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We extend our linear-scaling approach for the calculation of Hartree-Fock exchange en-
ergy using localized, in situ optimized orbitals [Dziedzic et al., J. Chem. Phys. 139, 214103
(2013)] to leverage massive parallelism. Our approach has been implemented in the ONETEP
density functional theory (DFT) framework, which employs a basis of non-orthogonal gen-
eralized Wannier Functions (NGWEFs) to achieve linear scaling with system size while re-
taining controllable, near-complete-basis-set accuracy. For the calculation of Hartree-Fock
exchange we use a resolution-of-identity (RI) approach, where an auxiliary basis set of
truncated spherical waves (SWs) is used to fit products of NGWFs. The fact that the elec-
trostatic potential of SWs is known analytically, combined with the use of a distance-based
cutoff for exchange interactions, leads to a calculation cost that scales linearly with the
system size. Our new implementation, which we describe in detail, combines distributed
memory parallelism (using the Message Passing Interface (MPI)) with shared memory par-
allelism (OpenMP threads) to efficiently utilize numbers of CPU cores comparable to, or
exceeding, the number of atoms in the system. We show how the use of multiple time-
memory tradeoffs substantially increases performance, enabling our approach to achieve
superlinear strong parallel scaling in many cases, and excellent, although sublinear, parallel
scaling otherwise. We demonstrate that in scenarios with low available memory, which
preclude or limit the use of time-memory tradeoffs, the performance degradation of our
algorithm is graceful. We show that, crucially, linear scaling with system size is maintained
in all cases. We demonstrate the practicability of our approach by performing a set of fully-
converged production calculations with a hybrid functional on large imogolite nanotubes
up to over 1400 atoms. We finish with a brief study of how the employed approximations
(exchange cutoff and the quality of the SW basis) affect the calculation walltime and the

accuracy of obtained results.
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I. INTRODUCTION

Owing to its favorable balance of accuracy and relatively low computational cost, Kohn-Sham
(KS) density functional theory (DFT) is a widely used technique in many branches of computa-
tional chemistry and materials science!. The accuracy of DFT depends crucially on the approx-
imations invoked in the exchange-correlation (XC) functional used. Hybrid functionals, which
include a fraction of Hartree-Fock exchange (HFx), are among the most accurate functionals in
use today, offering an elegant way of reducing the self-interaction error, and leading to a more
faithful description of geometries and of several properties, such as bond energies and band gaps,
particularly for metal oxides?.

Despite the continual increase in available computing power, calculating the HFx energy term
remains computationally expensive because of its inherent non-locality. In canonical KS-DFT the

HFx energy is given by

o Nno Nmo . ¢:(r)¢](r)¢;(r/)wz(r/) rdr’
Bupe ==Y 3 % // Fy— drdr, (1)

i=1 j=1

where {1} are the canonical molecular orbitals (MOs), z; are their occupancies and Nyjo is the
total number of molecular orbitals present in the calculation. Given that MOs extend throughout
the entire system, and that the Coulomb operator is long-ranged, the cost of each volume integra-
tion in Eq. 1 is proportional to the size of the system, whether measured by the number of atoms N
or the number of molecular orbitals Nyjo (which is o N). The presence of a double integral over
volume, together with a double sum over MOs makes a direct calculation of Eypy scale as O(N?).

In practical calculations the MOs are expanded in terms of a finite basis:

$i(r) = @a(r)MS, (2)

where we have assumed a summation over repeated Greek indices. The techniques for mitigating

the unfortunate quartic scaling depend on the employed basis set {¢,}.
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When localized orbitals are used (e.g. Gaussian functions or numerical atomic orbitals (NAOs)),

Hartree-Fock exchange energy can be recast as

EHFX = _Kﬁa (¢a§05|§0’\/§05) K6V> (3)

where (pa@s5|¢4pp) is the two-electron, four-center electron repulsion integral (ERI) in chemists’

notation:
(Papslpypp) =
= [[ ety et arar (4)
-/ wZ(F)wa(r)uvﬁ(r)dh 5)
where

sty = [ ELOBO .

r—r|

is a Coulombic potential of a product of localized orbitals. The contravariant matrix K is the
representation of the single-particle density matrix in the duals of the {¢,}, and is known as the
density kernel. The density kernel is, in general, a spin-dependent quantity. Here, and in all the
text that follows, we will omit spin-dependence for clarity and brevity of notation.

Pre-screening ERIs, that is, avoiding their evaluation if they are deemed to be zero or below
a given threshold forms the basis of a number of methods for reducing the computational cost of
HFx, particularly for Gaussian basis sets. Examples of such approaches include LinK? and ONX*.
It has also been recognized that rigorous upper bounds for integrals are of secondary importance,
with tighter estimates of integral values permitting better control of the precision of calculating
HFx®. Another approach is to use a truncated Coulomb operator to evaluate the ERIs, which
makes them short-range. The long range contribution can then be recovered in the form of a
systematically improvable correction®.

In the context of extended basis sets, such as plane waves, the non-locality of the exchange

operator makes the calculation of HFx more challenging. Nevertheless, suitable techniques have
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10,11

been proposed for calculations on periodic systems’”?, some of them linear-scaling Some

12,13

of these approaches employ mixed basis sets (e.g. Gaussians and plane waves , or Wannier

functions and plane waves'®!!).
In the context of localized, atom-centered basis sets, such as Gaussians or NAOs, methods based
on the resolution of the identity (RI) are commonly employed to make the computational effort

associated with computing HFx more manageable. These techniques, pioneered in the 1970s'15,

16-18

and particularly popular in the field of correlated wavefunction methods , expand pair products

of atomic orbitals in an auxiliary basis whose functions are similarly atom-centered®®.

One of the most notable developments in this area is the robust fitting formula of Dunlap?®:?,
which, when used instead of directly replacing the pair products with their RI fits, ensures the
resultant error is bilinear in the error of the fitted products'®, with the linear error removed.
Dunlap and co-workers are also credited with establishing?? that using the Coulomb metric in the
fitting offers more accurate energies compared to other metrics, such as the overlap metric.

In recent years certain difficulties associated with robust fitting have been recognized and so-
lutions or workarounds proposed. Merlot et al.'? observed that the two-electron integral matrix
is not manifestly positive semidefinite under certain conditions. They proposed a pair-atomic res-
olution of identity (PARI) approach, based on local fitting of either the bra or the ket side of
the ERI, combined with the robust correction, to achieve quadratic accuracy?®. Tew?® recently
proposed a “quasi-robust” local density fitting approach that addressess issues with undesired long-
range behavior when the auxiliary basis is incomplete. Sodt and Head-Gordon?* proposed a local
modification to RI that yields energies that are differentiable with respect to nuclear positions.

In this paper we present a massively-parallel approach for the efficient calculation of Hartree-
Fock exchange in linear-scaling time. The technique employs the resolution of identity and uses
truncated spherical waves as the auxiliary basis, with only the ket side of Eq. 4 being fitted, while
the products in the bra are unexpanded. It is based on our previous developments®, where the
original implementation was serial. In section II we first briefly outline the basics of ONETEP —

the linear-scaling reformulation of KS-DFT in which our approach is implemented, following with



a description of the theoretical basis of our method. In section III we describe the implementation
details of the algorithm, devoting particular attention to the parallel data distribution and time-
memory tradeoffs that enable its efficient parallelization. A short section IV describes the set-up
of the calculations we performed to benchmark our method.

In section V we show the results of these calculations — we demonstrate that our algorithm
is indeed linear-scaling, we compare calculation walltimes against non-hybrid functionals, and
investigate how individual components of the calculation scale. We show excellent strong and
weak parallel scaling of our approach, with superlinear speed-ups in many cases. We briefly
demonstrate how preconverging the calculation with a non-hybrid functional before continuing
with a hybrid functional significantly shortens calculation time with negligible loss of accuracy.
We conclude this section with a demonstration of the feasibility of the proposed approach, by
performing calculations with the B3LYP hybrid functional on imogolite nanotube systems with
1416 atoms. We finish with section VI, which contains conclusions and thoughts about future
work. In supplementary information we show how the additional approximations (the use of a
cutoff, finiteness of the auxiliary basis) are controllable and how the associated errors are very

small.

II. THEORY
A. ONETEP

ONETEP?® reformulates Kohn-Sham DEFT?" in terms of the single-particle density matrix,

p(r,r’'). The density matrix is represented as:

p(r.v') = ga(r) K gj(r'), (7)

where the {¢.} are the non-orthogonal generalized Wannier functions (NGWFs)?® centered at r.,
which coincide with nuclear coordinates (e being a generic NGWF index). The NGWFs are strictly

localized within spherical regions with radii {R.}.
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K is the density kernel, a sparse contravariant matrix, whose elements K®? are nonzero only if

lr, —rg| < rg, where rg a real-space cutoff length, known as the density kernel cutoff.

The strict localization of NGWFs means the NGWF overlap matrix S = {S}, defined as

S¢= [ erte)ectrar ®)

is sparse.

The NGWFs are expanded as linear combinations of psinc functions®, D,,(r) = D(r — rp,):

meLR(e

(e)
pr)= Y Dlr—ru)en (9)

where the index m runs over the points of the real-space Cartesian grid r,,, which are the centers
of the psinc functions, inside the localization region of ., LR(¢). The psinc functions form an
orthogonal basis and are related to plane waves by a Fourier transform, thus sharing many of their
desirable properties, notably the independence from the nuclear coordinates and the ability of the

basis set to be systematically improved by increasing a single parameter: the kinetic energy cutoff.

The total energy is minimized self-consistently with respect to the density kernel elements K
and the NGWF expansion coefficients ¢,,. under the constraints of the idempotency of the density

matrix and conservation of the number of electrons, N,.

In typical ONETEP calculations this is done in two nested loops. In the inner loop K is optimized
via a modified Li-Nunes-Vanderbilt (LNV) algorithm?®3? with the NGWFs fixed. The outer loop
optimizes the NGWEF expansion coefficients c,,. through gradient-based energy minimization. The
fact that the NGWFs remain fixed in the inner loop (and thus during the majority of energy
evaluations) will play a crucial role in the code optimizations employed in the calculation of the

Hartree-Fock exchange energy.



B. Hartree-Fock exchange in ONETEP

By introducing an auxiliary quantity, the (covariant) exchange matrix X:

Xop = (0aslpys) KO, (10)

we can express Fyp, (Eq. 3) simply as
EHFX == —KBaXag. (11)

Direct evaluation of ERIs from Eq. 4 is impracticable because of the six-dimensional nature of the
integral. Proceeding via Eq. 5 is slightly more advantageous — u,g(r) (Eq. 6) can be obtained in
reciprocal space®® or by solving the Poisson equation. Here the difficulty lies in the fact that this
has to be done for each pair-atomic quantity ¢ (r')ps(r') and that the potential u,s(r) is long-
ranged. The latter precludes the use of ONETEP’s traditional tool, the FFT box3*, as the FFT
box would have to coincide with the entire simulation cell. This approach is quadratically-scaling
with a very large prefactor®*. The use of a finite exchange cutoff, e.g. by assuming X, to vanish
when |r, —rg| < rx, where rx is the exchange cutoff length, makes this approach linear-scaling,
but the prefactor remains prohibitively large.

We now briefly recount the linear-scaling approach actually used in ONETEP. For more details
we refer the reader to Ref. 25 where this approach was first described.

We first introduce the electrostatic metric V with the elements:

* 1 / r
v, = // F ) g £’ = (1,15, (12)

r — 1/
where { fp(r)}]ivi1 are a set of (in-general) non-orthogonal functions. Using the elements V?* of the

inverse metric matrix V! we can define a resolution-of-identity (RI) operator:

Ly =1f) V" (fl . (13)

Such RI operators are often used in computational quantum chemistry software!*18:20:22-24,35-39

with the aim of replacing four-center ERIs with more tractable 3-center integrals.



FIG. 1. NGWFs (localized orbitals) featuring in the calculation of Eypx (Eq. 3). The interacting pair-
atomic quantities ¢, (r)ps(r) and ¢%(r')@s(r’) are shaded. All terms where the localization sphere of « is
disjoint from that of § vanish, and similarly all terms where the localization sphere of 3 is disjoint from
that of v vanish. This is a property of localized orbitals. The non-local nature of Hartree-Fock exchange
manifests in the fact that terms where the localization sphere of « is disjoint from the localization sphere

of 8 do not, in general, vanish.

