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We extend our linear-saling approah for the alulation of Hartree-Fok exhange en-

ergy using loalized, in situ optimized orbitals [Dziedzi et al., J. Chem. Phys. 139, 214103

(2013)℄ to leverage massive parallelism. Our approah has been implemented in the onetep

density funtional theory (DFT) framework, whih employs a basis of non-orthogonal gen-

eralized Wannier Funtions (NGWFs) to ahieve linear saling with system size while re-

taining ontrollable, near-omplete-basis-set auray. For the alulation of Hartree-Fok

exhange we use a resolution-of-identity (RI) approah, where an auxiliary basis set of

trunated spherial waves (SWs) is used to �t produts of NGWFs. The fat that the ele-

trostati potential of SWs is known analytially, ombined with the use of a distane-based

uto� for exhange interations, leads to a alulation ost that sales linearly with the

system size. Our new implementation, whih we desribe in detail, ombines distributed

memory parallelism (using the Message Passing Interfae (MPI)) with shared memory par-

allelism (OpenMP threads) to e�iently utilize numbers of CPU ores omparable to, or

exeeding, the number of atoms in the system. We show how the use of multiple time-

memory tradeo�s substantially inreases performane, enabling our approah to ahieve

superlinear strong parallel saling in many ases, and exellent, although sublinear, parallel

saling otherwise. We demonstrate that in senarios with low available memory, whih

prelude or limit the use of time-memory tradeo�s, the performane degradation of our

algorithm is graeful. We show that, ruially, linear saling with system size is maintained

in all ases. We demonstrate the pratiability of our approah by performing a set of fully-

onverged prodution alulations with a hybrid funtional on large imogolite nanotubes

up to over 1400 atoms. We �nish with a brief study of how the employed approximations

(exhange uto� and the quality of the SW basis) a�et the alulation walltime and the

auray of obtained results.

a)

C.Skylaris�soton.a.uk

2

mailto:C.Skylaris@soton.ac.uk


I. INTRODUCTION

Owing to its favorable balane of auray and relatively low omputational ost, Kohn-Sham

(KS) density funtional theory (DFT) is a widely used tehnique in many branhes of omputa-

tional hemistry and materials siene

1

. The auray of DFT depends ruially on the approx-

imations invoked in the exhange-orrelation (XC) funtional used. Hybrid funtionals, whih

inlude a fration of Hartree-Fok exhange (HFx), are among the most aurate funtionals in

use today, o�ering an elegant way of reduing the self-interation error, and leading to a more

faithful desription of geometries and of several properties, suh as bond energies and band gaps,

partiularly for metal oxides

2

.

Despite the ontinual inrease in available omputing power, alulating the HFx energy term

remains omputationally expensive beause of its inherent non-loality. In anonial KS-DFT the

HFx energy is given by

E
HFx

= −

NMO
∑

i=1

NMO
∑

j=1

zizj

¨

ψ∗

i (r)ψj(r)ψ
∗

j (r
′)ψi(r

′)

|r− r′|
drdr′, (1)

where {ψi} are the anonial moleular orbitals (MOs), zi are their oupanies and NMO is the

total number of moleular orbitals present in the alulation. Given that MOs extend throughout

the entire system, and that the Coulomb operator is long-ranged, the ost of eah volume integra-

tion in Eq. 1 is proportional to the size of the system, whether measured by the number of atoms N

or the number of moleular orbitals NMO (whih is ∝ N). The presene of a double integral over

volume, together with a double sum over MOs makes a diret alulation of E
HFx

sale as O(N4).

In pratial alulations the MOs are expanded in terms of a �nite basis:

ψi(r) = ϕα(r)M
α
i, (2)

where we have assumed a summation over repeated Greek indies. The tehniques for mitigating

the unfortunate quarti saling depend on the employed basis set {ϕα}.
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When loalized orbitals are used (e.g. Gaussian funtions or numerial atomi orbitals (NAOs)),

Hartree-Fok exhange energy an be reast as

E
HFx

= −Kβα (ϕαϕδ|ϕγϕβ)K
δγ , (3)

where (ϕαϕδ|ϕγϕβ) is the two-eletron, four-enter eletron repulsion integral (ERI) in hemists'

notation:

(ϕαϕδ|ϕγϕβ) =

=

¨

ϕ∗

α(r)ϕδ(r)
1

|r− r′|
ϕ∗

γ(r
′)ϕβ(r

′)drdr′ (4)

=

ˆ

ϕ∗

α(r)ϕδ(r)uγβ(r)dr, (5)

where

uγβ(r) =

ˆ

ϕ∗

γ(r
′)ϕβ(r

′)

|r− r′|
dr′ (6)

is a Coulombi potential of a produt of loalized orbitals. The ontravariant matrix K is the

representation of the single-partile density matrix in the duals of the {ϕα}, and is known as the

density kernel. The density kernel is, in general, a spin-dependent quantity. Here, and in all the

text that follows, we will omit spin-dependene for larity and brevity of notation.

Pre-sreening ERIs, that is, avoiding their evaluation if they are deemed to be zero or below

a given threshold forms the basis of a number of methods for reduing the omputational ost of

HFx, partiularly for Gaussian basis sets. Examples of suh approahes inlude LinK

3

and ONX

4

.

It has also been reognized that rigorous upper bounds for integrals are of seondary importane,

with tighter estimates of integral values permitting better ontrol of the preision of alulating

HFx

5

. Another approah is to use a trunated Coulomb operator to evaluate the ERIs, whih

makes them short-range. The long range ontribution an then be reovered in the form of a

systematially improvable orretion

6

.

In the ontext of extended basis sets, suh as plane waves, the non-loality of the exhange

operator makes the alulation of HFx more hallenging. Nevertheless, suitable tehniques have
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been proposed for alulations on periodi systems

7�9

, some of them linear-saling

10,11

. Some

of these approahes employ mixed basis sets (e.g. Gaussians and plane waves

12,13

, or Wannier

funtions and plane waves

10,11

).

In the ontext of loalized, atom-entered basis sets, suh as Gaussians or NAOs, methods based

on the resolution of the identity (RI) are ommonly employed to make the omputational e�ort

assoiated with omputing HFx more manageable. These tehniques, pioneered in the 1970s

14,15

,

and partiularly popular in the �eld of orrelated wavefuntion methods

16�18

, expand pair produts

of atomi orbitals in an auxiliary basis whose funtions are similarly atom-entered

19

.

One of the most notable developments in this area is the robust �tting formula of Dunlap

20,21

,

whih, when used instead of diretly replaing the pair produts with their RI �ts, ensures the

resultant error is bilinear in the error of the �tted produts

19

, with the linear error removed.

Dunlap and o-workers are also redited with establishing

22

that using the Coulomb metri in the

�tting o�ers more aurate energies ompared to other metris, suh as the overlap metri.

In reent years ertain di�ulties assoiated with robust �tting have been reognized and so-

lutions or workarounds proposed. Merlot et al.

19

observed that the two-eletron integral matrix

is not manifestly positive semide�nite under ertain onditions. They proposed a pair-atomi res-

olution of identity (PARI) approah, based on loal �tting of either the bra or the ket side of

the ERI, ombined with the robust orretion, to ahieve quadrati auray

20

. Tew

23

reently

proposed a �quasi-robust� loal density �tting approah that addressess issues with undesired long-

range behavior when the auxiliary basis is inomplete. Sodt and Head-Gordon

24

proposed a loal

modi�ation to RI that yields energies that are di�erentiable with respet to nulear positions.

In this paper we present a massively-parallel approah for the e�ient alulation of Hartree-

Fok exhange in linear-saling time. The tehnique employs the resolution of identity and uses

trunated spherial waves as the auxiliary basis, with only the ket side of Eq. 4 being �tted, while

the produts in the bra are unexpanded. It is based on our previous developments

25

, where the

original implementation was serial. In setion II we �rst brie�y outline the basis of onetep �

the linear-saling reformulation of KS-DFT in whih our approah is implemented, following with

5



a desription of the theoretial basis of our method. In setion III we desribe the implementation

details of the algorithm, devoting partiular attention to the parallel data distribution and time-

memory tradeo�s that enable its e�ient parallelization. A short setion IV desribes the set-up

of the alulations we performed to benhmark our method.

In setion V we show the results of these alulations � we demonstrate that our algorithm

is indeed linear-saling, we ompare alulation walltimes against non-hybrid funtionals, and

investigate how individual omponents of the alulation sale. We show exellent strong and

weak parallel saling of our approah, with superlinear speed-ups in many ases. We brie�y

demonstrate how preonverging the alulation with a non-hybrid funtional before ontinuing

with a hybrid funtional signi�antly shortens alulation time with negligible loss of auray.

We onlude this setion with a demonstration of the feasibility of the proposed approah, by

performing alulations with the B3LYP hybrid funtional on imogolite nanotube systems with

1416 atoms. We �nish with setion VI, whih ontains onlusions and thoughts about future

work. In supplementary information we show how the additional approximations (the use of a

uto�, �niteness of the auxiliary basis) are ontrollable and how the assoiated errors are very

small.

II. THEORY

A. ONETEP

onetep

26

reformulates Kohn-Sham DFT

27

in terms of the single-partile density matrix,

ρ(r, r′). The density matrix is represented as:

ρ(r, r′) = ϕα(r)K
αβϕ∗

β(r
′), (7)

where the {ϕǫ} are the non-orthogonal generalized Wannier funtions (NGWFs)

28

entered at rǫ,

whih oinide with nulear oordinates (ǫ being a generi NGWF index). The NGWFs are stritly

loalized within spherial regions with radii {Rǫ}.

6



K is the density kernel, a sparse ontravariant matrix, whose elements Kαβ
are nonzero only if

|rα − rβ| < r
K

, where r
K

a real-spae uto� length, known as the density kernel uto�.

The strit loalization of NGWFs means the NGWF overlap matrix S = {Sǫζ}, de�ned as

Sǫζ =

ˆ

ϕ∗

ǫ(r)ϕζ(r)dr (8)

is sparse.

The NGWFs are expanded as linear ombinations of psin funtions

29

, Dm(r) = D(r− rm):

ϕǫ(r) =

m∈LR(ǫ)
∑

m

D(r− rm)cmǫ, (9)

where the index m runs over the points of the real-spae Cartesian grid rm, whih are the enters

of the psin funtions, inside the loalization region of ϕǫ, LR(ǫ). The psin funtions form an

orthogonal basis and are related to plane waves by a Fourier transform, thus sharing many of their

desirable properties, notably the independene from the nulear oordinates and the ability of the

basis set to be systematially improved by inreasing a single parameter: the kineti energy uto�.

The total energy is minimized self-onsistently with respet to the density kernel elements Kαβ

and the NGWF expansion oe�ients cmǫ under the onstraints of the idempoteny of the density

matrix and onservation of the number of eletrons, N
e

.

In typial onetep alulations this is done in two nested loops. In the inner loopK is optimized

via a modi�ed Li-Nunes-Vanderbilt (LNV) algorithm

30�32

with the NGWFs �xed. The outer loop

optimizes the NGWF expansion oe�ients cmǫ through gradient-based energy minimization. The

fat that the NGWFs remain �xed in the inner loop (and thus during the majority of energy

evaluations) will play a ruial role in the ode optimizations employed in the alulation of the

Hartree-Fok exhange energy.
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B. Hartree-Fok exhange in ONETEP

By introduing an auxiliary quantity, the (ovariant) exhange matrix X:

Xαβ = (ϕαϕδ|ϕγϕβ)K
δγ , (10)

we an express E
HFx

(Eq. 3) simply as

E
HFx

= −KβαXαβ. (11)

Diret evaluation of ERIs from Eq. 4 is impratiable beause of the six-dimensional nature of the

integral. Proeeding via Eq. 5 is slightly more advantageous � uγβ(r) (Eq. 6) an be obtained in

reiproal spae

33

or by solving the Poisson equation. Here the di�ulty lies in the fat that this

has to be done for eah pair-atomi quantity ϕ∗

γ(r
′)ϕβ(r

′) and that the potential uγβ(r) is long-

ranged. The latter preludes the use of onetep's traditional tool, the FFT box

34

, as the FFT

box would have to oinide with the entire simulation ell. This approah is quadratially-saling

with a very large prefator

34

. The use of a �nite exhange uto�, e.g. by assuming Xαβ to vanish

when |rα − rβ| < r
X

, where r
X

is the exhange uto� length, makes this approah linear-saling,

but the prefator remains prohibitively large.

We now brie�y reount the linear-saling approah atually used in onetep. For more details

we refer the reader to Ref. 25 where this approah was �rst desribed.

