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We theoretically study stimulated Brillouin scattering (SBS) in a standard single-mode fiber 

(SMF), taking Brillouin-enhanced four-wave-mixing (BEFWM) effects into account. In particular, 

we investigate the case when there is non-negligible back-reflection of the forward-pump field at the 

rear fiber end although such reflection is typically weak and undesired. We first justify that 

BEFWM can be treated as a steady-state process under an undepleted pump approximation as long 

as the nominal SBS gain remains as low as 40 dB unless the pump, Stokes, anti-Stokes fields 

interact under near perfect phase-matching condition, which hardly happens in normal 

circumstances with a standard SMF. Under the steady-state and undepleted-pump condition, we find 

analytical solutions to the Stokes and anti-Stokes fields generated by the forward and backward-

pump fields, and also derive their asymptotic formulae in both infinitesimal and infinite limits in 

terms of the phase-mismatch parameter of |Δ𝑘𝐿|, assuming that both seeding Stokes and anti-Stokes 

fields arise from white background noise components. When |Δ𝑘𝐿| ≪ 1, the acoustic fields driven 

by SBS and BEFWM tend to interfere destructively, and thus, SBS and BEFWM are anti-resonant 

to each other, thereby eventually resulting in both Stokes and anti-Stokes scatterings minimized at 

Δ𝑘 0. When |Δ𝑘𝐿| ≫ 1, all the asymptotic curves for the amplification ratios and extra gain 

factor obey the inverse square law with respect to |∆𝑘𝐿|, irrespective of the level of the back-

reflection at the rear fiber. In particular, when |Δ𝑘𝐿| is in the intermediate range where the FWM 

gain remains relatively large, SBS and BEFWM can be cooperative via the phase-pulling effect by 

the FWM gain, thereby leading to quasi-resonant growths of both Stokes and anti-Stokes fields. 

However, the extra gain by BEFWM reduces significantly if the level of the back-reflection remains 

below one percent, irrespective of the value of |Δ𝑘𝐿|. Since the interplay between SBS and BEFWM 

is inherently phase-dependent whilst it can still happen with white noise seeding with random 

phases, the related mechanism can further be exploited for all-optical switching functionality. We 

expect our theoretical modeling and formulation will be be useful for designing and analyzing a 
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variety of fiber systems that incorporate high-power narrow-linewidth light undergoing non-

negligible back-reflection under various conditions. 
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I. INTRODUCTION 

Stimulated Brillouin scattering (SBS) involves nonlinear scattering of an incident optical field with 

narrow-linewidth by acoustic fields. The incident optical field pumps a Brillouin-active medium 

through electrostriction, which normally generates and amplifies a counter-propagating (i.e., backward-

propagating) Stokes field down-shifted relative to the incident “pump” field’s frequency [1, 2]. Whilst 

SBS can be utilized as an amplifying mechanism for Brillouin lasers, it can also degrade the 

performance of fiber laser sources, severely limiting their power-scaling [3-6]. It is especially 

detrimental for pump linewidths narrower than the Brillouin gain bandwidth of a few tens of MHz, 

including so-called single-frequency light. Therefore, accurate prediction of the power-limit by SBS is 

of great importance when designing and operating such a system, and thus has been receiving a 

considerable amount of attention [1-6]. 

A complication of the SBS analysis is due to the fact that the numerous intricate processes and 

factors can profoundly influence the degree of stimulation, which include amplified spontaneous 

emission, Rayleigh back-scattering, back-reflection by the fiber ends or splicing points, etc. As a matter 

of fact, a combination of several of these factors can make the overall SBS process even more 

cumbersome [7, 8]. In particular, unintended back-reflections can substantially disrupt the conventional 

framework of SBS, because it can give rise to Brillouin-enhanced four-wave mixing (BEFWM) in 

addition to SBS. The BEFWM is an optical four-wave mixing (FWM) process mediated by forward-

propagating acoustic fields, which does not explicitly rely on the Kerr nonlinearity or the conventional 

nonlinear refractive index 𝑛 . In addition to the two optical fields of the conventional SBS, it also 

involves a forward-propagating anti-Stokes field as well as a backward-propagating pump field [9-11]. 

In fiber systems, an incident optical field can be back-reflected to a considerable degree at points where 

there is an index mismatch, including fiber ends, splicing points, etc. At extreme power levels, such 

back-reflections can substantially disrupt the overall SBS [11, 12]. Nevertheless, the effect of BEFWM 
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on SBS in fiber systems is less apparent or even negligible under low-pump-power conditions, which 

normally require a relatively long fiber length to give rise to the onset of SBS [11]. This is due to the 

fact that BEFWM diminishes with the amount of the phase mismatch Δ𝑘𝐿  among the interacting 

forward- and backward-going fields [11], where Δ𝑘 and 𝐿 denote the amount of wavenumber mismatch 

and the fiber length, respectively. In the absence of a sufficient level of birefringence to fulfil the 

required phase-matching condition, fibers longer than, say, a few meters, are unlikely to keep Δ𝑘𝐿 

small enough to induce tangible BEFWM. In contrast, under high-pump-power conditions, the onset of 

SBS can take place within a few meters or even less, irrespective of the existence of built-in 

birefringence [3, 4, 13]. Given that the demands for fiber systems operating under high-pump-power 

conditions invariably keep increasing, the impact of BEFWM on SBS warrants a rigorous investigation, 

in particular, when there is a considerable level of back-reflection [9-11]. Despite this, BEFWM’s 

impact on the SBS threshold in fibers has been overlooked in most cases except for a handful of 

theoretical and experimental investigations [11, 14, 15]. Here, we theoretically investigate the related 

matter in a standard single-mode fibers (SMF) via an asymptotic analysis, with which we construct a 

framework for deducing the power limit and gain conditions for SBS with the influence of BEFWM. 

This eventually enables us to understand and unveil the detailed consequence of the interplay between 

SBS and BEFWM in a standard SMF. 

The organization of our investigation is thus as follows: First, we investigate whether BEFWM can 

bring in the Brillouin instability in a standard SMF, using the instability study based on a Laplace 

transform technique [9]. This instability study is to justify that BEFWM can be approached in terms of 

a steady-state process in usual circumstances with a standard SMF, in which BEFWM instability hardly 

takes place except for an extraordinary case of a small |Δ𝑘𝐿| value. Second, we derive the coupled 

steady-state equations for Stokes and anti-Stokes fields, and obtain analytical solutions to them. Third, 

we examine the impact of BEFWM on the SBS threshold and its dependence on fiber length and wave-

number mismatch in the presence of Fresnel back-reflection at the fiber’s output end as a typical 
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example. We analyze the asymptotic behavior of the interplay of SBS and BEFWM, deriving the 

corresponding mathematical formulae to describe it in the infinitesimal and infinite limits of |Δ𝑘𝐿|. 