By inserting the RI operator into Eq. 3, we obtain?®:

Enpx = —KP (¢a¢6|fp) vre (f8|30*/§pﬁ) K67> (14)

which is exact if the set of auxiliary functions spans the same subspace as the products of NGWFs.
In practice we will be working with finite sets of auxiliary functions, making Eq. 14 an approximate
equality; we will denote the resultant approximate Hartree-Fock exchange energy with Ejypy and

the approximate exchange matrix whose elements are

Xag = (0apslfy) V7 (filorps) KO (15)

with X.



The employed auxiliary basis should have two important properties — it should be able to
accurately represent the fitted NGWEF products, and it should enable the computation of Coulomb
potentials (Eq. 6) in O(1) time per NGWF pair. One such basis set is formed by truncated
spherical waves (SWs), which are solutions of the Schréodinger equation for a particle in a sphere.
They are given by

fr) = Jilqr) Zm (8) 1 <a, | (16)

0 r>a

where j; (¢qr) is a spherical Bessel function, Z, (t) is a real spherical harmonic, m is an integer
from the interval [—[,], and a is the radius of the sphere where the zero boundary condition is
imposed. In ONETEP’s implementation we assume V.R. = a, that is, all NGWF localization radii
are identical and equal to a. The value of ¢ is chosen in such a way that j; (ga) = 0, and the
suitable values of ¢ depend on the angular momentum index /. The maximum values of ¢ and [
are limited by the kinetic energy cutoff and the corresponding grid spacing. In typical scenarios
it is sufficient to truncate the SW basis at [« = 3 and ¢uax = 12, where ¢pay is the number of
different values of ¢ used for each [. In the text that follows we will use a single index (p or s)
for the SWs for simplicity. This index covers all the possible combinations of [, ¢ and m and runs

from 1 to Nsw. We will use u,(r) to denote the potential of a SW (“SWpot” in further text):

() = [ L) g (17)

r —r|
This potential can be evaluated analytically in O(1) time33.
In our technique the products featuring in the ket of Eq. 4, that is ¢ (r')¢g(r’), are expanded,
while the products in the bra, that is ¢%(r)ps(r), do not undergo expansion. The coefficients of

expansion {cf; are given by:

B}pZI...NSW
s =V (folpyep) - (18)

An important issue is the choice of centers for the SWs used in the expansion of ¢ (r')ps(r').

Using SWs centered only on NGWF v or only on NGWF S breaks symmetry in Eq. 4, because
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it leads to cy3 ~ cgy, rather than c,3 = cg,. Using SWs centered on both 3 and v alleviates
this problem, but there is still the problem of broken «d <> 73 symmetry, i.e. the products in
the bra of the ERI Eq. 4 are then exact, while the products in the ket are approximate (fitted).
To formally satisfy all the symmetry requirements one can resort to using SWs centered on all
four atoms (a, f, v, ) in the expansion, which keeps the fitting domain identical between all
permutations of «, [, 7, ¢ in the ERI. Such a fit is then robust in the sense of Ref. 20, that is, the
fitted integral does not contain any terms linear in the error in the fitted densities. However, in
our case this is impracticable. Even though it maintains linear-scaling, using four centers in the
expansion leads to prefactors that are prohibitively large, because the product ¢ (r)@s(r) then
needs to be re-expanded every time « or § changes in Eq. 14.

We solve the above problem by using a 2-center expansion (on  and ) and recovering the

ad <> 0 symmetry by symmetrizing the approximate (SW-expanded) exchange matrix, X:

Xos % (Ras + X)) - (19)

This change propagates to the expression for the Hartree-Fock energy, which now reads?:

. 1
Eypx = —§Kﬁa [ (@a@ﬂfpﬁﬂ)vps (fs,’yﬁl(p'y(:pﬁ) + (20)
(Pas| fpoa) VT (fs,&al‘?’y‘?ﬁ) ]K&Y-

Here we used additional indices to the SWs {f} to indicate where they are centered. While the
above expression formally includes SWs centered on o and §, we again stress that the symmetriza-
tion procedure (Eq. 19) makes it sufficient to only expand using SWs on 3 and . We have shown?
that in practice any differences between the elegant, but prohibitively expensive 4-center fit and
the 2-center fit we employ are negligible, although our approach is no longer robust in the sense
of Ref. 20.

An important advantage of the 2-center expansion is that it only includes SWs centered on atoms
whose NGWFs overlap, making the electrostatic matrix in Eq. 12 effectively sparse (even though

the potential of a SW is not localized). This is necessary for the approach to be linear-scaling.
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We subsequently build linear combinations of SWpots (corresponding to expanded potentials

of NGWF pair products):

Nsw

es(t) = ) up(r)chs = L[ 0r05) (21)

(where IAVB is defined in Eq. 24), and contract them with the density kernel over the index v and
act the resultant potential:

#(x) = K¢, 5(r) (22)

on the product ¢ (r)ps(r) that appears in the bra of the ERI of Eq. 3. Having repeated this step
for all requisite NGWFs 0, we obtain an element of the exchange matrix, Xag (Eq. 15). In the
final step we contract the exchange matrix with the negative of the density kernel K over a and
B, according to (11) to obtain the Hartree-Fock exchange energy.

For every exchange matrix element (a pair of indices («, 3)) the cost of the above calculation is
asymptotically constant (independent of system size). This is because all the NGWFs are strictly
localized and their overlap matrix is sparse. For our approach to be linear-scaling, the number of
pairs («, #) must increase linearly with system size, i.e. the exchange interaction must be truncated.
This is standard pratice in linear-scaling methods*®. Our method employs a simple distance-based
cutoff, where the exchange matrix X is made sparse by neglecting contributions from pairs («, /3)
when |r, — rg| > rx, where rx is an assumed real-space cutoff for exchange. We have shown®® that
even in more demanding applications rx~20 ag, or even less, is sufficient keep the truncation error
below 0.01 %.

The fact that in ONETEP the NGWFSs are optimized in situ necessitates calculating the gradient
of the energy with respect to the NGWF expansion coefficients (which, mathematically, is the
functional derivative of the energy with respect to the complex conjugate of some NGWF «). The
derivation of the relevant expression for Hartree-Fock exchange has been presented in Ref. 25; here,

for the sake of brevity we only recount the final form:

G(r) = GY(r) + GS(r) = 205 (1) KP* K L 5| 0y 05) + 2005(r) Isa (K2 K 0105) ), (23)
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where the factor of 2 is due to the fact that the NGWFs are assumed to be real-valued, and the

operator I, is the resolution of identity operator in terms of SWs centered on NGWFs « and A:

jfi)\ = |fp,n>\) % (fs,/-c)\| . (24)

The first term in Eq. 23 involves summing large numbers of expansions of pair NGWF products
©ypp in terms of SWs centered on these NGWEs. In the second, more involved term linear
combinations of NGWF products are expanded in SWs centered not on these NGWFs, but rather
on the NGWF with respect to which we differentiate (o) and the NGWFs that overlap with it (9).

The expression in Eq. 23 is the contravariant gradient, which cannot be directly used to update
NGWFs {¢,}, which are covariant. To achieve tensorial correctness, it must be converted to a

covariant gradient: G(r) = G*(r)S,..

C. Summary of truncation parameters

As an aid to the Reader, in section II B we recount and briefly describe the truncation parameters

used in ONETEP and in this work.

TABLE I. Summary of truncation parameters employed in the ONETEP approach and in our HFx algorithm.

Parameter Symbol| Typical Used in  |Description

value

Density  kernel| rx |50-100ay| ONETEP |Distance between two atomic centers beyond which

cutoff the density matrix is assumed to vanish.

NGWFEF localiza-| R 810 ag ONETEP |Radius of an atom-centered sphere beyond which the

tion radius NGWTF is assumed to be strictly zero.

Exchange cutoff X 20-25 ap |HFx method|Distance between two atomic centers beyond which

the exchange matrix is assumed to vanish.
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III. IMPLEMENTATION

In this section we describe the parallel implementation of our algorithm, highlighting choices of
parallel decompositions and time-memory tradeoffs that make it efficient and massively paralleliz-

able.

A. Preliminary comments and notation

We begin with a minor implementation detail that will gain more importrance later in the text.
As mentioned earlier (cf. Eq. 9), in ONETEP the NGWTFs are stored as psinc expansion coefficients
on a Cartesian grid. In practice we use a so-called parallelepiped representation, illustrated in

Fig. 2.

FIG. 2. Diagram of the PPD representation used in ONETEP (simplified to 2D). Two example NGWFs are
shown (circles). Grid data for NGWFs and their overlaps is stored as contents of parallelepipeds (PPDs)

tiling the grid (shaded areas).
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The simulation cell is tiled into suitably-sized parallelepipeds (PPDs). Each NGWF localization
region is encompassed by a number of PPDs (shaded areas in the diagram). The psinc coefficients
are stored for all points in these PPDs, arranged into a continuous 1D array. Such a packed
representation, while introducing some overhead (points within PPDs but outside of the NGWF
sphere), makes it easy to pass NGWF data between MPI ranks and enables efficient processing.
In the current implementation of HFx this representation is also used for NGWF overlaps (dark-

shaded area in the diagram).

In the text that follows we will use a convention where capital letters (A, B, C, D, I, J, M)
denote atoms. Lowercase letters (a, b, ¢, d) will be used to index NGWFs on a corresponding
atom, for example a will count NGWFs on atom A. For indexing NGWFs globally we will use
Greek letters (a, 3, 7, d, €, ¢) like we have already done in the introduction. We will occasionally
switch between these two ways of indexing NGWFs (Aa = a, etc.) as some concepts are easier
explained using one notation or the other. Also, implicit summation will be assumed only over

repeated Greek indices.

Matrix sparsity plays an important role in the algorithm we present. The sparsity of S (due
to strict localization of NGWFs), the sparsity of K (due to the assumed kernel cutoff), and the
sparsity of X (due to the assumed exchange cutoff) are all crucial for achieving linear scaling. In
the text that follows it will often be useful to think of matrix sparsity patterns in terms of pairs
of atoms that are either within a sparsity pattern of a matrix (meaning the corresponding matrix
element is non-zero), or outside it (meaning the corresponding element is zero and is not stored).
We will use the following terminology to describe this: two atoms whose NGWFs overlap (and so
the corresponding S element is non-zero) will be termed S-neighbors. Two atoms whose centers
are within the exchange cutoff (and so the corresponding X element is non-zero) will be termed
X-neighbors. The relations of being an S-neighbor or X-neighbor are commutative. Finally, by
saying an atom [ is an X-S-neighbor of atom J we will mean that there exists an atom M such

that J and M are X-neighbors, and M and I are S-neighbors. This is best understood referring

15



to Fig. 1, where atom D (NGWF §) is an X-S-neighbor of atom B (NGWF ). Note that this

relation is not, in general, commutative.

B. Hybrid MPI-OpenMP parallelism

ONETEP employs hybrid parallelism for all its major algorithms*!. Distributed-memory, process-
based (MPI*?) parallelism is used in two ways: for the geometric decomposition of the simulation
cell (where each MPI rank deals with a number of slabs comprising the cell), and to divide atoms
across MPI ranks (each MPI rank “owns” or is responsible for a subset of atoms). Such a scheme is
naturally limited in the number of MPI ranks that can be used — performance begins to deteriorate
once the number of MPI processes exceeds the number of slabs in the cell (because some ranks no
longer have any work to do), or when the number of MPI ranks exceeds the number of atoms in
the system (at which point ONETEP cannot be run). This problem can be alleviated by reducing
the number of MPI ranks and instead having each rank spawn a number of threads to saturate

the available CPU cores.

Shared-memory, thread-based parallelism (OpenMP*?) is then used on a finer scale to subdivide
larger work grains into threads. There are two main advantages to using such a hybrid model.
One is being able to utilize large number of CPU cores without significant loss of performance.
Another stems from the fact that threads share an address space, so the memory load associated
with quantities that would normally be replicated across MPI ranks is lowered since fewer MPI
ranks are used. This second advantage does not play a large role in ONETEP, as the most memory-

intensive quantities are distributed, not replicated, across MPI ranks.