We �rst introdue the eletrostati metri V with the elements:

Vps =

¨

f ∗

p (r)
1

|r− r′|
fs(r

′)drdr′ = (fp|fs) , (12)

where {fp(r)}
N

f

p=1 are a set of (in-general) non-orthogonal funtions. Using the elements V ps
of the

inverse metri matrix V
−1

we an de�ne a resolution-of-identity (RI) operator:

Î
V

= |fp) V
ps (fs| . (13)

Suh RI operators are often used in omputational quantum hemistry software

14�18,20,22�24,35�39

with the aim of replaing four-enter ERIs with more tratable 3-enter integrals.
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FIG. 1. NGWFs (loalized orbitals) featuring in the alulation of E
HFx

(Eq. 3). The interating pair-

atomi quantities ϕ∗

α(r)ϕδ(r) and ϕ∗

γ(r
′)ϕβ(r

′) are shaded. All terms where the loalization sphere of α is

disjoint from that of δ vanish, and similarly all terms where the loalization sphere of β is disjoint from

that of γ vanish. This is a property of loalized orbitals. The non-loal nature of Hartree-Fok exhange

manifests in the fat that terms where the loalization sphere of α is disjoint from the loalization sphere

of β do not, in general, vanish.

By inserting the RI operator into Eq. 3, we obtain

25

:

E
HFx

= −Kβα (ϕαϕδ|fp)V
ps (fs|ϕγϕβ)K

δγ , (14)

whih is exat if the set of auxiliary funtions spans the same subspae as the produts of NGWFs.

In pratie we will be working with �nite sets of auxiliary funtions, making Eq. 14 an approximate

equality; we will denote the resultant approximate Hartree-Fok exhange energy with Ẽ
HFx

and

the approximate exhange matrix whose elements are

X̃αβ = (ϕαϕδ|fp) V
ps (fs|ϕγϕβ)K

δγ
(15)

with X̃.
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The employed auxiliary basis should have two important properties � it should be able to

aurately represent the �tted NGWF produts, and it should enable the omputation of Coulomb

potentials (Eq. 6) in O(1) time per NGWF pair. One suh basis set is formed by trunated

spherial waves (SWs), whih are solutions of the Shrödinger equation for a partile in a sphere.

They are given by

f(r) =











jl (qr)Zlm (r̂) r < a,

0 r ≥ a
, (16)

where jl (qr) is a spherial Bessel funtion, Zlm (̂r) is a real spherial harmoni, m is an integer

from the interval [−l, l], and a is the radius of the sphere where the zero boundary ondition is

imposed. In onetep's implementation we assume ∀ǫRǫ = a, that is, all NGWF loalization radii

are idential and equal to a. The value of q is hosen in suh a way that jl (qa) = 0, and the

suitable values of q depend on the angular momentum index l. The maximum values of q and l

are limited by the kineti energy uto� and the orresponding grid spaing. In typial senarios

it is su�ient to trunate the SW basis at lmax = 3 and qmax = 12, where qmax is the number of

di�erent values of q used for eah l. In the text that follows we will use a single index (p or s)

for the SWs for simpliity. This index overs all the possible ombinations of l, q and m and runs

from 1 to NSW. We will use up(r) to denote the potential of a SW (�SWpot� in further text):

up(r) =

ˆ

fp(r
′)

|r− r′|
dr′. (17)

This potential an be evaluated analytially in O(1) time

33

.

In our tehnique the produts featuring in the ket of Eq. 4, that is ϕ∗

γ(r
′)ϕβ(r

′), are expanded,

while the produts in the bra, that is ϕ∗

α(r)ϕδ(r), do not undergo expansion. The oe�ients of

expansion {cpγβ}p=1...NSW

are given by:

cpγβ = V ps (fs|ϕγϕβ) . (18)

An important issue is the hoie of enters for the SWs used in the expansion of ϕ∗

γ(r
′)ϕβ(r

′).

Using SWs entered only on NGWF γ or only on NGWF β breaks symmetry in Eq. 4, beause

10



it leads to cγβ ≈ cβγ , rather than cγβ = cβγ. Using SWs entered on both β and γ alleviates

this problem, but there is still the problem of broken αδ ↔ γβ symmetry, i.e. the produts in

the bra of the ERI Eq. 4 are then exat, while the produts in the ket are approximate (�tted).

To formally satisfy all the symmetry requirements one an resort to using SWs entered on all

four atoms (α, β, γ, δ) in the expansion, whih keeps the �tting domain idential between all

permutations of α, β, γ, δ in the ERI. Suh a �t is then robust in the sense of Ref. 20, that is, the

�tted integral does not ontain any terms linear in the error in the �tted densities. However, in

our ase this is impratiable. Even though it maintains linear-saling, using four enters in the

expansion leads to prefators that are prohibitively large, beause the produt ϕ∗

γ(r)ϕβ(r) then

needs to be re-expanded every time α or δ hanges in Eq. 14.

We solve the above problem by using a 2-enter expansion (on β and γ) and reovering the

αδ ↔ γβ symmetry by symmetrizing the approximate (SW-expanded) exhange matrix, X̃:

X̃αβ ←
1

2

(

X̃αβ + X̃βα

)

. (19)

This hange propagates to the expression for the Hartree-Fok energy, whih now reads

25

:

Ẽ
HFx

= −
1

2
Kβα

[

(ϕαϕδ|fp,γβ)V
ps (fs,γβ|ϕγϕβ) + (20)

(ϕαϕδ|fp,δα)V
ps (fs,δα|ϕγϕβ)

]

Kδγ .

Here we used additional indies to the SWs {f} to indiate where they are entered. While the

above expression formally inludes SWs entered on α and δ, we again stress that the symmetriza-

tion proedure (Eq. 19) makes it su�ient to only expand using SWs on β and γ. We have shown

25

that in pratie any di�erenes between the elegant, but prohibitively expensive 4-enter �t and

the 2-enter �t we employ are negligible, although our approah is no longer robust in the sense

of Ref. 20.

An important advantage of the 2-enter expansion is that it only inludes SWs entered on atoms

whose NGWFs overlap, making the eletrostati matrix in Eq. 12 e�etively sparse (even though

the potential of a SW is not loalized). This is neessary for the approah to be linear-saling.

11



We subsequently build linear ombinations of SWpots (orresponding to expanded potentials

of NGWF pair produts):

eγβ(r) =

NSW
∑

p=1

up(r)c
p
γβ = Îγβ |ϕγϕβ) (21)

(where Îγβ is de�ned in Eq. 24), and ontrat them with the density kernel over the index γ and

at the resultant potential:

ũδβ(r) = Kδγeγβ(r) (22)

on the produt ϕ∗

α(r)ϕδ(r) that appears in the bra of the ERI of Eq. 3. Having repeated this step

for all requisite NGWFs δ, we obtain an element of the exhange matrix, X̃αβ (Eq. 15). In the

�nal step we ontrat the exhange matrix with the negative of the density kernel K over α and

β, aording to (11) to obtain the Hartree-Fok exhange energy.

For every exhange matrix element (a pair of indies (α, β)) the ost of the above alulation is

asymptotially onstant (independent of system size). This is beause all the NGWFs are stritly

loalized and their overlap matrix is sparse. For our approah to be linear-saling, the number of

pairs (α, β)must inrease linearly with system size, i.e. the exhange interation must be trunated.

This is standard pratie in linear-saling methods

40

. Our method employs a simple distane-based

uto�, where the exhange matrix X is made sparse by negleting ontributions from pairs (α, β)

when |rα − rβ| > r
X

, where r
X

is an assumed real-spae uto� for exhange. We have shown

25

that

even in more demanding appliations r
X

≈20 a0, or even less, is su�ient keep the trunation error

below 0.01%.

The fat that in onetep the NGWFs are optimized in situ neessitates alulating the gradient

of the energy with respet to the NGWF expansion oe�ients (whih, mathematially, is the

funtional derivative of the energy with respet to the omplex onjugate of some NGWF α). The

derivation of the relevant expression for Hartree-Fok exhange has been presented in Ref. 25; here,

for the sake of brevity we only reount the �nal form:

Gα(r) = Gα
1 (r) +Gα

2 (r) = 2ϕδ(r)K
βαKδγ Îγβ |ϕγϕβ) + 2ϕδ(r)Îδα

(

KβαKδγ |ϕγϕβ)
)

, (23)

12



where the fator of 2 is due to the fat that the NGWFs are assumed to be real-valued, and the

operator Iκλ is the resolution of identity operator in terms of SWs entered on NGWFs κ and λ:

Îκλ = |fp,κλ) V
ps (fs,κλ| . (24)

The �rst term in Eq. 23 involves summing large numbers of expansions of pair NGWF produts

ϕγϕβ in terms of SWs entered on these NGWFs. In the seond, more involved term linear

ombinations of NGWF produts are expanded in SWs entered not on these NGWFs, but rather

on the NGWF with respet to whih we di�erentiate (α) and the NGWFs that overlap with it (δ).

The expression in Eq. 23 is the ontravariant gradient, whih annot be diretly used to update

NGWFs {ϕα}, whih are ovariant. To ahieve tensorial orretness, it must be onverted to a

ovariant gradient: Gǫ(r) = Gα(r)Sαǫ.

C. Summary of trunation parameters

As an aid to the Reader, in setion IIB we reount and brie�y desribe the trunation parameters

used in onetep and in this work.

TABLE I. Summary of trunation parameters employed in the onetep approah and in our HFx algorithm.

Parameter Symbol Typial Used in Desription

value

Density kernel

uto�

r
K

50�100 a0 onetep Distane between two atomi enters beyond whih

the density matrix is assumed to vanish.

NGWF loaliza-

tion radius

Rǫ 8�10 a0 onetep Radius of an atom-entered sphere beyond whih the

NGWF is assumed to be stritly zero.

Exhange uto� r
X

20�25 a0 HFx method Distane between two atomi enters beyond whih

the exhange matrix is assumed to vanish.

13



III. IMPLEMENTATION

In this setion we desribe the parallel implementation of our algorithm, highlighting hoies of

parallel deompositions and time-memory tradeo�s that make it e�ient and massively paralleliz-

able.

A. Preliminary omments and notation

We begin with a minor implementation detail that will gain more importrane later in the text.

As mentioned earlier (f. Eq. 9), in onetep the NGWFs are stored as psin expansion oe�ients

on a Cartesian grid. In pratie we use a so-alled parallelepiped representation, illustrated in

Fig. 2.

FIG. 2. Diagram of the PPD representation used in onetep (simpli�ed to 2D). Two example NGWFs are

shown (irles). Grid data for NGWFs and their overlaps is stored as ontents of parallelepipeds (PPDs)

tiling the grid (shaded areas).

14



The simulation ell is tiled into suitably-sized parallelepipeds (PPDs). Eah NGWF loalization

region is enompassed by a number of PPDs (shaded areas in the diagram). The psin oe�ients

are stored for all points in these PPDs, arranged into a ontinuous 1D array. Suh a paked

representation, while introduing some overhead (points within PPDs but outside of the NGWF

sphere), makes it easy to pass NGWF data between MPI ranks and enables e�ient proessing.

In the urrent implementation of HFx this representation is also used for NGWF overlaps (dark-

shaded area in the diagram).

In the text that follows we will use a onvention where apital letters (A, B, C, D, I, J , M)

denote atoms. Lowerase letters (a, b, c, d) will be used to index NGWFs on a orresponding

atom, for example a will ount NGWFs on atom A. For indexing NGWFs globally we will use

Greek letters (α, β, γ, δ, ǫ, ζ) like we have already done in the introdution. We will oasionally

swith between these two ways of indexing NGWFs (Aa ≡ α, et.) as some onepts are easier

explained using one notation or the other. Also, impliit summation will be assumed only over

repeated Greek indies.

Matrix sparsity plays an important role in the algorithm we present. The sparsity of S (due

to strit loalization of NGWFs), the sparsity of K (due to the assumed kernel uto�), and the

sparsity of X̃ (due to the assumed exhange uto�) are all ruial for ahieving linear saling. In

the text that follows it will often be useful to think of matrix sparsity patterns in terms of pairs

of atoms that are either within a sparsity pattern of a matrix (meaning the orresponding matrix

element is non-zero), or outside it (meaning the orresponding element is zero and is not stored).

We will use the following terminology to desribe this: two atoms whose NGWFs overlap (and so

the orresponding S element is non-zero) will be termed S-neighbors. Two atoms whose enters

are within the exhange uto� (and so the orresponding X̃ element is non-zero) will be termed

X-neighbors. The relations of being an S-neighbor or X-neighbor are ommutative. Finally, by

saying an atom I is an X-S-neighbor of atom J we will mean that there exists an atom M suh

that J and M are X-neighbors, and M and I are S-neighbors. This is best understood referring
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to Fig. 1, where atom D (NGWF δ) is an X-S-neighbor of atom B (NGWF β). Note that this

relation is not, in general, ommutative.

