
J. Chem. Phys. 155, 224106 (2021); https://doi.org/10.1063/5.0067781 155, 224106

© 2021 Author(s).

Massively parallel linear-scaling Hartree–
Fock exchange and hybrid exchange–
correlation functionals with plane wave
basis set accuracy
Cite as: J. Chem. Phys. 155, 224106 (2021); https://doi.org/10.1063/5.0067781
Submitted: 19 August 2021 • Accepted: 22 November 2021 • Accepted Manuscript Online: 22
November 2021 • Published Online: 09 December 2021

 Jacek Dziedzic, James C. Womack, Rozh Ali, et al.

COLLECTIONS

Paper published as part of the special topic on Beyond GGA Total Energies for Solids and Surfaces

ARTICLES YOU MAY BE INTERESTED IN

Generalized Kohn–Sham equations with accurate total energy and single-particle
eigenvalue spectrum
The Journal of Chemical Physics 155, 224105 (2021); https://doi.org/10.1063/5.0071205

Direct orbital selection within the domain-based local pair natural orbital coupled-cluster
method
The Journal of Chemical Physics 155, 224102 (2021); https://doi.org/10.1063/5.0071347

Arbitrarily accurate quantum alchemy
The Journal of Chemical Physics 155, 224103 (2021); https://doi.org/10.1063/5.0073941

https://images.scitation.org/redirect.spark?MID=176720&plid=1689643&setID=533015&channelID=0&CID=616274&banID=520577610&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9bae6abd127771db46248d5d7925570316299378&location=
https://doi.org/10.1063/5.0067781
https://doi.org/10.1063/5.0067781
http://orcid.org/0000-0003-4786-372X
https://aip.scitation.org/author/Dziedzic%2C+Jacek
http://orcid.org/0000-0001-5497-4482
https://aip.scitation.org/author/Womack%2C+James+C
https://aip.scitation.org/author/Ali%2C+Rozh
/topic/special-collections/bgga2021?SeriesKey=jcp
https://doi.org/10.1063/5.0067781
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0067781
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0067781&domain=aip.scitation.org&date_stamp=2021-12-09
https://aip.scitation.org/doi/10.1063/5.0071205
https://aip.scitation.org/doi/10.1063/5.0071205
https://doi.org/10.1063/5.0071205
https://aip.scitation.org/doi/10.1063/5.0071347
https://aip.scitation.org/doi/10.1063/5.0071347
https://doi.org/10.1063/5.0071347
https://aip.scitation.org/doi/10.1063/5.0073941
https://doi.org/10.1063/5.0073941

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Massively parallel linear-scaling Hartree–Fock
exchange and hybrid exchange–correlation
functionals with plane wave basis set accuracy

Cite as: J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781
Submitted: 19 August 2021 • Accepted: 22 November 2021 •
Published Online: 9 December 2021

Jacek Dziedzic,1,2 James C. Womack,1,3 Rozh Ali,2,4 and Chris-Kriton Skylaris1,a)

AFFILIATIONS
1 School of Chemistry, Highfield, University of Southampton, Southampton SO17 1BJ, United Kingdom
2 Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk 80-233, Poland
3Research Software Engineering, Advanced Computing Research Centre, University of Bristol, Bristol BS1 5QD, United Kingdom
4Applied Physics Department, College of Medical and Applied Science, Charmo University, Chamchamal,

46023 Sulaimania, Iraq

Note: This paper is part of the JCP Special Topic on Beyond GGA Total Energies for Solids and Surfaces.
a)Author to whom correspondence should be addressed: C.Skylaris@soton.ac.uk

ABSTRACT
We extend our linear-scaling approach for the calculation of Hartree–Fock exchange energy using localized in situ optimized orbitals
[Dziedzic et al., J. Chem. Phys. 139, 214103 (2013)] to leverage massive parallelism. Our approach has been implemented in the ONETEP
(Order-N Electronic Total Energy Package) density functional theory framework, which employs a basis of non-orthogonal generalized
Wannier functions (NGWFs) to achieve linear scaling with system size while retaining controllable near-complete-basis-set accuracy. For
the calculation of Hartree–Fock exchange, we use a resolution-of-identity approach, where an auxiliary basis set of truncated spherical waves
is used to fit products of NGWFs. The fact that the electrostatic potential of spherical waves (SWs) is known analytically, combined with the
use of a distance-based cutoff for exchange interactions, leads to a calculation cost that scales linearly with the system size. Our new imple-
mentation, which we describe in detail, combines distributed memory parallelism (using the message passing interface) with shared memory
parallelism (OpenMP threads) to efficiently utilize numbers of central processing unit cores comparable to, or exceeding, the number of
atoms in the system. We show how the use of multiple time-memory trade-offs substantially increases performance, enabling our approach
to achieve superlinear strong parallel scaling in many cases and excellent, although sublinear, parallel scaling otherwise. We demonstrate that
in scenarios with low available memory, which preclude or limit the use of time-memory trade-offs, the performance degradation of our
algorithm is graceful. We show that, crucially, linear scaling with system size is maintained in all cases. We demonstrate the practicability of
our approach by performing a set of fully converged production calculations with a hybrid functional on large imogolite nanotubes up to over
1400 atoms. We finish with a brief study of how the employed approximations (exchange cutoff and the quality of the SW basis) affect the
calculation walltime and the accuracy of the obtained results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0067781

I. INTRODUCTION

Owing to its favorable balance of accuracy and relatively
low computational cost, Kohn–Sham (KS) density functional the-
ory (DFT) is a widely used technique in many branches of
computational chemistry and materials science.1 The accuracy of
DFT crucially depends on the approximations invoked in the
exchange–correlation (XC) functional used. Hybrid functionals,
which include a fraction of Hartree–Fock exchange (HFx), are

among the most accurate functionals in use today, offering an
elegant way of reducing the self-interaction error and leading to
a more faithful description of geometries and of several proper-
ties, such as bond energies and bandgaps, particularly for metal
oxides.2

Despite the continual increase in available computing power,
calculating the HFx energy term remains computationally expensive
because of its inherent non-locality. In canonical KS-DFT, the HFx
energy is given by

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0067781
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0067781
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0067781&domain=pdf&date_stamp=2021-December-9
https://doi.org/10.1063/5.0067781
http://orcid.org/0000-0003-4786-372X
http://orcid.org/0000-0001-5497-4482
http://orcid.org/0000-0003-0258-3433
mailto:C.Skylaris@soton.ac.uk
https://doi.org/10.1063/5.0067781

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

EHFx = −
NMO

∑
i=1

NMO

∑
j=1

zizj∬
ψ∗i (r)ψj(r)ψ∗j (r′)ψi(r′)

∣r − r′∣
drdr′, (1)

where {ψi} are the canonical molecular orbitals (MOs), zi are their
occupancies, and NMO is the total number of molecular orbitals
present in the calculation. Given that MOs extend throughout the
entire system and that the Coulomb operator is long-ranged, the cost
of each volume integration in Eq. (1) is proportional to the size of the
system, whether measured by the number of atoms N or the number
of molecular orbitals NMO (which is∝ N). The presence of a double
integral over volume together with a double sum over MOs makes a
direct calculation of EHFx scale as O(N4

).
In practical calculations, the MOs are expanded in terms of a

finite basis,

ψi(r) = φα(r)Mα
i, (2)

where we have assumed a summation over repeated greek indices.
The techniques for mitigating the unfortunate quartic scaling
depend on the employed basis set {φα}.

When localized orbitals are used [e.g., Gaussian functions or
numerical atomic orbitals (NAOs)], Hartree–Fock exchange energy
can be recast as

EHFx = −Kβα
(φαφδ ∣φγφβ)K

δγ, (3)

where (φαφδ ∣φγφβ) is the two-electron four-center electron repul-
sion integral (ERI) in chemists’ notation,

(φαφδ ∣φγφβ) =∬ φ∗α(r)φδ(r)
1

∣r − r′∣
φ∗γ (r

′
)φβ(r

′
)drdr′ (4)

= ∫ φ∗α(r)φδ(r)uγβ(r)dr, (5)

where

uγβ(r) = ∫
φ∗γ (r′)φβ(r′)
∣r − r′∣

dr′ (6)

is a Coulombic potential of a product of localized orbitals. The con-
travariant matrix K is the representation of the single-particle den-
sity matrix in the duals of {φα} and is known as the density kernel.
The density kernel is, in general, a spin-dependent quantity. Here
and in the text that follows, we will omit spin-dependence for clarity
and brevity of notation.

Pre-screening ERIs, that is, avoiding their evaluation if they are
deemed to be zero or below a given threshold, forms the basis of
a number of methods for reducing the computational cost of HFx,
particularly, for Gaussian basis sets. Examples of such approaches
include LinK3 and Order-N exchange (ONX).4 It has also been
recognized that rigorous upper bounds for integrals are of sec-
ondary importance, with tighter estimates of integral values permit-
ting better control of the precision of calculating HFx.5 Another
approach is to use a truncated Coulomb operator to evaluate the
ERIs, which makes them short-range. The long range contribution
can then be recovered in the form of a systematically improvable
correction.6

In the context of extended basis sets, such as plane waves, the
non-locality of the exchange operator makes the calculation of HFx
more challenging. Nevertheless, suitable techniques have been pro-
posed for calculations on periodic systems7–9 with some of them
being linear-scaling.10,11 Some of these approaches employ mixed
basis sets (e.g., Gaussians and plane waves12,13 or Wannier functions
and plane waves10,11).

In the context of localized atom-centered basis sets, such as
Gaussians or NAOs, methods based on the resolution of the identity
(RI) are commonly employed to make the computational effort asso-
ciated with computing HFx more manageable. These techniques,
pioneered in the 1970s14,15 and particularly popular in the field
of correlated wavefunction methods,16–18 expand pair products of
atomic orbitals in an auxiliary basis whose functions are similarly
atom-centered.19

One of the most notable developments in this area is the robust
fitting formula of Dunlap,20,21 which, when used instead of directly
replacing the pair products with their RI fits, ensures that the resul-
tant error is bilinear in the error of the fitted products,19 with the
linear error removed. Dunlap et al. were also credited with estab-
lishing22 that using the Coulomb metric in the fitting offers more
accurate energies compared to other metrics, such as the overlap
metric.

In recent years, certain difficulties associated with robust fitting
have been recognized and solutions or workarounds were proposed.
Merlot et al.19 observed that the two-electron integral matrix is not
manifestly positive semidefinite under certain conditions. They pro-
posed a pair-atomic resolution of identity (PARI) approach based
on local fitting of either the bra or the ket side of the ERI, combined
with the robust correction, to achieve quadratic accuracy.20 Tew23

recently proposed a “quasi-robust” local density fitting approach
that addresses issues with undesired long-range behavior when the
auxiliary basis is incomplete. Sodt and Head-Gordon24 proposed a
local modification to RI that yields energies that are differentiable
with respect to nuclear positions.

In this paper, we present a massively parallel approach for
the efficient calculation of Hartree–Fock exchange in linear-scaling
time. The technique employs the resolution of identity and uses
truncated spherical waves as the auxiliary basis, with only the ket
side of Eq. (4) being fitted, while the products in the bra are unex-
panded. It is based on our previous developments,25 where the orig-
inal implementation was serial. In Sec. II, we first briefly outline the
basics of ONETEP (Order-N Electronic Total Energy Package)—the
linear-scaling reformulation of KS-DFT in which our approach is
implemented—followed by a description of the theoretical basis of
our method. In Sec. III, we describe the implementation details of the
algorithm, devoting particular attention to the parallel data distribu-
tion and time-memory trade-offs that enable its efficient paralleliza-
tion. Section IV describes the setup of the calculations we performed
to benchmark our method.

In Sec. V, we show the results of these calculations, demon-
strate that our algorithm is, indeed, linear-scaling, compare cal-
culation walltimes against non-hybrid functionals, and investi-
gate how individual components of the calculation scale. We
show excellent strong and weak parallel scaling of our approach,
with superlinear speed-ups in many cases. We briefly demonstrate
how preconverging the calculation with a non-hybrid functional
before continuing with a hybrid functional significantly shortens

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

calculation time with negligible loss of accuracy. We conclude this
section with a demonstration of the feasibility of the proposed
approach by performing calculations with the B3LYP hybrid func-
tional on imogolite nanotube systems with 1416 atoms. We fin-
ish with Sec. VI, which contains conclusions and thoughts about
future work. In the supplementary material, we show how the addi-
tional approximations (the use of a cutoff finiteness of the auxil-
iary basis) are controllable and how the associated errors are very
small.

II. THEORY
A. ONETEP

ONETEP26 reformulates Kohn–Sham DFT27 in terms of the
single-particle density matrix, ρ(r, r′). The density matrix is repre-
sented as

ρ(r, r′) = φα(r)Kαβφ∗β (r
′
), (7)

where {φϵ} are the non-orthogonal generalized Wannier functions
(NGWFs)28 centered at rϵ, which coincide with nuclear coordinates
(ϵ being a generic NGWF index). The NGWFs are strictly localized
within spherical regions with radii {Rϵ}.

K is the density kernel, a sparse contravariant matrix, whose
elements Kαβ are nonzero only if ∣rα − rβ∣ < rK, where rK is a real-
space cutoff length, known as the density kernel cutoff.

The strict localization of NGWFs means that the NGWF over-
lap matrix S = {Sϵζ}, defined as

Sϵζ = ∫ φ∗ϵ (r)φζ(r)dr, (8)

is sparse.
The NGWFs are expanded as linear combinations of psinc

functions,29 Dm(r) = D(r − rm),

φϵ(r) =
m∈LR(ϵ)
∑
m

D(r − rm)cmϵ, (9)

where the index m runs over the points of the real-space Cartesian
grid rm, which are the centers of the psinc functions, inside the local-
ization region of φϵ, LR(ϵ). The psinc functions form an orthogonal
basis and are related to plane waves by a Fourier transform, thus
sharing many of their desirable properties, notably the independence
from the nuclear coordinates and the ability of the basis set to be sys-
tematically improved by increasing a single parameter: the kinetic
energy cutoff.

The total energy is minimized self-consistently with respect to
the density kernel elements Kαβ and the NGWF expansion coeffi-
cients cmϵ under the constraints of the idempotency of the density
matrix and conservation of the number of electrons, Ne.

In typical ONETEP calculations, this is done in two nested
loops. In the inner loop, K is optimized via a modified
Li–Nunes–Vanderbilt (LNV) algorithm30–32 with the NGWFs fixed.
The outer loop optimizes the NGWF expansion coefficients cmϵ
through gradient-based energy minimization. The fact that the
NGWFs remain fixed in the inner loop (and thus during the major-
ity of energy evaluations) will play a crucial role in the code

optimizations employed in the calculation of the Hartree–Fock
exchange energy.