The main two bottlenecks in ONETEP’s approach to Hartree-Fock exchange are (a) the eval-
uation of SWpots (Eq. 17) from analytical expressions involving trigonometric and radial terms
(see Ref. 33 for details), and (b) the evaluation of SW-expanded potentials of NGWF pair products

(Eq. 21). Both of these are performed repeatedly, often for the same parameters. For example,
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Eq. 21 will be evaluated with the same v and § for multiple combinations of o and ¢, of which it
is independent.

Naturally, this opens up opportunities for time-memory tradeoffs, where already calculated re-
sults are cached in memory and subsequently reused, reducing the computational cost to mere
look-ups. However, this has to be done carefully. Both quantities considered here (SWpots and
expanded potentials) require very large amounts of memory to store. Further in the text (sec-
tion IIIE) we outline how the requirements scale with the system size, here we will only provide
an estimate — in typical scenarios this memory requirement begins to exceed 1TB at about 400
atoms, just at the onset of linear scaling in the evaluation of HFx. This is a requirement on total
memory, and so it could in principle be divided across multiple compute nodes. In today’s high
performance computing environments, using this quantity of distributed memory is practical, since
compute nodes are routinely equipped with 128 to 512 GB of memory.

Not to be neglected, however, is the cost to accessing such distributed cached data — accessing
data that is not local to an MPI rank entails interprocess communication. The calculation of
SWpots in ONETEP has been extensively optimized — calculating =~ 200 SWpots that are required
in typical scenarios in one PPD that contains 125 grid points takes only about 5 ps, and so any
attempt to access a cached copy from a remote MPI rank would be much slower. For this reason
our algorithm relies on caching all relevant data locally (within the same MPI rank), even if this
means replicating some data across ranks.

To minimize this replication and to increase the available RAM for the cache it stands to reason
to use as many OpenMP threads as possible and as few MPI ranks, as threads can then share a
large cache without any need for message passing. Suitable thread synchronization mechanisms
must be used when populating the cache to avoid data races, but once the cache is populated and
becomes read-only there is no need for synchonization.

For the above approach to be efficient, our algorithm had to be optimized for large numbers
of threads. This is accomplished by ordering operations in such a way as to move OpenMP

parallelism as high in the loop structure as possible, making computational grains larger, and by
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avoiding synchronization mechanisms (critical sections) whenever possible. As we will demonstrate
in section V, the result is an algorithm that scales well to at least tens of OpenMP threads per
process and at least thousands of CPU cores.

Another component crucial for massive parallelism is load balancing. As described above,
ONETEP distributes atoms across MPI ranks. Looking at relevant expressions (e.g. Egs. 18, 21
and 23), it becomes apparent that the key quantity being processed are the kets |¢.pz). For
this reason, our algorithm distributes atom pairs (B, C) rather than atoms as in ONETEP’s orig-

4 In the text that follows we will term ONETEP’s original distribution

inal parallel distribution
“scheme 17, while the scheme used by the HFx algorithm will be termed “scheme 2”. The quantities
that are inputs to the algorithm, such as NGWFs, density kernel elements and the metric matrix
V, will need to re-distributed from scheme 1 to scheme 2 before actual processing begins, and the
quantities produced by the algorithm (the exchange matrix X and the NGWF gradients G*(r))
will have to be re-distributed from scheme 2 back to scheme 1 before they can be used by the rest
of ONETEP machinery. The walltime cost of these operations is very modest, below 0.5%. The

associated memory cost (due to having to store additional NGWFs and density kernel elements)

is also acceptable, at a level below 1 MB/atom per MPI rank.

C. Algorithm overview

Examining expressions in Eqs. 18 and 21 makes it clear that they are independent of the density
kernel, and involve only the NGWFs. This means that the calculation of EHFX can be broken up
into two distinct stages — one that is independent of the density kernel, and one that is density-
kernel-dependent. The first stage, which involves calculating expansion coefficients of NGWF' pair
products (Eq. 18) and the potential of these expansions (Eq. 21) does not need to be repeated in
the inner (kernel optimization, LNV) loop. The second stage (Eq. 22, subsequent calculation of
the elements of X, and of Eypy itself (Eq. 11)) must be repeated every time K changes, that is,

multiple times in the inner loop.
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The density-kernel-independent stage will be described in section III D, and the density-kernel-
dependent stage, which entails the actual calculation of EHFX — in section III E.

The last component is the calculation of the gradient of EHFX with respect to the NGWFs,
which is required for in situ optimization of NGWFs. It will be described in section IIIF.

D. Density-kernel-independent stage

Algorithm 1 Density-kernel-independent stage
Distribute (B, C) pairs across MPI ranks
Determine B and C' atoms for each MPI rank
Determine A atoms for each MPI rank

Determine D atoms for each MPI rank

Redistribute the matrix V from scheme 1 to scheme 2

Redistribute NGWFs from scheme 1 to scheme 2

Determine the set of all PPDs where SW expansions of the potential will be needed for each MPI rank
Populate the SWpot cache on each MPI rank (—Alg. 1B)

Populate the NGWF product cache (—Alg. 1C)

Expand NGWF pair products (—Alg. 1D)

H
e

The density-kernel-independent stage is described in Algorithm 1. In step 1, the workload
associated with all kets in Eq. 14, that is the set of all (B, C') atom pairs in the calculation, is dis-
tributed across MPI ranks. During load-balancing, we assume the computational effort associated
with a (B, ) atom pair to be proportional to the product of the number of NGWFs on atoms B
and C'. This is justified by the fact that the algorithm deals with products of pairs of NGWFs on
these atoms. In the final distribution each MPI rank has a subset of (B, (') atom pairs and these
subsets are mutually disjoint, i.e. a given (B, C') pair is only found on one MPT rank.

In step 2, each MPI rank constructs a set of all B atom indices, and a set of all C' atom indices

present in its set of (B, () pairs. We will refer to these as the rank’s B atoms, and rank’s C'
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atoms. Unlike (B, C) pairs, more than one MPI rank can have the same B or C' atom in its subset
(i.e. the subsets are not disjoint).

In step 3, each MPI rank determines the set of its A atoms, which we define as all atoms that are
X-neighbors to any B atom the MPI rank owns. Similarly, in step 4, each MPI rank determines
the set of its D atoms, which we define as all atoms that are X-S-neighbors to any B atom the
MPI rank owns.

In step 5, the electrostatic metric matrix V (Eq. 12) is redistributed from scheme 1 (which was
used during its calculation) to scheme 2 (which is used in all subsequent calculations). This also
involves a change of the underlying datastructure — from a distributed sparse matrix, to rank-local
hash tables.

In step 6, the NGWFs themselves are redistributed from scheme 1 to scheme 2. Each MPI rank
requests scheme-1-owners of all NGWFs it is going to need to send them (in PPD format), and,
simultaneously, each MPI rank listens for requests addressed to it and satisfies them by sending the
NGWFs it scheme-1-owns. Following this step, each MPI rank has all the NGWFs it is going need
in the calculation of HFx locally. No further communication of NGWFs is going to be necessary.
This is an important tradeoff — we sacrifice some memory (because most NGWFs are now replicated
on more than one rank), but in return we avoid interspersing calculation with communication in
all subsequent stages of the calculation. Our algorithm will thus be free of any idle waits of a rank
for communication with another rank, and of any potential convoy effects. The memory cost of
this overhead is acceptable — below 1 MB/atom on each MPI rank, increasing linearly with system
size (owing to the sparsity of S and X). We use the same approach for communicating elements
of the density kernel (see Alg. 2, step 1 further in the text).

In step 7, each MPI rank establishes the set of PPDs where SW-expanded potentials of ket
NGWEF pairs will be required. This is a union of the sets of PPDs on all of the rank’s atoms A.

In step 8, each MPI rank populates its SWpot cache, following Algorithm 1B.

In step 9, each MPI rank populates its NGWEF product cache, following Algorithm 1C.

Finally, in step 10 NGWF pair products are expanded in terms of SWs, following Algorithm 1D.
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This completes the description of the density-kernel-independent stage. We now briefly describe

the algorithms used in the last three steps.

The SWpot cache is populated according to Algorithm 1B.

Algorithm 1B Populate the SWpot cache

Perform a dry-run of the calculation, where only the numbers of accesses to each SWpot are counted
(for every MPI rank separately)

2: Determine how many SWpots can be cached before the user-specified memory limit is reached, Nén\}%’got
3: Precalculate the Né“\%ot most accessed SWpots and store them in a hash table

Algorithm 1C Populate the NGWF product cache

e e e e
G Wy =9

16:
17:

Npairs = 0
for all my A atoms do > Count (A, D) pairs
for all D atoms that are S-neighbors of this A do
Npairs = Mpairs T 1
end for D
end for A
OMP for ipyir = 1 to np,irs do > Process (A, D) pairs
for all NGWEFs d on atom D in pair do
for all NGWFs a on atom A in pair do
if room left in NGWF product cache then
Compute and store @40 pgq in PPDs
else
exit OMP for
end if
end for a
end for d
end OMP for iy,

The NGWF product cache is populated following Algorithm 1C. First, each rank counts and

enumerates the atom pairs (A, D) relevant to it, building a list of pairs. This is done to switch from
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atom indices to a fused (pair) index, which lends itself better to OMP parallelization. Subsequently,
for all the atom pairs the products of their NGWFs are calculated and stored, with the pair loop
parallelized over OpenMP threads. If at any time the user-specified maximum size of the product
cache is reached, the loop terminates early. That means that we only store as many NGWF
products as possible, with the memory requirement strictly bounded. In subsequent steps products
that are not found in the cache will simply be recalculated on the fly. This precludes runaway

memory use and ensures graceful performance degradation in low-memory scenarios.

Algorithm 1D Expand NGWF pair products
1: for all (B, C) pairs owned by this MPI rank do
2 for all NGWFs b on atom B in pair do
3 for all NGWFs ¢ on atom C in pair do
4: Compute ¢pppce in PPDs
5}
6
7

OMP for all PPDs in product ¢pppc. do
Calculate bs 3 = (fs|¢y¢p) for all SWs s
For all SWs p, obtain expansion coefficients

cpﬁ = VP, 5 by solving a linear

v

equation system Vspcf’/ﬁ = bs 8
8: end OMP for PPD
9: end for c

10: end for b
11: end for (B, ()

NGWEF pair products are expanded in terms of SWs following Algorithm 1D. For all NGWF
pairs on all (B, C') atom pairs owned by an MPI rank we first calculate the products of the NGWFs,
and then calculate their overlaps with all SWs s (centred on B and C). The overlaps are then
used as the constant term in a system of linear equations to determine the expansion coefficients

(step 7). OpenMP parallelism is employed over PPDs in the product.
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E. Density-kernel-dependent stage

In this stage the Hartree-Fock exchange energy Eury is calculated using the SW expansion of
NGWF products obtained from Algorithm 1. Unlike the previous stage, this one depends on the
values of the density kernel and as such it needs to be performed multiple times within the kernel
optimization loop. The procedure is outlined in Algorithm 2, and will now be described.

In step 1, the density kernel matrix K is redistributed from scheme 1 (which is used in the rest
of ONETEP) to scheme 2 (which is used in all subsequent calculations). This also involves a change
of the underlying datastructure — from a distributed sparse matrix, to rank-local hash tables.

Next, each MPI rank processes the atom pairs (B,C) it was assigned. The result of this
processing are the expanded potentials of NGWF products e,z for all NGWFs on atoms B and C'
in each pair. The expanded potentials are calculated at all points where they will later be required,
that is in the PPDs of all atoms A that are X-neighbors to atom B. This set of PPDs (termed
“PPDs relevant to atom B”) is established in step 3.

Subsequently, we iterate over all the NGWF pairs on atoms B and C. The previously calculated
SW expansion coefficients cgﬁ for the NGWF products are retrieved (step 6) and the expanded
potential is calculated (step 8) in all relevant PPDs. OpenMP parallelism is leveraged for the loop
over PPDs. The expanded potential is stored in a hash table termed the “expansion cache”.