B. Hybrid MPI-OpenMP parallelism

onetep employs hybrid parallelism for all its major algorithms

41

. Distributed-memory, proess-

based (MPI

42

) parallelism is used in two ways: for the geometri deomposition of the simulation

ell (where eah MPI rank deals with a number of slabs omprising the ell), and to divide atoms

aross MPI ranks (eah MPI rank �owns� or is responsible for a subset of atoms). Suh a sheme is

naturally limited in the number of MPI ranks that an be used � performane begins to deteriorate

one the number of MPI proesses exeeds the number of slabs in the ell (beause some ranks no

longer have any work to do), or when the number of MPI ranks exeeds the number of atoms in

the system (at whih point onetep annot be run). This problem an be alleviated by reduing

the number of MPI ranks and instead having eah rank spawn a number of threads to saturate

the available CPU ores.

Shared-memory, thread-based parallelism (OpenMP

43

) is then used on a �ner sale to subdivide

larger work grains into threads. There are two main advantages to using suh a hybrid model.

One is being able to utilize large number of CPU ores without signi�ant loss of performane.

Another stems from the fat that threads share an address spae, so the memory load assoiated

with quantities that would normally be repliated aross MPI ranks is lowered sine fewer MPI

ranks are used. This seond advantage does not play a large role in onetep, as the most memory-

intensive quantities are distributed, not repliated, aross MPI ranks.

The main two bottleneks in onetep's approah to Hartree-Fok exhange are (a) the eval-

uation of SWpots (Eq. 17) from analytial expressions involving trigonometri and radial terms

(see Ref. 33 for details), and (b) the evaluation of SW-expanded potentials of NGWF pair produts

(Eq. 21). Both of these are performed repeatedly, often for the same parameters. For example,
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Eq. 21 will be evaluated with the same γ and β for multiple ombinations of α and δ, of whih it

is independent.

Naturally, this opens up opportunities for time-memory tradeo�s, where already alulated re-

sults are ahed in memory and subsequently reused, reduing the omputational ost to mere

look-ups. However, this has to be done arefully. Both quantities onsidered here (SWpots and

expanded potentials) require very large amounts of memory to store. Further in the text (se-

tion III E) we outline how the requirements sale with the system size, here we will only provide

an estimate � in typial senarios this memory requirement begins to exeed 1TB at about 400

atoms, just at the onset of linear saling in the evaluation of HFx. This is a requirement on total

memory, and so it ould in priniple be divided aross multiple ompute nodes. In today's high

performane omputing environments, using this quantity of distributed memory is pratial, sine

ompute nodes are routinely equipped with 128 to 512GB of memory.

Not to be negleted, however, is the ost to aessing suh distributed ahed data � aessing

data that is not loal to an MPI rank entails interproess ommuniation. The alulation of

SWpots in onetep has been extensively optimized � alulating ≈ 200 SWpots that are required

in typial senarios in one PPD that ontains 125 grid points takes only about 5 µs, and so any

attempt to aess a ahed opy from a remote MPI rank would be muh slower. For this reason

our algorithm relies on ahing all relevant data loally (within the same MPI rank), even if this

means repliating some data aross ranks.

To minimize this repliation and to inrease the available RAM for the ahe it stands to reason

to use as many OpenMP threads as possible and as few MPI ranks, as threads an then share a

large ahe without any need for message passing. Suitable thread synhronization mehanisms

must be used when populating the ahe to avoid data raes, but one the ahe is populated and

beomes read-only there is no need for synhonization.

For the above approah to be e�ient, our algorithm had to be optimized for large numbers

of threads. This is aomplished by ordering operations in suh a way as to move OpenMP

parallelism as high in the loop struture as possible, making omputational grains larger, and by
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avoiding synhronization mehanisms (ritial setions) whenever possible. As we will demonstrate

in setion V, the result is an algorithm that sales well to at least tens of OpenMP threads per

proess and at least thousands of CPU ores.

Another omponent ruial for massive parallelism is load balaning. As desribed above,

onetep distributes atoms aross MPI ranks. Looking at relevant expressions (e.g. Eqs. 18, 21

and 23), it beomes apparent that the key quantity being proessed are the kets |ϕγϕβ) . For

this reason, our algorithm distributes atom pairs (B,C) rather than atoms as in onetep's orig-

inal parallel distribution

44

. In the text that follows we will term onetep's original distribution

�sheme 1�, while the sheme used by the HFx algorithm will be termed �sheme 2�. The quantities

that are inputs to the algorithm, suh as NGWFs, density kernel elements and the metri matrix

V, will need to re-distributed from sheme 1 to sheme 2 before atual proessing begins, and the

quantities produed by the algorithm (the exhange matrix X̃ and the NGWF gradients Gα(r))

will have to be re-distributed from sheme 2 bak to sheme 1 before they an be used by the rest

of onetep mahinery. The walltime ost of these operations is very modest, below 0.5%. The

assoiated memory ost (due to having to store additional NGWFs and density kernel elements)

is also aeptable, at a level below 1 MB/atom per MPI rank.

C. Algorithm overview

Examining expressions in Eqs. 18 and 21 makes it lear that they are independent of the density

kernel, and involve only the NGWFs. This means that the alulation of Ẽ
HFx

an be broken up

into two distint stages � one that is independent of the density kernel, and one that is density-

kernel-dependent. The �rst stage, whih involves alulating expansion oe�ients of NGWF pair

produts (Eq. 18) and the potential of these expansions (Eq. 21) does not need to be repeated in

the inner (kernel optimization, LNV) loop. The seond stage (Eq. 22, subsequent alulation of

the elements of X̃, and of Ẽ
HFx

itself (Eq. 11)) must be repeated every time K hanges, that is,

multiple times in the inner loop.
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The density-kernel-independent stage will be desribed in setion IIID, and the density-kernel-

dependent stage, whih entails the atual alulation of Ẽ
HFx

� in setion III E.

The last omponent is the alulation of the gradient of Ẽ
HFx

with respet to the NGWFs,

whih is required for in situ optimization of NGWFs. It will be desribed in setion III F.

D. Density-kernel-independent stage

Algorithm 1 Density-kernel-independent stage

1: Distribute (B,C) pairs aross MPI ranks

2: Determine B and C atoms for eah MPI rank

3: Determine A atoms for eah MPI rank

4: Determine D atoms for eah MPI rank

5: Redistribute the matrix V from sheme 1 to sheme 2

6: Redistribute NGWFs from sheme 1 to sheme 2

7: Determine the set of all PPDs where SW expansions of the potential will be needed for eah MPI rank

8: Populate the SWpot ahe on eah MPI rank (→Alg. 1B)

9: Populate the NGWF produt ahe (→Alg. 1C)

10: Expand NGWF pair produts (→Alg. 1D)

The density-kernel-independent stage is desribed in Algorithm 1. In step 1, the workload

assoiated with all kets in Eq. 14, that is the set of all (B,C) atom pairs in the alulation, is dis-

tributed aross MPI ranks. During load-balaning, we assume the omputational e�ort assoiated

with a (B,C) atom pair to be proportional to the produt of the number of NGWFs on atoms B

and C. This is justi�ed by the fat that the algorithm deals with produts of pairs of NGWFs on

these atoms. In the �nal distribution eah MPI rank has a subset of (B,C) atom pairs and these

subsets are mutually disjoint, i.e. a given (B,C) pair is only found on one MPI rank.

In step 2, eah MPI rank onstruts a set of all B atom indies, and a set of all C atom indies

present in its set of (B,C) pairs. We will refer to these as the rank's B atoms, and rank's C
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atoms. Unlike (B,C) pairs, more than one MPI rank an have the same B or C atom in its subset

(i.e. the subsets are not disjoint).

In step 3, eah MPI rank determines the set of its A atoms, whih we de�ne as all atoms that are

X-neighbors to any B atom the MPI rank owns. Similarly, in step 4, eah MPI rank determines

the set of its D atoms, whih we de�ne as all atoms that are X-S-neighbors to any B atom the

MPI rank owns.

In step 5, the eletrostati metri matrix V (Eq. 12) is redistributed from sheme 1 (whih was

used during its alulation) to sheme 2 (whih is used in all subsequent alulations). This also

involves a hange of the underlying datastruture � from a distributed sparse matrix, to rank-loal

hash tables.

In step 6, the NGWFs themselves are redistributed from sheme 1 to sheme 2. Eah MPI rank

requests sheme-1-owners of all NGWFs it is going to need to send them (in PPD format), and,

simultaneously, eah MPI rank listens for requests addressed to it and satis�es them by sending the

NGWFs it sheme-1-owns. Following this step, eah MPI rank has all the NGWFs it is going need

in the alulation of HFx loally. No further ommuniation of NGWFs is going to be neessary.

This is an important tradeo� � we sari�e some memory (beause most NGWFs are now repliated

on more than one rank), but in return we avoid interspersing alulation with ommuniation in

all subsequent stages of the alulation. Our algorithm will thus be free of any idle waits of a rank

for ommuniation with another rank, and of any potential onvoy e�ets. The memory ost of

this overhead is aeptable � below 1 MB/atom on eah MPI rank, inreasing linearly with system

size (owing to the sparsity of S and X). We use the same approah for ommuniating elements

of the density kernel (see Alg. 2, step 1 further in the text).

In step 7, eah MPI rank establishes the set of PPDs where SW-expanded potentials of ket

NGWF pairs will be required. This is a union of the sets of PPDs on all of the rank's atoms A.

In step 8, eah MPI rank populates its SWpot ahe, following Algorithm 1B.

In step 9, eah MPI rank populates its NGWF produt ahe, following Algorithm 1C.

Finally, in step 10 NGWF pair produts are expanded in terms of SWs, following Algorithm 1D.
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This ompletes the desription of the density-kernel-independent stage. We now brie�y desribe

the algorithms used in the last three steps.

The SWpot ahe is populated aording to Algorithm 1B.

Algorithm 1B Populate the SWpot ahe

1: Perform a dry-run of the alulation, where only the numbers of aesses to eah SWpot are ounted

(for every MPI rank separately)

2: Determine how many SWpots an be ahed before the user-spei�ed memory limit is reahed, Nmax

SWpot

3: Prealulate the Nmax

SWpot

most aessed SWpots and store them in a hash table

Algorithm 1C Populate the NGWF produt ahe

1: n
pairs

= 0

2: for all my A atoms do ⊲ Count (A,D) pairs

3: for all D atoms that are S-neighbors of this A do

4: n
pairs

= n
pairs

+ 1

5: end for D

6: end for A

7: OMP for i
pair

= 1 to n
pairs

do ⊲ Proess (A,D) pairs

8: for all NGWFs d on atom D in pair do

9: for all NGWFs a on atom A in pair do

10: if room left in NGWF produt ahe then

11: Compute and store ϕAaϕDd in PPDs

12: else

13: exit OMP for

14: end if

15: end for a

16: end for d

17: end OMP for i
pair

The NGWF produt ahe is populated following Algorithm 1C. First, eah rank ounts and

enumerates the atom pairs (A,D) relevant to it, building a list of pairs. This is done to swith from
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atom indies to a fused (pair) index, whih lends itself better to OMP parallelization. Subsequently,

for all the atom pairs the produts of their NGWFs are alulated and stored, with the pair loop

parallelized over OpenMP threads. If at any time the user-spei�ed maximum size of the produt

ahe is reahed, the loop terminates early. That means that we only store as many NGWF

produts as possible, with the memory requirement stritly bounded. In subsequent steps produts

that are not found in the ahe will simply be realulated on the �y. This preludes runaway

memory use and ensures graeful performane degradation in low-memory senarios.

Algorithm 1D Expand NGWF pair produts

1: for all (B,C) pairs owned by this MPI rank do

2: for all NGWFs b on atom B in pair do

3: for all NGWFs c on atom C in pair do

4: Compute ϕBbϕCc in PPDs

5: OMP for all PPDs in produt ϕBbϕCc do

6: Calulate bs,γβ = (fs|ϕγϕβ) for all SWs s

7: For all SWs p, obtain expansion oe�ients

cpγβ = V psbs,γβ by solving a linear

equation system Vspc
p
γβ = bs,γβ

8: end OMP for PPD

9: end for c

10: end for b

11: end for (B,C)

NGWF pair produts are expanded in terms of SWs following Algorithm 1D. For all NGWF

pairs on all (B,C) atom pairs owned by an MPI rank we �rst alulate the produts of the NGWFs,

and then alulate their overlaps with all SWs s (entred on B and C). The overlaps are then

used as the onstant term in a system of linear equations to determine the expansion oe�ients

(step 7). OpenMP parallelism is employed over PPDs in the produt.
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E. Density-kernel-dependent stage

In this stage the Hartree-Fok exhange energy Ẽ
HFx

is alulated using the SW expansion of

NGWF produts obtained from Algorithm 1. Unlike the previous stage, this one depends on the

values of the density kernel and as suh it needs to be performed multiple times within the kernel

optimization loop. The proedure is outlined in Algorithm 2, and will now be desribed.