Finally, we conclude our theoretical investigation, discussing its potential impact on the design and 

operation of fiber systems with high-power narrow-linewidth light. 

II. BEFWM IN OPTICAL FIBERS AND ITS INSTABILITY 

Theoretical studies on the temporal instability induced by BEFWM have been carried out mainly in 

Brillouin-active liquids for phase-conjugation-mirror applications [9, 10]. To the best of our knowledge, 

such rigorous studies have yet to be carried out for optical fibers [11, 14, 15]. Thus, in this section we 

briefly revisit the previous theoretical frameworks and methodologies related to our analysis of the 

temporal instability of BEFWM, particularly, in optical fibers. 

We first describe the theoretical frameworks as the following: We consider a standard silica-based 

SMF (e.g., SMF-28) as the Brillouin-active medium for investigation. This is supposed to guide 

forward and backward-pump fields and Stokes and anti-Stokes fields, all of which are tuned to 

~ 1550 nm (i.e., the erbium-emission band [16]) as shown in Fig. 1. The Brillouin resonant frequency 

(Stokes shift) is ~ 11 GHz [17]. Unless stated otherwise, we carry out the investigation under the 

following assumptions: The forward-pump field has a narrow linewidth well within the Brillouin 

linewidth of a few tens of MHz; the backward-pump field is generated by Fresnel reflection of the 

forward-pump field at the rear fiber end terminated in air (~ 4%) or at a splicing point by the index 

mismatch as a typical example; there is no back-reflection at the front fiber end for simplicity; the 

Stokes and anti-Stokes seed fields into the fiber are resonant with the corresponding acoustic fields but 

substantially weak relative to the forward and backward-pump fields. It is noteworthy that if there is no 

backward-pump field, the Stokes field will predominantly be generated via conventional SBS by the 

only forward-pump field [17]. In contrast, if there is a non-negligible backward-pump field 

accompanied, anti-Stokes scattering of the backward-pump field can occur alongside the Stokes 
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scattering of the forward-pump field [9-11]. The optical beating among the optical fields further results 

in the stimulation of acoustic fields, which in turn mediate the FWM among the forward-pump, 

backward-pump, Stokes, and anti-Stokes fields. All these processes eventually lead to BEFWM, in 

which longitudinal acoustic waves are assumed to play a dominant role [1]. The key aspect for us to 

look into in the theoretical investigation that follows is how the interplay between SBS and BEFWM 

affects the overall SBS process, depending on the effective phase-matching condition for the nonlinear 

interaction of the four optical fields. 

Since the four optical fields involved in the BEFWM are detuned at ~1550 nm by only ~ 11 GHz 

in the case of a silica-based standard SMF, we can assume that they have identical mode-field profiles 

[17]. Their overall optical fields can then be expressed as 𝐸 𝐴 𝑧, 𝑡 exp 𝑖 𝑘 𝜔 𝑡 , where the 

subscript 𝑖 may indicate one of pump, Stokes, or anti-Stokes fields denoted by “p”, “s”, and “as”, 

respectively. The optical field amplitudes 𝐴 𝑧, 𝑡  take account of the optical field distributions in the 

transverse plane via a normalization procedure as described in [18]. The positive and negative 

superscripts denote directions of propagation, parallel and anti-parallel to the forward-pump field, 

respectively. In total, 𝐸 , 𝐸 , 𝐸 , and 𝐸  are the four optical fields interacting through SBS and 

BEFWM. 

Figures 2(a) and (b) show the energy diagrams and dispersion relations among the optical and 

acoustic fields, assuming that the acoustic fields are tuned at a single dominant frequency at Ω. In order 

for BEFWM to be tangible, the four optical fields should interact under near-perfect-phase-matching 

condition, i.e., ∆𝑘 𝑘 𝑘 𝑘 𝑘  ~ 0, if their frequencies are assumed to have already been 

matched as shown in Fig. 2(a) [9], [17]. A standard SMF with negligible birefringence tends to have a 

non-zero wavenumber mismatch among the four optical fields owing to the GHz-order Brillouin-

resonant-frequency shift, i.e., ∆𝑘 2𝑛Ω/𝑐, under the condition that the fiber’s dispersion is negligible 

among them, where 𝑐 is the speed of light in vacuum and 𝑛 is the refractive index of the optical fiber. If 
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the Stokes and anti-Stokes scattering processes occur on the orthogonal principal axes of the optical 

fiber [15], such as in polarization-maintaining (PM) optical fibers, the wavenumber mismatch is more 

generally given by Δ𝑘 𝑛  𝑛 Ω/𝑐  2 𝑛  𝑛 𝜔 /𝑐 , where 𝑛  and 𝑛  denote the refractive 

indices of the optical fiber along its slow and fast axes, respectively. We can readily calculate the 

birefringence required for perfect phase-matching by setting Δ𝑘 0 in the above equation and finding 

its root, which results in ~ 8.2 10  for 1550-nm optical fields in a silica-based SMF as shown in 

Fig. 2(c). (This value is a bit lower than the birefringence of a standard PM SMF [15] although an 

elliptical-core-based PM fiber may have such a value if its core-cladding index difference is in the 

order of 0.01 [19].) We can see that the effective interaction length for BEFWM drastically increases 

across the range where the fiber’s birefringence leads to perfect phase-matching. However, it is 

noteworthy that under normal circumstances of a non-PM standard SMF, the effective interaction 

length for BEFWM becomes much shorter than a meter, which is the case to which we pay our 

attention in the investigation that follows.  

The nonlinear processes by SBS and BEFWM can be analyzed with the governing equations for the 

interactions among the four optical fields and the longitudinal acoustic fields induced by Brillouin 

scattering and FWM, which are derived from Maxwell’s equations and the general acoustic wave 

equation under the slowly-varying envelop approximation as follows [20, 21]: 

𝐴 𝑖𝑔 𝜌 𝜌 𝑒 𝐴 ,                                                      (1a) 

𝐴 𝑖𝑔 𝜌∗ 𝜌∗ 𝑒 𝐴 ,                                                (1b) 

𝐴 𝑖𝑔 𝜌∗𝑒 𝜌∗ 𝐴 ,                                                 (1c) 

𝐴 𝑖𝑔 𝜌 𝑒 𝜌 𝐴 ,                                                   (1d) 

𝑣 𝜌 𝑖 Ω Ω 𝜌 𝑖𝑔 𝐴 ∗𝐴 ,                                   (1e) 

𝑣 𝜌 𝑖 Ω Ω 𝜌 𝑖𝑔 𝐴 ∗𝐴 ,                               (1f) 