Storing all the expanded potentials would require enormous amounts of memory — for all but
the smallest systems, they need to be calculated in a sphere with a radius rx + a (where rx is
the exchange cutoff and @ is the NGWF localization radius). At typical settings this translates
to about 6.5 MB of storage per single expansion. The number of expansions on an atom B is
npnc N3, where np and ne are the numbers of NGWFs on atoms B and C, respectively, and N}
is the number of C' atoms that are S-neighbors of atom B. At typical settings this number is
about 800. For typical ng and nc we arrive at a value of about 5 GB per atom, which is clearly
excessive even if we assume this cost to be distributed across compute nodes. For this reason we set

a user-adjustable upper bound on the size of the expansion cache. Once the cache is full, the loop
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Algorithm 2 Calculation of Eyp, from previously (Alg. 1) expanded NGWF products

1:

Redistribute K from scheme 1 to scheme 2

2: for all (B, C) pairs owned by this MPI rank do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

Find the PPDs relevant to atom B from the pair.
This is a union of the sets of PPDs of all atoms A that are X-neighbors with this atom B

for all NGWFs b on atom B in pair do
for all NGWFs ¢ on atom C' in pair do

Retrieve expansion coefficients for ppppce
OMP for all PPDs relevant to atom B do

Calculate the expanded potential
Nsw

evg= . czﬁup(r) in PPD i
p=1

if room left in expansion cache then

Store e,g in expansion cache
else
exit (B, C) loop
end if
end OMP for PPD
end for ¢
end for b
end for (B, C)
for all my B atoms do

Find the PPDs relevant to atom B like in step 3
Calculate ﬂ% =" K%e.,z in all relevant PPDs, thereby eliminating index vy (—Alg. 2A)
v

Calculate contribution to X from atom B,
if NGWF gradient needed then

Accumulate contribution to contravariant gradient G from this atom B (—Alg. 3A)

end if
end for B
Redistribute X from scheme 2 back to scheme
if NGWF gradient needed then

thereby eliminating index g (—Alg. 2B)

1

Finalize NGWF gradient term G; (—Alg. 3B)

Calculate the NGWF gradient term G (—Alg. 3)

end if
Symmetrize X (Eq. 19)
Calculate Eppy (Eq. 20)
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exits (step 11). Expanded potentials that did not fit in the cache are later (Alg. 2A) calculated
on the fly. This precludes runaway memory use and ensures graceful performance degradation in

low-memory scenarios.

Once all the expanded potentials are calculated or the expansion cache cannot accommodate
more elements, each MPI rank iterates over all its B atoms (step 17). First, PPDs relevant
to current atom B are identified, similarly as was done in step 3. Subsequently the expansion
coefficients are contracted with the density kernel over index v, eliminating this index from further

computation (step 19). This is done by Algorithm 2A, described further in section IITE.

Next, the contribution from current atom B to all elements of the exchange matrix X is calcu-
lated (step 20). This is done by Algorithm 2B, described further in this section. Similarly, con-
tributions to the NGWF gradient from atom B are accumulated. This is done by Algorithm 3A,

described in section IITF.

In step 25 the exchange matrix is redistributed from scheme 2 back to scheme 1 to make it

possible to use standard sparse algebra routines on it in the rest of ONETEP.

The main part of the NGWF gradient calculation takes place in step 27, this is carried out by
Algorithm 3, described in section IITF.

Finally, the exchange matrix X is symmetrized (cf. Eq. 19) and the Hartree-Fock exchange
energy is computed according to Eq. 20.

This concludes the general description of the density-kernel-dependent stage. We will now

briefly describe subalgorithms Alg. 2A and Alg. 2B.

Algorithm 2A processes a single atom B owned by a given MPI rank. It iterates over all the C'
atoms that are S-neighbors of B and are assigned to this MPI rank. Thus, the loop body is executed
for a (B,C) pair. First (steps 2-8), the expanded potentials for all combinations of NGWFs on
atoms B and C' are retrieved from the expansion cache into a local array for efficient access later
on. This is done for all the PPDs relevant to atom B, and OpenMP parallelism is leveraged for the
loop over PPDs. Subsequently, for all the PPDs (again leveraging OpenMP parallelism) and all
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Algorithm 2A Eliminate index ~ for a single atom B

1: for all atoms C in my (B, C) pair list for current B do
2 for all NGWEFs b on atom B do
3 for all NGWFs ¢ on atom C do
4 OMP for all PPDs relevant to atom B do
5: Retrieve from cache or calculate e
6 end OMP for PPD
7 end for c
8 end for b
9: OMP for all PPDs relevant to atom B do
10: for all atoms D participating in this PPD do
11: for all NGWFs d on atom D do
12: for all NGWEFs b on atom B do
13: for all NGWFs ¢ on atom C do
14: ﬂ% = ﬁ% + K5006005
15: end for ¢
16: end for b
17: end for d
18: end for D
19: end OMP for PPD
20: end for C

the atoms D whose localization sphere features this PPD the quantity ﬂ%, which is a contraction
of expanded potentials with the density kernel over the index ~, is accumulated (step 14). As the
density kernel depends on another index (0), 2255 is a two-center quantity. As it is stored only for
a single atom B before being processed (via Algorithm 2B) and discarded, the associated memory
requirement remains modest. Algorithm 2A finishes after calculating and storing all requisite il%
for a given atom B.

The next stage (Algorithm 2B) eliminates index [ from the calculation. Like Alg. 2A, it is
also performed for a single atom B. The algorithm processes all PPDs relevant to this atom
in an OpenMP-parallelized loop. For each PPD the algorithm iterates over all atoms D whose

localization sphere spans this PPD and all atoms A owned by the MPI rank whose localization
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Algorithm 2B Eliminate index (8

1: OMP for all PPDs relevant to atom B do

2
3
4:
5
6

10:

11:
12:
13:
14:
15:
16:
17:
18:

for all atoms D participating in this PPD do
for all my atoms A participating in this PPD do
for all NGWFs d on atom D do

for all NGWFs a on atom A do
Retrieve from cache or calculate
PAaDd = PAaPDd in current PPD

end for a

for all NGWFs b on atom B do
for all NGWEFs a on atom A do

XAaBb XAaBb + Z pAaDd( )uBgl

if NGWF gradient needed then
kpy = kpb + ppati5y
end if
end for a
end for b

end for d
end for A
end for D

19: end OMP for PPD

sphere spans this PPD. The unusual loop ordering with the loop over PPDs being outermost is
cumbersome programatically, but was found to lead to best performance, allowing for OpenMP
parallelism to be leveraged for largest grain sizes and for any parallel contention to be avoided.

No thread synchronization is required in this loop.

NGWF product cache. Cache misses lead to recalculation of the products on the fly. Subsequently,

(steps 8-11) elements of the exchange matrix are accumulated in a loop over NGWFs on atoms B

and A and over all points in the PPD. The accumulated quantity is the product ,ps multiplied

by % = > 3 uy(r)VP* (fs|eypp) K7, which completes the integration required for obtaining the
p s

First (step 6), the algorithm retrieves all NGWEF products for the atom pair (A, D) from the



exchange matrix element Xag (cf. Eq. 15). Once the algorithm completes, a column stripe of the

exchange matrix corresponding to atom B has been calculated.

F. Gradient with respect to the NGW€Fs

The last component of our algorithm is the calculation of the functional derivative of EHFX with
respect to an NGWEF — a rather involved procedure required for in situ optimization of NGWEs.
The calculation is split into two terms, Gf and G¢, where « is the NGWF with respect to which
we differentiate, as defined by Eq. 23.

Algorithm 3A Accumulate contravariant gradient G4 for one atom B owned by this MPI rank
1: for all PPDs relevant to atom B do
for all my atoms A participating in this PPD do

2
3 if atom A is an X-neighbor of atom B then
4: for all NGWEFs b on atom B do
5: for all NGWFs a on atom A do
6 G114a — G{Xa + k?BbKBbAa
7 end for a

8 end for b

9 end if

10: end for A

11: end for PPD

Calculating the G; term is straightforward, beginning already in step 12 of Algorithm 2B,
where the auxiliary quantity kp, is calculated for every atom B occurring in the atom pairs (B, C)
assigned to an MPI rank. Subsequently, in step 22 of Algorithm 2, Algorithm 3A is invoked
for every atom B owned by the MPI rank. This is a simple algorithm, contracting the auxiliary
quantity kg, with the density kernel over the index Bb. Following its completion, the contravariant

version of term (G has been calculated.
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Algorithm 3B Finalize NGWF gradient term G; (i = 1,2)

1: Redistribute the contravariant gradient G; from scheme 2 back to scheme 1.
2: for all atoms A scheme-1-local to this MPI rank do
3: for all NGWFs a on atom A do
for all PPDs spanned by NGWF Aa do

Zero points outside of NGWF sphere

Apply prefactor
end for PPD
Convert GA® to covariant form

Perform reciprocal-space preconditioning
10: end for a
11: end for A

The calculation is finalized in step 27 of Algorithm 2, where Algorithm 3B is invoked. Here,
the calculated NGWF' gradient is prepared for subsequent use outside of the HFx code. First,
the calculated contravariant gradient is redistributed back to scheme 1, that is, to the atom-based
distribution. Each MPI rank obtains the gradient for the NGWFs of the atoms local to it. Next,
the points within the PPDs but outside of the NGWF localization radius are zeroed (“shaved”),
as they cannot contribute to the gradient, having only been calculated for numerical convenience.
Finally, a prefactor is applied (the 2 that is in Eq. 23, together with a grid weight), the contravariant
gradient is converted to covariant form, and reciprocal-space preconditioning?® is performed on the

gradient. At this point the calculation of the first term, in its final form, is completed.

Calculation of the second term G5 is more involved. It is performed entirely by Algorithm 3,
invoked in step 28 of Algorithm 2. The algorithm is best understood by referring to the second
term of Eq. 23. This term, crucially, involves a version of the resolution-of-identity operator I
that employs SWs centered on atoms D and A that feature in the bra of the ERIs in Egs. 3
and 4. This is unfortunate because, as explained earlier, our algorithm divides the workload by
distributing kets (atom pairs (B, C)) across MPI ranks. Furthermore, in the evaluation of HFx
energy and the first term of the gradient (Algorithm 1D, step 6; and Algorithm 2, step 8) our
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algorithm always operates on SWs centered on ket atoms (B and C), and it is those SWs that
are cached. Fortunately, we can simply rename dummy indices in the sums to arrive at a less
cumbersome expression for the second term in the gradient. Once we rename Aac <> BbS and

Dd§ < Cey, we arrive at (where we explicitly indicate summations for clarity) :

Gg(r) = 2290“/(1')12“/5 (Z KQBZKM;“OJ(PO:))- (25)

This expression is more amenable to our approach, since its RI operator involves SWs centered
on ket atoms, as in the previous steps of the calculation. The fact that we now obtain a gradient
term for NGWF 8 and not NGWEF «a does not matter, as we will need to redistribute the calculated
gradients to scheme 1 in any case. The fact that we will operate on ¢, and (s is also not a problem,
since our algorithm already requires them (cf. Alg. 2B, step 10).

We will now describe Algorithm 3, which calculates the second term in the NGWEF gradient.
The main loop iterates over atoms C' owned by an MPI rank, corresponding with the sum over ~
in Eq. 25. For each atom C' in the sum the algorithm first determines the atoms B with respect
to whose NGWFs the gradient needs to be calculated. These are S-neighbors of atom C which
are in the list of (B, C') pairs assigned to this MPI rank and will be termed “B atoms relevant to
atom C”. Similarly, the atoms A featured in the second sum (over «) in Eq. 25 are determined.
These atoms, which we term “A atoms relevant to atom C” are all atoms that are X-neighbors of
relevant B atoms.