B. Hartree–Fock exchange in ONETEP
By introducing an auxiliary quantity, the (covariant) exchange

matrix X,

Xαβ = (φαφδ ∣φγφβ)K
δγ, (10)

we can express EHFx [Eq. (3)] simply as

EHFx = −KβαXαβ. (11)

Direct evaluation of ERIs from Eq. (4) is impracticable because of
the six-dimensional nature of the integral. Proceeding via Eq. (5)
is slightly more advantageous—uγβ(r) [Eq. (6)] can be obtained in
reciprocal space33 or by solving the Poisson equation. Here, the dif-
ficulty lies in the fact that this has to be done for each pair-atomic
quantity φ∗γ (r′)φβ(r′) and that the potential uγβ(r) is long-ranged
(cf. Fig. 1). The latter precludes the use of ONETEP’s traditional tool,
the FFT box,34 as the FFT box would have to coincide with the entire
simulation cell. This approach is quadratically scaling with a very
large prefactor.34 The use of a finite exchange cutoff, e.g., by assum-
ing Xαβ to vanish when ∣rα − rβ∣ < rX, where rX is the exchange cutoff
length, makes this approach linear-scaling, but the prefactor remains
prohibitively large.

We now briefly recount the linear-scaling approach actually
used in ONETEP. For more details, we refer the reader to Ref. 25 where
this approach was first described.

We first introduce the electrostatic metric V with the following
elements:

Vps =∬ f ∗p (r)
1

∣r − r′∣
fs(r′)drdr′ = (fp∣ fs), (12)

where { fp(r)}Nf
p=1 are a set of (in-general) non-orthogonal functions.

Using the elements Vps of the inverse metric matrix V−1, we can

FIG. 1. NGWFs (localized orbitals) featuring in the calculation of EHFx [Eq. (3)]. The
interacting pair-atomic quantities φ∗α (r)φδ(r) and φ∗γ (r′)φβ(r′) are shaded. All
terms where the localization sphere of α is disjoint from that of δ vanish, and
similarly, all terms where the localization sphere of β is disjoint from that of γ van-
ish. This is a property of localized orbitals. The non-local nature of Hartree–Fock
exchange manifests in the fact that terms where the localization sphere of α is
disjoint from the localization sphere of β do not, in general, vanish.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0067781

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

define a resolution-of-identity (RI) operator,

ÎV = ∣ fp)Vps
(fs∣. (13)

Such RI operators are often used in computational quantum chem-
istry software14–18,20,22–24,35–39 with the aim of replacing four-center
ERIs with more tractable three-center integrals.

By inserting the RI operator into Eq. (3), we obtain25

EHFx = −Kβα
(φαφδ ∣ fp)Vps

(fs∣φγφβ)K
δγ, (14)

which is exact if the set of auxiliary functions spans the same sub-
space as the products of NGWFs. In practice, we will be work-
ing with finite sets of auxiliary functions, making Eq. (14) an
approximate equality; we will denote the resultant approximate
Hartree–Fock exchange energy with ẼHFx and the approximate
exchange matrix whose elements are

X̃αβ = (φαφδ ∣ fp)Vps
(fs∣φγφβ)K

δγ (15)

with X̃.
The employed auxiliary basis should have two important

properties—it should be able to accurately represent the fitted
NGWF products and it should enable the computation of Coulomb
potentials [Eq. (6)] in O(1) time per NGWF pair. One such a basis
set is formed by truncated spherical waves (SWs), which are solu-
tions of the Schrödinger equation for a particle in a sphere. They are
given by

f (r) =
⎧⎪⎪
⎨
⎪⎪⎩

jl(qr)Zlm(r̂), r < a,

0, r ≥ a,
(16)

where jl(qr) is a spherical Bessel function, Zlm(r̂) is a real spheri-
cal harmonic, m is an integer from the interval [−l, l], and a is the
radius of the sphere where the zero boundary condition is imposed.
In ONETEP’s implementation, we assume∀ϵRϵ = a, that is, all NGWF
localization radii are identical and equal to a. The value of q is cho-
sen in such a way that jl(qa) = 0, and the suitable values of q depend
on the angular momentum index l. The maximum values of q and l
are limited by the kinetic energy cutoff and the corresponding grid
spacing. In typical scenarios, it is sufficient to truncate the SW basis
at lmax = 3 and qmax = 12, where qmax is the number of different val-
ues of q used for each l. In the text that follows, we will use a single
index (p or s) for the SWs for simplicity. This index covers all the
possible combinations of l, q, and m and runs from 1 to NSW. We will
use up(r) to denote the potential of a SW (“SWpot” in the further
text),

up(r) = ∫
fp(r′)
∣r − r′∣

dr′. (17)

This potential can be evaluated analytically in O(1) time.33

In our technique, the products featuring in the ket of Eq. (4),
that is, φ∗γ (r′)φβ(r′), are expanded, while the products in the bra,

that is, φ∗α(r)φδ(r), do not undergo expansion. The coefficients of
expansion {cp

γβ}p=1,...,NSW are given by

c p
γβ = Vps

(fs∣φγφβ). (18)

An important issue is the choice of centers for the SWs used in
the expansion of φ∗γ (r′)φβ(r′). Using SWs centered only on NGWF
γ or only on NGWF β breaks symmetry in Eq. (4) because it leads to
cγβ ≈ cβγ rather than cγβ = cβγ. Using SWs centered on both β and
γ alleviates this problem, but there is still the problem of broken
αδ↔ γβ symmetry, i.e., the products in the bra of the ERI Eq. (4)
are then exact, while the products in the ket are approximate (fit-
ted). To formally satisfy all the symmetry requirements, one can
resort to using SWs centered on all four atoms (α, β, γ, and δ) in the
expansion, which keeps the fitting domain identical between all per-
mutations of α, β, γ, and δ in the ERI. Such a fit is then robust in the
sense of Ref. 20, that is, the fitted integral does not contain any terms
linear in the error in the fitted densities. However, in our case, this is
impracticable. Even though it maintains linear-scaling, using four
centers in the expansion leads to prefactors that are prohibitively
large because the product φ∗γ (r)φβ(r) then needs to be re-expanded
every time α or δ changes in Eq. (14).

We solve the above problem by using a two-center expansion
(on β and γ) and recovering the αδ↔ γβ symmetry by symmetrizing
the approximate (SW-expanded) exchange matrix, X̃,

X̃αβ ←
1
2
(X̃αβ + X̃βα). (19)

This change propagates to the expression for the Hartree–Fock
energy, which now reads25

ẼHFx = −
1
2

Kβα
[(φαφδ ∣ fp,γβ)V

ps
(fs,γβ∣φγφβ)

+ (φαφδ ∣ fp,δα)V
ps
(fs,δα∣φγφβ)]K

δγ. (20)

Here, we used additional indices to the SWs { f } to indicate where
they are centered. While the above expression formally includes SWs
centered on α and δ, we again stress that the symmetrization proce-
dure [Eq. (19)] makes it sufficient to only expand using SWs on β and
γ. We have shown25 that, in practice, any differences between the ele-
gant but prohibitively expensive four-center fit and the two-center fit
we employ are negligible, although our approach is no longer robust
in the sense of Ref. 20.

An important advantage of the two-center expansion is that it
only includes SWs centered on atoms whose NGWFs overlap, mak-
ing the electrostatic matrix in Eq. (12) effectively sparse (even though
the potential of a SW is not localized). This is necessary for the
approach to be linear-scaling.

We subsequently build linear combinations of SWpots (corre-
sponding to expanded potentials of NGWF pair products),

eγβ(r) =
NSW

∑
p=1

up(r)cp
γβ = Îγβ∣φγφβ) (21)

[where Îγβ is defined in Eq. (24)], and we contract them with the
density kernel over the index γ and use the resultant potential

ũδβ(r) = Kδγeγβ(r) (22)

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Summary of truncation parameters employed in the ONETEP approach and in our HFx algorithm.

Parameter Symbol Typical value Used in Description

Density kernel cutoff rK 50–100a0 ONETEP Distance between two atomic centers beyond which
the density matrix is assumed to vanish.

NGWF localization radius Rϵ 8–10a0 ONETEP Radius of an atom-centered sphere beyond which the
NGWF is assumed to be strictly zero.

Exchange cutoff rX 20–25a0 HFx method Distance between two atomic centers beyond which
the exchange matrix is assumed to vanish.

on the product φ∗α(r)φδ(r) that appears in the bra of the ERI of
Eq. (3). Having repeated this step for all requisite NGWFs δ, we
obtain an element of the exchange matrix, X̃αβ [Eq. (15)]. In the
final step, we contract the exchange matrix with the negative of
the density kernel K over α and β according to (11) to obtain the
Hartree–Fock exchange energy.

For every exchange matrix element [a pair of indices (α,β)],
the cost of the above calculation is asymptotically constant (inde-
pendent of system size). This is because all the NGWFs are strictly
localized and their overlap matrix is sparse. For our approach to
be linear-scaling, the number of pairs (α,β) must increase linearly
with system size, i.e., the exchange interaction must be truncated.
This is a standard practice in linear-scaling methods.40 Our method
employs a simple distance-based cutoff, where the exchange matrix
X is made sparse by neglecting contributions from pairs (α,β) when
∣rα − rβ∣ > rX, where rX is an assumed real-space cutoff for exchange.
We have shown25 that even in more demanding applications,
rX ≈ 20a0, or even less, is sufficient to keep the truncation error
below 0.01%.

The fact that in ONETEP the NGWFs are optimized in situ neces-
sitates calculating the gradient of the energy with respect to the
NGWF expansion coefficients (which, mathematically, is the func-
tional derivative of the energy with respect to the complex conjugate
of some NGWF α). The derivation of the relevant expression for
Hartree–Fock exchange was presented in Ref. 25; here, for the sake
of brevity, we only recount the following final form:

Gα
(r) = Gα

1(r) +Gα
2(r)

= 2φδ(r)K
βαKδγ Îγβ∣φγφβ) + 2φδ(r)Îδα(K

βαKδγ
∣φγφβ)),

(23)

where the factor of 2 is due to the fact that the NGWFs are assumed
to be real-valued, and the operator Iκλ is the resolution of the identity
operator in terms of SWs centered on NGWFs κ and λ,

Îκλ = ∣ fp,κλ)Vps
(fs,κλ∣. (24)

The first term in Eq. (23) involves summing large numbers of
expansions of pair NGWF products φγφβ in terms of SWs centered
on these NGWFs. In the second, more involved term linear combi-
nations of NGWF products are expanded in SWs centered not on
these NGWFs, but rather on the NGWF with respect to which we
differentiate (α) and the NGWFs that overlap with it (δ).

The expression in Eq. (23) is the contravariant gradient, which
cannot be directly used to update NGWFs {φα}, which are covariant.
To achieve tensorial correctness, it must be converted to a covariant
gradient: Gϵ(r) = Gα

(r)Sαϵ.

C. Summary of truncation parameters
As an aid to the reader, in Table I, we recount and briefly

describe the truncation parameters used in ONETEP and in this work.

III. IMPLEMENTATION
In this section, we describe the parallel implementation of our

algorithm, highlighting choices of parallel decompositions and time-
memory trade-offs that make it efficient and massively parallelizable.

A. Preliminary comments and notation
We begin with a minor implementation detail that will gain

more importance later in the text. As mentioned earlier [cf. Eq. (9)],
in ONETEP, the NGWFs are stored as psinc expansion coefficients
on a Cartesian grid. In practice, we use a so-called parallelepiped
representation, illustrated in Fig. 2.

The simulation cell is tiled into suitably sized parallelepipeds
(PPDs). Each NGWF localization region is encompassed by a
number of PPDs (shaded areas in the diagram). The psinc

FIG. 2. Diagram of the parallelepiped (PPD) representation used in ONETEP (sim-
plified to 2D). Two example NGWFs are shown (circles). Grid data for NGWFs
and their overlaps are stored as contents of parallelepipeds (PPDs) tiling the grid
(shaded areas).

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

coefficients are stored for all points in these PPDs, arranged
into a continuous 1D array. Such a packed representation, while
introducing some overhead (points within PPDs but outside of
the NGWF sphere), makes it easy to pass NGWF data between
message passing interface (MPI) ranks and enables efficient pro-
cessing. In the current implementation of HFx, this representa-
tion is also used for NGWF overlaps (dark-shaded area in the
diagram).

In the text that follows, we will use a convention where capi-
tal letters (A, B, C, D, I, J, and M) denote atoms. Lowercase letters
(a, b, c, and d) will be used to index NGWFs on a corresponding
atom; for example, a will count NGWFs on atom A. For indexing
NGWFs globally, we will use greek letters (α, β, γ, δ, ϵ, and ζ) like we
have already done in the Introduction. We will occasionally switch
between these two ways of indexing NGWFs (Aa ≡ α, etc.) as some
concepts are easier explained using one notation or the other. In
addition, implicit summation will be assumed only over repeated
greek indices.

Matrix sparsity plays an important role in the algorithm we
present. The sparsity of S (due to strict localization of NGWFs),
the sparsity of K (due to the assumed kernel cutoff), and the spar-
sity of X̃ (due to the assumed exchange cutoff) are all crucial for
achieving linear scaling. In the text that follows, it will often be use-
ful to think of matrix sparsity patterns in terms of pairs of atoms
that are either within a sparsity pattern of a matrix (meaning that
the corresponding matrix element is non-zero) or outside it (mean-
ing that the corresponding element is zero and is not stored). We
will use the following terminology to describe this: two atoms whose
NGWFs overlap (and so the corresponding S element is non-zero)
will be termed S-neighbors. Two atoms whose centers are within the
exchange cutoff (and so the corresponding X̃ element is non-zero)
will be termed X-neighbors. The relations of being an S-neighbor or
X-neighbor are commutative. Finally, by saying an atom I is an X–S-
neighbor of atom J, we will mean that there exists an atom M such
that J and M are X-neighbors and M and I are S-neighbors. This is
best understood referring to Fig. 1, where atom D (NGWF δ) is an
X–S-neighbor of atom B (NGWF β). Note that this relation is not, in
general, commutative.

B. Hybrid MPI-openMP parallelism
ONETEP employs hybrid parallelism for all its major

algorithms.41 Distributed-memory process-based (MPI42) par-
allelism is used in two ways: for the geometric decomposition of
the simulation cell (where each MPI rank deals with a number of
slabs comprising the cell) and to divide atoms across MPI ranks
(each MPI rank “owns” or is responsible for a subset of atoms).
Such a scheme is naturally limited in the number of MPI ranks that
can be used—performance begins to deteriorate once the number
of MPI processes exceeds the number of slabs in the cell (because
some ranks no longer have any work to do) or when the number
of MPI ranks exceeds the number of atoms in the system (at which
point ONETEP cannot be run). This problem can be alleviated
by reducing the number of MPI ranks and, instead, having each
rank spawn a number of threads to saturate the available central
processing unit (CPU) cores.