 9

where Ω, Ω  and   denote the acoustic angular frequency, Brillouin resonant angular frequency, and 

the Brillouin gain bandwidth, respectively; 𝜌  and 𝜌  denote the envelopes of the longitudinal acoustic 

fields inherently driven by Stokes and anti-Stokes scattering processes, respectively; 𝑔  and 𝑔  denote 

the Brillouin coupling coefficients for the optical and acoustic fields, respectively. Eqs. (1a) to (1d) 

describe the spatiotemporal evolutions of the forward-pump, Stokes, backward-pump, and anti-Stokes 

fields, respectively, whereas Eqs. (1e) and (1f) describe the spatiotemporal evolutions of the acoustic 

fields, which are driven by electrostriction. The bandwidth   is also equal to the damping constant of 

the acoustic fields. In general, the spatiotemporal derivative terms in Eqs. (1e) and (1f) can be ignored 

in the high damping and steady-state condition [21], which is typical for a silica-based SMF. The high 

acoustic damping means that the acoustic fields are slaved to the optical fields. By contrast, we ignore 

optical attenuation, because optical loss is negligible within the fiber-length range of our interest. We 

note that the conventional expression for the Brillouin gain coefficient with respect to optical intensity 

[22] is given by 𝑔 2𝑔 𝑔 / 𝑛𝑐𝜀   in our notation, where 𝜀  is the vacuum permittivity and the 

electrostrictive constant is embedded in 𝑔 . The Brillouin gain coefficient typically ranges from 30 to 

80 pm/W [23]. The Brillouin gain coefficient can also be represented by 𝑔 , which is defined as 𝑔

4𝑔 𝑔 /Γ  via 𝑔 𝐴 𝐿 𝑔 𝐼 𝐿 , where 𝐼  denotes the intensity of the forward-pump field, for 

example. In addition, we take the several dimensionless parameters as given in [10]: 

𝑀 𝑔 𝐼 𝐿 𝑔 𝐴 𝐿,      (2a) 

𝑀 𝑔 𝐼 𝐿 𝑔 𝐴 𝐿,      (2b) 

𝑀 𝑀 𝑀 ,      (2c) 

 𝑎 ,      (2d) 

where 𝑀  and 𝑀  denote the gain factors in neper for the Brillouin Stokes and anti-Stoke scattering, 

respectively, the 𝑎-parameter denotes the ratio of the backward- and forward-pump fields’ intensities, 
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and 𝐿 denote the length of the fiber under consideration. We note that the impact of BEFWM on SBS is 

largely determined by 𝑀, 𝑎, and Δ𝑘𝐿 [9, 24]. 

In addition, we define the nominal power-limit for SBS at which the forward pump power results in 

a 40-dB gain to the Stokes field without considering the influence by the backward pump [25]. This 

simply yields 𝑀 9.21. Under this condition, pump depletion is still negligible, so that we can use 

the undepleted pump approximation (UDPA) unless BEFWM instability prevents this. Therefore, we 

first investigate BEFWM instability in a standard SMF under various conditions for phase mismatch, 

fiber length, and intensity ratio of the backward and forward-pump fields, to see whether our 

theoretical approach is justified under the given conditions. 

It is known that BEFWM can result in temporal instability in Brillouin-active liquids [9, 10]. When 

BEFWM-induced temporal instability occurs, the acoustic fields grow immensely, so that the Stokes 

and anti-Stokes fields are amplified in an extraordinary way until the pump fields are substantially 

depleted. We note that in the experiments previously reported [9, 10], the total phase mismatch (i.e., 

Δ𝑘𝐿) was less than 2𝜋 and the intensity ratio of the backward and forward-pump fields (i.e., the 𝑎-

parameter) was larger than 0.1. In contrast, if the Brillouin-active medium is replaced with a standard 

SMF, the resultant total phase mismatch is unlikely to remain within 2𝜋. For example, 670 rad/m is a 

typical value for the phase mismatch rate for a standard SMF when operating at ~ 1550 - nm 

wavelength in the absence of birefringence [11]. In addition, we consider that the backward-pump field 

is generated by ~ 4% Fresnel reflection or splicing-induced back-reflection at the rear end of the fiber 

under consideration. This means the 𝑎-parameter is expected to be significantly smaller than ~ 0.1 

under normal circumstances. We stress that these conditions for a standard SMF are radically different 

from those of the Brillouin-active liquids investigated in [9] and [10], so that it is indeed necessary to 

determine whether BEFWM instability occurs in normal circumstances with a standard SMF. 
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The BEFWM instability analysis is carried out based on the Laplace transform method [9]. We first 

apply both the UDPA and steady-state approximation to Eqs. (1a)(1d) and then Laplace-transform 

Eqs. (1b) and (1d) to obtain the equations for the Stokes and anti-Stokes fields in terms of the Laplace 

conjugate variable “𝑠” [9]. We obtain the closed-form solutions to the equations with poles that can be 

found numerically in a straightforward manner [26]. The temporal stability or instability of the Stokes 

and anti-Stokes waves is governed by the location of the poles. In particular, the most significant pole, 

which has the largest real value among the poles, determines the critical gain factor for the BEFWM 

instability, i.e., 𝑀  (see [9] for more details). Consequently, if 𝑀 𝑀 , we deduce that BEFWM 

instability may occur. 

The critical gain factor (i.e., 𝑀 ) for BEFWM instability in a standard SMF (e.g., SMF-28) is 

calculated and illustrated in Figs. 3(a) and 3(b) with respect to Δ𝑘𝐿 and the 𝑎-parameter. The red-dotted 

lines (𝑀 ) denote the nominal 𝑀 values simply calculated by the sum of the Stokes and anti-Stokes 

gain factors, i.e., 𝑀 1 𝑎 𝑀 | , where the nominal Stokes gain factor is fixed to 40 dB, i.e., 

𝑀 9.21. These nominal 𝑀 values are calculated and illustrated just for comparison. In Fig. 3(a), the 

growing oscillatory curve (𝑀 %, black solid line) denotes the case with a backward-pump field, 

generated by the Fresnel refection of the forward-pump field at the rear fiber end (i.e., 𝑎 0.04). With 

𝑎 0.04, 𝑀  initially decreases from Δ𝑘𝐿 0 until it reaches the minimum value. It then increases 

with Δ𝑘𝐿, albeit with rapid oscillations. Except for the interval of ~ |Δ𝑘𝐿| ~ 2𝜋 (more exactly, 

0.6𝜋 Δ𝑘𝐿 2.2𝜋) [i.e., the range shaded in pink in the inset of Fig. 3(a)], 𝑀 % is invariably 

higher than 𝑀 . That is, unless Δ𝑘𝐿 reduces to a quantity close to  ~ 2𝜋, 𝑀  becomes much larger than 

𝑀  no matter how large the 𝑎-parameter is, as shown in Fig. 3(b). This indicates that except for the 

interval shaded in pink, the BEFWM instability threshold is invariably and sufficiently higher than the 

nominal power-limit for SBS, so that the BEFWM instability hardly turns up before the onset of SBS. 