For all such atoms A the algorithm then (steps 4-6) calculates an auxiliary quantity:
Pl(r) = pal(r) Y | K ps(r) (26)
5

in PPDs spanned by atom A (c¢f. last sum in Eq. 25). This is done by a very simple Algorithm 3C,
which we present below. The algorithm is a simple accumulation of linear combination of NGWF
products. The loop over A leverages OpenMP parallelism to make this operation efficient, requiring

Alg. 3C itself to be thread-safe. Given that every instance of Alg. 3C operates on a different Aa,
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Algorithm 3 Calculate the NGWF gradient term G5 (Eq. 23)

1: for all my C' atoms do

2 Determine atoms B relevant to this atom C

3: Determine atoms A relevant to this atom C

4 OMP for all relevant A atoms do

5 Calculate auxiliary quantity P = oo 3 K",
é

thereby eliminating index 6 (—Alg. 3C)

6: end OMP for A
7: for all NGWFs c on atom C do
&: OMP for all atoms B relevant to atom C do
9: for all atoms A relevant to atom C do
10: if A is not an S-neighbor of B then
11: next A
12: end if
13: for all NGWFs b on atom B do
14: QCcBb — QCcBb 4 Z PEG?KAGBb
15: end for b ‘
16: end for A
17: end OMP for B
18: for all atoms B relevant to atom C do
19: for all NGWFs b on atom B do
20: Expand Q¢“P’ in SWs on B and C
21: OMP for all PPDs in BN C do
22: Calculate the expanded potential EC¢¢B?
of Q¢°BY in PPD
23: end OMP for PPD
24: for PPDs in BN C do
25: Accumulate GF? = GPb + oo ECBb
26: end for PPD
27: end for b
28: end for B
29: end for ¢
30: end for C

31: Finalize NGWF gradient term Gy (—Alg. 3B)
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this can be accomplished without resorting to synchronization mechanisms. Once this is complete,

index 4 has been eliminated from further calculations.

Algorithm 3C Calculate P} = ¢, > K5
5

for a given atom pair (A, C')
for all atoms D that are S-neighbors of atom A do
for all NGWFs d on atom D do
for all NGWFs a on atom A do

1:
2
3
4: Compute ©pgpaa

5: for all NGWFEs ¢ on atom C do
6:

7

8

PG = PS4+ KOPloppp,
end for ¢
end for a
9: end for d
10: end for D

We note in passing that the same P can be calculated on more than one MPI rank, since
there is some overlap between C atoms in (B, ) atom pairs assigned to MPI ranks. Even so, as
will be shown in section V C, the cost of this stage of the algorithm is almost negligible, except in
conduction calculations, where it accounts for ~20 % of the total cost — a result of large numbers
of NGWFs per atom and lower overlap matrix sparsity.

The main Algorithm 3 then proceeds to move left through Eq. 25, taking care of the sum over

« (steps 13-15). In this way another auxiliary quantity is calculated:
QP (r) = palr) K> K 7p4(r), (27)
«a é

which should be compared with the quantity in parentheses in Eq. 25. This eliminates the index
a from further calculations.
The next stage is the application of the RI operator IAVB, that is, the calculation of the SW-

expanded potential of Q7 in all PPDs spanned by the intersection of localization spheres of
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atoms B and C. Q" is first expanded in SWs (step 20), similarly to what was done earlier
to NGWF pair products (steps 5-8 of Algorithm 1D). The expanded potential itself (denoted
ECB) is calculated in steps 21-23 in the same PPDs, leveraging OpenMP parallelism. Finally,
the contributions are multiplied by ¢, (r) and summed over v in steps 24-26, corresponding to the
leftmost operation in Eq. 25. The gradient is finalized (“shaved”, converted to covariant form and

preconditioned) through the application of Algorithm 3B, just as was done to its first term.

G. Conduction calculations

Apart from the usual mode of operation where only occupied states are considered, ONETEP
has the capability to perform conduction calculations, which finds use e.g. in calculating optical
absorption spectra. Conduction calculations optimize an energy expression involving a separate
(conduction) density kernel and a projected conduction Hamiltonian®®. They typically use larger
numbers of NGWFs (i.e. not a minimal basis), and larger localization radii of the NGWFs (by a
factor of ~ 1.5), which means the overlap matrices are not as sparse as in conduction calculations.
This, coupled with the fact that in conduction calculations with hybrid functionals the inner (LNV)
loop does not involve HF'x, leads to a shift of the computational bottlenecks to different parts of the
algorithm. Because of the larger NGWF basis the memory requirement of conduction calculations
is also increased relative to valence calculations. For these reasons we will benchmark conduction

calculations separately, and only for the polymer systems, where they are more relevant.

H. Preconverging with a non-hybrid functional

A simple, commonly used optimization is to pre-converge the calculation with a non-hybrid
(typically a GGA (generalized gradient approximation) functional) and, once it is converged, to
continue it with a hybrid. The expectation here is for the pre-converged calculation to reach

convergence faster than when starting from the initial guess, thus reducing the number of expensive
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(hybrid functional) self-consistency iterations. The cost associated with the initial steps performed
with a GGA is typically much lower.

We briefly examined two such optimizations — in the first one (referred to in the text as
B3LYP-1), we pre-converged the calculation with the PBE* functional, and, once convergence
has been obtained, we continued it with B3LYP, optimizing both the density kernel and the NG-
WFs. In the second optimization (referred to in the text as B3LYP-2), we similarly pre-converged
with PBE, but then we kept the NGWF basis fixed, only optimizing the density kernel. This cor-
responds to running a fixed-NGWF calculation in a GGA-optimized NGWF basis. In this scenario
ONETEP operates similarly to other fixed-atomic-orbital-basis electronic structure codes, but with
the advantage of using a pre-optimized minimal set of atomic orbitals (NGWFEs).

We demonstrate the excellent accuracy of both optimizations and significant performance gains

in Section V H.

IV. CALCULATION DETAILS

We demonstrate the behavior and performance of our implementation on two classes of systems.
The first class comprises roughly spherical “scoops” of a protein (cGMP-specific phosphodiesterase
type 5, PDE5) of increasing size, suitably truncated and protonated. These range from 44 atoms
(=12 A across) to 4048 atoms (=54 A across), and constitute a good model of a typical, three-
dimensional system of interest in biochemical applications. The second class comprises stacked
polymer chains of increasing length (four chains of PBTZT-stat-BDTT-8 polymer analog, as stud-
ied in Ref. 47). These range from 228 atoms (=21 A in length) to 2868 atoms (=265 A in length),
and are a good model of typical systems of interest in materials science. The two classes differ in
topology (true 3D systems vs. 1D chains) and composition (H-dominated vs. C-dominated).

Unless stated otherwise, all calculations used a kinetic energy cutoff of 827eV, an NGWF local-
ization radius of 8ag (4.2 A) and a minimal NGWTF basis (1 NGWF on H, 4 NGWFs on p-block
elements). 8 inner loop (LNV) iterations were used throughout. The SW basis quality was l;,ax = 3
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and ¢max = 12, and an exchange interaction cutoff of 20ay (~10.6 A) was used. Calculations on
polymer chains employed density kernel truncation with a cutoff of 50 ¢y (~26.5 A), while the cal-
culations on proteins did not employ kernel truncation. Because the size of the polymer systems
could easily be increased in uniform steps, we will use these to demonstrate weak parallel scaling
(where the system size is proportional to the number of CPU cores). Strong parallel scaling (where
the system size remains constant and the number CPU cores is increased) will be demonstrated
for both classes of systems.

Additionally, for the polymer systems we benchmarked calculations of conduction states, where,
as explained in section III, the computational bottlenecks are expected to be different. Here, to
account for the expected orbital delocalization, we increased the NGWF radius to 12 ag (/6.35 A),
used an extended basis (5 NGWFs on H, 13 NGWFs on p-block elements), and increased the
number of inner loop iterations to 12, reflecting typical settings used for conduction calculations

in ONETEP.

V. RESULTS

All walltimes shown in this section correspond to fully-converged calculations with default
convergence thresholds, and so are good representations of real-life scenarios. However, we feel
obliged to note two important points. First, in the interest of reducing the load on the HPC facility,
we only ran calculations for one outer loop (NGWF) iteration and carefully extrapolated the
timings to a fully converged calculation from these measurements, separately taking into account
the measured constant overhead and the measured per-iteration time. The number of iterations
was taken from GGA calculations that could be run at a fraction of the cost. Cross-checks with full
hybrid functional calculations that were actually run to convergence (for a subset of the systems)
validated our estimates to be within 0.5 % of the true walltimes.

Second, in the interest of clarity, we show results normalized to a constant number of outer

loop iterations (e.g. 12 for the protein systems), whereas in reality the actual number of iterations
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differed slightly (o = 3.0) between individual systems (for calculations with a GGA and hybrid
functional alike). This slight difference in the number of iterations was not systematic, but rather
it reflected statistical noise from how the fragments of the total protein were carved out and
truncated, obscuring the linear-scaling behavior that we set out to demonstrate. For the polymer
systems the effect was less pronounced (Ni, = 10, o = 2.2), but also present. To disentangle this

statistical noise from the actual performance of our algorithm, we chose to show values normalized

to the same number of outer loop iterations in all cases.

A. Linear scaling with system size

We begin by demonstrating that our approach is indeed linear-scaling, i.e. that the beyond a
certain system size (“onset of linear scaling”) the walltime of the calculation is linearly proportional
to the number of atoms in the system. First, however, we stress an important point regarding
memory scaling. The performance of our approach depends heavily on the amount of available
memory, with maximum performance attained with a greedy algorithm that allocates as much
memory as it needs to cache all requisite quantities. The RAM requirement of such a greedy
approach increases superlinearly with the size of the system, at least for system sizes considered
here, and quickly exceeds typical RAM sizes available on today’s computing nodes — this happens
already at about 150 atoms. Thus, to ensure a fair and realistic benchmark, in this work we employ
the conditions of linear scaling in memory, i.e. we settle on a constant memory requirement per
atom and limit the RAM use to this value. We choose this value in such a way as to be able to
perform the largest calculations demostrated here without exceeding the available RAM on the
Iridish system at University of Southampton. We will term this the standard memory requirement.
Additionally, we will show how our implementation scales at a quarter of this value (mimicking a
low-memory environment), and with four times as much RAM (mimicking typical high-memory
nodes often available on HPC systems), giving an idea of how the employed time-memory tradeoffs

perform. The detailed values are given in Table II.
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TABLE II. The assumed memory requirement of the HFx engine (in MB/atom per MPI rank) for valence

calculations.
Memory |SWpot|Expansion | NGWF product|Total
requirement | cache cache cache
Low (x0.25)| 2.5 1.25 0.25 4
Standard 10 ) 1 16
High (x0.4)| 40 20 4 64

For demonstrating the effect of available RAM on calculation walltime we chose a set-up, where
all calculations are run on 16 compute nodes (40 CPU cores each). In order to maximize the size
of the caches shared by threads, we use the maximum number of OMP threads per NUMA region,
that is, we run with 32 MPI ranks, each spawning 20 OMP threads. In this way each node holds
only 2 MPI ranks, and each of the node’s two NUMA regions is fully populated by OMP threads.

Fig. 3 shows the scaling of the total time for the protein systems. Linear scaling is achieved in
all cases, with the onset at about 400 atoms. In the low-memory scenario (green squares) all cal-
culations were feasible, although the largest ones barely completed one outer loop iteration within
the maximum job walltime on Iridis5 (60h). Calculations that cannot complete even one iteration
within this limit (and thus cannot be checkpointed and continued later) we deem infeasible. Given
that the total calculation runs for 12 iterations, we marked a “walltime limit” on the plot at 720 h.
We can thus estimate the maximum system size feasible on 16 Iridisb nodes to be about 4200

atoms.

At standard memory requirements (blue crosses) all calculations ran 17-29 % faster, but an
out-of-memory condition prevented jobs larger than 3328 atoms from running, corresponding to
a memory requirement of ~100 GB per node. This means that with standard memory memory
requirement the maximum limit on job size is dictated not by the available job time, but by

available memory per node.
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FIG. 3. Total calculation walltime (on 16 compute nodes) for protein systems of different sizes, assuming
12 outer loop iterations, for different memory requirements (see text). For high and standard memory
requirements maximum system size is bounded by available RAM. For low memory requirements all

systems (up to 4048 atoms) were feasible on 16 compute nodes.

At high memory requirements a further speedup of 15-50 % was achieved, but the maximum

job size was only 909 atoms before available RAM was exhausted.