Shared-memory thread-based parallelism (OpenMP43) is then
used on a finer scale to subdivide larger work grains into threads.

There are two main advantages using such a hybrid model: One
is being able to utilize a large number of CPU cores without sig-
nificant loss of performance and another stems from the fact that
threads share an address space, so the memory load associated
with quantities that would normally be replicated across MPI ranks
is lowered since fewer MPI ranks are used. This second advan-
tage does not play a large role in ONETEP, as the most memory-
intensive quantities are distributed, not replicated, across MPI
ranks.

The two main bottlenecks in ONETEP’s approach to
Hartree–Fock exchange are as follows: (a) the evaluation of SWpots
[Eq. (17)] from analytical expressions involving trigonometric
and radial terms (see Ref. 33 for details) and (b) the evaluation
of SW-expanded potentials of NGWF pair products [Eq. (21)].
Both of these are performed repeatedly, often, for the same
parameters. For example, Eq. (21) will be evaluated with the
same γ and β for multiple combinations of α and δ, of which it is
independent.

Naturally, this opens up opportunities for time-memory trade-
offs, where the already calculated results are cached in memory and
subsequently reused, reducing the computational cost to mere look-
ups. However, this has to be done carefully. Both quantities con-
sidered here (SWpots and expanded potentials) require very large
amounts of memory to store. Further in the text (Sec. III E), we out-
line how the requirements scale with the system size; here, we will
only provide an estimate—in typical scenarios, this memory require-
ment begins to exceed 1 TB at about 400 atoms, just at the onset
of linear scaling in the evaluation of HFx. This is a requirement
on total memory, and so it could, in principle, be divided across
multiple compute nodes. In today’s high performance computing
environments, using this quantity of distributed memory is practi-
cal since compute nodes are routinely equipped with 128–512 GB of
memory.

Not to be neglected, however, is the cost to accessing such
distributed cached data—accessing data that are not local to an
MPI rank entails interprocess communication. The calculation of
SWpots in ONETEP has been extensively optimized—calculating
≈200 SWpots that are required in typical scenarios in one PPD that
contains 125 grid points takes only about 5 μs, and so any attempt
to access a cached copy from a remote MPI rank would be much
slower. For this reason, our algorithm relies on caching all rele-
vant data locally (within the same MPI rank), even if this means
replicating some data across ranks.

To minimize this replication and to increase the avail-
able RAM for the cache, it stands to reason to use as many
OpenMP threads as possible and as few MPI ranks as threads
can then share a large cache without any need for message pass-
ing. Suitable thread synchronization mechanisms must be used
when populating the cache to avoid data races, but once the
cache is populated and becomes read-only, there is no need for
synchronization.

For the above approach to be efficient, our algorithm had to
be optimized for large numbers of threads. This is accomplished
by ordering operations in such a way as to move OpenMP para-
llelism as high in the loop structure as possible, making computa-
tional grains larger and by avoiding synchronization mechanisms
(critical sections) whenever possible. As we will demonstrate in
Sec. V, the result is an algorithm that scales well to at least tens

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

of OpenMP threads per process and at least thousands of CPU
cores.

Another component crucial for massive parallelism is load bal-
ancing. As described above, ONETEP distributes atoms across MPI
ranks. Looking at relevant expressions [e.g., Eqs. (18), (21), and
(23)], it becomes apparent that the key quantity being processed
is the kets ∣φγφβ) . For this reason, our algorithm distributes atom
pairs (B, C) rather than atoms as in ONETEP’s original parallel dis-
tribution.44 In the text that follows, we will term ONETEP’s original
distribution “scheme 1,” while the scheme used by the HFx algo-
rithm will be termed “scheme 2.” The quantities that are inputs to the
algorithm, such as NGWFs, density kernel elements, and the met-
ric matrix V, will need to re-distributed from scheme 1 to scheme 2
before actual processing begins, and the quantities produced by the
algorithm [the exchange matrix X̃ and the NGWF gradients Gα

(r)]
will have to be re-distributed from scheme 2 back to scheme 1 before
they can be used by the rest of ONETEP machinery. The walltime
cost of these operations is very modest below 0.5%. The associated
memory cost (due to having to store additional NGWFs and density
kernel elements) is also acceptable at a level below 1 MB/atom per
MPI rank.

C. Algorithm overview
Examining expressions in Eqs. (18) and (21) makes it clear

that they are independent of the density kernel and involve only
the NGWFs. This means that the calculation of ẼHFx can be broken
up into two distinct stages—one that is independent of the den-
sity kernel and one that is density-kernel-dependent. The first stage
involves calculating expansion coefficients of NGWF pair prod-
ucts [Eq. (18)] and the potential of these expansions [Eq. (21)]
does not need to be repeated in the inner (kernel optimiza-
tion, LNV) loop. The second stage {Eq. (22), subsequent calcula-
tion of the elements of X̃ and of ẼHFx itself [Eq. (11)]} must be
repeated every time K changes, that is, multiple times in the inner
loop.

The density-kernel-independent stage will be described in
Sec. III D, and the density-kernel-dependent stage, which entails the
actual calculation of ẼHFx—will be described in Sec. III E.

The last component is the calculation of the gradient of ẼHFx
with respect to the NGWFs, which is required for in situ optimiza-
tion of NGWFs. It will be described in Sec. III F.

D. Density-kernel-independent stage
The density-kernel-independent stage is described in

Algorithm 1. In step 1, the workload associated with all kets in
Eq. (14), that is, the set of all (B, C) atom pairs in the calculation,
is distributed across MPI ranks. During load-balancing, we assume
the computational effort associated with a (B, C) atom pair to be
proportional to the product of the number of NGWFs on atoms
B and C. This is justified by the fact that the algorithm deals
with products of pairs of NGWFs on these atoms. In the final
distribution, each MPI rank has a subset of (B, C) atom pairs and
these subsets are mutually disjoint, i.e., a given (B, C) pair is only
found on one MPI rank.

In step 2, each MPI rank constructs a set of all B atom indices
and a set of all C atom indices present in its set of (B, C) pairs. We
will refer these as the rank’s B atoms and rank’s C atoms. Unlike
(B, C) pairs, more than one MPI rank can have the same B or C
atom in its subset (i.e., the subsets are not disjoint).

In step 3, each MPI rank determines the set of its A atoms,
which we define as all atoms that are X-neighbors to any B atom
the MPI rank owns. Similarly, in step 4, each MPI rank deter-
mines the set of its D atoms, which we define as all atoms that are
X–S-neighbors to any B atom the MPI rank owns.

In step 5, the electrostatic metric matrix V [Eq. (12)]
is redistributed from scheme 1 (which was used during its
calculation) to scheme 2 (which is used in all subsequent
calculations). This also involves a change in the underlying
datastructure—from a distributed sparse matrix to rank-local hash
tables.

In step 6, the NGWFs themselves are redistributed from scheme
1 to scheme 2. Each MPI rank requests scheme-1-owners of all
NGWFs it would need to send them (in PPD format), and simul-
taneously, each MPI rank listens for requests addressed to it and
satisfies them by sending the NGWFs its scheme-1-owns. Follow-
ing this step, each MPI rank has all the NGWFs it would need in the
calculation of HFx locally. No further communication of NGWFs is
going to be necessary. This is an important trade-off—we sacrifice
some memory (because most NGWFs are now replicated on more
than one rank), but in return, we avoid interspersing calculation with
communication in all subsequent stages of the calculation. Our algo-
rithm will thus be free of any idle waits of a rank for communication
with another rank and of any potential convoy effects. The memory
cost of this overhead is acceptable—below 1 MB/atom on each MPI

ALGORITHM 1. Density-kernel-independent stage.

1: Distribute (B, C) pairs across MPI ranks
2: Determine B and C atoms for each MPI rank
3: Determine A atoms for each MPI rank
4: Determine D atoms for each MPI rank
5: Redistribute the matrix V from scheme 1 to scheme 2
6: Redistribute NGWFs from scheme 1 to scheme 2
7: Determine the set of all PPDs where SW expansions of the potential will be needed for each MPI rank
8: Populate the SWpot cache on each MPI rank (→Algorithm 2)
9: Populate the NGWF product cache (→Algorithm 3)
10: Expand NGWF pair products (→Algorithm 4)

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ALGORITHM 2. Populate the SWpot cache.

1: Perform a dry-run of the calculation, where only the numbers of accesses to each SWpot are counted (for every MPI rank separately)
2: Determine how many SWpots can be cached before the user-specified memory limit is reached, Nmax

SWpot
3: Precalculate the Nmax

SWpot most accessed SWpots and store them in a hash table

rank, increasing linearly with system size (owing to the sparsity of S
and X). We use the same approach for communicating elements of
the density kernel (see step 1 of Algorithm 5).

In step 7, each MPI rank establishes the set of PPDs where SW-
expanded potentials of ket NGWF pairs will be required. This is a
union of the sets of PPDs on all the rank’s atoms A.

In step 8, each MPI rank populates its SWpot cache, following
Algorithm 2.

In step 9, each MPI rank populates its NGWF product cache,
following Algorithm 3.

Finally, in step 10, NGWF pair products are expanded in terms
of SWs, following Algorithm 4.

This completes the description of the density-kernel-
independent stage. We now briefly describe the algorithms used in
the last three steps.

The SWpot cache is populated according to Algorithm 2.
The NGWF product cache is populated following Algorithm 3.

First, each rank counts and enumerates the atom pairs (A, D) rele-
vant to it, building a list of pairs. This is done to switch from atom
indices to a fused (pair) index, which lends itself better to OpenMP
(OMP) parallelization. Subsequently, for all the atom pairs, the prod-
ucts of their NGWFs are calculated and stored, with the pair loop
parallelized over OpenMP threads. If at any time the user-specified
maximum size of the product cache is reached, the loop termi-
nates early. That means that we only store as many NGWF prod-
ucts as possible, with the memory requirement strictly bounded.
In subsequent steps, products that are not found in the cache will
simply be recalculated on the fly. This precludes runaway memory

ALGORITHM 3. Populate the NGWF product cache.

1: npairs = 0
2: for all my A atoms do (⊳) count (A, D) pairs
3: for all D atoms that are S-neighbors of this A do
4: npairs = npairs + 1
5: end for D
6: end for A
7: OMP for ipair = 1 to npairs do (⊳) process (A, D) pairs
8: for all NGWFs d on atom D in pair do
9: for all NGWFs a on atom A in pair do
10: if room left in NGWF product cache then
11: Compute and store φAaφDd in PPDs
12: else
13: exit OMP for
14: end if
15: end for a
16: end for d
17: end OMP for ipair

use and ensures graceful performance degradation in low-memory
scenarios.

NGWF pair products are expanded in terms of SWs following
Algorithm 4. For all NGWF pairs on all (B, C) atom pairs owned
by an MPI rank, we first calculate the products of the NGWFs and
then calculate their overlaps with all SWs s (centered on B and C).
The overlaps are then used as the constant term in a system of linear
equations to determine the expansion coefficients (step 7). OpenMP
parallelism is employed over PPDs in the product.

E. Density-kernel-dependent stage
In this stage, the Hartree–Fock exchange energy ẼHFx is calcu-

lated using the SW expansion of NGWF products obtained from
Algorithm 1. Unlike the previous stage, this one depends on the
values of the density kernel, and as such, it needs to be performed
multiple times within the kernel optimization loop. The procedure
is outlined in Algorithm 5 and will now be described.

In step 1, the density kernel matrix K is redistributed from
scheme 1 (which is used in the rest of ONETEP) to scheme 2 (which
is used in all subsequent calculations). This also involves a change
in the underlying datastructure—from a distributed sparse matrix to
rank-local hash tables.

Next, each MPI rank processes the atom pairs (B, C) it was
assigned. The result of this processing is the expanded potentials
of NGWF products eγβ for all NGWFs on atoms B and C in each
pair. The expanded potentials are calculated at all points where they
will later be required, that is, in the PPDs of all atoms A that are X-
neighbors to atom B. This set of PPDs (termed “PPDs relevant to
atom B”) is established in step 3.

Subsequently, we iterate over all the NGWF pairs on atoms B
and C. The previously calculated SW expansion coefficients cp

γβ for

ALGORITHM 4. Expand NGWF pair products.

1: for all (B, C) pairs owned by this MPI rank do
2: for all NGWFs b on atom B in pair do
3: for all NGWFs c on atom C in pair do
4: Compute φBbφCc in PPDs
5: OMP for all PPDs in product φBbφCc do
6: Calculate bs,γβ = (fs∣φγφβ) for all SWs s
7: For all SWs p, obtain expansion coefficients

cp
γβ = Vpsbs,γβ by solving a linear

equation system Vspcp
γβ = bs,γβ

8: end OMP for PPD
9: end for c
10: end for b
11: end for (B, C)

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ALGORITHM 5. Calculation of ẼHFx from previously (Algorithm 1) expanded NGWF products.

1: Redistribute K from scheme 1 to scheme 2
2: for all (B, C) pairs owned by this MPI rank do
3: Find the PPDs relevant to atom B from the pair.

This is a union of the sets of PPDs of all atoms A that are X-neighbors with this atom B
4: for all NGWFs b on atom B in pair do
5: for all NGWFs c on atom C in pair do
6: Retrieve expansion coefficients for φBbφCc
7: OMP for all PPDs relevant to atom B do
8: Calculate the expanded potential

eγβ =
NSW

∑
p=1

cp
γβup(r) in PPD i

9: if room left in expansion cache then
Store eγβ in expansion cache

10: else
11: exit (B, C) loop
12: end if
13: end OMP for PPD
14: end for c
15: end for b
16: end for (B, C)
17: for all my B atoms do
18: Find the PPDs relevant to atom B like in step 3
19: Calculate ũδβ = ∑

γ
Kδγeγβ in all relevant PPDs, thereby eliminating index γ (→Algorithm 6)

20: Calculate contribution to X̃ from atom B, thereby eliminating index β (→Algorithm 7)
21: if NGWF gradient needed then
22: Accumulate contribution to contravariant gradient G1 from this atom B (→Algorithm 8)
23: end if
24: end for B
25: Redistribute X̃ from scheme 2 back to scheme 1
26: if NGWF gradient needed then
27: Finalize NGWF gradient term G1 (→Algorithm 9)
28: Calculate the NGWF gradient term G2 (→Algorithm 10)
29: end if
30: Symmetrize X̃ [Eq. (19)]
31: Calculate ẼHFx [Eq. (20)]

the NGWF products are retrieved (step 6), and the expanded poten-
tial is calculated (step 8) in all relevant PPDs. OpenMP parallelism is
leveraged for the loop over PPDs. The expanded potential is stored
in a hash table termed the “expansion cache.”