It is noteworthy that in the absence of birefringence, Δ𝑘𝐿 is typically given by ~ 670 𝐿 for a standard 
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SMF. Thus, this result explains why the BEFWM instability or the related effect is hardly observable 

under low-pump-power conditions with a relatively long standard SMF. Thus, as far as we avoid the 

range shaded in pink in Figs. 3(a) and 3(b), we can regard BEFWM as a state-state process, in which 

transient behaviors in the optical and acoustic fields decay within the steady-state time constant [9, 10] 

defined by 𝑡 1/ 2Re 𝑠 , where 𝑠  denotes the complex root for the most significant pole [9, 

10]. 

We have calculated the steady-state time constant with respect to Δ𝑘𝐿 for 𝑎 0.04, and plot the 

result in Fig. 3(c): 𝑡  tends to be less than ~ 36.5 ns for any total phase mismatch larger than 4𝜋, and 

eventually converges to 6.7 ns for even larger values of Δ𝑘𝐿. This time scale is much shorter than the 

typical temporal duration of a quasi-CW (and true CW) single-frequency pump field that can trigger 

SBS. In fact, this transient response of BEFWM will rapidly decay down to a steady state within the 

duration of a quasi-CW optical input. Thus, in a standard SMF, BEFWM can be formulated under the 

steady-state approximation unless |Δ𝑘𝐿| reduces to a quantity close to ~ 2𝜋. 

III. THEORY OF SBS-BEFWM COUPLING 

In the preceding section, we have shown that effects by the temporal instability and transient 

response of BEFWM are negligible in most cases with a standard SMF unless |Δ𝑘𝐿| reduces to a 

quantity close to ~ 2𝜋, so that the acoustic field can be considered to be in a steady state. Under this 

condition, we can convert the coupled partial differential equations, Eqs. (1a) to (1f), into ordinary 

differential equations [20, 21]. Moreover, we consider a parameter range in which pump depletion is 

negligible, so that we can obtain their solutions under the UDPA as well. (We note that this theoretical 

formalism is similar to that of the FWM model previously reported regarding the Brillouin dynamic 

grating in a PM fiber [14]. Whilst our formalism shares the same governing equation set of Eqs. 

(1a)(1f) with the FWM model, it is noteworthy that the focus of our investigation is radically different 
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from that of the FWM model in that the latter focused on the power evolutions of the backward-pump 

and anti-Stokes fields with assuming the forward-pump and Stokes fields to be undepleted [14].) 

The detailed theoretical formulation of our model is as follows: For steady-state acoustic fields under 

high damping conditions such as in optical fibers, the derivative terms in Eqs. (1e) and (1f) can be 

assumed to vanish. Subsequently, the steady-state solutions for 𝜌  and 𝜌  are obtained in a 

straightforward manner [20, 21]. The total acoustic field is thus represented by the sum of the two 

acoustic fields’ contributions such that 𝜌 𝜌 𝜌 𝑒 , i.e., 

𝜌 𝑖𝑔
∗ ∗

.                                                        (3) 

In the numerator of Eq. (3), the first and second terms denote the contributions by the Brillouin 

Stokes and anti-Stokes fields, respectively. If we ignored the second term, this would reduce to the case 

with simple Stokes scattering without BEFWM. In principle, the second term perturbs the Stokes 

scattering: Depending on the effective phase mismatch between the two terms, the perturbation can be 

constructive or destructive to the inherent acoustic driving force by the Stokes scattering. It is 

noteworthy that the effective phase mismatch is determined not only by Δ𝑘𝑧 but also by the relative 

phase differences among the four optical fields under consideration. Thus, the perfect phase-matching 

condition, i.e., Δ𝑘 0, does not necessarily result in the constructive interference between the two 

terms, which will be discussed in more detail in Section IV and Appendix A. 

Substituting Eq. (3) into Eqs. (1b) and (1d) under the resonant (i.e., Ω Ω ) and UDPA conditions, 

we obtain the coupled equations in a contracted form: 

𝐴 𝐴 𝐴 𝐴 ∗𝐴 𝐴 𝑒 ,                                     (4a) 

𝐴 𝐴 𝐴 𝐴 ∗𝐴 𝐴 𝑒 .                                  (4b) 

We note that the first terms of Eqs. (4a) and (4b) represent the contributions by the Brillouin Stokes 

and anti-Stokes scattering processes, respectively, and that the second terms of them represent the 
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contributions by the cross-coupling with Stokes and anti-Stokes fields via BEFWM, respectively. To 

find analytic solutions to the coupled equations, we introduce ansatz functions of self-coupling-

compensated Stokes and anti-Stokes fields, such that 𝐴s 𝑧 𝐴s 𝑧 exp 𝑔B
2 𝐴p

2
𝑧  and 𝐴as 𝑧

𝐴as 𝑧 exp 𝑔B
2 𝐴p

2𝑧 . Substituting them into Eqs. (4a) and (4b), the SBS-BEFWM-coupled equations 

become: 

𝐴 𝐴 𝐴 𝑒 exp
2

𝐴 𝐴 𝑧 𝐴 ∗,                           (5a) 

𝐴 ∗ 𝐴 ∗𝐴 ∗𝑒 exp
2

𝐴 𝐴 𝑧 𝐴 .                       (5b) 

We note that Eqs. (5a) and (5b) form coupled ordinary differential equations with the two variables 𝐴s  

and 𝐴as
∗
. The solutions in a closed form can readily be found if boundary conditions are given for the 

Stokes and anti-Stokes fields, i.e., 𝐴s𝐿 ≡ 𝐴s 𝐿  and 𝐴as0
∗
≡ 𝐴as

∗ 0 , respectively, where 𝐿 is the length 

of the fiber under consideration [27]. Then, the Stokes and anti-Stokes fields become: 

𝐴 𝑧 exp ∆
∆

∆ exp ∆ 𝐴   (6a) 

∆
𝐴 ∗ , 

𝐴 ∗ 𝑧 exp ∆
∗ ∗ ∆

∆ 𝐴   (6b) 

∆

∆
𝐴 ∗ , 

where ∆𝑘  and 𝜎 are given by 

∆𝑘 ∆𝑘 𝑔 𝐴 𝐴 ,      (7a) 

𝜎 𝑔 𝐴 𝐴 ∆ .      (7b) 

Finally, the output Stokes and anti-Stokes fields at 𝑧 0 and 𝑧 𝐿, respectively, become: 
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𝐴 0
∆

∆
𝐴

∆
𝐴 ∗   (8a) 

≡ 𝑆 , 𝐴 𝑆 , 𝐴 ∗ , 

𝐴 ∗ 𝐿
∗ ∗ ∆

∆
𝐴

∆

∆
𝐴 ∗   (8b) 

≡ 𝑆 , 𝐴 𝑆 , 𝐴
∗ . 