In step 1, the density kernel matrix K is redistributed from sheme 1 (whih is used in the rest

of onetep) to sheme 2 (whih is used in all subsequent alulations). This also involves a hange

of the underlying datastruture � from a distributed sparse matrix, to rank-loal hash tables.

Next, eah MPI rank proesses the atom pairs (B,C) it was assigned. The result of this

proessing are the expanded potentials of NGWF produts eγβ for all NGWFs on atoms B and C

in eah pair. The expanded potentials are alulated at all points where they will later be required,

that is in the PPDs of all atoms A that are X-neighbors to atom B. This set of PPDs (termed

�PPDs relevant to atom B�) is established in step 3.

Subsequently, we iterate over all the NGWF pairs on atoms B and C. The previously alulated

SW expansion oe�ients cpγβ for the NGWF produts are retrieved (step 6) and the expanded

potential is alulated (step 8) in all relevant PPDs. OpenMP parallelism is leveraged for the loop

over PPDs. The expanded potential is stored in a hash table termed the �expansion ahe�.

Storing all the expanded potentials would require enormous amounts of memory � for all but

the smallest systems, they need to be alulated in a sphere with a radius r
X

+ a (where r
X

is

the exhange uto� and a is the NGWF loalization radius). At typial settings this translates

to about 6.5 MB of storage per single expansion. The number of expansions on an atom B is

nBnCN
S

B, where nB and nC are the numbers of NGWFs on atoms B and C, respetively, and NS

B

is the number of C atoms that are S-neighbors of atom B. At typial settings this number is

about 800. For typial nB and nC we arrive at a value of about 5 GB per atom, whih is learly

exessive even if we assume this ost to be distributed aross ompute nodes. For this reason we set

a user-adjustable upper bound on the size of the expansion ahe. One the ahe is full, the loop
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Algorithm 2 Calulation of Ẽ
HFx

from previously (Alg. 1) expanded NGWF produts

1: Redistribute K from sheme 1 to sheme 2

2: for all (B,C) pairs owned by this MPI rank do

3: Find the PPDs relevant to atom B from the pair.

This is a union of the sets of PPDs of all atoms A that are X-neighbors with this atom B

4: for all NGWFs b on atom B in pair do

5: for all NGWFs c on atom C in pair do

6: Retrieve expansion oe�ients for ϕBbϕCc

7: OMP for all PPDs relevant to atom B do

8: Calulate the expanded potential

eγβ =
NSW
∑

p=1
cpγβup(r) in PPD i

9: if room left in expansion ahe then

Store eγβ in expansion ahe

10: else

11: exit (B,C) loop

12: end if

13: end OMP for PPD

14: end for c

15: end for b

16: end for (B,C)

17: for all my B atoms do

18: Find the PPDs relevant to atom B like in step 3

19: Calulate ũδβ =
∑

γ
Kδγeγβ in all relevant PPDs, thereby eliminating index γ (→Alg. 2A)

20: Calulate ontribution to X̃ from atom B, thereby eliminating index β (→Alg. 2B)

21: if NGWF gradient needed then

22: Aumulate ontribution to ontravariant gradient G1 from this atom B (→Alg. 3A)

23: end if

24: end for B

25: Redistribute X̃ from sheme 2 bak to sheme 1

26: if NGWF gradient needed then

27: Finalize NGWF gradient term G1 (→Alg. 3B)

28: Calulate the NGWF gradient term G2 (→Alg. 3)

29: end if

30: Symmetrize X̃ (Eq. 19)

31: Calulate Ẽ
HFx

(Eq. 20)
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exits (step 11). Expanded potentials that did not �t in the ahe are later (Alg. 2A) alulated

on the �y. This preludes runaway memory use and ensures graeful performane degradation in

low-memory senarios.

One all the expanded potentials are alulated or the expansion ahe annot aommodate

more elements, eah MPI rank iterates over all its B atoms (step 17). First, PPDs relevant

to urrent atom B are identi�ed, similarly as was done in step 3. Subsequently the expansion

oe�ients are ontrated with the density kernel over index γ, eliminating this index from further

omputation (step 19). This is done by Algorithm 2A, desribed further in setion III E.

Next, the ontribution from urrent atom B to all elements of the exhange matrix X̃ is alu-

lated (step 20). This is done by Algorithm 2B, desribed further in this setion. Similarly, on-

tributions to the NGWF gradient from atom B are aumulated. This is done by Algorithm 3A,

desribed in setion III F.

In step 25 the exhange matrix is redistributed from sheme 2 bak to sheme 1 to make it

possible to use standard sparse algebra routines on it in the rest of onetep.

The main part of the NGWF gradient alulation takes plae in step 27, this is arried out by

Algorithm 3, desribed in setion III F.

Finally, the exhange matrix X̃ is symmetrized (f. Eq. 19) and the Hartree-Fok exhange

energy is omputed aording to Eq. 20.

This onludes the general desription of the density-kernel-dependent stage. We will now

brie�y desribe subalgorithms Alg. 2A and Alg. 2B.

Algorithm 2A proesses a single atom B owned by a given MPI rank. It iterates over all the C

atoms that are S-neighbors of B and are assigned to this MPI rank. Thus, the loop body is exeuted

for a (B,C) pair. First (steps 2-8), the expanded potentials for all ombinations of NGWFs on

atoms B and C are retrieved from the expansion ahe into a loal array for e�ient aess later

on. This is done for all the PPDs relevant to atom B, and OpenMP parallelism is leveraged for the

loop over PPDs. Subsequently, for all the PPDs (again leveraging OpenMP parallelism) and all
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Algorithm 2A Eliminate index γ for a single atom B
1: for all atoms C in my (B,C) pair list for urrent B do

2: for all NGWFs b on atom B do

3: for all NGWFs c on atom C do

4: OMP for all PPDs relevant to atom B do

5: Retrieve from ahe or alulate eγβ
6: end OMP for PPD

7: end for c

8: end for b

9: OMP for all PPDs relevant to atom B do

10: for all atoms D partiipating in this PPD do

11: for all NGWFs d on atom D do

12: for all NGWFs b on atom B do

13: for all NGWFs c on atom C do

14: ũδβ = ũδβ +KδCceCcβ

15: end for c

16: end for b

17: end for d

18: end for D

19: end OMP for PPD

20: end for C

the atoms D whose loalization sphere features this PPD the quantity ũδβ, whih is a ontration

of expanded potentials with the density kernel over the index γ, is aumulated (step 14). As the

density kernel depends on another index (δ), ũδβ is a two-enter quantity. As it is stored only for

a single atom B before being proessed (via Algorithm 2B) and disarded, the assoiated memory

requirement remains modest. Algorithm 2A �nishes after alulating and storing all requisite ũδβ

for a given atom B.

The next stage (Algorithm 2B) eliminates index β from the alulation. Like Alg. 2A, it is

also performed for a single atom B. The algorithm proesses all PPDs relevant to this atom

in an OpenMP-parallelized loop. For eah PPD the algorithm iterates over all atoms D whose

loalization sphere spans this PPD and all atoms A owned by the MPI rank whose loalization
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Algorithm 2B Eliminate index β
1: OMP for all PPDs relevant to atom B do

2: for all atoms D partiipating in this PPD do

3: for all my atoms A partiipating in this PPD do

4: for all NGWFs d on atom D do

5: for all NGWFs a on atom A do

6: Retrieve from ahe or alulate

pAaDd = ϕAaϕDd in urrent PPD

7: end for a

8: for all NGWFs b on atom B do

9: for all NGWFs a on atom A do

10: X̃AaBb = X̃AaBb +
PPD

∑

r

pAaDd(r)ũ
Dd
Bb

11: if NGWF gradient needed then

12: kBb = kBb + ϕDdũ
Dd
Bb

13: end if

14: end for a

15: end for b

16: end for d

17: end for A

18: end for D

19: end OMP for PPD

sphere spans this PPD. The unusual loop ordering with the loop over PPDs being outermost is

umbersome programatially, but was found to lead to best performane, allowing for OpenMP

parallelism to be leveraged for largest grain sizes and for any parallel ontention to be avoided.

No thread synhronization is required in this loop.

First (step 6), the algorithm retrieves all NGWF produts for the atom pair (A,D) from the

NGWF produt ahe. Cahe misses lead to realulation of the produts on the �y. Subsequently,

(steps 8-11) elements of the exhange matrix are aumulated in a loop over NGWFs on atoms B

and A and over all points in the PPD. The aumulated quantity is the produt ϕαϕδ multiplied

by ũδβ =
∑

p

∑

s

up(r)V
ps (fs|ϕγϕβ)K

δγ
, whih ompletes the integration required for obtaining the
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exhange matrix element X̃αβ (f. Eq. 15). One the algorithm ompletes, a olumn stripe of the

exhange matrix orresponding to atom B has been alulated.

F. Gradient with respet to the NGWFs

The last omponent of our algorithm is the alulation of the funtional derivative of Ẽ
HFx

with

respet to an NGWF � a rather involved proedure required for in situ optimization of NGWFs.

The alulation is split into two terms, Gα
1 and Gα

2 , where α is the NGWF with respet to whih

we di�erentiate, as de�ned by Eq. 23.

Algorithm 3A Aumulate ontravariant gradient GAa
1 for one atom B owned by this MPI rank

1: for all PPDs relevant to atom B do

2: for all my atoms A partiipating in this PPD do

3: if atom A is an X-neighbor of atom B then

4: for all NGWFs b on atom B do

5: for all NGWFs a on atom A do

6: GAa
1 = GAa

1 + kBbK
BbAa

7: end for a

8: end for b

9: end if

10: end for A

11: end for PPD

Calulating the G1 term is straightforward, beginning already in step 12 of Algorithm 2B,

where the auxiliary quantity kBb is alulated for every atom B ourring in the atom pairs (B,C)

assigned to an MPI rank. Subsequently, in step 22 of Algorithm 2, Algorithm 3A is invoked

for every atom B owned by the MPI rank. This is a simple algorithm, ontrating the auxiliary

quantity kBb with the density kernel over the index Bb. Following its ompletion, the ontravariant

version of term G1 has been alulated.
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Algorithm 3B Finalize NGWF gradient term Gi (i = 1, 2)
1: Redistribute the ontravariant gradient Gi from sheme 2 bak to sheme 1.

2: for all atoms A sheme-1-loal to this MPI rank do

3: for all NGWFs a on atom A do

4: for all PPDs spanned by NGWF Aa do

5: Zero points outside of NGWF sphere

6: Apply prefator

7: end for PPD

8: Convert GAa
i to ovariant form

9: Perform reiproal-spae preonditioning

10: end for a

11: end for A

The alulation is �nalized in step 27 of Algorithm 2, where Algorithm 3B is invoked. Here,

the alulated NGWF gradient is prepared for subsequent use outside of the HFx ode. First,

the alulated ontravariant gradient is redistributed bak to sheme 1, that is, to the atom-based

distribution. Eah MPI rank obtains the gradient for the NGWFs of the atoms loal to it. Next,

the points within the PPDs but outside of the NGWF loalization radius are zeroed (�shaved�),

as they annot ontribute to the gradient, having only been alulated for numerial onveniene.

Finally, a prefator is applied (the 2 that is in Eq. 23, together with a grid weight), the ontravariant

gradient is onverted to ovariant form, and reiproal-spae preonditioning
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is performed on the

gradient. At this point the alulation of the �rst term, in its �nal form, is ompleted.

Calulation of the seond term G2 is more involved. It is performed entirely by Algorithm 3,

invoked in step 28 of Algorithm 2. The algorithm is best understood by referring to the seond

term of Eq. 23. This term, ruially, involves a version of the resolution-of-identity operator Îδα

that employs SWs entered on atoms D and A that feature in the bra of the ERIs in Eqs. 3

and 4. This is unfortunate beause, as explained earlier, our algorithm divides the workload by

distributing kets (atom pairs (B,C)) aross MPI ranks. Furthermore, in the evaluation of HFx

energy and the �rst term of the gradient (Algorithm 1D, step 6; and Algorithm 2, step 8) our
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algorithm always operates on SWs entered on ket atoms (B and C), and it is those SWs that

are ahed. Fortunately, we an simply rename dummy indies in the sums to arrive at a less

umbersome expression for the seond term in the gradient. One we rename Aaα↔ Bbβ and

Ddδ ↔ Ccγ, we arrive at (where we expliitly indiate summations for larity) :

Gβ
2 (r) = 2

∑

γ

ϕγ(r)Îγβ

(

∑

α

Kαβ
∑

δ

Kγδ|ϕδϕα)

)

. (25)

This expression is more amenable to our approah, sine its RI operator involves SWs entered

on ket atoms, as in the previous steps of the alulation. The fat that we now obtain a gradient

term for NGWF β and not NGWF α does not matter, as we will need to redistribute the alulated

gradients to sheme 1 in any ase. The fat that we will operate on ϕα and ϕδ is also not a problem,

sine our algorithm already requires them (f. Alg. 2B, step 10).