Storing all the expanded potentials would require enormous
amounts of memory—for all but the smallest systems, they need
to be calculated in a sphere with a radius rX + a (where rX is the
exchange cutoff and a is the NGWF localization radius). At typical
settings, this translates to about 6.5 MB of storage per single expan-
sion. The number of expansions on an atom B is nBnCNS

B, where nB
and nC are the numbers of NGWFs on atoms B and C, respectively,
and NS

B is the number of C atoms that are S-neighbors of atom B.
At typical settings, this number is about 800. For typical nB and nC,
we arrive at a value of about 5 GB per atom, which is clearly exces-
sive even if we assume this cost to be distributed across compute
nodes. For this reason, we set a user-adjustable upper bound on the
size of the expansion cache. Once the cache is full, the loop exits
(step 11). Expanded potentials that did not fit in the cache are later

(Algorithm 6) calculated on the fly. This precludes runaway memory
use and ensures graceful performance degradation in low-memory
scenarios.

Once all the expanded potentials are calculated or the expan-
sion cache cannot accommodate more elements, each MPI rank
iterates over all its B atoms (step 17). First, PPDs relevant to current
atom B are identified, the same as was done in step 3. Subsequently,
the expansion coefficients are contracted with the density kernel
over index γ, eliminating this index from further computation (step
19). This is done by Algorithm 6, described further in Sec. III E.

Next, the contribution from current atom B to all elements
of the exchange matrix X̃ is calculated (step 20). This is done by
Algorithm 7, described further in this section. Similarly, contribu-
tions to the NGWF gradient from atom B are accumulated. This is
done by Algorithm 8, described in Sec. III F.

In step 25, the exchange matrix is redistributed from scheme 2
back to scheme 1 to make it possible to use standard sparse algebra
routines on it in the rest of ONETEP.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ALGORITHM 6. Eliminate index γ for a single atom B.

1: for all atoms C in my (B, C) pair list for current B do
2: for all NGWFs b on atom B do
3: for all NGWFs c on atom C do
4: OMP for all PPDs relevant to atom B do
5: Retrieve from cache or calculate eγβ
6: end OMP for PPD
7: end for c
8: end for b
9: OMP for all PPDs relevant to atom B do
10: for all atoms D participating in this PPD do
11: for all NGWFs d on atom D do
12: for all NGWFs b on atom B do
13: for all NGWFs c on atom C do
14: ũδβ = ũδβ + KδCceCcβ
15: end for c
16: end for b
17: end for d
18: end for D
19: end OMP for PPD
20: end for C

The main part of the NGWF gradient calculation takes place
in step 27; this is carried out by Algorithm 10, described in
Sec. III F.

Finally, the exchange matrix X̃ is symmetrized [cf. Eq. (19)],
and the Hartree–Fock exchange energy is computed according to
Eq. (20).

This concludes the general description of the density-kernel-
dependent stage. We will now briefly describe Algorithms 6 and 7.

ALGORITHM 7. Eliminate index β.

1: OMP for all PPDs relevant to atom B do
2: for all atoms D participating in this PPD do
3: for all my atoms A participating in this PPD do
4: for all NGWFs d on atom D do
5: for all NGWFs a on atom A do
6: Retrieve from cache or calculate

pAaDd = φAaφDd in current PPD
7: end for a
8: for all NGWFs b on atom B do
9: for all NGWFs a on atom A do

10: X̃AaBb = X̃AaBb +
PPD
∑
r

pAaDd(r)ũDd
Bb

11: if NGWF gradient needed then
12: kBb = kBb + φDdũDd

Bb
13: end if
14: end for a
15: end for b
16: end for d
17: end for A
18: end for D
19: end OMP for PPD

Algorithm 6 processes a single atom B owned by a given MPI
rank. It iterates over all the C atoms that are S-neighbors of B and
are assigned to this MPI rank. Thus, the loop body is executed for a
(B, C) pair. First (steps 2–8), the expanded potentials for all combi-
nations of NGWFs on atoms B and C are retrieved from the expan-
sion cache into a local array for efficient access later on. This is done
for all the PPDs relevant to atom B, and OpenMP parallelism is lever-
aged for the loop over PPDs. Subsequently, for all the PPD (again
leveraging OpenMP parallelism) and all the atoms D whose localiza-
tion sphere features this PPD, the quantity ũδβ, which is a contraction
of expanded potentials with the density kernel over the index γ, is
accumulated (step 14). As the density kernel depends on another
index (δ), ũδβ is a two-center quantity. As it is stored only for a sin-
gle atom B before being processed (via Algorithm 7) and discarded,
the associated memory requirement remains modest. Algorithm 6
finishes after calculating and storing all requisite ũδβ for a given
atom B.

The next stage (Algorithm 7) eliminates index β from the cal-
culation. Like Algorithm 6, it is also performed for a single atom
B. The algorithm processes all PPDs relevant to this atom in an
OpenMP-parallelized loop. For each PPD, the algorithm iterates
over all atoms D whose localization sphere spans this PPD and
all atoms A owned by the MPI rank whose localization sphere
spans this PPD. The unusual loop ordering with the loop over
PPDs being outermost is cumbersome programmatically but was
found to lead to best performance, allowing for OpenMP paral-
lelism to be leveraged for largest grain sizes and for any parallel con-
tention to be avoided. No thread synchronization is required in this
loop.

First (step 6), the algorithm retrieves all NGWF products for
the atom pair (A, D) from the NGWF product cache. Cache misses
lead to the recalculation of the products on the fly. Subsequently
(steps 8–11), elements of the exchange matrix are accumulated in
a loop over NGWFs on atoms B and A and over all points in
the PPD. The accumulated quantity is the product φαφδ multi-
plied by ũδβ = ∑

p
∑
s

up(r)Vps
(fs∣φγφβ)Kδγ, which completes the inte-

gration required for obtaining the exchange matrix element X̃αβ [cf.
Eq. (15)]. Once the algorithm completes, a column stripe of the
exchange matrix corresponding to atom B has been calculated.

F. Gradient with respect to the NGWFs
The last component of our algorithm is the calculation of

the functional derivative of ẼHFx with respect to an NGWF—a
rather involved procedure required for in situ optimization of
NGWFs. The calculation is split into two terms, Gα

1 and Gα
2 , where

α is the NGWF with respect to which we differentiate, as defined
in Eq. (23).

Calculating the G1 term is straightforward, beginning already
in step 12 of Algorithm 7, where the auxiliary quantity kBb is calcu-
lated for every atom B occurring in the atom pairs (B, C) assigned to
an MPI rank. Subsequently, in step 22 of Algorithm 5, Algorithm 8
is invoked for every atom B owned by the MPI rank. This is a sim-
ple algorithm, contracting the auxiliary quantity kBb with the density
kernel over the index Bb. Following its completion, the contravariant
version of term G1 has been calculated.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ALGORITHM 8. Accumulate contravariant gradient GAa
1 for one atom B owned by this

MPI rank.

1: for all PPDs relevant to atom B do
2: for all my atoms A participating in this PPD do
3: if atom A is an X-neighbor of atom B then
4: for all NGWFs b on atom B do
5: for all NGWFs a on atom A do
6: GAa

1 = GAa
1 + kBbKBbAa

7: end for a
8: end for b
9: end if
10: end for A
11: end for PPD

The calculation is finalized in step 27 of Algorithm 5, where
Algorithm 9 is invoked. Here, the calculated NGWF gradient is pre-
pared for subsequent use outside of the HFx code. First, the cal-
culated contravariant gradient is redistributed back to scheme 1,
that is, to the atom-based distribution. Each MPI rank obtains the
gradient for the NGWFs of the atoms local to it. Next, the points
within the PPDs but outside of the NGWF localization radius are
zeroed (“shaved”), as they cannot contribute to the gradient, having
only been calculated for numerical convenience. Finally, a prefac-
tor is applied [the 2 that is in Eq. (23), together with a grid weight],
the contravariant gradient is converted to the covariant form, and
reciprocal-space preconditioning29 is performed on the gradient.
At this point, the calculation of the first term, in its final form, is
completed.

Calculation of the second term G2 is more involved. It is per-
formed entirely by Algorithm 10, invoked in step 28 of Algorithm 5.
The algorithm is best understood by referring to the second
term of Eq. (23). This term, crucially, involves a version of the
resolution-of-identity operator Îδα that employs SWs centered on
atoms D and A that feature in the bra of the ERIs in Eqs. (3)
and (4). This is unfortunate because, as explained earlier, our
algorithm divides the workload by distributing kets [atom pairs
(B, C)] across MPI ranks. Furthermore, in the evaluation of HFx
energy and the first term of the gradient (Algorithm 4, step 6 and
Algorithm 5, step 8), our algorithm always operates on SWs

ALGORITHM 10. Calculate the NGWF gradient term G2 [Eq. (23)].

1: for all my C atoms do
2: Determine atoms B relevant to this atom C
3: Determine atoms A relevant to this atom C
4: OMP for all relevant A atoms do
5: Calculate auxiliary quantity Pγα = φα∑

δ
Kγδφδ ,

thereby eliminating index δ (→Algorithm 11)
6: end OMP for A
7: for all NGWFs c on atom C do
8: OMP for all atoms B relevant to atom C do
9: for all atoms A relevant to atom C do
10: if A is not an S-neighbor of B then
11: next A
12: end if
13: for all NGWFs b on atom B do
14: QCcBb

= QCcBb
+∑

a
PCc

AaKAaBb

15: end for b
16: end for A
17: end OMP for B
18: for all atoms B relevant to atom C do
19: for all NGWFs b on atom B do
20: Expand QCcBb in SWs on B and C
21: OMP for all PPDs in B ∩ C do
22: Calculate the expanded potential ECcBb of QCcBb in PPD
23: end OMP for PPD
24: for PPDs in B ∩ C do
25: Accumulate GBb

2 = GBb
2 + φCcECcBb

26: end for PPD
27: end for b
28: end for B
29: end for c
30: end for C
31: Finalize NGWF gradient term G2 (→Algorithm 9)

centered on ket atoms (B and C), and it is those SWs that are
cached. Fortunately, we can simply rename dummy indices in the
sums to arrive at a less cumbersome expression for the second term
in the gradient. Once we rename Aaα↔ Bbβ and Ddδ↔ Ccγ, we

ALGORITHM 9. Finalize the NGWF gradient term Gi(i = 1, 2).

1: Redistribute the contravariant gradient Gi from scheme 2 back to scheme 1.
2: for all atoms A scheme-1-local to this MPI rank do
3: for all NGWFs a on atom A do
4: for all PPDs spanned by NGWF Aa do
5: Zero points outside of NGWF sphere
6: Apply prefactor
7: end for PPD
8: Convert GAa

i to covariant form
9: Perform reciprocal-space preconditioning
10: end for a
11: end for A

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ALGORITHM 11. Calculate Pγα = φα∑
δ

Kγδφδ for a given atom pair (A, C).

1: for all atoms D that are S-neighbors of atom A do
2: for all NGWFs d on atom D do
3: for all NGWFs a on atom A do
4: Compute φDdφAa
5: for all NGWFs c on atom C do
6: PCc

Aa = PCc
Aa + KCcDdφDdφAa

7: end for c
8: end for a
9: end for d
10: end for D

arrive at (where we explicitly indicate summations for clarity) the
following:

Gβ
2(r) = 2∑

γ
φγ(r)Îγβ(∑

α
Kαβ
∑
δ

Kγδ
∣φδφα)). (25)

This expression is more amenable to our approach since its
RI operator involves SWs centered on ket atoms, as in the previ-
ous steps of the calculation. The fact that we now obtain a gradi-
ent term for NGWF β and not NGWF α does not matter, as we
will need to redistribute the calculated gradients to scheme 1 in
any case. The fact that we will operate on φα and φδ is also not a
problem since our algorithm already requires them (cf. Algorithm 7,
step 10).

We will now describe Algorithm 10, which calculates the sec-
ond term in the NGWF gradient. The main loop iterates over atoms
C owned by an MPI rank, corresponding to the sum over γ in
Eq. (25). For each atom C in the sum, the algorithm first determines
the atoms B with respect to whose NGWFs the gradient needs to be
calculated. These are S-neighbors of atom C, which are in the list of
(B, C) pairs assigned to this MPI rank and will be termed “B atoms
relevant to atom C.” Similarly, atoms A featured in the second sum
(over α) in Eq. (25) are determined. These atoms, which we term
“A atoms relevant to atom C,” are all atoms that are X-neighbors of
relevant B atoms.

For all such atoms A, the algorithm then (steps 4–6) calculates
an auxiliary quantity

Pγα(r) = φα(r)∑
δ

Kγδφδ(r) (26)

in PPDs spanned by atom A [cf. the last sum in Eq. (25)]. This is done
by a very simple algorithm, Algorithm 11, which we present below.
The algorithm is a simple accumulation of the linear combination
of NGWF products. The loop over A leverages OpenMP parallelism
to make this operation efficient, requiring Algorithm 11 itself to be
thread-safe. Given that every instance of Algorithm 11 operates on
a different Aa, this can be accomplished without resorting to syn-
chronization mechanisms. Once this is complete, index δ has been
eliminated from further calculations.

We note in passing that the same Pγα can be calculated on more
than one MPI rank since there is some overlap between C atoms in
(B, C) atom pairs assigned to MPI ranks. Even so, as will be shown
in Sec. V C, the cost of this stage of the algorithm is almost negligible,

except in conduction calculations, where it accounts for ≈20% of the
total cost—a result of large numbers of NGWFs per atom and lower
overlap matrix sparsity.

Algorithm 10 then proceeds to move left through Eq. (25),
taking care of the sum over α (steps 13–15). In this way, another
auxiliary quantity is calculated,

Qγβ
(r) =∑

α
φα(r)Kαβ

∑
δ

Kγδφδ(r), (27)

which should be compared with the quantity in parentheses in
Eq. (25). This eliminates the index α from further calculations.

The next stage is the application of the RI operator Îγβ, that
is, the calculation of the SW-expanded potential of Qγβ in all PPDs
spanned by the intersection of localization spheres of atoms B and
C. Qγβ is first expanded in SWs (step 20), similarly to what was
done earlier to NGWF pair products (steps 5–8 of Algorithm 4).
The expanded potential itself (denoted as ECcBb) is calculated in steps
21–23 in the same PPDs, leveraging OpenMP parallelism. Finally,
the contributions are multiplied by φγ(r) and summed over γ in
steps 24–26, corresponding to the leftmost operation in Eq. (25). The
gradient is finalized (“shaved,” converted to the covariant form, and
preconditioned) through the application of Algorithm 9, just as was
done to its first term.