In addition, with these fields, we can also readily obtain the expressions for the output Stokes and anti-

Stokes intensities as given by 

𝐼 0 2𝑛𝑐𝜀 𝑆 , |𝐴 | 𝑆 , |𝐴 | 2Re 𝑆 , 𝑆 ,
∗ 𝐴 𝐴 ∗ ,                  (9a) 

𝐼 𝐿 2𝑛𝑐𝜀 𝑆 , |𝐴 | 𝑆 , |𝐴 | 2Re 𝑆 , 𝑆 ,
∗ 𝐴 𝐴 ∗ .            (9b) 

IV. NUMERICAL RESUTS AND DISCUSSION 

Based on the analytical solutions obtained in the preceding section, we next investigate the impact of 

the interplay between SBS and BEFWM on the Stokes and anti-Stokes generation via numerical 

simulations. In these simulations, we choose the simulation parameters and conditions as follows 

unless stated otherwise: The nominal Brillouin Stokes gain is fixed to 40 dB (i.e., 𝑀 9.21); 𝑎-

parameter is set to 0.04 (i.e., 4% Fresnel reflection,); the input Stokes and anti-Stokes fields arise from 

white background noise components [28], so that the output Stokes and anti-Stokes intensities are 

obtained by taking their ensemble average values. It is noteworthy that under the given conditions the 

corresponding forward- and backward-pump intensities can readily be determined via Eq. (2). 

We now consider the Stokes and anti-Stokes intensities, using Eqs. (9a) and (9b). In fact, they 

depend not only on the total phase mismatch Δ𝑘𝐿, but also on the relative phase relations among 𝐴 , 

𝐴 , 𝐴 , and 𝐴 . However, we can readily figure out that the contributions by the third terms in Eqs. 

(9a) and (9b) would eventually vanish if we take the ensemble averages of them, because the input 

Stokes and anti-Stokes fields are assumed to arise from white background noise components with 
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random phases [28]. Consequently, we obtain the ensemble-averaged output Stokes and anti-Stokes 

intensities as given by 

𝐼 0 𝑆 , 𝐼 𝑆 , 𝐼 ,                                                      (10a) 

𝐼 𝐿 𝑆 , 𝐼 𝑆 , 𝐼 ,                                                   (10b) 

where 𝐼 2𝑛𝑐𝜀 |𝐴 |  and 𝐼 2𝑛𝑐𝜀 |𝐴 | , both of which can be regarded identical from the 

statistical perspective since they are assumed to arise from background white noise components [28]. It 

is noteworthy that the two terms in each of Eqs. (10a) and (10b) respectively denote the contributions 

by SBS interplayed with BEFWM, and by BEFWM interplayed with SBS, or vice versa. 

In Fig. 4, the relative ratios of the output Stokes and anti-Stokes intensities ensemble-averaged at 

𝑧 0 and 𝑧 𝐿, are plotted with respect to |Δ𝑘𝐿|, respectively, including both individual and total 

contributions. Since all the output intensities are normalized by the input Stokes or anti-Stokes intensity, 

they can be regarded as the corresponding “amplification ratios”. In particular, the horizontal black 

dotted line in Fig. 4(e) denotes the nominal amplification ratio of the output Stokes intensity calculated 

based on the forward-pump field only, which should remain constant regardless of |Δ𝑘𝐿|, because the 

nominal Brillouin Stokes gain is fixed to 40 dB. The ranges shaded in pink denote where BEFWM 

instability may occur and our current analysis is, thus, no longer valid. It is noteworthy that an x-axis 

value at 
| |

100 typically implies a fiber length of ~ 1 m in the case of a standard SMF. We can 

see an oscillatory behavior of the normalized output Stokes and anti-Stokes intensities with respect to 

|Δ𝑘𝐿| . Whilst the depth of the oscillation tends to zero for a sufficiently large |Δ𝑘𝐿| , it grows 

substantially if |Δ𝑘𝐿| is reduced to a small quantity, particularly, less than ~ 5 2𝜋. However, when 

|Δ𝑘𝐿| ≪ 1, the normalized output Stokes intensity decreases again. All these features are due to the 

fact that the acoustic fields generated respectively by the Stokes and anti-Stokes fields interfere 

depending on their linear and nonlinear phase mismatches via Δ𝑘𝐿, 𝑀 , and 𝑎. 
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First of all, when |Δ𝑘𝐿| ≪ 1, the acoustic fields tend to interfere destructively, so that SBS and 

BEFWM disrupt each other substantially. It is noteworthy that both Stokes and anti-Stokes scatterings 

are minimized at Δ𝑘 0 . Whilst this may look counterintuitive, it is truly physical in that the 

amplification of anti-Stokes fields, i.e., the creation of anti-Stokes photons, is the consequence of the 

annihilation of acoustic phonons created by Stokes scattering from a quantum-mechanical point of 

view [see Fig. 2(a)], and thus, the destructive interference effect may well be most significant under the 

perfect phase-matching condition, i.e., Δ𝑘 0. In fact, its asymptotic behavior in the infinitesimal limit 

of |Δ𝑘𝐿| can be formulated by a parabolic curve of 𝐶 𝐷 Δ𝑘𝐿 , where 𝐶  and 𝐷  are a simple 

positive constants determined as Δ𝑘𝐿 → 0 (see Appendix A for more details). If Δ𝑘𝐿 0, we should 

take account of the additional linear and nonlinear phase evolutions imposed onto the Stokes and anti-

Stokes fields, which may or may not lead to a cooperative or quasi-resonant interplay between SBS and 

BEFWM, depending on the amount of the aggregated phase mismatches among the four optical fields. 

For example, we can see large growths in both Stokes and anti-Stokes fields within the range where 

~ 2𝜋 |Δ𝑘𝐿| ~ 5 2𝜋 rad, for example, which is actually the range where the FWM gain and the 

corresponding nonlinear phase evolution are significant, thereby resulting the phase-pulling effect by 

the FWM gain under the given conditions, i.e., 𝑀 9.21 and 𝑎 0.04 (see Appendix C for more 

details). In fact, the local maxima within the range denote the locations where the interplay between 

SBS and BEFWM is cooperative or quasi-resonant. Although 𝜌  and 𝜌  are not perfectly phase-

matched, they do have a large constructive overlap with each other via the linear and nonlinear phase 

evolutions between the Stokes and anti-Stokes fields. In contrast, if |Δ𝑘𝐿| ≫ 1, the additional nonlinear 

phase evolutions of the Stokes and anti-Stokes fields apart from the linear phase evolution of Δ𝑘𝐿, 

almost diminish (particularly when |Δ𝑘𝐿| ~ 5 2𝜋, see Appendix D for more details), so that we 

can no longer see such a quasi-resonant interplay between SBS and BEFWM. That is, we can only see 



 18

simple oscillatory behaviors in the amplification ratios of Stokes and anti-Stokes fields, which become 

nearly out of phase, because they are inherently anti-resonant processes to each other. 