We will now desribe Algorithm 3, whih alulates the seond term in the NGWF gradient.

The main loop iterates over atoms C owned by an MPI rank, orresponding with the sum over γ

in Eq. 25. For eah atom C in the sum the algorithm �rst determines the atoms B with respet

to whose NGWFs the gradient needs to be alulated. These are S-neighbors of atom C whih

are in the list of (B,C) pairs assigned to this MPI rank and will be termed �B atoms relevant to

atom C�. Similarly, the atoms A featured in the seond sum (over α) in Eq. 25 are determined.

These atoms, whih we term �A atoms relevant to atom C� are all atoms that are X-neighbors of

relevant B atoms.

For all suh atoms A the algorithm then (steps 4-6) alulates an auxiliary quantity:

P γ
α (r) = ϕα(r)

∑

δ

Kγδϕδ(r) (26)

in PPDs spanned by atom A (f. last sum in Eq. 25). This is done by a very simple Algorithm 3C,

whih we present below. The algorithm is a simple aumulation of linear ombination of NGWF

produts. The loop over A leverages OpenMP parallelism to make this operation e�ient, requiring

Alg. 3C itself to be thread-safe. Given that every instane of Alg. 3C operates on a di�erent Aa,
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Algorithm 3 Calulate the NGWF gradient term G2 (Eq. 23)

1: for all my C atoms do

2: Determine atoms B relevant to this atom C

3: Determine atoms A relevant to this atom C

4: OMP for all relevant A atoms do

5: Calulate auxiliary quantity P γ
α = ϕα

∑

δ

Kγδϕδ,

thereby eliminating index δ (→Alg. 3C)

6: end OMP for A

7: for all NGWFs c on atom C do

8: OMP for all atoms B relevant to atom C do

9: for all atoms A relevant to atom C do

10: if A is not an S-neighbor of B then

11: next A

12: end if

13: for all NGWFs b on atom B do

14: QCcBb = QCcBb +
∑

a
PCc
AaK

AaBb

15: end for b

16: end for A

17: end OMP for B

18: for all atoms B relevant to atom C do

19: for all NGWFs b on atom B do

20: Expand QCcBb
in SWs on B and C

21: OMP for all PPDs in B ∩C do

22: Calulate the expanded potential ECcBb

of QCcBb
in PPD

23: end OMP for PPD

24: for PPDs in B ∩C do

25: Aumulate GBb
2 = GBb

2 + ϕCcE
CcBb

26: end for PPD

27: end for b

28: end for B

29: end for c

30: end for C

31: Finalize NGWF gradient term G2 (→Alg. 3B)
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this an be aomplished without resorting to synhronization mehanisms. One this is omplete,

index δ has been eliminated from further alulations.

Algorithm 3C Calulate P γ
α = ϕα

∑

δ

Kγδϕδ

for a given atom pair (A,C)
1: for all atoms D that are S-neighbors of atom A do

2: for all NGWFs d on atom D do

3: for all NGWFs a on atom A do

4: Compute ϕDdϕAa

5: for all NGWFs c on atom C do

6: PCc
Aa = PCc

Aa +KCcDdϕDdϕAa

7: end for c

8: end for a

9: end for d

10: end for D

We note in passing that the same P γ
α an be alulated on more than one MPI rank, sine

there is some overlap between C atoms in (B,C) atom pairs assigned to MPI ranks. Even so, as

will be shown in setion VC, the ost of this stage of the algorithm is almost negligible, exept in

ondution alulations, where it aounts for ≈20% of the total ost � a result of large numbers

of NGWFs per atom and lower overlap matrix sparsity.

The main Algorithm 3 then proeeds to move left through Eq. 25, taking are of the sum over

α (steps 13-15). In this way another auxiliary quantity is alulated:

Qγβ(r) =
∑

α

ϕα(r)K
αβ
∑

δ

Kγδϕδ(r), (27)

whih should be ompared with the quantity in parentheses in Eq. 25. This eliminates the index

α from further alulations.

The next stage is the appliation of the RI operator Îγβ, that is, the alulation of the SW-

expanded potential of Qγβ
in all PPDs spanned by the intersetion of loalization spheres of
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atoms B and C. Qγβ
is �rst expanded in SWs (step 20), similarly to what was done earlier

to NGWF pair produts (steps 5-8 of Algorithm 1D). The expanded potential itself (denoted

ECcBb
) is alulated in steps 21-23 in the same PPDs, leveraging OpenMP parallelism. Finally,

the ontributions are multiplied by ϕγ(r) and summed over γ in steps 24-26, orresponding to the

leftmost operation in Eq. 25. The gradient is �nalized (�shaved�, onverted to ovariant form and

preonditioned) through the appliation of Algorithm 3B, just as was done to its �rst term.

G. Condution alulations

Apart from the usual mode of operation where only oupied states are onsidered, onetep

has the apability to perform ondution alulations, whih �nds use e.g. in alulating optial

absorption spetra. Condution alulations optimize an energy expression involving a separate

(ondution) density kernel and a projeted ondution Hamiltonian

45

. They typially use larger

numbers of NGWFs (i.e. not a minimal basis), and larger loalization radii of the NGWFs (by a

fator of ≈ 1.5), whih means the overlap matries are not as sparse as in ondution alulations.

This, oupled with the fat that in ondution alulations with hybrid funtionals the inner (LNV)

loop does not involve HFx, leads to a shift of the omputational bottleneks to di�erent parts of the

algorithm. Beause of the larger NGWF basis the memory requirement of ondution alulations

is also inreased relative to valene alulations. For these reasons we will benhmark ondution

alulations separately, and only for the polymer systems, where they are more relevant.

H. Preonverging with a non-hybrid funtional

A simple, ommonly used optimization is to pre-onverge the alulation with a non-hybrid

(typially a GGA (generalized gradient approximation) funtional) and, one it is onverged, to

ontinue it with a hybrid. The expetation here is for the pre-onverged alulation to reah

onvergene faster than when starting from the initial guess, thus reduing the number of expensive
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(hybrid funtional) self-onsisteny iterations. The ost assoiated with the initial steps performed

with a GGA is typially muh lower.

We brie�y examined two suh optimizations � in the �rst one (referred to in the text as

B3LYP-1), we pre-onverged the alulation with the PBE
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funtional, and, one onvergene

has been obtained, we ontinued it with B3LYP, optimizing both the density kernel and the NG-

WFs. In the seond optimization (referred to in the text as B3LYP-2), we similarly pre-onverged

with PBE, but then we kept the NGWF basis �xed, only optimizing the density kernel. This or-

responds to running a �xed-NGWF alulation in a GGA-optimized NGWF basis. In this senario

onetep operates similarly to other �xed-atomi-orbital-basis eletroni struture odes, but with

the advantage of using a pre-optimized minimal set of atomi orbitals (NGWFs).

We demonstrate the exellent auray of both optimizations and signi�ant performane gains

in Setion VH.

IV. CALCULATION DETAILS

We demonstrate the behavior and performane of our implementation on two lasses of systems.

The �rst lass omprises roughly spherial �soops� of a protein (GMP-spei� phosphodiesterase

type 5, PDE5) of inreasing size, suitably trunated and protonated. These range from 44 atoms

(≈12Å aross) to 4048 atoms (≈54Å aross), and onstitute a good model of a typial, three-

dimensional system of interest in biohemial appliations. The seond lass omprises staked

polymer hains of inreasing length (four hains of PBTZT-stat-BDTT-8 polymer analog, as stud-

ied in Ref. 47). These range from 228 atoms (≈21Å in length) to 2868 atoms (≈265Å in length),

and are a good model of typial systems of interest in materials siene. The two lasses di�er in

topology (true 3D systems vs. 1D hains) and omposition (H-dominated vs. C-dominated).

Unless stated otherwise, all alulations used a kineti energy uto� of 827 eV, an NGWF loal-

ization radius of 8 a0 (≈4.2Å) and a minimal NGWF basis (1 NGWF on H, 4 NGWFs on p-blok

elements). 8 inner loop (LNV) iterations were used throughout. The SW basis quality was l
max

= 3
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and q
max

= 12, and an exhange interation uto� of 20 a0 (≈10.6Å) was used. Calulations on

polymer hains employed density kernel trunation with a uto� of 50 a0 (≈26.5Å), while the al-

ulations on proteins did not employ kernel trunation. Beause the size of the polymer systems

ould easily be inreased in uniform steps, we will use these to demonstrate weak parallel saling

(where the system size is proportional to the number of CPU ores). Strong parallel saling (where

the system size remains onstant and the number CPU ores is inreased) will be demonstrated

for both lasses of systems.

Additionally, for the polymer systems we benhmarked alulations of ondution states, where,

as explained in setion III, the omputational bottleneks are expeted to be di�erent. Here, to

aount for the expeted orbital deloalization, we inreased the NGWF radius to 12 a0 (≈6.35Å),

used an extended basis (5 NGWFs on H, 13 NGWFs on p-blok elements), and inreased the

number of inner loop iterations to 12, re�eting typial settings used for ondution alulations

in onetep.

V. RESULTS

All walltimes shown in this setion orrespond to fully-onverged alulations with default

onvergene thresholds, and so are good representations of real-life senarios. However, we feel

obliged to note two important points. First, in the interest of reduing the load on the HPC faility,

we only ran alulations for one outer loop (NGWF) iteration and arefully extrapolated the

timings to a fully onverged alulation from these measurements, separately taking into aount

the measured onstant overhead and the measured per-iteration time. The number of iterations

was taken from GGA alulations that ould be run at a fration of the ost. Cross-heks with full

hybrid funtional alulations that were atually run to onvergene (for a subset of the systems)

validated our estimates to be within 0.5% of the true walltimes.

Seond, in the interest of larity, we show results normalized to a onstant number of outer

loop iterations (e.g. 12 for the protein systems), whereas in reality the atual number of iterations
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di�ered slightly (σ = 3.0) between individual systems (for alulations with a GGA and hybrid

funtional alike). This slight di�erene in the number of iterations was not systemati, but rather

it re�eted statistial noise from how the fragments of the total protein were arved out and

trunated, obsuring the linear-saling behavior that we set out to demonstrate. For the polymer

systems the e�et was less pronouned (N̄
iter

= 10, σ = 2.2), but also present. To disentangle this

statistial noise from the atual performane of our algorithm, we hose to show values normalized

to the same number of outer loop iterations in all ases.

A. Linear saling with system size

We begin by demonstrating that our approah is indeed linear-saling, i.e. that the beyond a

ertain system size (�onset of linear saling�) the walltime of the alulation is linearly proportional

to the number of atoms in the system. First, however, we stress an important point regarding

memory saling. The performane of our approah depends heavily on the amount of available

memory, with maximum performane attained with a greedy algorithm that alloates as muh

memory as it needs to ahe all requisite quantities. The RAM requirement of suh a greedy

approah inreases superlinearly with the size of the system, at least for system sizes onsidered

here, and quikly exeeds typial RAM sizes available on today's omputing nodes � this happens

already at about 150 atoms. Thus, to ensure a fair and realisti benhmark, in this work we employ

the onditions of linear saling in memory, i.e. we settle on a onstant memory requirement per

atom and limit the RAM use to this value. We hoose this value in suh a way as to be able to

perform the largest alulations demostrated here without exeeding the available RAM on the

Iridis5 system at University of Southampton. We will term this the standard memory requirement.

Additionally, we will show how our implementation sales at a quarter of this value (mimiking a

low-memory environment), and with four times as muh RAM (mimiking typial high-memory

nodes often available on HPC systems), giving an idea of how the employed time-memory tradeo�s

perform. The detailed values are given in Table II.
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TABLE II. The assumed memory requirement of the HFx engine (in MB/atom per MPI rank) for valene

alulations.

Memory SWpot Expansion NGWF produt Total

requirement ahe ahe ahe

Low (×0.25) 2.5 1.25 0.25 4

Standard 10 5 1 16

High (×0.4) 40 20 4 64

For demonstrating the e�et of available RAM on alulation walltime we hose a set-up, where

all alulations are run on 16 ompute nodes (40 CPU ores eah). In order to maximize the size

of the ahes shared by threads, we use the maximum number of OMP threads per NUMA region,

that is, we run with 32 MPI ranks, eah spawning 20 OMP threads. In this way eah node holds

only 2 MPI ranks, and eah of the node's two NUMA regions is fully populated by OMP threads.