G. Conduction calculations
Apart from the usual mode of operation where only occu-

pied states are considered, ONETEP has the capability to perform
conduction calculations, which finds use, e.g., in calculating opti-
cal absorption spectra. Conduction calculations optimize an energy
expression involving a separate (conduction) density kernel and a
projected conduction Hamiltonian.45 They typically use larger num-
bers of NGWFs (i.e., not a minimal basis) and larger localization
radii of the NGWFs (by a factor of ≈ 1.5), which means that the over-
lap matrices are not as sparse as in conduction calculations. This,
coupled with the fact that in conduction calculations with hybrid
functionals the inner (LNV) loop does not involve HFx, leads to
a shift of the computational bottlenecks to different parts of the
algorithm. Because of the larger NGWF basis, the memory require-
ment of conduction calculations is also increased relative to valence
calculations. For these reasons, we will benchmark conduction cal-
culations separately, and only for the polymer systems, where they
are more relevant.

H. Preconverging with a non-hybrid functional
A simple commonly used optimization is to preconverge

the calculation with a non-hybrid [typically a GGA (generalized
gradient approximation) functional] and, once it is converged,
to continue it with a hybrid. The expectation here is for the
pre-converged calculation to reach convergence faster than when
starting from the initial guess, thus reducing the number of
expensive (hybrid functional) self-consistency iterations. The cost
associated with the initial steps performed with a GGA is typically
much lower.

We briefly examined two such optimizations—in the first
one (referred in the text as B3LYP-1), we pre-converged the

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

calculation with the Perdew–Burke–Ernzerhof (PBE)46 functional,
and once convergence has been obtained, we continued it with
B3LYP, optimizing both the density kernel and the NGWFs. In
the second optimization (referred in the text as B3LYP-2), we
similarly pre-converged with PBE, but then, we kept the NGWF
basis fixed, only optimizing the density kernel. This corresponds
to running a fixed-NGWF calculation in a GGA-optimized NGWF
basis. In this scenario, ONETEP operates similarly to other fixed-
atomic-orbital-basis electronic structure codes, but with the advan-
tage of using a pre-optimized minimal set of atomic orbitals
(NGWFs).

We demonstrate the excellent accuracy of both optimizations
and significant performance gains in Sec. V H.

IV. CALCULATION DETAILS
We demonstrate the behavior and performance of our imple-

mentation on two classes of systems. The first class comprises
roughly spherical “scoops” of a protein (cGMP-specific phospho-
diesterase type 5, PDE5) of increasing size, suitably truncated and
protonated. These range from 44 atoms (≈12 Å across) to 4048
atoms (≈54 Å across) and constitute a good model of a typical three-
dimensional system of interest in biochemical applications. The sec-
ond class comprises stacked polymer chains of increasing length
(four chains of the PBTZT-stat-BDTT-8 polymer analog, as studied
in Ref. 47). These range from 228 atoms (≈21 Å in length) to 2868
atoms (≈265 Å in length) and are a good model of typical systems
of interest in materials science. The two classes differ in topology
(true 3D systems vs 1D chains) and composition (H-dominated vs
C-dominated).

Unless stated otherwise, all calculations used a kinetic energy
cutoff of 827 eV, an NGWF localization radius of 8a0 (≈4.2 Å),
and a minimal NGWF basis (one NGWF on H and four NGWFs
on p-block elements). Eight inner loop (LNV) iterations were used
throughout. The SW basis quality was lmax = 3 and qmax = 12, and an
exchange interaction cutoff of 20a0 (≈10.6 Å) was used. Calculations
on polymer chains employed density kernel truncation with a cutoff
of 50a0 (≈26.5 Å), while the calculations on proteins did not employ
kernel truncation. Because the size of the polymer systems could eas-
ily be increased in uniform steps, we will use these to demonstrate
weak parallel scaling (where the system size is proportional to the
number of CPU cores). Strong parallel scaling (where the system size
remains constant and the number CPU cores is increased) will be
demonstrated for both classes of systems.

Additionally, for the polymer systems, we benchmarked calcu-
lations of conduction states, where, as explained in Sec. III, the com-
putational bottlenecks are expected to be different. Here, to account
for the expected orbital delocalization, we increased the NGWF
radius to 12a0 (≈6.35 Å), used an extended basis (five NGWFs on
H and 13 NGWFs on p-block elements), and increased the num-
ber of inner loop iterations to 12, reflecting typical settings used for
conduction calculations in ONETEP.

V. RESULTS
All walltimes shown in this section correspond to fully con-

verged calculations with default convergence thresholds and so are

good representations of real-life scenarios. However, we feel obliged
to note two important points. First, in the interest of reducing the
load on the high-performance computing (HPC) facility, we only
ran calculations for one outer loop (NGWF) iteration and carefully
extrapolated the timings to a fully converged calculation from these
measurements, separately taking into account the measured con-
stant overhead and the measured per-iteration time. The number
of iterations was taken from GGA calculations that could be run
at a fraction of the cost. Cross-checks with full hybrid functional
calculations that were actually run to convergence (for a subset of
the systems) validated our estimates to be within 0.5% of the true
walltimes.

Second, in the interest of clarity, we show results normal-
ized to a constant number of outer loop iterations (e.g., Ref. 12
for the protein systems), whereas in reality, the actual number
of iterations differed slightly (σ = 3.0) between individual systems
(for calculations with a GGA and hybrid functional alike). This
slight difference in the number of iterations was not systematic,
but rather, it reflected statistical noise from how the fragments
of the total protein were carved out and truncated, obscuring the
linear-scaling behavior that we set out to demonstrate. For the
polymer systems, the effect was less pronounced (N̄ iter = 10 and
σ = 2.2) but also present. To disentangle this statistical noise from
the actual performance of our algorithm, we chose to show val-
ues normalized to the same number of outer loop iterations in all
cases.

A. Linear scaling with system size
We begin by demonstrating that our approach is, indeed,

linear-scaling, i.e., beyond a certain system size (“onset of linear
scaling”), the walltime of the calculation is linearly proportional to
the number of atoms in the system. First, however, we stress an
important point regarding memory scaling. The performance of our
approach heavily depends on the amount of available memory, with
maximum performance attained with a greedy algorithm that allo-
cates as much memory as it needs to cache all requisite quantities.
The RAM requirement of such a greedy approach increases super-
linearly with the size of the system, at least for system sizes con-
sidered here, and quickly exceeds typical RAM sizes available on
today’s computing nodes—this happens already at about 150 atoms.
Thus, to ensure a fair and realistic benchmark, in this work, we
employ the conditions of linear scaling in memory, i.e., we settle on
a constant memory requirement per atom and limit the RAM use
to this value. We choose this value in such a way as to be able to
perform the largest calculations demonstrated here without exceed-
ing the available RAM on the Iridis5 system at the University of
Southampton. We will term this the standard memory requirement.
Additionally, we will show how our implementation scales at a quar-
ter of this value (mimicking a low-memory environment) and with
four times as much RAM (mimicking typical high-memory nodes
often available on HPC systems), giving an idea of how the employed
time-memory trade-offs perform. The detailed values are given in
Table II.

For demonstrating the effect of available RAM on calculation
walltime, we chose a setup, where all calculations are run on 16 com-
pute nodes (40 CPU cores each). In order to maximize the size of
the caches shared by threads, we use the maximum number of OMP
threads per non-uniform memory access (NUMA) region, that is,

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. The assumed memory requirement of the HFx engine (in MB/atom per MPI
rank) for valence calculations.

Memory SWpot Expansion NGWF product
requirement cache cache cache Total

Low (×0.25) 2.5 1.25 0.25 4
Standard 10 5 1 16
High (×0.4) 40 20 4 64

we run with 32 MPI ranks, each spawning 20 OMP threads. In this
way, each node holds only two MPI ranks and each of the node’s two
NUMA regions is fully populated by OMP threads.

Figure 3 shows the scaling of the total time for the protein sys-
tems. Linear scaling is achieved in all cases, with the onset at about
400 atoms. In the low-memory scenario (green squares), all calcula-
tions were feasible, although the largest ones barely completed one
outer loop iteration within the maximum job walltime on Iridis5
(60 h). Calculations that cannot complete even one iteration within
this limit (and thus cannot be checkpointed and continued later) we
deem infeasible. Given that the total calculation runs for 12 itera-
tions, we marked a “walltime limit” on the plot at 720 h. We can
thus estimate the maximum system size feasible on 16 Iridis5 nodes
to be about 4200 atoms.

At standard memory requirements (blue crosses), all calcula-
tions ran 17%–29% faster, but an out-of-memory condition pre-
vented jobs larger than 3328 atoms from running, corresponding to
a memory requirement of ≈100 GB per node. This means that with
standard memory memory requirement, the maximum limit on job
size is dictated not by the available job time but by available memory
per node.

At high memory requirements, a further speedup of 15%–50%
was achieved, but the maximum job size was only 909 atoms before
available RAM was exhausted.

FIG. 3. Total calculation walltime (on 16 compute nodes) for protein systems of dif-
ferent sizes, assuming 12 outer loop iterations, for different memory requirements
(see the text). For high and standard memory requirements, the maximum system
size is bounded by available RAM. For low memory requirements, all systems (up
to 4048 atoms) were feasible on 16 compute nodes.

Figure 4 demonstrates linear scaling for the polymer systems.
Here, it was feasible to run all systems studied (up to 2868 atoms)
with low and standard memory requirements, with all calculations
completing in well under 200 h. Compared to the low-memory sce-
nario, the gain from having standard memory requirements was
almost constant for all system sizes and averaged at a sizable 26%.
In a high-memory scenario, a further speedup of about 20% was
achieved, but the largest system that did not run out of memory was
1108 atoms.

We now turn our attention to the performance of conduction
state calculations. Because of the different way the energy minimiza-
tion is structured compared to valence calculations (cf. Sec. III),
we note that there is no benefit to caching NGWF expansions in
this case, as NGWFs always change between invocations of the
HFx engine. In addition, because of the vastly increased number
of NGWFs per atom and the increased NGWF localization radius,
caching NGWF products becomes counterproductive, as the cache
hit ratio achieved with default memory allowance is very low (in
the order of 1%–2%). For the above reasons, when benchmark-
ing conduction calculations, we decided to devote the entire mem-
ory allowance to the SWpot cache while keeping the total amount
of RAM per atom the same as in valence calculations. This is
summarized in Table III.

Figure 5 shows the scaling of the total walltime for a conduc-
tion calculation on the polymer systems. The largest system that
was feasible on 16 nodes had 1768 atoms, and beyond that, calcula-
tions with the low memory requirements could not complete a single
iteration within the 60 h job time window. With standard mem-
ory requirements, calculations ran about 22% faster, but beyond
1548 atoms, they ran out of memory. With high memory require-
ments, further gains were very modest and the maximum system
size was limited to only 448 atoms. Linear scaling was achieved in all
cases.

In summary, we find that 16 compute nodes, with about 100 GB
RAM on each node devoted to HFx engine caches, were sufficient to

FIG. 4. Total calculation walltime (on 16 compute nodes) for polymer chains of
different lengths, assuming ten outer loop iterations, for different memory require-
ments (see the text). For high memory requirements, the maximum system size
is bounded by available RAM. At low and standard memory requirements, all
systems (up to 2868 atoms) were feasible on 16 compute nodes.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE III. The assumed memory requirement of the HFx engine (in MB/atom per
MPI rank) for conduction calculations.

Memory SWpot Expansion NGWF product
requirement cache cache cache Total

Low (×0.25) 4 0 0 4
Standard 16 0 0 16
High (×0.4) 64 0 0 64

perform valence calculations on systems up to about 4000 atoms and
conduction calculations up to about 1800 atoms. These calculations
were performed with linear-scaling CPU effort and linear-scaling
memory.

We highlight that smaller calculations (up to several hundred
atoms) could be made faster, in practice, by not limiting their mem-
ory as much. We demonstrate this briefly in Fig. 6, where we show
the calculation walltime for a 443-atom protein system as a func-
tion of memory devoted to HFx caches. This particular calculation
could be made just over twice as fast by using a generous memory
allowance.

B. Calculation walltime compared to a GGA
calculation

To give a better idea about the cost of HFx calculations, in
Figs. 7 and 8, we show calculation walltimes relative to a calculation
with a GGA functional (PBE) for the protein systems and polymer
systems.

For the protein systems (Fig. 7), the computational effort
plateaus at ≈ 100 (for standard memory requirements), meaning
that for larger systems, hybrid calculations should be expected
to be two orders of magnitude slower compared to calculations
with a GGA functional. Using less or more memory has the effect

FIG. 5. Total calculation walltime (on 16 compute nodes) for a conduction calcu-
lation on polymer chains of different lengths, assuming 11 outer loop iterations,
for different memory requirements (see the text). For high and standard memory
requirements, the maximum system size is bounded by available RAM. At low
memory requirements, the walltime limit in conduction calculations is reached at
about 1800 atoms.

FIG. 6. Total calculation walltime (on 16 compute nodes) for a 443-atom protein
system as a function of RAM devoted to HFx caches (log scale).

discussed already in Sec. V A. For small systems (below 100
atoms), hybrid calculations are only about an order of magnitude
slower than calculations with a GGA functional. The reason for
that is that exchange matrix sparsity is reached later than NGWF
overlap sparsity, which puts larger HFx calculations at a bigger
disadvantage.

For the polymer systems (Fig. 8), HFx performs somewhat bet-
ter, being consistently slower than a GGA by a factor of ≈ 60 for all
system sizes, for standard memory requirements. Using less or more
memory has the effect discussed already in Sec. V A. The reason for
better performance here is the one-dimensional nature of the poly-
mer systems, which enables exchange matrix sparsity to be reached
already for the smallest system, and a more homogeneous structure,
which makes load balancing easier.

FIG. 7. Total calculation walltime (on 16 compute nodes), relative to a calculation
with a GGA functional, for protein systems of different sizes, assuming 12 outer
loop iterations, for different memory requirements (cf. Fig. 3). Lower is better.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. Total calculation walltime (on 16 compute nodes), relative to a calculation
with a GGA functional, for polymer chains of different lengths, assuming ten outer
loop iterations, for different memory requirements (cf. Fig. 4). Lower is better.

Finally, we turn to the conduction state calculations on the
polymer systems. A comparison against a GGA calculation is
shown in Fig. 9. We observe that overall HFx does not per-
form as well as it did for valence calculations on the same sys-
tems, but relative performance clearly improves systematically as
the systems become bigger. This indicates that the employed algo-
rithm scales better with system size than standard (GGA) ONETEP,
at least at this range of system sizes. For the largest systems,
the cost of a hybrid calculation is ≈50–60 times larger than for
a GGA.