When |Δ𝑘𝐿| ≫ 1, we can also figure out that the local maxima of the oscillatory response of the 

Stokes field are bounded above by an asymptotic curve formulated by 𝐶 𝐷 Δ𝑘𝐿  (see Appendix 

B for more details), where 𝐶  and 𝐷  are simple positive constants determined as |Δ𝑘𝐿| → ∞. In fact, 

all the curves additionally drawn in red in Fig. 4 denote the corresponding asymptotes for the upper 

bounds of the local maxima of the individual oscillatory responses obtained based on the formulae 

derived in Appendix B. They are indeed in good agreement with the full numerical results. This 

consequence is due to the fact that the BEFWM is, in nature, a phase-dependent process, so that the 

evolution of the related field’s amplitude is inversely proportional to |Δ𝑘𝐿| as most processes governed 

by a phase-matching condition are [29], which in turn result in the inverse square law with respect to 

|Δ𝑘𝐿| regarding the corresponding evolution of the related field’s intensity: The intensity is obviously 

proportional to the square of the field’s amplitude. The detailed theoretical and mathematical 

derivations and formulations for this consequence are given in Appendix B. 

It is noteworthy that the depths of the oscillatory responses or the upper bounds of the local maxima 

of the oscillatory responses can be regarded as a measure of the extra gain introduced to the Stokes 

field by BEFWM if they are normalized by its nominal SBS gain without considering BEFWM. In 

particular, when |Δ𝑘𝐿| ≫ 1, we have already figured out that the upper bounds of the local maxima of 

the oscillatory responses can be formulated by an asymptotic curve as shown in Fig. 4(e). (We note that 

the asymptotic curve when |Δ𝑘𝐿| ≪ 1 is not of interest in that the extra gain tends to be negative in this 

case because of the predominant destructive interference effect therein as discussed earlier.) From the 

perspective of the Stokes field, the total gain factor 𝐺  that the Stokes field undergoes during the SBS-

BEFWM process, can intuitively be understood as the sum of the intrinsic gain by SBS and the extra 

gain by BEFWM, i.e., 𝐼 0 𝐼 exp 𝐺 Δ𝐺 , from which we can deduce 𝐺   𝐺  
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 Δ𝐺 , where 𝐺 𝑔 𝐴 𝐿 𝑀 . Since the asymptotic curve for 𝐼 0  when |Δ𝑘𝐿| ≫ 1 has 

already been found (see Appendix B for more details), it is straightforward to obtain the asymptotic 

formula for the extra gain factor Δ𝐺  when |Δ𝑘𝐿| ≫ 1. In fact, similar to the asymptotic behavior 

of  𝑆 ,  and 𝑆 , , the local maxima of Δ𝐺  are also bounded above by 𝜂 Δ𝑘𝐿 , in which 

there is no offset constant included. It is noteworthy that 𝐺  is actually the offset constant from the 

viewpoint of 𝐺  (see Appendix B for more details). This implies that the extra gain factor by BEFWM 

is also inversely proportional to Δ𝑘𝐿 . We stress that in normal circumstances, Δ𝑘  is fixed to a 

constant value unless the birefringence of the fiber varies along the length, so that the extra-gain effect 

by BEFWM or the corresponding change to the power-limit for SBS becomes much more apparent as 

the fiber length becomes shorter as long as the nominal Brillouin Stokes gain through the fiber length 

can be made as high as 40 dB.  

In Fig. 5, we further illustrate the asymptotic behavior of the extra gain factor with respect to |Δ𝑘𝐿| 

for several different 𝑎-parameter values, including 𝑎  0.04, 0.01, 0.001, and 0.0001 under the same 

conditions for the other parameters. The individual asymptotes theoretically calculated based on 

𝜂 Δ𝑘𝐿 , where 𝜂  is the proportional coefficient dependent on 𝑀  and 𝑎 (see Appendix D for 

more details), are all in excellent agreement with the corresponding traces of the local maxima of the 

full numerical results when |Δ𝑘𝐿| ≫ 1. The extra gain by BEFWM grows with the magnitude of the a-

parameter; however, it becomes insignificant if 𝑎 0.01 no matter what value of |Δ𝑘𝐿| becomes. 

V. CONCLUSION 

By means of theoretical modeling and formulation via statistical and asymptotic approaches, we 

have investigated the interplay of SBS and BEFWM in a standard SMF in the case when the forward-

going pump light is back-reflected at the fiber end in normal circumstances. We have verified that an 

abnormal SBS modulation can take place via the extra gain caused by BEFWM, which critically 
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depends on the effective linear and nonlinear phase mismatches via |∆𝑘𝐿|, 𝑀 , and 𝑎. In more detail, 

we have figured out that when |Δ𝑘𝐿| ≪ 1, the acoustic fields 𝜌  and 𝜌  tend to interfere destructively, 

and thus, SBS and BEFWM are anti-resonant to each other. This tendency eventually results in both 

Stokes and anti-Stokes scatterings minimized at Δ𝑘 0. We have also figured out that when |Δ𝑘𝐿| ≫

1, all the asymptotic curves for the amplification ratios and extra gain factor obey the inverse square 

law with respect to |∆𝑘𝐿|, irrespective of the level of the back-reflection at the rear fiber. In particular, 

when ~ 2𝜋 |Δ𝑘𝐿| ~ 5 2𝜋, typically for 𝑀 9.21 and 𝑎 0.04, SBS and BEFWM can be 

cooperative via the phase-pulling effect by the FWM gain, thereby leading to quasi-resonant growths of 

both Stokes and anti-Stokes fields. In contrast, when |Δ𝑘𝐿| ≫ 1, particularly when |Δ𝑘𝐿| ~ 5 2𝜋, 

SBS and BEFWM become no longer cooperative, returning to exhibiting anti-resonant oscillatory 

behaviors without bringing in considerable growths of both Stokes and anti-Stokes fields. This means 

that for a standard SMF under normal circumstances with the fiber-end’s termination, the interplay 

between SBS and BEFWM is not really tangible unless its length is far below a meter or it has non-

negligible birefringence that may make |∆𝑘𝐿| less than ~ 5 2𝜋 rad in the case of 𝑀 9.21 and 

𝑎 0.04, for example. In addition, the extra gain effect by BEFWM fades significantly as the level of 

the back-reflection reduces to below one percent, i.e., 𝑎 0.01. 