Fig. 4 demonstrates linear scaling for the polymer systems. Here, it was feasible to run all
systems studied (up to 2868 atoms) with low and standard memory requirements, with all cal-
culations completing in well under 200 h. Compared to the low-memory scenario, the gain from
having standard memory requirements was almost constant for all system sizes and averaged at a
sizeable 26 %. In a high-memory scenario a further speedup of about 20 % was achieved, but the

largest system that did not run out of memory was 1108 atoms.

We now turn our attention to the performance of conduction state calculations. Because of
the different way the energy minimization is structured compared to valence calculations (cf. sec-

tion III), we note that there is no benefit to caching NGWF expansions in this case, as NGWFs
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FIG. 4. Total calculation walltime (on 16 compute nodes) for polymer chains of different lengths, assuming
10 outer loop iterations, for different memory requirements (see text). For high memory requirements
maximum system size is bounded by available RAM. At low and standard memory requirements all

systems (up to 2868 atoms) were feaisble on 16 compute nodes.

always change between invocations of the HFx engine. Also, because of the vastly increased num-
ber of NGWFs per atom and the increased NGWEF' localization radius, caching NGWEF products
becomes counterproductive, as the cache hit ratio achieved with default memory allowance is very
low (in the order of 1-2%). For the above reasons when benchmarking conduction calculations
we decided to devote the entire memory allowance to the SWpot cache, while keeping the total

amount of RAM per atom the same as in valence calculations. This is summarized in Table III.

Fig. 5 shows the scaling of the total walltime for a conduction calculation on the polymer
systems. The largest system that was feasible on 16 nodes had 1768 atoms, and beyond that
calculations with the low memory requirements could not complete a single iteration within the
60h job time window. With standard memory requirements calculations ran about 22 % faster,

but beyond 1548 atoms they ran out of memory. With high memory requirements further gains
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TABLE III. The assumed memory requirement of the HFx engine (in MB/atom per MPI rank) for con-

duction calculations.

Memory |SWpot|Expansion | NGWF product|Total
requirement | cache cache cache
Low (x0.25) 4 0 0 4
Standard 16 0 0 16
High (x0.4)| 64 0 0 64
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FIG. 5. Total calculation walltime (on 16 compute nodes) for a conduction calculation on polymer chains
of different lengths, assuming 11 outer loop iterations, for different memory requirements (see text). For
high and standard memory requirements maximum system size is bounded by available RAM. At low

memory requirements the walltime limit in conduction calculations is reached at about 1800 atoms.

were very modest and the maximum system size was limited to only 448 atoms. Linear scaling

was achieved in all cases.
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In summary, we find that 16 compute nodes, with about 100 GB RAM on each node devoted
to HFx engine caches, were sufficient to perform valence calculations on systems up to about 4000
atoms, and conduction calculations up to about 1800 atoms. These calculations were performed

with linear-scaling CPU effort and linear-scaling memory.

We highlight that smaller calculations (up to several hundred atoms) could be made faster in
practice by not limiting their memory as much. We demonstrate this briefly in Fig. 6, where we
show the calculation walltime for a 443-atom protein system as a function of memory devoted to
HFx caches. This particular calculation could be made just over twice as fast by using a generous

memory allowance.
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FIG. 6. Total calculation walltime (on 16 compute nodes) for a 443-atom protein system, as a function of

RAM devoted to HFx caches (log scale).
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B. Calculation walltime compared to a GGA calculation

To give a better idea about the cost of HFx calculations, in Figs. 7 and 8 we show calculation
walltimes relative to a calculation with a GGA functional (PBE), for the protein systems and

polymer systems.
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FIG. 7. Total calculation walltime (on 16 compute nodes), relative to a calculation with a GGA functional,
for protein systems of different sizes, assuming 12 outer loop iterations, for different memory requirements

(cf. Fig. 3). Lower is better.

For the protein systems (Fig. 7) the computational effort plateaus at ~ 100 (for standard
memory requirements), meaning that for larger systems hybrid calculations should be expected to
be two orders of magnitude slower compared to calculations with a GGA functional. Using less or
more memory has the effect discussed already in section V A. For small systems (below 100 atoms)
hybrid calculations are only about an order of magnitude slower than calculations with a GGA
functional. The reason for that is that exchange matrix sparsity is reached later than NGWF

overlap sparsity, which puts larger HFx calculations at a bigger disadvantage.
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FIG. 8. Total calculation walltime (on 16 compute nodes), relative to a calculation with a GGA functional,
for polymer chains of different lengths, assuming 10 outer loop iterations, for different memory requirements

(cf. Fig. 4). Lower is better.

For the polymer systems (Fig. 8) HFx performs somewhat better, being consistently slower than
a GGA by a factor of ~ 60 for all system sizes, for standard memory requirements. Using less or
more memory has the effect discussed already in section V A. The reason for better performance
here is the one-dimensional nature of the polymer systems, which enables exchange matrix sparsity
to be reached already for the smallest system, and a more homogeneous structure which makes

load balancing easier.

Lastly, we turn to the conduction state calculations on the polymer systems. A comparison
against a GGA calculation is shown in Fig. 9. We observe that overall HFx does not perform as
well as it did for valence calculations on the same systems, but relative performance clearly improves
systematically as the systems become bigger. This indicates that the employed algorithm scales
better with system size than standard (GGA) ONETEP, at least at this range of system sizes. For

the largest systems the cost of a hybrid calculation is &~ 50-60 times larger than for a GGA.

43



- —=— low (0.25‘x) memory use
= 120 + —— standard memory use
E, high (4x) memory use
c
2 100
©
e
.02) 80
©
Q
o 60
£
IS
2 40
c
k<]
o
S 20 ¢
[S]
©
(@]
0 L L L
0 500 1000 1500 2000

Number of atoms, N
FIG. 9. Total calculation walltime (on 16 compute nodes), relative to a calculation with a GGA functional,
for conduction state calculations on polymer chains of different lengths, assuming 11 outer loop iterations,

for different memory requirements (cf. Fig. 5). Lower is better.

We note that all calculations shown in this subsection were performed with the maximum
number of OMP threads (20), which is optimal for HFx, but suboptimal for standard GGA cal-
culations with ONETEP. This is because the scaling with the number of threads is much better
for the HFx engine than for the rest of ONETEP, with the latter typically achieving optimum
performance at 4 — 5 OMP threads. Indeed, once the GGA calculations are switched from an
Nupr = 32, Nomp = 20 setup to a more favorable Nyp; = 160, Nomp = 4, their performance
increases almost exactly by a factor of 2 for all systems. Thus, in practical scenarios, the reported

slowdown of HFx relative to GGA would be twice as big.
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C. Individual components of computational effort

We will now provide a detailed breakdown of which components of the calculation are responsible
for most of the computational effort for the classes of systems under study, demonstrating that
each component separately also scales linearly with system size.

The majority of computational effort in HFx calculations with ONETEP is associated with the

following stages of the calculation:

1. Evaluating SWpots — calculating the values of the spherical wave potentials®® originating
on atomic centers at Cartesian grid points of NGWFs whose centers are within the exchange
cutoff. Although this stage has been extensively optimized, it remains a bottleneck in all

studied systems. This effort is mitigated by the SWpot cache.

2. Expansions — corresponds to evaluating the linear combinations (c¢f. Algorithm 2, step 8)
of SWpots originating on atomic centers at Cartesian grid points within the exchange cutoff.

This effort is mitigated by the expansion cache.
3. Sum over Cc¢ — calculation of the sums over C'¢ (¢f. Algorithm 2, step 19; and Algorithm 2A).
4. Gradient P — calculation of the auxiliary term P in the exchange NGWF gradient, Eq. 26.

5. Load imbalance — represents idle time spent waiting for other MPI ranks to finish their

share of calculations. This component would be zero if load could be balanced perfectly.
6. MPI comms — time spent on message passing (communication between MPI ranks).

7. HFx other — all the remaining stages of evaluating the HEFx energy and gradient, excluding

initialization (calculation of the metric matrix).

8. Rest of ONETEP — all the non-HFx related calculations performed within ONETEP, exclud-

ing initialization.
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9. Initialization — constant overhead, independent of the number of energy evaluations, HFx-
related and HFx-unrelated alike, e.g. calculating the metric matrix, structure factor, setting
up the parallel distribution, calculating the Ewald energy term, initialization of radial Bessel

functions.
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FIG. 10. Individual components of the total calculation walltime (on 16 compute nodes) for protein

systems of different sizes, assuming 12 outer loop iterations, for standard memory requirement.

Fig. 10 shows a breakdown of the total calculation walltime for the protein systems, on 16
compute nodes, under standard memory requirements. The same data is presented in a cumulative
percentage form in Fig. 11. It is clear that all individual components are linear-scaling with the
size of the system, and that the evaluation of SWpots (red) constitutes the most computationally
intensive part of the calculation, accounting for about half of the walltime. For these systems, at
standard memory requirements, only (2.6 = 1.0) % SWpots can be stored in the cache. Since the
SWpots are heavily reused and are stored in the order of reusability, actual SWpot cache hit ratios
are much higher here, at (42.6 & 4.2) %, but this still means that in over half of the cases SWpots

have to be re-evaluated. This cost can be mitigated by increasing the memory allowance for the

46



100

HFx: SWpots

[—1]

mmm HFx: load imbalance

mm HFx: expansions

mmmm HFx: sum over Cc
HFx: other

s HFx: MPI comms

_—

80

HFx: gradient P
mmm rest of ONETEP
60 W initialization

40

20

Fraction of calculation walltime (%)

500 1000 1500 2000 2500 3000
Number of atoms, N

FIG. 11. As in Fig. 10, shown as cumulative percentages of the total.

SWpot cache, but after a certain point this strategy yields diminishing returns — SWpots evaluated
at the outer edges of the system, where there is little NGWEF overlap, are necessarily less often
reused, and caching them offers less benefit compared to SWpots evaluated at grid points where

many NGWFs overlap.

Load imbalance (light green) accounted for (17.4 4+ 4.8) % of the calculation walltime. This
relatively large value reflects the fact that the protein constitutes a rather heterogeneous system,
where it is difficult to simultaneously achieve a good load balance for the energy calculation and for
the NGWF gradient calculation. Here it is the imbalance in the energy calculation that accounts
for ~80 % of the total load imbalance. This is mostly caused by the differences in SWpot cache hit
ratios between MPI ranks — the current balancing algorithm strives to balance the total number
of Bb-Cc NGWF products, without accounting for the fact that SWpots on the outer edges of the

system are unlikely to be cached.

Calculating expansions of NGWF products in terms of SWs (¢f. Algorithm 2, step 8) (blue)

accounted for (14.5 + 1.0) % of the calculation walltime. This cost can be mitigated by increasing
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the allowance for the expansions cache, but the associated memory requirement grows superlinearly,
meaning that with linear-scaling memory allowance cache hit ratios will decrease as the systems
are made bigger. Here, in the smallest (44-atom) system cache hit ratio was 46 %, while in the
largest (3228-atom) system it was only 2.8 %.

Summing over the index Cc (¢f. Algorithm 2, step 19; and Algorithm 2A) and all the remaining
HFx operations were minor contributions, accounting for less than 7% of the total walltime each.
The remaining terms (MPI communication, calculation of the NGWF gradient term P, non-HFx

operations and initialization) were almost negligible, below 2 % each.
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FIG. 12. Individual components of the total calculation walltime (on 16 compute nodes) for polymer

chains of different lengths, assuming 10 outer loop iterations, for standard memory requirement.

We now turn our attention to the polymer systems, where corresponding plots are shown in
Figs. 12 and 13. Qualitatively, the breakdown of timings resembles that for the protein systems, and
all components retain their linear-scaling behavior. Evaluating SWpots remains the most costly
component, accounting for (53.7 & 1.7) % of the walltime. The main difference is the reduced load
imbalance (light green) and an increase in the cost of generating the SW expansions (blue). The

polymer systems are composed of identical repeat units and increase only along one dimension,
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FIG. 13. As in Fig. 12, shown as cumulative percentages of the total.

which explains the much easier load balancing — associated overheads were below 9%, except
for the smallest systems. Higher effort associated with SW expansions, compared to the protein
systems, is a consequence of a higher average number of NGWFs per atom (= 3.0 vs. =~ 2.5).
Other contributions to the walltime, similarly as for the protein systems, are much smaller. The
slight anomaly for the final data point, where the cost of evaluating SWpots decreases despite the

increase in the size of the system is a result of fortuitous load balancing increasing the average

SWpot cache hit ratio from 50.0 % to 54.5 %.