We note that all calculations shown in this subsection were per-
formed with the maximum number of OMP threads (20), which
is optimal for HFx but suboptimal for standard GGA calculations
with ONETEP. This is because the scaling with the number of threads

FIG. 9. Total calculation walltime (on 16 compute nodes), relative to a calculation
with a GGA functional, for conduction state calculations on polymer chains of differ-
ent lengths, assuming 11 outer loop iterations, for different memory requirements
(cf. Fig. 5). Lower is better.

is much better for the HFx engine than for the rest of ONETEP,
with the latter typically achieving optimum performance at 4–5
OMP threads. Indeed, once the GGA calculations are switched
from an NMPI = 32 and NOMP = 20 setup to a more favorable
NMPI = 160 and NOMP = 4 setup, their performance increases almost
exactly by a factor of 2 for all systems. Thus, in practical scenar-
ios, the reported slowdown of HFx relative to GGA would be twice
as big.

C. Individual components of computational effort
We will now provide a detailed breakdown of which compo-

nents of the calculation are responsible for most of the compu-
tational effort for the classes of systems under study, demonstrat-
ing that each component also separately scales linearly with system
size.

The majority of computational effort in HFx calculations with
ONETEP is associated with the following stages of the calculation:

1. Evaluating SWpots—calculating the values of the spherical
wave potentials33 originating on atomic centers at Cartesian
grid points of NGWFs whose centers are within the exchange
cutoff. Although this stage has been extensively optimized,
it remains a bottleneck in all studied systems. This effort is
mitigated by the SWpot cache.

2. Expansions—evaluating the linear combinations (cf. Algo-
rithm 5, step 8) of SWpots originating on atomic centers at
Cartesian grid points within the exchange cutoff. This effort is
mitigated by the expansion cache.

3. Sum over Cc—calculation of the sums over Cc (cf.
Algorithm 5, step 19 and Algorithm 6).

4. Gradient P—calculation of the auxiliary term P in the
exchange NGWF gradient, Eq. (26).

5. Load imbalance—idle time spent waiting for other MPI ranks
to finish their share of calculations. This component would be
zero if load could be balanced perfectly.

6. MPI comms—time spent on message passing (communica-
tion between MPI ranks).

7. HFx other—all the remaining stages of evaluating the HFx
energy and gradient, excluding initialization (calculation of
the metric matrix).

8. Rest of ONETEP—all the non-HFx related calculations per-
formed within ONETEP, excluding initialization.

9. Initialization—constant overhead, independent of the num-
ber of energy evaluations, HFx-related and HFx-unrelated
alike, e.g., calculating the metric matrix and structure fac-
tor, setting up the parallel distribution, calculating the
Ewald energy term, and initialization of radial Bessel
functions.

Figure 10 shows a breakdown of the total calculation wall-
time for the protein systems, on 16 compute nodes, under standard
memory requirements. The same data are presented in a cumula-
tive percentage form in Fig. 11. It is clear that all individual com-
ponents are linear-scaling with the size of the system and that the
evaluation of SWpots (red) constitutes the most computationally
intensive part of the calculation, accounting for about half of the
walltime. For these systems, at standard memory requirements, only

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 10. Individual components of the total calculation walltime (on 16 compute
nodes) for protein systems of different sizes, assuming 12 outer loop iterations, for
standard memory requirement.

(2.6 ± 1.0)% SWpots can be stored in the cache. Since the SWpots
are heavily reused and are stored in the order of reusability, actual
SWpot cache hit ratios are much higher here, at (42.6 ± 4.2)%,
but this still means that in over half of the cases, SWpots have
to be re-evaluated. This cost can be mitigated by increasing the
memory allowance for the SWpot cache, but after a certain point,
this strategy yields diminishing returns—SWpots evaluated at the
outer edges of the system, where there is little NGWF overlap, are
necessarily less often reused, and caching them offers less benefit
compared to SWpots evaluated at grid points where many NGWFs
overlap.

Load imbalance (light green) accounted for (17.4 ± 4.8)%
of the calculation walltime. This relatively large value reflects
the fact that the protein constitutes a rather heterogeneous sys-
tem, where it is difficult to simultaneously achieve a good load

FIG. 11. As in Fig. 10, shown as cumulative percentages of the total.

balance for the energy calculation and for the NGWF gradient cal-
culation. Here, it is the imbalance in the energy calculation that
accounts for ≈80% of the total load imbalance. This is mostly
caused by the differences in SWpot cache hit ratios between MPI
ranks—the current balancing algorithm strives to balance the total
number of Bb–Cc NGWF products, without accounting for the fact
that SWpots on the outer edges of the system are unlikely to be
cached.

Calculating expansions of NGWF products in terms of SWs
(cf. Algorithm 5, step 8) (blue) accounted for (14.5 ± 1.0)% of
the calculation walltime. This cost can be mitigated by increasing
the allowance for the expansions cache, but the associated memory
requirement grows superlinearly, meaning that with linear-scaling
memory allowance, cache hit ratios will decrease as the systems
are made bigger. Here, in the smallest (44-atom) system, the cache
hit ratio was 46%, while in the largest (3228-atom) system, it was
only 2.8%.

Summing over the index Cc (cf. Algorithm 5, step 19 and
Algorithm 6), all the remaining HFx operations were minor contri-
butions, accounting for less than 7% of the total walltime each. The
remaining terms (MPI communication, calculation of the NGWF
gradient term P, and non-HFx operations and initialization) were
almost negligible below 2% each.

We now turn our attention to the polymer systems, where
corresponding plots are shown in Figs. 12 and 13. Qualitatively,
the breakdown of timings resembles that for the protein systems,
and all components retain their linear-scaling behavior. Evaluating
SWpots remains the most costly component, accounting for (53.7
± 1.7)% of the walltime. The main difference is the reduced load
imbalance (light green) and an increase in the cost of generating
the SW expansions (blue). The polymer systems are composed of
identical repeat units and increase only along one dimension, which
explains the much easier load balancing—associated overheads were
below 9%, except for the smallest systems. Higher effort associated
with SW expansions, compared to the protein systems, is a conse-
quence of a higher average number of NGWFs per atom (≈3.0 vs
≈2.5). Other contributions to the walltime, similarly as for the pro-

FIG. 12. Individual components of the total calculation walltime (on 16 compute
nodes) for polymer chains of different lengths, assuming ten outer loop iterations,
for standard memory requirement.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-17

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 13. As in Fig. 12, shown as cumulative percentages of the total.

tein systems, are much smaller. The slight anomaly for the final data
point, where the cost of evaluating SWpots decreases despite the
increase in the size of the system, is a result of fortuitous load bal-
ancing, increasing the average SWpot cache hit ratio from 50.0%
to 54.5%.

For conduction state calculations, the distribution of the com-
putational effort is somewhat different. The main reasons are as
follows: the use of much bigger NGWF localization regions (which
lead to a decrease in metric matrix and overlap matrix sparsities),
the use of a large number of NGWFs per atom (vastly increasing
the number of Bb–Cc NGWF products), and the fact that inner loop
(LNV) iterations do not require the evaluation of HFx energy in
conduction NGWF optimization.

The plots for conduction state calculations on the polymer
chains are shown in Figs. 14 and 15. Linear-scaling behavior

FIG. 14. Individual components of the total calculation walltime (on 16 compute
nodes) in a conduction state calculation for polymer chains of different lengths,
assuming 11 outer loop iterations, for standard memory requirement.

FIG. 15. As in Fig. 14, shown as cumulative percentages of the total.

is retained for all the components of the algorithm. Evaluating
SWpots remains the bottleneck, but its cost is slightly reduced to
(37.9 ± 2.4)%. One reason is the relative increase in the SWpot cache
memory allowance (cf. Table III), and another one is the increase
in the effort associated with other components, particularly those
associated with the NGWF gradient term.

The main difference from the valence calculation is the
increased cost of “HFx: other” (orange diamonds) from (7.5 ± 0.2)%
to (17.3 ± 1.8)%. This increase is driven by the increased NGWF
overlap, leading to larger efforts associated with computing SWpot-
NGWF-product overlaps (cf. Algorithm 4, step 6) and the auxiliary
term Q in the NGWF gradient [Eq. (27)]. The same reason drives the
significant increase in the effort associated with calculating the term
P, which increased to (16.0 ± 3.4)% from (1.0 ± 0.4)% for the valence
calculation, becoming more costly on average than the calculation of
SW expansions.

The cost of evaluating SW expansions is significantly decreased
[(21.4 ± 2.3)% in the valence calculation to (12.8 ± 1.9)% here],
which is a direct consequence of the fact that inner loop itera-
tions in a conduction calculation do not involve HFx. The cost of
imperfect load balancing is similar [(9.3 ± 3.0)%], but here, it is
mostly the NGWF gradient calculation that is less than optimally
balanced. Finally, the non-HFx components of the calculation (“rest
of ONETEP”) are no longer negligible, accounting for (1.4 ± 0.3)% of
the total calculation walltime.

In summary, we showed that all components of the calculation
scale linearly with the system size, that evaluating SWpots is the bot-
tleneck in all types of calculations, that the relative effort associated
with other components depends on the type of calculation (valence
vs conduction) and type of the system, that communication over-
heads are negligible, and that load balancing could be improved for
more difficult systems.

Here, we briefly demonstrate how the total walltime of HFx
calculations depends on the number of compute nodes and what
system sizes are feasible. In Fig. 16, we plot the walltimes of cal-
culations for protein systems, with standard memory requirements
(cf. Fig. 3), run on 4, 8, 16, and 32 Iridis5 compute nodes (160,
320, 640, and 1280 CPU cores, respectively). The computational

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-18

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 16. Total calculation walltime (on 4, 8, 16, and 32 compute nodes) for protein
systems of different sizes, assuming 12 outer loop iterations.

effort is linear-scaling (with an onset at ≈400 atoms) in all cases.
Calculations on four and eight nodes reach the walltime limit
(60 h per outer loop iteration) beyond 1396 and 2486 atoms,
respectively. Larger calculations would only be possible on these
configurations only if the memory allowance could be increased
significantly or if the walltime window per job could be increased
beyond 60 h.

D. Calculation walltime and feasibility depending
on number of compute nodes

On 16 and 32 nodes, the maximum system size is much larger
(3228 and 3622 atoms, respectively) and, in this case, is bounded
by available RAM. Larger calculations would be possible on these
configurations if memory allowance was decreased. Indeed, we
showed in Fig. 3 that all the studied systems (up to 4048 atoms)
could be already run on 16 compute nodes under low memory
requirements.

For the polymer chain systems, we show an equivalent
plot in Fig. 17. Again, the calculation is linear-scaling (with the
onset already at the smallest system). Here, owing to the fact that the
systems are effectively one-dimensional and thus exchange matrix
sparsity is reached very early, all the studied systems fit within the
walltime limit (60 h per outer loop iteration) even on four compute
nodes, and available RAM is not exhausted under standard memory
conditions.

E. Strong parallel scaling
We now turn our attention to arguably the most important

metric for describing how the computational effort of a calculation
changes with the allocated resources. Strong parallel scaling char-
acterizes the speedup obtained when the same calculation is run
on an increasingly larger number of CPU cores. Parallel speedup is
defined as

S(Ncores) =
t(1)

t(Ncores)
, (28)

FIG. 17. Total calculation walltime (on 4, 8, 16, and 32 compute nodes) for polymer
chains of different lengths, assuming ten outer loop iterations.

FIG. 18. Strong parallel scaling for two representative protein systems: small (top)
and large (bottom). Higher is better.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-19

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

where t(Ncores) is the walltime of the calculation on Ncores CPU
cores. Since in many scenarios it is not feasible to run the calcula-
tion on one CPU core, speedup relative to a fixed number of cores
N0

cores is often used instead,

SN0
cores
(Ncores) =

t(N0
cores)

t(Ncores)
. (29)

Well-parallelized algorithms achieve near-linear speedup,
which usually becomes sublinear and then plateaus for larger Ncores,
due to small but non-zero fractions of the algorithm that could not
or have not been parallelized, an effect captured by Amdahl’s law.48

Non-negligible communication overheads and imperfect load bal-
ancing also play a role. A linear speedup is typically termed perfect
or optimal scaling because it corresponds to a scenario where all the
overheads vanish and the fraction of the algorithm that has not been
parallelized is zero.

In the case of our implementation, this simplified analysis does
not strictly hold because our algorithm makes good use of the extra
memory that becomes available as additional compute nodes are
allocated to the calculation. We showed in Sec. V A (see, e.g., Fig. 6)
that the performance of our implementation strongly depends on
the amount of memory that can be devoted to the calculation. This
particular feature allows our approach to exceed what is typically
deemed to be perfect parallel scaling by improving the degree of
caching as more CPU cores are added. We demonstrate this for
representative protein systems (one small and one large in Fig. 18)
and for representative polymer systems (one small and one large in
Fig. 19). We show parallel speedups relative to 160 CPU cores (four
nodes) or, where the system is too large to run on four nodes, relative
to 320 CPU cores (eight nodes).

For the small protein system (Fig. 18, top), we modestly exceed
perfect scaling, except for the last two data points, where the speedup
becomes marginally worse than linear. This happens due to imper-
fect load balancing, which is difficult to achieve when the number of
CPU cores exceeds the number of atoms by a factor of about 7. For
the large protein system (Fig. 18, bottom), we exceed perfect scaling
in all cases, even for the largest number of CPU cores, where at 1280
cores we achieve a 4.17-fold speedup over 320 cores.

The polymer chains, being more homogeneous and practi-
cally one-dimensional, constitute an easier system for our approach,
which achieves better-than-perfect scaling at least until 1280 CPU
cores for a smaller and a larger system alike (Fig. 19). For the larger
system, in particular the gains are substantial—an eightfold increase
in the number of CPU cores (from 160 to 1280) yields a 10.2-fold
speedup.

For conduction state calculations, our algorithm does not scale
superoptimally (see Fig. 20), but the scaling remains respectable. For
a small system (228 atoms), an eightfold increase in the number of
CPU cores offers a 4.22-fold speedup, corresponding to a parallel
efficiency of 0.53. For a larger system (888 atoms), which was bench-
marked against 320 cores, a fourfold increase in the number of CPU
cores yielded a 2.72-fold speedup (efficiency of 0.68). The main cul-
prit responsible for the worse scaling of conduction calculations is
parallel load imbalance in the NGWF gradient part. A more care-
ful load balancing scheme, perhaps one dedicated to the particular
requirement of conduction calculations, might be able to mitigate
the problem.