Inherently, the interplay between SBS and BEFWM is phase-dependent whilst it can still happen 

with white noise seeding with random phases as discussed in the preceding section. Thus, if the overall 

phase conditions are readily adjustable with external seeding, the interplay between them can be 

exploited for all-optical switching functionality as recently demonstrated in [15]. We expect that our 

theoretical modeling and formulation will be useful for designing and analyzing a variety of fiber 

systems that incorporate high-power narrow-linewidth light undergoing non-negligible back-reflection 

under various conditions. 
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APPENDIX A. ASYMPTOTIC FORMULATION OF AMPLIFICATION RATIOS WHEN 

|𝚫𝒌𝑳| ≪ 𝟏 

One can see in Fig. 4 that both Stokes and anti-Stokes fields diminish when |Δ𝑘𝐿| ≪ 1. This is due 

to the fact that the acoustic fields 𝜌  and 𝜌  tend to interfere destructively under the perfect phase-

matching condition, i.e., Δ𝑘 0 . It is noteworthy that although the nominal FWM gain may be 

maximized when Δ𝑘 0 , it cannot be warranted that the amplification of anti-Stokes fields is 

maximized at the same time, because the creation of anti-Stokes photons is the consequence of the 

annihilation of acoustic phonons created by Stokes scattering from a quantum-mechanical point of 

view [see Fig. 2(a)]. That is, BEFWM is inherently anti-resonant with SBS. Thus, BEFWM tends to 

disrupt SBS substantially when the FWM gain is large. Although the interplay between SBS and 

BEFWM can be cooperative or quasi-resonant in a certain range, e.g., ~ 2𝜋 |Δ𝑘𝐿| ~ 5 2𝜋 for 

𝑀 9.21 and 𝑎 0.04, via the linear and nonlinear phase evolutions in the Stokes and anti-Stokes 

fields together with the FWM gain, the details of which is to be discussed in Appendix C, we, in the 

following, pay our attention to the asymptotic behavior of the interplay particularly when |Δ𝑘𝐿| ≪ 1. 

In fact, the linear and nonlinear phase evolutions in the Stokes and anti-Stokes fields are 

predominantly determined by Δ𝑘 𝐿 and 𝜎𝐿, which can be rewritten into 

∆𝑘 𝐿 𝑥 𝑖𝛿,      (A1a) 

𝜎𝐿 𝛿 𝑥 𝑖2𝛿𝑥 ,    (A1b) 

where new parameters have been introduced for the sake of notational simplicity such that 

𝑥 ≡ ∆𝑘𝐿,      (A2a) 

𝛿 𝑔 𝐴 𝐴 𝐿,    (A2b) 

𝛿 𝑔 𝐴 𝐴 𝐿.     (A2c) 

It is noteworthy that 𝑥 is a variable whereas 𝛿 and 𝛿  are simple positive constants under the given 

condition (i.e., 𝑀 9.21 and 𝑎 0.04). 
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In fact, the ensemble-averaged output Stokes intensity, which is given by Eq. (10a), is 

predominantly determined by 𝑆 , , because the case considered in this investigation is when 𝑎 ≪ 1. 

We thus pay our attention to the first term of Eq. (10a) in the first place, deriving its asymptotic 

formula as |Δ𝑘𝐿| → 0. Once this has been done, the other form for 𝑆 ,  will also be obtained in a 

very similar manner without difficulty. 

The general expression for 𝑆 ,  given in Eq. (8a) is now rewritten into the following form: 

𝑆 , ∆
,     (A3) 

where the relations given in Eq. (2) have been used for simplifying the numerator. In order to obtain the 

full asymptotic formula for 𝑆 , , we start with representing 𝜎𝐿 as its own asymptotic formula as 𝑥 →

0, for which the full expression for 𝜎𝐿 is now rewritten into 

𝜎𝐿 1 𝑖 𝑥 ,     (A4) 

where the positive sign has been taken for convention that 𝜎 is normally defined to have a positive real 

part. It is noteworthy that the two values of 𝜎 obtained from the characteristic equation of Eq. (7b) 

eventually result in the overall solutions expressed in terms of cosh 𝜎𝑧  and sinh 𝜎𝑧  functions 

regardless of the choice of the sign convention [see Eq. (6)]. Since the full expression already contains 

a second-order term in terms of 𝑥 , we can think of representing it by means of a Taylor series 

expansion up to at least second order. With this mathematical manipulation, we can readily obtain the 

asymptotic formula for 𝜎𝐿 when 𝑥 ≪ 1 as given by 

𝜎𝐿 ≅ 𝜉 𝑖𝜉 𝑥 𝜉 𝑥    |𝑥| → 0 ,    (A5) 

where 

𝜉 𝑀 1 𝑎 ,     (A6a) 

𝜉 ,      (A6b) 
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𝜉 𝛿 𝛿 .    (A6c) 

We then look into all the terms in the denominator of Eq. (A3) within the limit |Δ𝑘𝐿| ≪ 1, i.e., 

|𝑥| ≪ 1, including the factor ∆  as well as cosh 𝜎𝐿  and sinh 𝜎𝐿 . First, the full expression for the 

factor ∆  can be rewritten into 

∆
1 𝑖 .     (A7) 

In fact, this relation can also be represented by a Taylor series expansion up to second order via Eq. 

(A5), so that we obtain the following relation after tedious mathematical manipulations: 

∆
 ≅ 𝜁 𝑖𝜁 𝑥 𝜁 𝑥    |𝑥| → 0 ,     (A8) 

where 

𝜁 ,       (A9a) 

𝜁 𝛿 𝛿 ,    (A9b) 

𝜁 𝛿 𝛿 .    (A9c) 

As for cosh 𝜎𝐿  and sinh 𝜎𝐿 , we additionally utilize the following relations since 𝜎𝐿 is a complex 

quantity: 

cosh 𝜎𝐿 cosh Re 𝜎𝐿 cos Im 𝜎𝐿 𝑖 sinh Re 𝜎𝐿 sin Im 𝜎𝐿 ,  (A10a) 

sinh 𝜎𝐿 sinh Re 𝜎𝐿 cos Im 𝜎𝐿 𝑖 cosh Re 𝜎𝐿 sin Im 𝜎𝐿 .  (A10b) 

Based on Eqs. (A5) and (A10), we obtain the asymptotic formulae for both cosh 𝜎𝐿  and sinh 𝜎𝐿  up 

to second order in terms of 𝑥 in a straightforward manner. 

After tedious mathematical manipulations with all the individual terms in the denominator of Eq. 