Fig. 3 shows the saling of the total time for the protein systems. Linear saling is ahieved in

all ases, with the onset at about 400 atoms. In the low-memory senario (green squares) all al-

ulations were feasible, although the largest ones barely ompleted one outer loop iteration within

the maximum job walltime on Iridis5 (60h). Calulations that annot omplete even one iteration

within this limit (and thus annot be hekpointed and ontinued later) we deem infeasible. Given

that the total alulation runs for 12 iterations, we marked a �walltime limit� on the plot at 720h.

We an thus estimate the maximum system size feasible on 16 Iridis5 nodes to be about 4200

atoms.

At standard memory requirements (blue rosses) all alulations ran 17�29% faster, but an

out-of-memory ondition prevented jobs larger than 3328 atoms from running, orresponding to

a memory requirement of ≈100GB per node. This means that with standard memory memory

requirement the maximum limit on job size is ditated not by the available job time, but by

available memory per node.
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FIG. 3. Total alulation walltime (on 16 ompute nodes) for protein systems of di�erent sizes, assuming

12 outer loop iterations, for di�erent memory requirements (see text). For high and standard memory

requirements maximum system size is bounded by available RAM. For low memory requirements all

systems (up to 4048 atoms) were feasible on 16 ompute nodes.

At high memory requirements a further speedup of 15�50% was ahieved, but the maximum

job size was only 909 atoms before available RAM was exhausted.

Fig. 4 demonstrates linear saling for the polymer systems. Here, it was feasible to run all

systems studied (up to 2868 atoms) with low and standard memory requirements, with all al-

ulations ompleting in well under 200 h. Compared to the low-memory senario, the gain from

having standard memory requirements was almost onstant for all system sizes and averaged at a

sizeable 26%. In a high-memory senario a further speedup of about 20% was ahieved, but the

largest system that did not run out of memory was 1108 atoms.

We now turn our attention to the performane of ondution state alulations. Beause of

the di�erent way the energy minimization is strutured ompared to valene alulations (f. se-

tion III), we note that there is no bene�t to ahing NGWF expansions in this ase, as NGWFs
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FIG. 4. Total alulation walltime (on 16 ompute nodes) for polymer hains of di�erent lengths, assuming

10 outer loop iterations, for di�erent memory requirements (see text). For high memory requirements

maximum system size is bounded by available RAM. At low and standard memory requirements all

systems (up to 2868 atoms) were feaisble on 16 ompute nodes.

always hange between invoations of the HFx engine. Also, beause of the vastly inreased num-

ber of NGWFs per atom and the inreased NGWF loalization radius, ahing NGWF produts

beomes ounterprodutive, as the ahe hit ratio ahieved with default memory allowane is very

low (in the order of 1�2%). For the above reasons when benhmarking ondution alulations

we deided to devote the entire memory allowane to the SWpot ahe, while keeping the total

amount of RAM per atom the same as in valene alulations. This is summarized in Table III.

Fig. 5 shows the saling of the total walltime for a ondution alulation on the polymer

systems. The largest system that was feasible on 16 nodes had 1768 atoms, and beyond that

alulations with the low memory requirements ould not omplete a single iteration within the

60 h job time window. With standard memory requirements alulations ran about 22% faster,

but beyond 1548 atoms they ran out of memory. With high memory requirements further gains
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TABLE III. The assumed memory requirement of the HFx engine (in MB/atom per MPI rank) for on-

dution alulations.

Memory SWpot Expansion NGWF produt Total

requirement ahe ahe ahe

Low (×0.25) 4 0 0 4

Standard 16 0 0 16

High (×0.4) 64 0 0 64
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FIG. 5. Total alulation walltime (on 16 ompute nodes) for a ondution alulation on polymer hains

of di�erent lengths, assuming 11 outer loop iterations, for di�erent memory requirements (see text). For

high and standard memory requirements maximum system size is bounded by available RAM. At low

memory requirements the walltime limit in ondution alulations is reahed at about 1800 atoms.

were very modest and the maximum system size was limited to only 448 atoms. Linear saling

was ahieved in all ases.
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In summary, we �nd that 16 ompute nodes, with about 100GB RAM on eah node devoted

to HFx engine ahes, were su�ient to perform valene alulations on systems up to about 4000

atoms, and ondution alulations up to about 1800 atoms. These alulations were performed

with linear-saling CPU e�ort and linear-saling memory.

We highlight that smaller alulations (up to several hundred atoms) ould be made faster in

pratie by not limiting their memory as muh. We demonstrate this brie�y in Fig. 6, where we

show the alulation walltime for a 443-atom protein system as a funtion of memory devoted to

HFx ahes. This partiular alulation ould be made just over twie as fast by using a generous

memory allowane.

FIG. 6. Total alulation walltime (on 16 ompute nodes) for a 443-atom protein system, as a funtion of

RAM devoted to HFx ahes (log sale).
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B. Calulation walltime ompared to a GGA alulation

To give a better idea about the ost of HFx alulations, in Figs. 7 and 8 we show alulation

walltimes relative to a alulation with a GGA funtional (PBE), for the protein systems and

polymer systems.
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FIG. 7. Total alulation walltime (on 16 ompute nodes), relative to a alulation with a GGA funtional,

for protein systems of di�erent sizes, assuming 12 outer loop iterations, for di�erent memory requirements

(f. Fig. 3). Lower is better.

For the protein systems (Fig. 7) the omputational e�ort plateaus at ≈ 100 (for standard

memory requirements), meaning that for larger systems hybrid alulations should be expeted to

be two orders of magnitude slower ompared to alulations with a GGA funtional. Using less or

more memory has the e�et disussed already in setion VA. For small systems (below 100 atoms)

hybrid alulations are only about an order of magnitude slower than alulations with a GGA

funtional. The reason for that is that exhange matrix sparsity is reahed later than NGWF

overlap sparsity, whih puts larger HFx alulations at a bigger disadvantage.
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FIG. 8. Total alulation walltime (on 16 ompute nodes), relative to a alulation with a GGA funtional,

for polymer hains of di�erent lengths, assuming 10 outer loop iterations, for di�erent memory requirements

(f. Fig. 4). Lower is better.

For the polymer systems (Fig. 8) HFx performs somewhat better, being onsistently slower than

a GGA by a fator of ≈ 60 for all system sizes, for standard memory requirements. Using less or

more memory has the e�et disussed already in setion VA. The reason for better performane

here is the one-dimensional nature of the polymer systems, whih enables exhange matrix sparsity

to be reahed already for the smallest system, and a more homogeneous struture whih makes

load balaning easier.

Lastly, we turn to the ondution state alulations on the polymer systems. A omparison

against a GGA alulation is shown in Fig. 9. We observe that overall HFx does not perform as

well as it did for valene alulations on the same systems, but relative performane learly improves

systematially as the systems beome bigger. This indiates that the employed algorithm sales

better with system size than standard (GGA) onetep, at least at this range of system sizes. For

the largest systems the ost of a hybrid alulation is ≈ 50-60 times larger than for a GGA.
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FIG. 9. Total alulation walltime (on 16 ompute nodes), relative to a alulation with a GGA funtional,

for ondution state alulations on polymer hains of di�erent lengths, assuming 11 outer loop iterations,

for di�erent memory requirements (f. Fig. 5). Lower is better.

We note that all alulations shown in this subsetion were performed with the maximum

number of OMP threads (20), whih is optimal for HFx, but suboptimal for standard GGA al-

ulations with onetep. This is beause the saling with the number of threads is muh better

for the HFx engine than for the rest of onetep, with the latter typially ahieving optimum

performane at 4 − 5 OMP threads. Indeed, one the GGA alulations are swithed from an

N
MPI

= 32, N
OMP

= 20 setup to a more favorable N
MPI

= 160, N
OMP

= 4, their performane

inreases almost exatly by a fator of 2 for all systems. Thus, in pratial senarios, the reported

slowdown of HFx relative to GGA would be twie as big.
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C. Individual omponents of omputational e�ort

We will now provide a detailed breakdown of whih omponents of the alulation are responsible

for most of the omputational e�ort for the lasses of systems under study, demonstrating that

eah omponent separately also sales linearly with system size.

The majority of omputational e�ort in HFx alulations with onetep is assoiated with the

following stages of the alulation:

1. Evaluating SWpots � alulating the values of the spherial wave potentials
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originating

on atomi enters at Cartesian grid points of NGWFs whose enters are within the exhange

uto�. Although this stage has been extensively optimized, it remains a bottlenek in all

studied systems. This e�ort is mitigated by the SWpot ahe.

2. Expansions � orresponds to evaluating the linear ombinations (f. Algorithm 2, step 8)

of SWpots originating on atomi enters at Cartesian grid points within the exhange uto�.

This e�ort is mitigated by the expansion ahe.

3. Sum over Cc � alulation of the sums over Cc (f. Algorithm 2, step 19; and Algorithm 2A).

4. Gradient P � alulation of the auxiliary term P in the exhange NGWF gradient, Eq. 26.

5. Load imbalane � represents idle time spent waiting for other MPI ranks to �nish their

share of alulations. This omponent would be zero if load ould be balaned perfetly.

6. MPI omms � time spent on message passing (ommuniation between MPI ranks).

7. HFx other � all the remaining stages of evaluating the HFx energy and gradient, exluding

initialization (alulation of the metri matrix).

8. Rest of onetep � all the non-HFx related alulations performed within onetep, exlud-

ing initialization.
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9. Initialization � onstant overhead, independent of the number of energy evaluations, HFx-

related and HFx-unrelated alike, e.g. alulating the metri matrix, struture fator, setting

up the parallel distribution, alulating the Ewald energy term, initialization of radial Bessel

funtions.
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FIG. 10. Individual omponents of the total alulation walltime (on 16 ompute nodes) for protein

systems of di�erent sizes, assuming 12 outer loop iterations, for standard memory requirement.

Fig. 10 shows a breakdown of the total alulation walltime for the protein systems, on 16

ompute nodes, under standard memory requirements. The same data is presented in a umulative

perentage form in Fig. 11. It is lear that all individual omponents are linear-saling with the

size of the system, and that the evaluation of SWpots (red) onstitutes the most omputationally

intensive part of the alulation, aounting for about half of the walltime. For these systems, at

standard memory requirements, only (2.6± 1.0)% SWpots an be stored in the ahe. Sine the

SWpots are heavily reused and are stored in the order of reusability, atual SWpot ahe hit ratios

are muh higher here, at (42.6± 4.2)%, but this still means that in over half of the ases SWpots

have to be re-evaluated. This ost an be mitigated by inreasing the memory allowane for the
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FIG. 11. As in Fig. 10, shown as umulative perentages of the total.

SWpot ahe, but after a ertain point this strategy yields diminishing returns � SWpots evaluated

at the outer edges of the system, where there is little NGWF overlap, are neessarily less often

reused, and ahing them o�ers less bene�t ompared to SWpots evaluated at grid points where

many NGWFs overlap.

Load imbalane (light green) aounted for (17.4± 4.8)% of the alulation walltime. This

relatively large value re�ets the fat that the protein onstitutes a rather heterogeneous system,

where it is di�ult to simultaneously ahieve a good load balane for the energy alulation and for

the NGWF gradient alulation. Here it is the imbalane in the energy alulation that aounts

for ≈80% of the total load imbalane. This is mostly aused by the di�erenes in SWpot ahe hit

ratios between MPI ranks � the urrent balaning algorithm strives to balane the total number

of Bb-Cc NGWF produts, without aounting for the fat that SWpots on the outer edges of the

system are unlikely to be ahed.

Calulating expansions of NGWF produts in terms of SWs (f. Algorithm 2, step 8) (blue)

aounted for (14.5± 1.0)% of the alulation walltime. This ost an be mitigated by inreasing
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the allowane for the expansions ahe, but the assoiated memory requirement grows superlinearly,

meaning that with linear-saling memory allowane ahe hit ratios will derease as the systems

are made bigger. Here, in the smallest (44-atom) system ahe hit ratio was 46%, while in the

largest (3228-atom) system it was only 2.8%.

Summing over the index Cc (f. Algorithm 2, step 19; and Algorithm 2A) and all the remaining

HFx operations were minor ontributions, aounting for less than 7% of the total walltime eah.

The remaining terms (MPI ommuniation, alulation of the NGWF gradient term P , non-HFx

operations and initialization) were almost negligible, below 2% eah.
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FIG. 12. Individual omponents of the total alulation walltime (on 16 ompute nodes) for polymer

hains of di�erent lengths, assuming 10 outer loop iterations, for standard memory requirement.

We now turn our attention to the polymer systems, where orresponding plots are shown in

Figs. 12 and 13. Qualitatively, the breakdown of timings resembles that for the protein systems, and

all omponents retain their linear-saling behavior. Evaluating SWpots remains the most ostly

omponent, aounting for (53.7± 1.7)% of the walltime. The main di�erene is the redued load

imbalane (light green) and an inrease in the ost of generating the SW expansions (blue). The

polymer systems are omposed of idential repeat units and inrease only along one dimension,
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FIG. 13. As in Fig. 12, shown as umulative perentages of the total.

whih explains the muh easier load balaning � assoiated overheads were below 9%, exept

for the smallest systems. Higher e�ort assoiated with SW expansions, ompared to the protein

systems, is a onsequene of a higher average number of NGWFs per atom (≈ 3.0 vs. ≈ 2.5).