F. Weak parallel scaling
We will now look at how the computational effort of our

approach changes as both the size of the system and the available
resources (CPU cores and RAM) are uniformly increased. This is
known as weak parallel scaling, and it is easiest to illustrate using
parallel speedup relative to the number of CPU cores on which this
speedup has been obtained, also known as parallel efficiency,

e(Ncores) =
s(Ncores)

Ncores
. (30)

Since in many scenarios it is not feasible to run the calculation on
one CPU core, efficiency relative to a fixed number of cores N0

cores is
often used instead,

eN0
cores
(Ncores) =

sN0
cores
(Ncores)

Ncores/N0
cores

. (31)

FIG. 19. Strong parallel scaling for
two representative polymer chains: small
(left) and large (right). Higher is better.

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-20

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 20. Strong parallel scaling for two representative polymer chains: small (top)
and large (bottom) in a conduction state calculation. Higher is better.

Here, we will perform a rather stringent test of performance, show-
ing parallel efficiency relative to 160 CPU cores, with a fairly small
(and thus difficult) number of atoms per core (≈1.4).

From the definition of efficiency and the discussion in Sec. V E,
it follows that perfect scaling will correspond to e = 1. In typical
scenarios, Amdahl’s law together with load imbalance and com-
munication overheads will cause efficiency to drop below 1 for
larger core counts. As our algorithm can make good use not only
of the additional CPU cores but also of the additional RAM, we
expect it to achieve “superoptimal” efficiency at least in some
scenarios.

When investigating weak parallel scaling, one must be able to
increase the system size in a uniform fashion so that the number of
atoms per CPU core is constant. For this reason, we will only show
weak scaling for the polymer systems, where this can be achieved by
adding identical units to the system.

The results of our measurements are presented in Fig. 21, which
shows plots of efficiency (relative to 160 CPU cores) for both the

FIG. 21. Weak parallel scaling for the polymer systems (higher is better). The solid
lines correspond to a calculation with a hybrid, and the dashed lines show a GGA
calculation for comparison. System sizes range from 228 to 1768 atoms for ≈1.4
atoms per CPU core.

valence and conduction state calculations. For valence calculations,
scaling is near-optimal at lower system sizes and core counts, slightly
exceeding perfect scaling for larger systems, which is an excellent
result. Standard GGA calculations do not scale as well, although
their performance is still good, with efficiencies of about 0.8 for all
setups.

For conduction calculations, scaling is suboptimal, but
respectable, across the board, with e ≈0.7–0.8, which is still much
better than GGA conduction calculations, where efficiency drops to
below 0.4 for the largest core counts. Several factors are responsi-
ble for the worse scaling performance of conduction calculations
compared to valence calculations. First, because of how conduction
calculations are structured (cf. Sec. III), there is no benefit to caching
NGWF expansions in this case, as NGWFs always change between
invocations of the HFx engine. This means that the SW expan-
sion stage does not benefit from the additional RAM at higher core
counts. Second, the calculation of the P term in the NGWF gradient
does not scale as well as the other components, presumably because
NGWF products are not cached either in this case. The additional
RAM is not wasted; it is devoted to caching SWpots (see Table III),
and this stage does achieve e > 1. Finally and most importantly, the
impact of parallel load imbalances increases as the calculations move
to larger core counts. In contrast to valence calculations, here, it
is the NGWF gradient calculation stage that becomes increasingly
poorly balanced. This again (cf. the end of Sec. V E) suggests that
taking the NGWF gradient stage into account in the load balancing
scheme would be worth pursuing.

G. Calculation walltime vs MPI/OMP balance
We will now briefly consider how the calculation walltime

depends on the division of work across MPI ranks and OMP threads.
ONETEP supports the so-called hybrid parallelism, that is, it runs
on multiple MPI processes (termed ranks), each of which spawns
OMP threads. Processes reside in separate address spaces (and
often on distinct physical machines, termed nodes), while threads

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-21

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

spawned from a single rank share memory. All large data struc-
tures are thus distributed across ranks, but shared across threads.
It is up to the user to divide the pool of available CPU cores Ncores
across NMPI ranks and NOMP threads such that Ncores = NMPINOMP.
The maximum number of ranks is limited by system size. Roughly
speaking, the number of atoms must be larger than NMPI, and in
practice, load balancing issues cause performance to deteriorate
when the number of atoms per rank becomes small. The maxi-
mum number of threads is limited by the number of CPU cores on
a node.

Standard (non-hybrid) ONETEP calculations typically attain best
performance at four or five OMP threads, where load balancing
overheads are balanced between MPI ranks and OMP threads.41

The HFx engine, however, benefits from additional memory that
becomes available when the MPI/OMP balance is shifted toward
using more OMP threads and fewer MPI ranks. For instance, on a
typical 128 GB node with 32 CPU cores, one could allocate 16 GB
of memory per MPI rank when using NMPI = 8 and NOMP = 4 but as
much as 64 GB per MPI rank when using NMPI = 2 and NOMP = 16
(neglecting the memory used by the OS and supporting software
architecture). The additional memory devoted to HFx engine caches
will substantially increase performance (cf. Fig. 6). However, for this
to happen, the algorithm needs to scale well with the number of
OMP threads.

In Fig. 22, we show how the calculation walltime changes with
the number of OMP threads. Crucially, the total memory use of the
HFx engine has been kept constant across all data points in each of
the two curves. Clearly, for both systems, the calculation is fastest
when 20 OMP threads are used, becoming somewhat slower as bal-
ance is shifted toward lower numbers of threads. The performance
decrease at 40 OMP threads, despite allocating all of the node’s
memory to a single MPI rank, is due to the fact that Iridis5 nodes
encompass two NUMA regions, and splitting a process across two
regions results in a severe performance hit due to nonlocal mem-
ory accesses. This is a typical situation on many HPC machines. We

FIG. 22. Effect of the MPI-OMP balance on calculation walltime for a small
protein system (blue squares) and a large protein system (red crosses) run
on 16 compute nodes (40 CPU cores each). The x axis shows NOMP, and
NMPI = (16 × 40)/NOMP. Lower is better.

did not run the small system with one or two OMP threads because
the system was too small for the resulting large NMPI. The large
system could not be run with four or fewer OMP threads because
the resulting large number of MPI ranks per node led to an out-
of-memory condition due to the cost of non-HFx components of
ONETEP.

In summary, we confirmed our expectation that our algorithm
performs best at the highest possible number of OMP threads, pro-
vided that processes do not cross NUMA boundaries. This also con-
firms excellent OMP scaling of the algorithm, without which the
above result would not have been possible.

H. Preconverging with a non-hybrid functional
We now briefly show how the performance of hybrid func-

tional calculations can be improved by employing the optimization
described in Sec. III H, and we assess the effect of this optimization
on energies.

We begin by demonstrating that the error in the energies asso-
ciated with restarting from a pre-converged calculation is practically
negligible (and certainly much smaller than the error introduced by
switching to PBE) in both scenarios—when the calculation is contin-
ued with a hybrid functional, optimizing both the density kernel and
the NGWFs (“B3LYP-1”), and when only the density kernel is opti-
mized (“B3LYP-2”)—with the latter approach avoiding the NGWF
gradient computation stage entirely.

As the investigated energies we use (a) the bond-stretch energy
curve of ethene, (b) the interaction energy curve of water with a
chloride ion, (c) the interaction energy of a sodium cation with its
first solvation shell for a number of snapshots obtained from clas-
sical molecular dynamics, and (d) the HOMO–LUMO gap of an
888-atom polymer system investigated earlier in the text and shown
in Fig. 20. In this way, we probe not only bonded but also non-
bonded interactions, and we investigate small systems (a)–(c) and
large systems (d).

The smallest systems were run using correspondingly modest
computational resources—two MPI processes with four OpenMP
threads each for ethene and H2O:Cl− and eight MPI processes with
five OpenMP threads each for Na+:6H2O. Memory load did not
exceed 4 GB per MPI processes, and as such, it was not capped. The
888-atom polymer system was run on 16 Iridis5 nodes (two MPI
processes per node, with 20 OpenMP threads each), with memory
capped to 50 GB per MPI processes.

The results are shown in Figs. 23–25 and in Tables IV and
V. For ethene (Fig. 23), the bond-stretch curves are practically
indistinguishable between the full B3LYP calculation and both
approaches based on restarts, with mean errors in the order of
0.1 kcal/mol or less, while PBE consistently overbinds by as much
as 17 kcal/mol (Table IV). For the H2O:Cl− system (Fig. 24),
the interaction energy curves are also very similar between the
full B3LYP calculation and both approaches based on restarts,
with errors never exceeding 0.1 kcal/mol, while PBE overbinds by
1–2 kcal/mol (Table IV). In the Na+:6H2O system, PBE underbinds
by 1–2.5 kcal/mol, and again, the results of the two restart-based
approaches are almost always within 0.1 kcal/mol from the full
B3LYP calculation. For these very small systems (Natoms < 20), the
efficiency gains from using a restart-based approach are either very
modest or non-existent (Table V). This is due to the fact that for

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-22

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 23. Bond stretch curve for ethene, computed with B3LYP (red squares), the
two approaches where B3LYP is used after pre-converging with PBE (orange
crosses and black plusses—see the text), and PBE (blue squares). The line is
meant as a guide for the eye.

small systems, all requisite SWs and expansions can be cached in
RAM, making the employed time-memory trade-offs very efficient
and the calculation of HFx near-optimal. As shown earlier in Figs. 3
and 4, the memory load of caching everything quickly becomes pro-
hibitive, and indeed, the efficiency gains from using a restart-based
approach for a large polymer system become quite significant—over
twofold for B3LYP-1 and over 19-fold for B3LYP-2 (Table V). As
we did not look at the energy of binding for the polymer system, we
instead calculate its HOMO–LUMO gap to assess the accuracy of the
restart-based approach. Table VI shows that the associated error was
in the order of 0.02 eV (less than 2%), again much smaller than the
one associated with switching to PBE for the entire calculation.

We thus conclude that it is practicable, and sufficiently accu-
rate, to significantly reduce the cost of hybrid functional calculations
by first preconverging with a GGA for all systems except the smallest
ones.

I. Demonstration of practicability—example
calculations on large imogolite nanotube systems

We finish with a demonstration of the practicability of the pre-
sented approach for calculating Hartree–Fock exchange by showing

FIG. 24. Interaction energy curve for H2O:Cl−, computed with B3LYP (red
squares), the two approaches where B3LYP is used after pre-converging with PBE
(orange crosses and black plusses—see the text), and PBE (blue squares). The
line is meant as a guide for the eye.

FIG. 25. Interaction energies between Na+ and its first solvation shell (6H2O) for
100 snapshots extracted at regular intervals from a molecular dynamics run. The
results computed with B3LYP (red squares), the two approaches where B3LYP
is used after pre-converging with PBE (orange crosses and black plusses—see
the text), and PBE (blue squares) are compared against the reference (B3LYP)
results.

fully converged results obtained with B3LYP for large nanotube
systems (up to 1416 atoms). The potential of these aluminosilicate
nanotubes and their derivatives for selective photo-catalytic appli-
cations has been recently explored computationally49–53 and started
to be verified experimentally.54,55 In this work, we calculated the
electronic density of states (Fig. 26), the HOMO–LUMO bandgap
(Fig. 27), and the free energy of solvation in implicit solvent water
(Fig. 28) of pristine (undefected), hydrated, and aluminosilicate
imogolite nanotubes of three different sizes—three, five, and seven
units (see Ref. 49 for more details).

The structure of the largest considered nanotube, surrounded
with implicit solvent, is shown in Fig. 29. Our calculations ran on
32 compute nodes, each with 40 CPU cores and 192 GB of RAM

TABLE IV. Errors in the interaction energy—mean signed, root mean square, and
maximum—relative to the B3LYP reference, averaged over all data points.

Mean signed RMS Maximum
error error error

System Model (kcal/mol) (kcal/mol) (kcal/mol)

C2H4

PBE −17.017 17.268 21.651
B3LYP-1 −0.016 0.035 0.091
B3LYP-2 0.110 0.121 0.159

H2O:Cl−
PBE −1.046 1.121 1.953

B3LYP-1 0.021 0.022 0.030
B3LYP-2 0.085 0.085 0.096

Na+:6H2O
PBE 1.650 1.689 2.490

B3LYP-1 −0.087 0.091 0.148
B3LYP-2 −0.012 0.042 0.111

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-23

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE V. Speed-up (reduction in walltime) of the two restart-based approaches
relative to a full B3LYP calculation: s = tB3LYP/tB3LYP-[12]. Higher is better.

Speed-up relative to a
System Model full B3LYP calculation

C2H4
B3LYP-1 0.75
B3LYP-2 1.02

H2O:Cl− B3LYP-1 0.71
B3LYP-2 1.01

Na+:6H2O B3LYP-1 1.10
B3LYP-2 1.72

888-atom polymer B3LYP-1 2.21
B3LYP-2 19.44

TABLE VI. HOMO–LUMO gaps for the 888-atom polymer system—calculated with
PBE, B3LYP, and the two restart-based approaches, and their errors relative to a full
B3LYP calculation.

HOMO–LUMO Error relative Error relative
Model gap (eV) to B3LYP (eV) to B3LYP (%)

PBE 0.482 −0.810 −62.69
B3LYP 1.293 0.000 0.00
B3LYP-1 1.267 −0.026 −2.01
B3LYP-2 1.281 −0.012 −0.89

and, for the largest system, took about 14 h per NGWF optimization
iteration, thus requiring several restarts to complete (calculations
typically take 10–20 iterations to fully converge).

As expected, we observe (Figs. 27 and 28) a widening of the
HOMO–LUMO gap by about 1.5 eV once the hybrid functional is
switched from PBE to a hybrid (B3LYP). The subsequent addition
of the water environment (modeled using our minimal-parameter

FIG. 26. Electronic density of states for the studied imogolite nanotube. The results
obtained in vacuum with a GGA (PBE, blue) and with a hybrid functional (B3LYP,
red) are compared. In addition, the effect of implicit solvent is shown for the B3LYP
calculation (orange).

FIG. 27. HOMO–LUMO gap for the three studied nanotube lengths, as predicted
by B3LYP (in implicit solvent: solid orange line, empty squares; in vacuum: dashed
red line, full squares), and PBE (in implicit solvent: solid green line, empty squares;
in vacuum: dashed blue line, full squares).

solvent model56,57) further increases the gap by about 0.4 eV. The
magnitude of the gap appears reasonably well-converged with sys-
tem size at seven nanotube units.

The calculated free energy of solvation is in the order of
−200 kcal/mol per one nanotube unit of length and is more favor-
able by about 13 kcal/mol when calculated with B3LYP, compared
to PBE. It changes appreciably between system sizes, presumably
due to the effect of the ends of the nanotube and different struc-
tural relaxation.49 The calculated free energy of solvation still seems
slightly underconverged with system size even at seven nanotube
units. The presented method development in ONETEP paves the way
for follow-up research into this aspect of imogolite nanotubes, as
well as hybrid (linear-scaling) DFT simulations of the mechanisms
of the assembly of solvated proto-imogolite fragments into the final
nanotubes.58,59

FIG. 28. Free energy of solvation per nanotube unit for the three studied nanotube
lengths, as predicted by B3LYP (orange, empty squares) and PBE (green, empty
squares).