For conduction state calculations the distribution of the computational effort is somewhat dif-
ferent. The main reasons are: the use of much bigger NGWF localization regions (which lead to
a decrease in metric matrix and overlap matrix sparsities), the use of a large number of NGWFs
per atom (vastly increasing the number of Bb-C'c NGWF products), and the fact that inner loop

(LNV) iterations do not require the evaluation of HFx energy in conduction NGWF optimization.

The plots for conduction state calculations on the polymer chains are shown in Figs. 14 and 15.

Linear-scaling behavior is retained for all the components of the algorithm. Evaluating SWpots
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FIG. 14. Individual components of the total calculation walltime (on 16 compute nodes) in a conduction

state calculation for polymer chains of different lengths, assuming 11 outer loop iterations, for standard

memory requirement.
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remains the bottleneck, but its cost is slightly reduced to (37.9 £ 2.4) %. One reason is the relative
increase in the SWpot cache memory allowance (c¢f. Table III), another one is the increase in the
effort associated with other components, particularly those associated with the NGWF gradient
term.

The main difference from the valence calculation is the increased cost of “HFx: other” (or-
ange diamonds), from (7.5 £0.2) % to (17.3 £1.8) %. This increase is driven by the increased
NGWEF overlap, leading to larger efforts associated with computing SWpot-NGWF-product over-
laps (cf. Algorithm 1D, step 6) and the auxiliary term @ in the NGWF gradient (Eq. 27). The
same reason drives the significant increase in the effort associated with calculating the term P,
which increased to (16.0 +3.4) % from (1.0 £0.4) % for the valence calculation, becoming more
costly on average than the calculation of SW expansions.

The cost of evaluating SW expansions is significantly decreased ((21.4 +2.3) % in the valence
calculation to (12.8 £1.9) % here), which is a direct consequence of the fact that inner loop it-
erations in a conduction calculation do not involve HFx. The cost of imperfect load balancing
is similar ((9.3 £ 3.0) %), but here it is mostly the NGWF gradient calculation that is less than
optimally balanced. Finally, the non-HFx components of the calculation (“rest of ONETEP”) are
no longer negligible, accounting for (1.4 +0.3) % of the total calculation walltime.

In summary, we showed that all components of the calculation scale linearly with the system
size, that evaluating SWpots is the bottleneck in all types of calculations, that the relative effort
associated with other components depends on the type of calculation (valence vs. conduction) and
type of system, that communication overheads are negligible, and that load balancing could be

improved for more difficult systems.

D. Calculation walltime and feasibility depending on number of compute nodes

Here we briefly demonstrate how the total walltime of HFx calculations depends on the number

of compute nodes and what system sizes are feasible. In Fig. 16 we plot the walltimes of calculations
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FIG. 16. Total calculation walltime (on 4, 8, 16 and 32 compute nodes) for protein systems of different

sizes, assuming 12 outer loop iterations.

for protein systems, with standard memory requirements (cf. Fig. 3), run on 4, 8, 16 and 32 Iridisb
compute nodes (160, 320, 640 and 1280 CPU cores, respectively). The computational effort is
linear-scaling (with an onset at ~ 400 atoms) in all cases. Calculations on 4 and 8 nodes reach the
walltime limit (60 h per outer loop iteration) beyond 1396 and 2486 atoms, respectively. Larger
calculations would only be possible on these configurations only if the memory allowance could be
increased significantly or if the walltime window per job could be increased beyond 60 h.

On 16 and 32 nodes the maximum system size is much larger (3228 and 3622 atoms, respectively)
and in this case is bounded by available RAM. Larger calculations would be possible on these
configurations if memory allowance was decreased. Indeed, we showed in Fig. 3 that all the
studied systems (up to 4048 atoms) could be already run on 16 compute nodes under low memory
requirements.

For the polymer chain systems we show an equivalent plot in Fig. 17. Again, the calculation
is linear-scaling (with the onset already at the smallest system). Here, owing to the fact that the

systems are effectively one-dimensional, and thus exchange matrix sparsity is reached very early, all
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FIG. 17. Total calculation walltime (on 4, 8, 16 and 32 compute nodes) for polymer chains of different

lengths, assuming 10 outer loop iterations.

the studied systems fit within the walltime limit (60 h per outer loop iteration) even on 4 compute

nodes, and available RAM is not exhausted under standard memory conditions.
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E. Strong parallel scaling

We now turn our attention to arguably the most important metric for describing how the
computational effort of a calculation changes with the allocated resources. Strong parallel scaling
characterizes the speedup obtained when the same calculation is run on increasingly larger number

of CPU cores. Parallel speedup is defined as

S(Ncores> = %7 (28)

where t(Neores) is the walltime of the calculation on Nes CPU cores. Since in many scenarios it
is not feasible to run the calculation on one CPU core, speedup relative to a fixed number of cores

0 ; .
Neoros 15 often used instead:

t(N(?ores> . (29)

Ncores =
(Neores) = 3 ¥ e

SNO

cores

Well-parallelized algorithms achieve near-linear speedup, which usually becomes sublinear and
then plateaus for larger Nio.es, due to small, but non-zero fractions of the algorithm that could not
or have not been parallelized, an effect captured by Amdahl’s law?®. Non-negligible communication
overheads and imperfect load balancing also play a role. A linear speedup is typically termed perfect
or optimal scaling, because it corresponds to a scenario where all the overheads vanish and the
fraction of the algorithm that has not been parallelized is zero.

In the case of our implementation this simplified analysis does not strictly hold, because our
algorithm makes good use of the extra memory that becomes available as additional compute nodes
are allocated to the calculation. We showed in section VA (see e.g. Fig. 6) that the performance
of our implementation strongly depends on the amount of memory that can be devoted to the
calculation. This particular feature allows our approach to ezceed what is typically deemed to
be perfect parallel scaling by improving the degree of caching as more CPU cores are added.
We demonstrate this for representative protein systems (one small, one large, Fig. 18) and for

representative polymer systems (one small, one large, Fig. 19). We show parellel speedups relative
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FIG. 18. Strong parallel scaling for two representative protein systems: small (top) and large (bottom).

Higher is better.
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FIG. 19. Strong parallel scaling for two representative polymer chains: small (left) and large (right).

Higher is better.

to 160 CPU cores (4 nodes), or, where the system is too large to run on 4 nodes, relative to

320 CPU cores (8 nodes).

For the small protein system (Fig. 18, top) we modestly exceed perfect scaling, except for the
last two data points, where the speedup becomes marginally worse than linear. This happens due
to imperfect load balancing, which is difficult to achieve when the number of CPU cores exceeds
the number of atoms by a factor of about 7. For the large protein system (Fig. 18, bottom) we
exceed perfect scaling in all cases, even for the largest number of CPU cores, where at 1280 cores

we achieve a 4.17-fold speedup over 320 cores.
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The polymer chains, being more homogeneous and practically one-dimensional, constitute an
easier system for our approach, which achieves better-than-perfect scaling at least until 1280 CPU
cores for a smaller and a larger system alike (Fig. 19). For the larger system in particular the
gains are substantial — an 8-fold increase in the number of CPU cores (from 160 to 1280) yields a
10.2-fold speedup.

For conduction state calculations our algorithm does not scale superoptimally (see Fig. 20),
but the scaling remains respectable. For a small system (228 atoms) an eight-fold increase in the
number of CPU cores offers a 4.22-fold speedup, corresponding to a parallel efficiency of 0.53. For
a larger system (888 atoms), which was benchmarked against 320 cores, a four-fold increase in the
number of CPU cores yielded a 2.72-fold speedup (efficiency of 0.68). The main culprit responsible
for the worse scaling of conduction calculations is parallel load imbalance in the NGWF gradient
part. A more careful load balancing scheme, perhaps one dedicated to the particular requirement

of conduction calculations, might be able to mitigate the problem.

F. Weak parallel scaling

We will now look at how the computational effort of our approach changes as both the size of
the system and the available resources (CPU cores and RAM) are uniformly increased. This is
known as weak parallel scaling and it is easiest to illustrate using parallel speedup relative to the

number of CPU cores on which this speedup has been obtained, also known as parallel efficiency:

S (N cores)
N, cores '

Since in many scenarios it is not feasible to run the calculation on one CPU core, efficiency relative

e(Neores) = (30)

to a fixed number of cores N  is often used instead:

cores

SNO s (Ncores )
ENO..os (Neores) = W (31)

cores
Here we will perform a rather stringent test of performance, showing parallel efficiency relative to

160 CPU cores, with a fairly small (and thus difficult) number of atoms per core (=~ 1.4).
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From the definition of efficiency and the discussion in section V E it follows that perfect scaling
will correspond to e = 1. In typical scenarios Amdahl’s law together with load imbalance and
communication overheads will cause efficiency to drop below 1 for larger core counts. As our
algorithm can make good use not only of the additional CPU cores, but also the additional RAM,

we expect it to achieve “superoptimal” efficiency at least in some scenarios.

When investigating weak parallel scaling one must be able to increase the system size in a
uniform fashion, so that the number of atoms per CPU core is constant. For this reason we will
only show weak scaling for the polymer systems, where this can be achieved by adding identical

units to the system.
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FIG. 21. Weak parallel scaling for the polymer systems (higher is better). Solid lines correspond to a
calculation with a hybrid, and dashed lines show a GGA calculation for comparison. System sizes range

from 228 to 1768 atoms, for ~ 1.4 atoms per CPU core.
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Results of our measurements are presented in Fig. 21, which shows plots of efficiency (relative
to 160 CPU cores) for both the valence and conduction state calculations. For valence calculations
scaling is near-optimal at lower system sizes and core counts, slightly exceeding perfect scaling
for larger systems, which is an excellent result. Standard GGA calculations do not scale as well,
although their performance is still good, with efficiencies of about 0.8 for all setups.

For conduction calculations scaling is suboptimal, but respectable, across the board, with
e ~ 0.7-0.8, which is still much better than GGA conduction calculations, where efficiency drops
to below 0.4 for the largest core counts. Several factors are responsible for the worse scaling per-
formance of conduction calculations compared to valence calculations. Firstly, because of how
conduction calculations are structured (cf. section III), there is no benefit to caching NGWF ex-
pansions in this case, as NGWFs always change between invocations of the HFx engine. This
means that the SW expansion stage does not benefit from the additional RAM at higher core
counts. Secondly, the calculation of the P term in the NGWEF gradient does not scale as well as
the other components, presumably because NGWEF products are not cached either in this case.
The additional RAM is not wasted, it is devoted to caching SWpots (see Table III), and this
stage does achieve e > 1. Finally, and most importantly, the impact of parallel load imbalances
increases as the calculations move to larger core counts. In contrast to valence calculations, here
it is the NGWF gradient calculation stage that becomes increasingly poorly balanced. This again
(cf. the end of section V E) suggests that taking the NGWF gradient stage into account in the

load balancing scheme would be worth pursuing.

G. Calculation walltime vs. MPI/OMP balance

We will now briefly consider how the calculation walltime depends on the division of work across
MPI ranks and OMP threads. ONETEP supports so-called hybrid parallelism, that is, it runs on
multiple MPI processes (termed ranks), each of which spawns OMP threads. Processes reside in

separate address spaces (and often on distinct physical machines, termed nodes), while threads
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spawned from a single rank share memory. All large data structures are thus distributed across
ranks, but shared across threads. It is up to the user to divide the pool of available CPU cores
Neores across Nypr ranks and Noyp threads, such that Negres = NupiNonp. The maximum number
of ranks is limited by system size. Roughly speaking, the number of atoms must be larger than
Nypr, and in practice load balancing issues cause performance to deteriorate when the number
of atoms per rank becomes small. The maximum number of threads is limited by the number of

CPU cores on a node.

