriva-

tives for sele
tive photo-
atalyti
 appli
ations has been re
ently explored 
omputationally

49�53

and
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started to be veri�ed experimentally

54,55

. In this work we 
al
ulated the ele
troni
 density of states

(Fig. 27), the HOMO-LUMO bandgap (Fig. 28) and the free energy of solvation in impli
it solvent

water (Fig. 29) of pristine (undefe
ted), hydrated, aluminosili
ate imogolite nanotubes of three

di�erent sizes � 3, 5 and 7 units (see Ref. 49 for more details).

The stru
ture of the largest 
onsidered nanotube, surrounded with impli
it solvent, is shown in

Fig. 26. Our 
al
ulations ran on 32 
ompute nodes, ea
h with 40 CPU 
ores and 192 GB of RAM,

and, for the largest system, took about 14 h per NGWF optimization iteration, thus requiring

several restarts to 
omplete (
al
ulations typi
ally take 10-20 iterations to fully 
onverge).
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FIG. 27. Ele
troni
 density of states for the studied imogolite nanotube. Results obtained in va
uum with

a GGA (PBE, blue) and with a hybrid fun
tional (B3LYP, red) are 
ompared. In addition the e�e
t of

impli
it solvent is shown for the B3LYP 
al
ulation (orange).

As expe
ted, we observe (Figs. 27 and 28) a widening of the HOMO-LUMO gap by about 1.5 eV

on
e the hybrid fun
tional is swit
hed from PBE to a hybrid (B3LYP). The subsequent addition of

the water environment (modeled using our minimal-parameter solvent model

56,57

) further in
reases

the gap by about 0.4 eV. The magnitude of the gap appears reasonably well-
onverged with system

size at 7 nanotube units.
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The 
al
ulated free energy of solvation is in the order of −200 kcal/mol per one nanotube unit

of length, and is more favorable by about 13 kcal/mol when 
al
ulated with B3LYP, 
ompared

to PBE. It 
hanges appre
iably between system sizes, presumably due to the e�e
t of the ends

of the nanotube and di�erent stru
tural relaxation

49

. The 
al
ulated free energy of solvation

still seems slightly under
onverged with system size even at 7 nanotube units. The presented

method development in onetep paves the way for follow-up resear
h into this aspe
t of imogolite

nanotubes, as well as hybrid (linear-s
aling) DFT simulations of the me
hanisms of assembly of

solvated proto-imogolite fragments into the �nal nanotubes

58,59

.

VI. CONCLUSIONS

We presented a massively-parallel, linear-s
aling algorithm for the 
al
ulation of Hartree-Fo
k

ex
hange and hybrid fun
tionals, subsequently dis
ussing and ben
hmarking its implementation

on a number of systems relevant to industrial appli
ations.

Our approa
h is based on expressing produ
ts of lo
alized orbitals (NGWFs) in terms of trun-


ated spheri
al waves, the expressions for the ele
trostati
 potential of whi
h are known analyti-


ally. The 
arefully thought out parallel distribution of both data and algorithms, together with

the aggressive use of time-memory tradeo�s, allows our approa
h to a
hieve very high parallel

e�
ien
y in s
enarios where the number of CPU 
ores is 
omparable to the number of atoms, and

beyond.

We showed how on today's ma
hines our approa
h is able to treat systems of up to about

1500 atoms routinely � requiring several hundred CPU 
ores to a
hieve a walltime of under one

week. The largest system whi
h we demonstrated to be pra
ti
able on 32 
ompute nodes 
on-

tained 4048 atoms. The ex
ellent s
aling properties of our approa
h mean that systems even

larger than that will be treatable, although they would require substantial 
omputational resour
es

(N

ores

≈ N
atoms

). Condu
tion state 
al
ulations have larger requirements, due to redu
ed matrix
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sparsity and larger numbers of NGWFs, and the largest system we showed to be pra
ti
able on 16

nodes was 1768 atoms.

The 
omputational e�ort of our approa
h s
ales linearly with system size, and the same is true

for all of its 
omponents individually. The strong parallel s
aling is ex
ellent, o

asionally be
om-

ing superlinear owing to the extensive use of time-memory tradeo�s, and although there is still

room for optimization in 
ondu
tion state 
al
ulations, even these s
ale better than 
orresponding


al
ulations with a GGA. Our implementation s
ales very well to high thread 
ounts and to large

numbers of MPI pro
esses, retaining very good e�
ien
y even in the regime where N

ores

≫ N
atoms

.

In light of the fa
t that, through the use of a �nite auxiliary basis, our approa
h is an approx-

imation, in the supplementary material we assessed the magnitude of the introdu
ed error and

showed how it 
onverges with the tunable parameters of the SW basis set. In all 
ases we found

the magnitude of the error to be extremely small and 
ontrollable.

The methods presented in this paper not only signi�
antly narrow the performan
e gap between

hybrid fun
tionals and GGAs and meta-GGAs in linear-s
aling DFT, but also pave the way for

future developments in onetep whi
h would employ four-
enter ele
tron repulsion integrals � su
h

as Random Phase Approximation (RPA) or Møller-Plesset perturbation theories or 
al
ulations

employing s
reened hybrids.
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