Other ontributions to the walltime, similarly as for the protein systems, are muh smaller. The

slight anomaly for the �nal data point, where the ost of evaluating SWpots dereases despite the

inrease in the size of the system is a result of fortuitous load balaning inreasing the average

SWpot ahe hit ratio from 50.0% to 54.5%.

For ondution state alulations the distribution of the omputational e�ort is somewhat dif-

ferent. The main reasons are: the use of muh bigger NGWF loalization regions (whih lead to

a derease in metri matrix and overlap matrix sparsities), the use of a large number of NGWFs

per atom (vastly inreasing the number of Bb-Cc NGWF produts), and the fat that inner loop

(LNV) iterations do not require the evaluation of HFx energy in ondution NGWF optimization.

The plots for ondution state alulations on the polymer hains are shown in Figs. 14 and 15.

Linear-saling behavior is retained for all the omponents of the algorithm. Evaluating SWpots
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FIG. 14. Individual omponents of the total alulation walltime (on 16 ompute nodes) in a ondution

state alulation for polymer hains of di�erent lengths, assuming 11 outer loop iterations, for standard

memory requirement.
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FIG. 15. As in Fig. 14, shown as umulative perentages of the total.
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remains the bottlenek, but its ost is slightly redued to (37.9± 2.4)%. One reason is the relative

inrease in the SWpot ahe memory allowane (f. Table III), another one is the inrease in the

e�ort assoiated with other omponents, partiularly those assoiated with the NGWF gradient

term.

The main di�erene from the valene alulation is the inreased ost of �HFx: other� (or-

ange diamonds), from (7.5± 0.2)% to (17.3± 1.8)%. This inrease is driven by the inreased

NGWF overlap, leading to larger e�orts assoiated with omputing SWpot-NGWF-produt over-

laps (f. Algorithm 1D, step 6) and the auxiliary term Q in the NGWF gradient (Eq. 27). The

same reason drives the signi�ant inrease in the e�ort assoiated with alulating the term P ,

whih inreased to (16.0± 3.4)% from (1.0± 0.4)% for the valene alulation, beoming more

ostly on average than the alulation of SW expansions.

The ost of evaluating SW expansions is signi�antly dereased ((21.4± 2.3)% in the valene

alulation to (12.8± 1.9)% here), whih is a diret onsequene of the fat that inner loop it-

erations in a ondution alulation do not involve HFx. The ost of imperfet load balaning

is similar ((9.3± 3.0)%), but here it is mostly the NGWF gradient alulation that is less than

optimally balaned. Finally, the non-HFx omponents of the alulation (�rest of onetep�) are

no longer negligible, aounting for (1.4± 0.3)% of the total alulation walltime.

In summary, we showed that all omponents of the alulation sale linearly with the system

size, that evaluating SWpots is the bottlenek in all types of alulations, that the relative e�ort

assoiated with other omponents depends on the type of alulation (valene vs. ondution) and

type of system, that ommuniation overheads are negligible, and that load balaning ould be

improved for more di�ult systems.

D. Calulation walltime and feasibility depending on number of ompute nodes

Here we brie�y demonstrate how the total walltime of HFx alulations depends on the number

of ompute nodes and what system sizes are feasible. In Fig. 16 we plot the walltimes of alulations
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FIG. 16. Total alulation walltime (on 4, 8, 16 and 32 ompute nodes) for protein systems of di�erent

sizes, assuming 12 outer loop iterations.

for protein systems, with standard memory requirements (f. Fig. 3), run on 4, 8, 16 and 32 Iridis5

ompute nodes (160, 320, 640 and 1280 CPU ores, respetively). The omputational e�ort is

linear-saling (with an onset at ≈ 400 atoms) in all ases. Calulations on 4 and 8 nodes reah the

walltime limit (60 h per outer loop iteration) beyond 1396 and 2486 atoms, respetively. Larger

alulations would only be possible on these on�gurations only if the memory allowane ould be

inreased signi�antly or if the walltime window per job ould be inreased beyond 60 h.

On 16 and 32 nodes the maximum system size is muh larger (3228 and 3622 atoms, respetively)

and in this ase is bounded by available RAM. Larger alulations would be possible on these

on�gurations if memory allowane was dereased. Indeed, we showed in Fig. 3 that all the

studied systems (up to 4048 atoms) ould be already run on 16 ompute nodes under low memory

requirements.

For the polymer hain systems we show an equivalent plot in Fig. 17. Again, the alulation

is linear-saling (with the onset already at the smallest system). Here, owing to the fat that the

systems are e�etively one-dimensional, and thus exhange matrix sparsity is reahed very early, all
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FIG. 17. Total alulation walltime (on 4, 8, 16 and 32 ompute nodes) for polymer hains of di�erent

lengths, assuming 10 outer loop iterations.

the studied systems �t within the walltime limit (60 h per outer loop iteration) even on 4 ompute

nodes, and available RAM is not exhausted under standard memory onditions.
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E. Strong parallel saling

We now turn our attention to arguably the most important metri for desribing how the

omputational e�ort of a alulation hanges with the alloated resoures. Strong parallel saling

haraterizes the speedup obtained when the same alulation is run on inreasingly larger number

of CPU ores. Parallel speedup is de�ned as

S(N
ores

) =
t(1)

t(N
ores

)
, (28)

where t(N
ores

) is the walltime of the alulation on N
ores

CPU ores. Sine in many senarios it

is not feasible to run the alulation on one CPU ore, speedup relative to a �xed number of ores

N0
ores

is often used instead:

SN0
ores

(N
ores

) =
t(N0

ores

)

t(N
ores

)
. (29)

Well-parallelized algorithms ahieve near-linear speedup, whih usually beomes sublinear and

then plateaus for larger N
ores

, due to small, but non-zero frations of the algorithm that ould not

or have not been parallelized, an e�et aptured by Amdahl's law

48

. Non-negligible ommuniation

overheads and imperfet load balaning also play a role. A linear speedup is typially termed perfet

or optimal saling, beause it orresponds to a senario where all the overheads vanish and the

fration of the algorithm that has not been parallelized is zero.

In the ase of our implementation this simpli�ed analysis does not stritly hold, beause our

algorithm makes good use of the extra memory that beomes available as additional ompute nodes

are alloated to the alulation. We showed in setion VA (see e.g. Fig. 6) that the performane

of our implementation strongly depends on the amount of memory that an be devoted to the

alulation. This partiular feature allows our approah to exeed what is typially deemed to

be perfet parallel saling by improving the degree of ahing as more CPU ores are added.

We demonstrate this for representative protein systems (one small, one large, Fig. 18) and for

representative polymer systems (one small, one large, Fig. 19). We show parellel speedups relative
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FIG. 18. Strong parallel saling for two representative protein systems: small (top) and large (bottom).

Higher is better.
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FIG. 19. Strong parallel saling for two representative polymer hains: small (left) and large (right).

Higher is better.

to 160 CPU ores (4 nodes), or, where the system is too large to run on 4 nodes, relative to

320 CPU ores (8 nodes).

For the small protein system (Fig. 18, top) we modestly exeed perfet saling, exept for the

last two data points, where the speedup beomes marginally worse than linear. This happens due

to imperfet load balaning, whih is di�ult to ahieve when the number of CPU ores exeeds

the number of atoms by a fator of about 7. For the large protein system (Fig. 18, bottom) we

exeed perfet saling in all ases, even for the largest number of CPU ores, where at 1280 ores

we ahieve a 4.17-fold speedup over 320 ores.

56



FIG. 20. Strong parallel saling for two representative polymer hains: small (top) and large (bottom) in

a ondution state alulation. Higher is better.
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The polymer hains, being more homogeneous and pratially one-dimensional, onstitute an

easier system for our approah, whih ahieves better-than-perfet saling at least until 1280 CPU

ores for a smaller and a larger system alike (Fig. 19). For the larger system in partiular the

gains are substantial � an 8-fold inrease in the number of CPU ores (from 160 to 1280) yields a

10.2-fold speedup.

For ondution state alulations our algorithm does not sale superoptimally (see Fig. 20),

but the saling remains respetable. For a small system (228 atoms) an eight-fold inrease in the

number of CPU ores o�ers a 4.22-fold speedup, orresponding to a parallel e�ieny of 0.53. For

a larger system (888 atoms), whih was benhmarked against 320 ores, a four-fold inrease in the

number of CPU ores yielded a 2.72-fold speedup (e�ieny of 0.68). The main ulprit responsible

for the worse saling of ondution alulations is parallel load imbalane in the NGWF gradient

part. A more areful load balaning sheme, perhaps one dediated to the partiular requirement

of ondution alulations, might be able to mitigate the problem.

F. Weak parallel saling

We will now look at how the omputational e�ort of our approah hanges as both the size of

the system and the available resoures (CPU ores and RAM) are uniformly inreased. This is

known as weak parallel saling and it is easiest to illustrate using parallel speedup relative to the

number of CPU ores on whih this speedup has been obtained, also known as parallel e�ieny :

e(N
ores

) =
s(N

ores

)

N
ores

. (30)

Sine in many senarios it is not feasible to run the alulation on one CPU ore, e�ieny relative

to a �xed number of ores N0
ores

is often used instead:

eN0
ores

(N
ores

) =
sN0

ores

(N
ores

)

N
ores

/N0
ores

. (31)

Here we will perform a rather stringent test of performane, showing parallel e�ieny relative to

160 CPU ores, with a fairly small (and thus di�ult) number of atoms per ore (≈ 1.4).
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From the de�nition of e�ieny and the disussion in setion VE it follows that perfet saling

will orrespond to e = 1. In typial senarios Amdahl's law together with load imbalane and

ommuniation overheads will ause e�ieny to drop below 1 for larger ore ounts. As our

algorithm an make good use not only of the additional CPU ores, but also the additional RAM,

we expet it to ahieve �superoptimal� e�ieny at least in some senarios.

When investigating weak parallel saling one must be able to inrease the system size in a

uniform fashion, so that the number of atoms per CPU ore is onstant. For this reason we will

only show weak saling for the polymer systems, where this an be ahieved by adding idential

units to the system.
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FIG. 21. Weak parallel saling for the polymer systems (higher is better). Solid lines orrespond to a
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59



Results of our measurements are presented in Fig. 21, whih shows plots of e�ieny (relative

to 160 CPU ores) for both the valene and ondution state alulations. For valene alulations

saling is near-optimal at lower system sizes and ore ounts, slightly exeeding perfet saling

for larger systems, whih is an exellent result. Standard GGA alulations do not sale as well,

although their performane is still good, with e�ienies of about 0.8 for all setups.

For ondution alulations saling is suboptimal, but respetable, aross the board, with

e ≈ 0.7-0.8, whih is still muh better than GGA ondution alulations, where e�ieny drops

to below 0.4 for the largest ore ounts. Several fators are responsible for the worse saling per-

formane of ondution alulations ompared to valene alulations. Firstly, beause of how

ondution alulations are strutured (f. setion III), there is no bene�t to ahing NGWF ex-

pansions in this ase, as NGWFs always hange between invoations of the HFx engine. This

means that the SW expansion stage does not bene�t from the additional RAM at higher ore

ounts. Seondly, the alulation of the P term in the NGWF gradient does not sale as well as

the other omponents, presumably beause NGWF produts are not ahed either in this ase.

The additional RAM is not wasted, it is devoted to ahing SWpots (see Table III), and this

stage does ahieve e > 1. Finally, and most importantly, the impat of parallel load imbalanes

inreases as the alulations move to larger ore ounts. In ontrast to valene alulations, here

it is the NGWF gradient alulation stage that beomes inreasingly poorly balaned. This again

(f. the end of setion VE) suggests that taking the NGWF gradient stage into aount in the

load balaning sheme would be worth pursuing.

G. Calulation walltime vs. MPI/OMP balane

We will now brie�y onsider how the alulation walltime depends on the division of work aross

MPI ranks and OMP threads. onetep supports so-alled hybrid parallelism, that is, it runs on

multiple MPI proesses (termed ranks), eah of whih spawns OMP threads. Proesses reside in

separate address spaes (and often on distint physial mahines, termed nodes), while threads
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spawned from a single rank share memory. All large data strutures are thus distributed aross

ranks, but shared aross threads. It is up to the user to divide the pool of available CPU ores

N
ores

aross N
MPI

ranks and N
OMP

threads, suh that N
ores

= N
MPI

N
OMP

. The maximum number

of ranks is limited by system size. Roughly speaking, the number of atoms must be larger than

N
MPI

, and in pratie load balaning issues ause performane to deteriorate when the number

of atoms per rank beomes small. The maximum number of threads is limited by the number of

CPU ores on a node.
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FIG. 22. E�et of MPI-OMP balane on alulation walltime for a small protein system (blue squares),

and a large protein system (red rosses), run on 16 ompute nodes (40 CPU ores eah). The x axis shows

N
OMP

, and N
MPI

= (16× 40) /N
OMP

. Lower is better.