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-24

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 29. Structure of the largest studied imogolite nanotube (seven units), indicat-
ing the positions of the nuclei (spheres) and the implicit solvent dielectric cavity
(surrounding bubbles).

VI. CONCLUSIONS
We presented a massively parallel linear-scaling algorithm for

the calculation of Hartree–Fock exchange and hybrid functionals,
subsequently discussing and benchmarking its implementation on a
number of systems relevant to industrial applications.

Our approach is based on expressing products of localized
orbitals (NGWFs) in terms of truncated spherical waves, the expres-
sions for the electrostatic potential of which are known analytically.
The carefully thought out parallel distribution of both data and algo-
rithms, together with the aggressive use of time-memory trade-offs,
allows our approach to achieve very high parallel efficiency in sce-
narios where the number of CPU cores is comparable to the number
of atoms and beyond.

We showed how on today’s machines our approach is able to
treat systems of up to about 1500 atoms routinely—requiring sev-
eral hundred CPU cores to achieve a walltime of under one week.
The largest system that we demonstrated to be practicable on 32
compute nodes contained 4048 atoms. The excellent scaling prop-
erties of our approach mean that systems even larger than that
will be treatable, although they would require substantial compu-
tational resources (Ncores ≈ Natoms). Conduction state calculations
have larger requirements due to reduced matrix sparsity and larger
numbers of NGWFs, and the largest system we showed to be
practicable on 16 nodes was 1768 atoms.

The computational effort of our approach scales linearly with
system size, and the same is true for all of its components individ-
ually. The strong parallel scaling is excellent, occasionally becoming

superlinear owing to the extensive use of time-memory trade-offs,
and although there is still room for optimization in conduction state
calculations, even these scale better than corresponding calculations
with a GGA. Our implementation scales very well to high thread
counts and to large numbers of MPI processes, retaining very good
efficiency even in the regime where Ncores ≫ Natoms.

In light of the fact that, through the use of a finite auxiliary basis,
our approach is an approximation, in the supplementary material,
we assessed the magnitude of the introduced error and showed how
it converges with the tunable parameters of the SW basis set. In all
cases, we found the magnitude of the error to be extremely small and
controllable.

The methods presented in this paper not only significantly nar-
row the performance gap between hybrid functionals and GGAs and
meta-GGAs in linear-scaling DFT but also pave the way for future
developments in ONETEP, which would employ four-center electron
repulsion integrals—such as Random Phase Approximation (RPA)
or Møller–Plesset perturbation theories or calculations employing
screened hybrids.

SUPPLEMENTARY MATERIAL

See the supplementary material for how the additional approx-
imations employed in our approach (the use of an exchange cutoff
and the finiteness of the auxiliary basis) are controllable and how the
associated errors are very small.

ACKNOWLEDGMENTS
This work was funded by the Engineering and Physical Sciences

Research Council (EPSRC), UK, as part of a flagship project of the
CCP9 consortium (EPSRC Grant No. EP/P02209X/1). We acknowl-
edge the support of the high-performance computing centers where
we ran the calculations: Iridis5 at the University of Southampton
(UK) and tryton at the TASK Academic Computer Centre (Gdańsk,
Poland). We also acknowledge the UKCP for access to ARCHER and
ARCHER2 (EPSRC Grant No. EP/P022030/1) and the MMM hub
for access to Young (EPSRC Grant No. EP/T022213/1). J.D. would
like to thank Gilberto Teobaldi and Emiliano Poli for fruitful dis-
cussions regarding the imogolite nanotube systems and for making
their structures available.

AUTHOR DECLARATIONS
Conflict of Interest

The authors declare that there is no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1K. Burke, J. Chem. Phys. 136, 150901 (2012).
2V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119,
12129 (2003).
3C. Ochsenfeld, C. A. White, and M. Head-Gordon, J. Chem. Phys. 109, 1663
(1998).

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-25

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0067781
https://www.scitation.org/doi/suppl/10.1063/5.0067781
https://doi.org/10.1063/1.4704546
https://doi.org/10.1063/1.1626543
https://doi.org/10.1063/1.476741

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

4E. Schwegler, M. Challacombe, and M. Head-Gordon, J. Chem. Phys. 106, 9708
(1997).
5S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136,
144107 (2012).
6M. Guidon, J. Hutter, and J. VandeVondele, J. Chem. Theory Comput. 5, 3010
(2009).
7M. C. Gibson, S. Brand, and S. J. Clark, Phys. Rev. B 73, 125120 (2006).
8M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys.: Condens. Matter 20,
064201 (2008).
9S. J. Clark and J. Robertson, Phys. Rev. B 82, 085208 (2010).
10H.-Y. Ko, J. Jia, B. Santra, X. Wu, R. Car, and R. A. DiStasio, Jr., J. Chem. Theory
Comput. 16, 3757 (2020).
11X. Wu, A. Selloni, and R. Car, Phys. Rev. B 79, 085102 (2009).
12Q. Sun, T. C. Berkelbach, J. D. McClain, and G. K.-L. Chan, J. Chem. Phys. 147,
164119 (2017).
13M. Del Ben, J. Hutter, and J. VandeVondele, J. Chem. Theory Comput. 8, 4177
(2012).
14E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys. 2, 41 (1973).
15J. L. Whitten, J. Chem. Phys. 58, 4496 (1973).
16M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359
(1993).
17K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs, Chem. Phys. Lett.
240, 283 (1995).
18F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143
(1998).
19P. Merlot, T. Kjaergaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B.
Pedersen, J. Comput. Chem. 34, 1486 (2013).
20B. I. Dunlap, Phys. Chem. Chem. Phys. 2, 2113 (2000).
21B. I. Dunlap, J. Mol. Struct.: THEOCHEM 529, 37 (2000).
22B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 3396 (1979).
23D. P. Tew, J. Chem. Phys. 148, 011102 (2018).
24A. Sodt and M. Head-Gordon, J. Chem. Phys. 128, 104106 (2008).
25J. Dziedzic, Q. Hill, and C.-K. Skylaris, J. Chem. Phys. 139, 214103 (2013).
26J. C. A. Prentice, J. Aarons, J. C. Womack, A. E. A. Allen, L. Andrinopoulos,
L. Anton, R. A. Bell, A. Bhandari, G. A. Bramley, R. J. Charlton, R. J. Clements,
D. J. Cole, G. Constantinescu, F. Corsetti, S. M.-M. Dubois, K. K. B. Duff, J. M.
Escartín, A. Greco, Q. Hill, L. P. Lee, E. Linscott, D. D. O’Regan, M. J. S. Phipps,
L. E. Ratcliff, Á. Ruiz Serrano, E. W. Tait, G. Teobaldi, V. Vitale, N. Yeung, T. J.
Zuehlsdorff, J. Dziedzic, P. D. Haynes, N. D. M. Hine, A. A. Mostofi, M. C. Payne,
and C.-K. Skylaris, J. Chem. Phys. 152, 174111 (2020).
27W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
28C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Diéguez, and M. C. Payne, Phys.
Rev. B 66, 035119 (2002).
29A. A. Mostofi, P. D. Haynes, C.-K. Skylaris, and M. C. Payne, J. Chem. Phys.
119, 8842 (2003).
30R. W. Nunes and D. Vanderbilt, Phys. Rev. B 50, 17611 (1994).
31J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106, 5569 (1997).
32P. D. Haynes, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne, J. Phys.: Condens.
Matter 20, 294207 (2008).
33Q. Hill, “Development of more accurate computational methods within linear-
scaling density functional theory,” Ph.D. thesis, University of Southampton,
Southampton, 2010.

34C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard, and M. C. Payne,
Comput. Phys. Commun. 140, 315 (2001).
35B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 4993
(1979).
36O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514
(1993).
37C.-K. Skylaris, L. Gagliardi, N. C. Handy, A. G. Ioannou, S. Spencer, and A.
Willetts, J. Mol. Struct.: THEOCHEM 501–502, 229 (2002).
38B. I. Dunlap, N. Rösch, and S. B. Trickey, Mol. Phys. 108, 3167 (2010).
39R. Polly, H.-J. Werner, F. R. Manby, and P. J. Knowles, Mol. Phys. 102, 2311
(2004).
40S. Goedecker and G. E. Scuseria, Comput. Sci. Eng. 5, 14 (2003).
41K. A. Wilkinson, N. D. M. Hine, and C.-K. Skylaris, J. Chem. Theory Comput.
10, 4782 (2014).
42Message Passing Interface Forum, MPI: A message-passing interface standard,
version 2.2, specification, 2009, http://www.mpi-forum.org/docs/mpi-2.2/mpi22-
report.pdf.
43OpenMP architecture review board, OpenMP application program interface
version 3.0, 2008, http://www.openmp.org/mp-documents/spec30.pdf.
44C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne,
Phys. Status Solidi B 243, 973 (2006).
45L. E. Ratcliff, N. D. M. Hine, and P. D. Haynes, Phys. Rev. B 84, 165131 (2011).
46J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
47G. Boschetto, H.-T. Xue, J. Dziedzic, M. Krompiec, and C.-K. Skylaris, J. Phys.
Chem. C 121, 2529 (2017).
48G. M. Amdahl, in Proceedings of the April 18–20, 1967, Spring Joint Computer
Conference (Association for Computing Machinery, New York, 1967),
pp. 483–485.
49E. Poli, J. D. Elliott, Z. Chai, and G. Teobaldi, Crystals 10, 1051 (2020).
50E. Poli, J. D. Elliott, S. K. Chulkov, M. B. Watkins, and G. Teobaldi, Front. Chem.
7, 210 (2019).
51E. Poli, J. D. Elliott, N. D. M. Hine, A. A. Mostofi, and G. Teobaldi, Mater. Res.
Innovations 19, S272 (2015).
52E. Poli, J. D. Elliott, L. E. Ratcliff, L. Andrinopoulos, J. Dziedzic, N. D. M. Hine,
A. A. Mostofi, C.-K. Skylaris, P. D. Haynes, and G. Teobaldi, J. Phys.: Condens.
Matter 28, 074003 (2016).
53J. D. Elliott, E. Poli, I. Scivetti, L. E. Ratcliff, L. Andrinopoulos, J. Dziedzic, N. D.
M. Hine, A. A. Mostofi, C.-K. Skylaris, P. D. Haynes, and G. Teobaldi, Adv. Sci. 4,
1600153 (2017).
54M.-C. Pignié, V. Shcherbakov, T. Charpentier, M. Moskura, C. Carteret, S.
Denisov, M. Mostafavi, A. Thill, and S. Le Caër, Nanoscale 13, 3092 (2021).
55S. Patra, D. Schaming, P. Picot, M.-C. Pignié, J.-B. Brubach, L. Sicard, S. Le Caër,
and A. Thill, Environ. Sci.: Nano 8, 2523 (2021).
56J. Dziedzic, H. H. Helal, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne,
Europhys. Lett. 95, 43001 (2011).
57J. C. Howard, J. C. Womack, J. Dziedzic, C.-K. Skylaris, B. P. Pritchard, and
T. D. Crawford, J. Chem. Theory Comput. 13, 5572 (2017).
58G. I. Yucelen, D.-Y. Kang, I. Schmidt-Krey, H. W. Beckham, and S. Nair, Chem.
Eng. Sci. 90, 200 (2013).
59P. Du, P. Yuan, A. Thill, F. Annabi-Bergaya, D. Liu, and S. Wang, Appl.
Clay Sci. 150, 115 (2017).

J. Chem. Phys. 155, 224106 (2021); doi: 10.1063/5.0067781 155, 224106-26

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.473833
https://doi.org/10.1063/1.3693908
https://doi.org/10.1021/ct900494g
https://doi.org/10.1103/physrevb.73.125120
https://doi.org/10.1088/0953-8984/20/6/064201
https://doi.org/10.1103/physrevb.82.085208
https://doi.org/10.1021/acs.jctc.9b01167
https://doi.org/10.1021/acs.jctc.9b01167
https://doi.org/10.1103/physrevb.79.085102
https://doi.org/10.1063/1.4998644
https://doi.org/10.1021/ct300531w
https://doi.org/10.1016/0301-0104(73)80059-x
https://doi.org/10.1063/1.1679012
https://doi.org/10.1016/0009-2614(93)87156-w
https://doi.org/10.1016/0009-2614(95)00621-a
https://doi.org/10.1016/s0009-2614(98)00862-8
https://doi.org/10.1002/jcc.23284
https://doi.org/10.1039/b000027m
https://doi.org/10.1016/s0166-1280(00)00528-5
https://doi.org/10.1063/1.438728
https://doi.org/10.1063/1.5013111
https://doi.org/10.1063/1.2828533
https://doi.org/10.1063/1.4832338
https://doi.org/10.1063/5.0004445
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1103/physrevb.66.035119
https://doi.org/10.1103/physrevb.66.035119
https://doi.org/10.1063/1.1613633
https://doi.org/10.1103/physrevb.50.17611
https://doi.org/10.1063/1.473579
https://doi.org/10.1088/0953-8984/20/29/294207
https://doi.org/10.1088/0953-8984/20/29/294207
https://doi.org/10.1016/s0010-4655(01)00248-x
https://doi.org/10.1063/1.438313
https://doi.org/10.1016/0009-2614(93)89151-7
https://doi.org/10.1016/s0166-1280(99)00434-0
https://doi.org/10.1080/00268976.2010.518982
https://doi.org/10.1080/0026897042000274801
https://doi.org/10.1109/mcise.2003.1208637
https://doi.org/10.1021/ct500686r
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://doi.org/10.1002/pssb.200541328
https://doi.org/10.1103/physrevb.84.165131
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1021/acs.jpcc.6b10851
https://doi.org/10.1021/acs.jpcc.6b10851
https://doi.org/10.3390/cryst10111051
https://doi.org/10.3389/fchem.2019.00210
https://doi.org/10.1179/1432891715z.0000000001560
https://doi.org/10.1179/1432891715z.0000000001560
https://doi.org/10.1088/0953-8984/28/7/074003
https://doi.org/10.1088/0953-8984/28/7/074003
https://doi.org/10.1002/advs.201600153
https://doi.org/10.1039/d0nr08948f
https://doi.org/10.1039/d1en00405k
https://doi.org/10.1209/0295-5075/95/43001
https://doi.org/10.1021/acs.jctc.7b00833
https://doi.org/10.1016/j.ces.2012.12.025
https://doi.org/10.1016/j.ces.2012.12.025
https://doi.org/10.1016/j.clay.2017.09.021
https://doi.org/10.1016/j.clay.2017.09.021