1.45 T T — T
443-atom protein system —s=—

1.40 - 2094-atom protein system —»— |

135
1.30 |
1.25
1.20
115
1.10 |

1.05 |

Calculation walltime relative to fastest setup

1.00 L L L L L L
5 10 15 20 25 30 35 40

Number of OMP threads per node

FIG. 22. Effect of MPI-OMP balance on calculation walltime for a small protein system (blue squares),
and a large protein system (red crosses), run on 16 compute nodes (40 CPU cores each). The x axis shows

Nowmp, and Nypr = (16 X 40) /NOMP. Lower is better.

Standard (non-hybrid) ONETEP calculations typically attain best performance at 4 or 5 OMP
threads, where load balancing overheads are balanced between MPI ranks and OMP threads®!.
The HFx engine, however, benefits from additional memory that becomes available when the
MPI/OMP balance is shifted towards using more OMP threads and fewer MPI ranks. For instance,
on a typical 128 GB node with 32 CPU cores, one could allocate 16 GB of memory per MPI rank
when using Nypr = 8, Nomp = 4, but as much as 64 GB per MPI rank when using Nyp; =
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2, Nomp = 16 (neglecting the memory used by the OS and supporting software architecture).
The additional memory devoted to HFx engine caches will substantially increase performance
(cf. Fig. 6). However, for this to happen the algorithm needs to scale well with the number of
OMP threads.

In Fig. 22 we show how the calculation walltime changes with the number of OMP threads.
Crucially, total memory use of the HFx engine has been kept constant across all data points in
each of the two curves. Clearly, for both systems the calculation is fastest when 20 OMP threads
are used, becoming somewhat slower as balance is shifted towards lower numbers of threads. The
performance decrease at 40 OMP threads, despite allocating all of the node’s memory to a single
MPI rank, is due to the fact that Iridis5 nodes encompass two NUMA regions, and splitting a
process across two regions results in a severe performance hit due to nonlocal memory accesses.
This is a typical situation on many HPC machines. We did not run the small system with 1 or 2
OMP threads, because the system was too small for the resulting large Nyp;. The large system
could not be run with 4 or fewer OMP threads because the resulting large number of MPI ranks
per node led to an out-of-memory condition due to the cost of non-HFx components of ONETEP.

In summary, we confirmed our expectation that our algorithm performs best at the highest
possible number of OMP threads, provided that processes do not cross NUMA boundaries. This
also confirms excellent OMP scaling of the algorithm, without which the above result would not

have been possible.

H. Preconverging with a non-hybrid functional

We now briefly show how the performance of hybrid functional calculations can be improved by
employing the optimization described in Section I[ITH and we assess the effect of this optimization
on energies.

We begin by demonstrating that the error in the energies associated with restarting from a pre-

converged calculation is practically negligible (and certainly much smaller than the error introduced
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by switching to PBE) in both scenarios — when the calculation is continued with a hybrid functional,
optimizing both the density kernel and the NGWFs (“B3LYP-17); and when only the density kernel
is optimized (“B3LYP-2") — with the latter approach avoiding the NGWF gradient computation
stage entirely.

As the investigated energies we use (a) the bond-stretch energy curve of ethene, (b) the interac-
tion energy curve of water with a chloride ion, (c¢) the interaction energy of a sodium cation with
its first solvation shell, for a number of snapshots obtained from classical molecular dynamics, and
(d) the HOMO-LUMO gap of an 888-atom polymer system investigated earlier in the text and
shown in Fig. 20. In this way we probe not only bonded, but also non-bonded interactions, and
we investigate small systems (a-c) and large systems (d).

The smallest systems were run using correspondingly modest computational resources — 2 MPI
processes with 4 OpenMP threads each for ethene and HyO:Cl™, and 8 MPI processes with 5
OpenMP threads each for Na®™:6H,O. Memory load did not exceed 4 GB per MPI processes and
as such it was not capped. The 888-atom polymer system was run on 16 Iridis5 nodes (2 MPI
processes per node, with 20 OpenMP threads each), with memory capped to 50 GB per MPI
processes.

Results are shown in Figs. 23 to 25 and in Tables IV to VI. For ethene (Fig. 23) the bond-stretch
curves are practically indistinguishable between the full BSLYP calculation and both approaches
based on restarts, with mean errors in the order of 0.1kcal/mol or less, while PBE consistently
overbinds by as much as 17kcal/mol (Table IV). For the HyO:Cl™ system (Fig. 24) the interac-
tion energy curves are also very similar between the full BSLYP calculation and both approaches
based on restarts, with errors never exceeding 0.1 kcal /mol, while PBE overbinds by 1-2 kcal /mol
(Table IV). In the Na*™:6H5O system PBE underbinds by 1-2.5kcal/mol, and again the results
of the two restart-based approaches are almost always within 0.1 kcal/mol from the full B3LYP
calculation. For these very small systems (Noms < 20) the efficiency gains from using a restart-
based approach are either very modest or non-existent (Table V). This is due to the fact that

for small systems all requisite SWs and expansions can be cached in RAM making the employed
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time-memory tradeoffs very efficient and the calculation of HFx near-optimal. As shown earlier
in Figs. 3 and 4, the memory load of caching everything quickly becomes prohibitive, and indeed
the efficiency gains from using a restart-based approach for a large polymer system become quite
significant — over twofold for B3LYP-1 and over 19-fold for B3LYP-2 (Table V). As we did not
look at the energy of binding for the polymer system, we instead calculate its HOMO-LUMO gap
to assess the accuracy of the restart-based approach. Table VI shows that the associated error was
in the order of 0.02eV (less than 2 %), again much smaller than the one associated with switching

to PBE for the entire calculation.
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We thus conclude that it is practicable, and sufficiently accurate, to significantly reduce the
cost of hybrid functional calculations by first preconverging with a GGA for all systems except the

smallest ones.

TABLE IV. Errors in the interaction energy — mean signed, root mean square, and maximum — relative

to the B3LYP reference, averaged over all data points.

System | Model | Mean signed RMS Maximum
error error error

(kcal/mol) | (kcal/mol) | (kcal/mol)
PBE -17.017 17.268 21.651
CpHy |B3LYP-1| -0.016 0.035 0.091
B3LYP-2 0.110 0.121 0.159
PBE -1.046 1.121 1.953
H50:Cl~ |B3LYP-1 0.021 0.022 0.030
B3LYP-2 0.085 0.085 0.096
PBE 1.650 1.689 2.490
Na™:6H,O|B3LYP-1| -0.087 0.091 0.148
B3LYP-2| -0.012 0.042 0.111
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TABLE V. Speed-up (reduction in walltime) of the two restart-based approaches relative to a full B3LYP

calculation: s = tpsLyp/tp3Lyp-[12)- Higher is better.

System Model |Speed-up relative
to a full B3LYP
calculation
CoHy B3LYP-1 0.75
B3LYP-2 1.02
H,0O:Cl~ B3LYP-1 0.71
B3LYP-2 1.01
Na™:6H20 B3LYP-1 1.10
B3LYP-2 1.72
888-atom polymer|B3LYP-1 2.21
B3LYP-2 19.44

TABLE VI. HOMO-LUMO gaps for the 888-atom polymer system — calculated with PBE, BSLYP and

the two restart-based approaches, and their errors relative to a full B3LYP calculation.

Model |HOMO-LUMO| Error relative | Error relative
gap (eV)  |to B3LYP (eV)|to B3LYP (%)

PBE 0.482 —0.810 —62.69 %
B3LYP 1.293 0.000 0.00 %
B3LYP-1 1.267 —0.026 —-2.01 %
B3LYP-2 1.281 —0.012 —0.89 %
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FIG. 26. Structure of the largest studied imogolite nanotube (7 units), indicating the positions of the

nuclei (spheres) and the implicit solvent dielectric cavity (surrounding bubbles).

I. Demonstration of practicability — example calculations on large imogolite

nanotube systems

We finish with a demonstration of the practicability of the presented approach for calculating
Hartree-Fock exchange, by showing fully converged results obtained with B3LYP for large nanotube
systems (up to 1416 atoms). The potential of these aluminosilicate nanotubes and their deriva-

49-53

tives for selective photo-catalytic applications has been recently explored computationally and
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started to be verified experimentally®5®. In this work we calculated the electronic density of states
(Fig. 27), the HOMO-LUMO bandgap (Fig. 28) and the free energy of solvation in implicit solvent
water (Fig. 29) of pristine (undefected), hydrated, aluminosilicate imogolite nanotubes of three
different sizes — 3, 5 and 7 units (see Ref. 49 for more details).

The structure of the largest considered nanotube, surrounded with implicit solvent, is shown in
Fig. 26. Our calculations ran on 32 compute nodes, each with 40 CPU cores and 192 GB of RAM,
and, for the largest system, took about 14h per NGWF optimization iteration, thus requiring

several restarts to complete (calculations typically take 10-20 iterations to fully converge).
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FIG. 27. Electronic density of states for the studied imogolite nanotube. Results obtained in vacuum with
a GGA (PBE, blue) and with a hybrid functional (B3LYP, red) are compared. In addition the effect of

implicit solvent is shown for the B3LYP calculation (orange).

As expected, we observe (Figs. 27 and 28) a widening of the HOMO-LUMO gap by about 1.5eV
once the hybrid functional is switched from PBE to a hybrid (B3LYP). The subsequent addition of
the water environment (modeled using our minimal-parameter solvent model®®57) further increases
the gap by about 0.4eV. The magnitude of the gap appears reasonably well-converged with system

size at 7 nanotube units.
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The calculated free energy of solvation is in the order of —200 kcal/mol per one nanotube unit
of length, and is more favorable by about 13kcal/mol when calculated with B3LYP, compared
to PBE. It changes appreciably between system sizes, presumably due to the effect of the ends
of the nanotube and different structural relaxation®®. The calculated free energy of solvation
still seems slightly underconverged with system size even at 7 nanotube units. The presented
method development in ONETEP paves the way for follow-up research into this aspect of imogolite
nanotubes, as well as hybrid (linear-scaling) DFT simulations of the mechanisms of assembly of

solvated proto-imogolite fragments into the final nanotubes®®>9.

VI. CONCLUSIONS

We presented a massively-parallel, linear-scaling algorithm for the calculation of Hartree-Fock
exchange and hybrid functionals, subsequently discussing and benchmarking its implementation

on a number of systems relevant to industrial applications.

Our approach is based on expressing products of localized orbitals (NGWEFs) in terms of trun-
cated spherical waves, the expressions for the electrostatic potential of which are known analyti-
cally. The carefully thought out parallel distribution of both data and algorithms, together with
the aggressive use of time-memory tradeoffs, allows our approach to achieve very high parallel
efficiency in scenarios where the number of CPU cores is comparable to the number of atoms, and

beyond.

We showed how on today’s machines our approach is able to treat systems of up to about
1500 atoms routinely — requiring several hundred CPU cores to achieve a walltime of under one
week. The largest system which we demonstrated to be practicable on 32 compute nodes con-
tained 4048 atoms. The excellent scaling properties of our approach mean that systems even
larger than that will be treatable, although they would require substantial computational resources

(Neores = Natoms). Conduction state calculations have larger requirements, due to reduced matrix
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sparsity and larger numbers of NGWEFs, and the largest system we showed to be practicable on 16

nodes was 1768 atoms.

The computational effort of our approach scales linearly with system size, and the same is true
for all of its components individually. The strong parallel scaling is excellent, occasionally becom-
ing superlinear owing to the extensive use of time-memory tradeoffs, and although there is still
room for optimization in conduction state calculations, even these scale better than corresponding
calculations with a GGA. Our implementation scales very well to high thread counts and to large

numbers of MPI processes, retaining very good efficiency even in the regime where Neores => Natoms-

In light of the fact that, through the use of a finite auxiliary basis, our approach is an approx-
imation, in the supplementary material we assessed the magnitude of the introduced error and
showed how it converges with the tunable parameters of the SW basis set. In all cases we found

the magnitude of the error to be extremely small and controllable.

The methods presented in this paper not only significantly narrow the performance gap between
hybrid functionals and GGAs and meta-GGAs in linear-scaling DFT, but also pave the way for
future developments in ONETEP which would employ four-center electron repulsion integrals — such
as Random Phase Approximation (RPA) or Mgller-Plesset perturbation theories or calculations

employing screened hybrids.
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