Standard (non-hybrid) onetep alulations typially attain best performane at 4 or 5 OMP

threads, where load balaning overheads are balaned between MPI ranks and OMP threads

41

.

The HFx engine, however, bene�ts from additional memory that beomes available when the

MPI/OMP balane is shifted towards using more OMP threads and fewer MPI ranks. For instane,

on a typial 128GB node with 32 CPU ores, one ould alloate 16GB of memory per MPI rank

when using N
MPI

= 8, N
OMP

= 4, but as muh as 64GB per MPI rank when using N
MPI

=
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2, N
OMP

= 16 (negleting the memory used by the OS and supporting software arhiteture).

The additional memory devoted to HFx engine ahes will substantially inrease performane

(f. Fig. 6). However, for this to happen the algorithm needs to sale well with the number of

OMP threads.

In Fig. 22 we show how the alulation walltime hanges with the number of OMP threads.

Cruially, total memory use of the HFx engine has been kept onstant aross all data points in

eah of the two urves. Clearly, for both systems the alulation is fastest when 20 OMP threads

are used, beoming somewhat slower as balane is shifted towards lower numbers of threads. The

performane derease at 40 OMP threads, despite alloating all of the node's memory to a single

MPI rank, is due to the fat that Iridis5 nodes enompass two NUMA regions, and splitting a

proess aross two regions results in a severe performane hit due to nonloal memory aesses.

This is a typial situation on many HPC mahines. We did not run the small system with 1 or 2

OMP threads, beause the system was too small for the resulting large N
MPI

. The large system

ould not be run with 4 or fewer OMP threads beause the resulting large number of MPI ranks

per node led to an out-of-memory ondition due to the ost of non-HFx omponents of onetep.

In summary, we on�rmed our expetation that our algorithm performs best at the highest

possible number of OMP threads, provided that proesses do not ross NUMA boundaries. This

also on�rms exellent OMP saling of the algorithm, without whih the above result would not

have been possible.

H. Preonverging with a non-hybrid funtional

We now brie�y show how the performane of hybrid funtional alulations an be improved by

employing the optimization desribed in Setion IIIH and we assess the e�et of this optimization

on energies.

We begin by demonstrating that the error in the energies assoiated with restarting from a pre-

onverged alulation is pratially negligible (and ertainly muh smaller than the error introdued
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by swithing to PBE) in both senarios � when the alulation is ontinued with a hybrid funtional,

optimizing both the density kernel and the NGWFs (�B3LYP-1�); and when only the density kernel

is optimized (�B3LYP-2�) � with the latter approah avoiding the NGWF gradient omputation

stage entirely.

As the investigated energies we use (a) the bond-streth energy urve of ethene, (b) the intera-

tion energy urve of water with a hloride ion, () the interation energy of a sodium ation with

its �rst solvation shell, for a number of snapshots obtained from lassial moleular dynamis, and

(d) the HOMO-LUMO gap of an 888-atom polymer system investigated earlier in the text and

shown in Fig. 20. In this way we probe not only bonded, but also non-bonded interations, and

we investigate small systems (a-) and large systems (d).

The smallest systems were run using orrespondingly modest omputational resoures � 2 MPI

proesses with 4 OpenMP threads eah for ethene and H2O:Cl
−
, and 8 MPI proesses with 5

OpenMP threads eah for Na

+
:6H2O. Memory load did not exeed 4GB per MPI proesses and

as suh it was not apped. The 888-atom polymer system was run on 16 Iridis5 nodes (2 MPI

proesses per node, with 20 OpenMP threads eah), with memory apped to 50GB per MPI

proesses.

Results are shown in Figs. 23 to 25 and in Tables IV to VI. For ethene (Fig. 23) the bond-streth

urves are pratially indistinguishable between the full B3LYP alulation and both approahes

based on restarts, with mean errors in the order of 0.1 kcal/mol or less, while PBE onsistently

overbinds by as muh as 17 kcal/mol (Table IV). For the H2O:Cl
−
system (Fig. 24) the intera-

tion energy urves are also very similar between the full B3LYP alulation and both approahes

based on restarts, with errors never exeeding 0.1 kcal/mol, while PBE overbinds by 1�2 kcal/mol

(Table IV). In the Na

+
:6H2O system PBE underbinds by 1�2.5 kcal/mol, and again the results

of the two restart-based approahes are almost always within 0.1 kcal/mol from the full B3LYP

alulation. For these very small systems (N
atoms

< 20) the e�ieny gains from using a restart-

based approah are either very modest or non-existent (Table V). This is due to the fat that

for small systems all requisite SWs and expansions an be ahed in RAM making the employed
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+
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approahes where B3LYP is used after pre-onverging with PBE (orange rosses, blak plusses � see text),

and PBE (blue squares) are ompared against the referene (B3LYP) results.

time-memory tradeo�s very e�ient and the alulation of HFx near-optimal. As shown earlier

in Figs. 3 and 4, the memory load of ahing everything quikly beomes prohibitive, and indeed

the e�ieny gains from using a restart-based approah for a large polymer system beome quite

signi�ant � over twofold for B3LYP-1 and over 19-fold for B3LYP-2 (Table V). As we did not

look at the energy of binding for the polymer system, we instead alulate its HOMO-LUMO gap

to assess the auray of the restart-based approah. Table VI shows that the assoiated error was

in the order of 0.02 eV (less than 2%), again muh smaller than the one assoiated with swithing

to PBE for the entire alulation.
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We thus onlude that it is pratiable, and su�iently aurate, to signi�antly redue the

ost of hybrid funtional alulations by �rst preonverging with a GGA for all systems exept the

smallest ones.

TABLE IV. Errors in the interation energy � mean signed, root mean square, and maximum � relative

to the B3LYP referene, averaged over all data points.

System Model Mean signed RMS Maximum

error error error

(kal/mol) (kal/mol) (kal/mol)

PBE -17.017 17.268 21.651

C2H4 B3LYP-1 -0.016 0.035 0.091

B3LYP-2 0.110 0.121 0.159

PBE -1.046 1.121 1.953

H2O:Cl
−

B3LYP-1 0.021 0.022 0.030

B3LYP-2 0.085 0.085 0.096

PBE 1.650 1.689 2.490

Na

+
:6H2O B3LYP-1 -0.087 0.091 0.148

B3LYP-2 -0.012 0.042 0.111
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TABLE V. Speed-up (redution in walltime) of the two restart-based approahes relative to a full B3LYP

alulation: s = t
B3LYP

/t
B3LYP-[12℄

. Higher is better.

System Model Speed-up relative

to a full B3LYP

alulation

C2H4 B3LYP-1 0.75

B3LYP-2 1.02

H2O:Cl
−

B3LYP-1 0.71

B3LYP-2 1.01

Na

+
:6H2O B3LYP-1 1.10

B3LYP-2 1.72

888-atom polymer B3LYP-1 2.21

B3LYP-2 19.44

TABLE VI. HOMO-LUMO gaps for the 888-atom polymer system � alulated with PBE, B3LYP and

the two restart-based approahes, and their errors relative to a full B3LYP alulation.

Model HOMO-LUMO Error relative Error relative

gap (eV) to B3LYP (eV) to B3LYP (%)

PBE 0.482 −0.810 −62.69 %

B3LYP 1.293 0.000 0.00 %

B3LYP-1 1.267 −0.026 −2.01 %

B3LYP-2 1.281 −0.012 −0.89 %
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FIG. 26. Struture of the largest studied imogolite nanotube (7 units), indiating the positions of the

nulei (spheres) and the impliit solvent dieletri avity (surrounding bubbles).

I. Demonstration of pratiability � example alulations on large imogolite

nanotube systems

We �nish with a demonstration of the pratiability of the presented approah for alulating

Hartree-Fok exhange, by showing fully onverged results obtained with B3LYP for large nanotube

systems (up to 1416 atoms). The potential of these aluminosiliate nanotubes and their deriva-

tives for seletive photo-atalyti appliations has been reently explored omputationally

49�53

and
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started to be veri�ed experimentally

54,55

. In this work we alulated the eletroni density of states

(Fig. 27), the HOMO-LUMO bandgap (Fig. 28) and the free energy of solvation in impliit solvent

water (Fig. 29) of pristine (undefeted), hydrated, aluminosiliate imogolite nanotubes of three

di�erent sizes � 3, 5 and 7 units (see Ref. 49 for more details).

The struture of the largest onsidered nanotube, surrounded with impliit solvent, is shown in

Fig. 26. Our alulations ran on 32 ompute nodes, eah with 40 CPU ores and 192 GB of RAM,

and, for the largest system, took about 14 h per NGWF optimization iteration, thus requiring

several restarts to omplete (alulations typially take 10-20 iterations to fully onverge).
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FIG. 27. Eletroni density of states for the studied imogolite nanotube. Results obtained in vauum with

a GGA (PBE, blue) and with a hybrid funtional (B3LYP, red) are ompared. In addition the e�et of

impliit solvent is shown for the B3LYP alulation (orange).

As expeted, we observe (Figs. 27 and 28) a widening of the HOMO-LUMO gap by about 1.5 eV

one the hybrid funtional is swithed from PBE to a hybrid (B3LYP). The subsequent addition of

the water environment (modeled using our minimal-parameter solvent model

56,57

) further inreases

the gap by about 0.4 eV. The magnitude of the gap appears reasonably well-onverged with system

size at 7 nanotube units.
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The alulated free energy of solvation is in the order of −200 kcal/mol per one nanotube unit

of length, and is more favorable by about 13 kcal/mol when alulated with B3LYP, ompared

to PBE. It hanges appreiably between system sizes, presumably due to the e�et of the ends

of the nanotube and di�erent strutural relaxation

49

. The alulated free energy of solvation

still seems slightly underonverged with system size even at 7 nanotube units. The presented

method development in onetep paves the way for follow-up researh into this aspet of imogolite

nanotubes, as well as hybrid (linear-saling) DFT simulations of the mehanisms of assembly of

solvated proto-imogolite fragments into the �nal nanotubes

58,59

.

VI. CONCLUSIONS

We presented a massively-parallel, linear-saling algorithm for the alulation of Hartree-Fok

exhange and hybrid funtionals, subsequently disussing and benhmarking its implementation

on a number of systems relevant to industrial appliations.

Our approah is based on expressing produts of loalized orbitals (NGWFs) in terms of trun-

ated spherial waves, the expressions for the eletrostati potential of whih are known analyti-

ally. The arefully thought out parallel distribution of both data and algorithms, together with

the aggressive use of time-memory tradeo�s, allows our approah to ahieve very high parallel

e�ieny in senarios where the number of CPU ores is omparable to the number of atoms, and

beyond.

We showed how on today's mahines our approah is able to treat systems of up to about

1500 atoms routinely � requiring several hundred CPU ores to ahieve a walltime of under one

week. The largest system whih we demonstrated to be pratiable on 32 ompute nodes on-

tained 4048 atoms. The exellent saling properties of our approah mean that systems even

larger than that will be treatable, although they would require substantial omputational resoures

(N
ores

≈ N
atoms

). Condution state alulations have larger requirements, due to redued matrix
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sparsity and larger numbers of NGWFs, and the largest system we showed to be pratiable on 16

nodes was 1768 atoms.

The omputational e�ort of our approah sales linearly with system size, and the same is true

for all of its omponents individually. The strong parallel saling is exellent, oasionally beom-

ing superlinear owing to the extensive use of time-memory tradeo�s, and although there is still

room for optimization in ondution state alulations, even these sale better than orresponding

alulations with a GGA. Our implementation sales very well to high thread ounts and to large

numbers of MPI proesses, retaining very good e�ieny even in the regime where N
ores

≫ N
atoms

.

In light of the fat that, through the use of a �nite auxiliary basis, our approah is an approx-

imation, in the supplementary material we assessed the magnitude of the introdued error and

showed how it onverges with the tunable parameters of the SW basis set. In all ases we found

the magnitude of the error to be extremely small and ontrollable.

The methods presented in this paper not only signi�antly narrow the performane gap between

hybrid funtionals and GGAs and meta-GGAs in linear-saling DFT, but also pave the way for

future developments in onetep whih would employ four-enter eletron repulsion integrals � suh

as Random Phase Approximation (RPA) or Møller-Plesset perturbation theories or alulations

employing sreened hybrids.
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