(A3) and collecting terms up to second order, we eventually obtain 

cosh 𝜎𝐿 ∆ sinh 𝜎𝐿 ≅ 𝛾 2𝛾 𝛾 𝛾 𝑥    |𝑥| → 0 ,   (A11) 

where 

𝛾 cosh 𝜉 𝜁 sinh 𝜉 ,      (A12a) 
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𝛾 𝜁 𝜉 cosh 𝜉 𝜉 𝜁 sinh 𝜉 ,    (A12b) 

𝛾 𝜉 𝜁 𝜉 𝜁 𝜉 cosh 𝜉 𝜁 𝜉 𝜉 𝜁 sinh 𝜉 . (A12c) 

Consequently, the asymptotic curve for Eq. (A3) when |𝑥| ≪ 1 becomes 

𝑆 , ,
exp 𝑀 1 𝑎 𝐶 𝐷 𝑥    |𝑥| → 0 ,   (A13) 

where 

𝐶 ,      (A14a) 

𝐷 .      (A14b) 

It is noteworthy that excluding a constant, the lowest-order term is second order in terms of 𝑥. In 

other words, 𝑆 ,  can be represented by 𝐶 𝐷 𝑥  when |𝑥| ≪ 1. Since 𝐷  is inherently a positive 

quantity under the given condition (i.e., 𝑀 9.21  and 𝑎 0.04 ), the asymptotic curve when 

|Δ𝑘𝐿| ≪ 1 becomes a concave-up parabola, which implies its minimum is at the vertex, i.e., at Δ𝑘𝐿

0, as can be seen from Fig. 4(a). In fact, this consequence is due to the fact that the acoustic fields 𝜌  

and 𝜌  interfere destructively when Δ𝑘 0 or Δ𝑘 ≪ 0 in that the creation of anti-Stokes photons is 

the consequence of the annihilation of acoustic phonons created by Stokes scattering from a quantum-

mechanical point of view. That is, BEFWM and SBS are inherently anti-resonant processes to each 

other. 

As for 𝑆 , , its general expression is given by 

𝑆 ,
∆

.     (A15) 

Since the asymptotic formula for the denominator when |𝑥| ≪ 1, has already been found, we just need 

to deal with the numerator in this case. In a similar manner, we obtain the following relation for the 

numerator part: 

≅ 𝑈 𝑉 𝑥    |𝑥| → 0 ,    (A16) 
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where 

𝑈 sinh 𝜉 ,      (A17a) 

𝑉 𝛿 8 4 sinh 𝜉 𝛿 𝛿 sinh𝜉 cosh𝜉 𝛿 cosh 𝜉 . (A17b) 

 Consequently, the asymptotic curve for 𝑆 ,  when |𝑥| ≪ 1 becomes 

𝑆 , ,
𝐶 𝑈 𝐷 𝑈 𝐶 𝑉 𝑥    |𝑥| → 0 .   (A18) 

It is noteworthy that the asymptotic curve for 𝑆 ,  when |𝑥| ≪ 1  also becomes a concave-up 

parabola, because 𝐷 𝑈 𝐶 𝑉  is invariably positive under the given condition (i.e., 𝑀 9.21 and 

𝑎 0.04). As a result, the Stokes field still becomes minimized at Δ𝑘𝐿 0 even with taking the extra 

term of 𝑆 ,  into account in the given range, as can be seen in Fig. 4(e). 

In similar manners, we can also obtain the other asymptotic curves when |𝑥| ≪ 1 as given by 

𝑆 , ,
exp 𝑀 1 𝑎 𝐶 𝐷 𝑥    |𝑥| → 0 , 

𝑆 , ,
𝐶 𝑈 𝐷 𝑈 𝐶 𝑉 𝑥    |𝑥| → 0 . 

APPENDIX B. ASYMPTOTIC FORMULATION OF AMPLIFICATION RATIOS WHEN 

|𝚫𝒌𝑳| ≫ 𝟏 

In contrast to the monotonically increasing behaviors of 𝑆 ,  and 𝑆 ,  with respect to |Δ𝑘𝐿| 

when |Δ𝑘𝐿| ≪ 1, they turn into exhibiting oscillatory behaviors when |Δ𝑘𝐿| ≫ 1 whilst the depths of 

the oscillations monotonically decrease as can be seen in Figs. 4(a) and (b). In fact, the local maxima of 

the oscillatory responses are bounded above by certain asymptotic curves, which can be regarded as a 

measure of the impact of the interplay between SBS and BEFWM. We here investigate them in more 

details and discuss how the individual asymptotic curves when |Δ𝑘𝐿| ≫ 1 are derived. The derivation 

procedures for them are similar to those given in Appendix A; however, the key difference is that |Δ𝑘𝐿| 

is now much larger than unity, i.e., |Δ𝑘𝐿| ≫ 1. 
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When |Δ𝑘𝐿| ≫ 1, i.e., |𝑥| ≫ 1, the full expression for 𝜎𝐿 can be rewritten into [see Eq. (A5) for 

comparison] 

𝜎𝐿 1 𝑖 ,     (B1) 

where the negative sign has been taken for convention that 𝜎 is normally defined to have a positive real 

part. In a similar manner to what has been done in Appendix A [see Eqs. (A3) and (A4)], the Taylor 

series expansion of Eq. (B1) in terms of 𝑥  up to second order yields 

𝜎𝐿 ≅ 𝑥 𝛿 𝛿 𝑥    |𝑥| → ∞ .    (B2) 

With this relation, we can readily obtain 

∆ ≅ 1 𝛿 𝛿 𝑥    |𝑥| → ∞ .                                               (B3) 

In addition, cosh 𝜎𝐿  and sinh 𝜎𝐿  can also be represented by their real and imaginary parts via Eqs. 

(A10) and (B2). After tedious mathematical manipulations via Eqs. (B2) and (B3), the full asymptotic 

expression for the denominator of Eq. (A3) when |𝑥| ≫ 1 eventually becomes 

cosh 𝜎𝐿 ∆ sinh 𝜎𝐿 ≅ cosh Re 𝜎𝐿 1 𝛿 𝛿 𝑥 sinh Re 𝜎𝐿  (B4) 

                                                             𝛿 𝛿 1 𝛿 𝛿 𝑥 sin Im 𝜎𝐿    |𝑥| → ∞ . 

Since the left-hand side (LHS) of Eq. (B4) is the common expression for all of the amplification ratios 

given in Eq. (10), this outcome equally applies to all of them. It is noteworthy that the denominator 

function becomes inherently oscillatory in that the second term of the right-hand side (RHS) of the 

equality of Eq. (B4) varies periodically with respect to Im 𝜎𝐿  [see Eq. (B2)] whilst the first term 

varies monotonically. It is also important to note that the second term is invariably results in a positive 

quantity since 𝛿  is always greater than 𝛿 , i.e.,  𝛿 𝛿 𝑎𝑀  [see Eqs. (A2b) and (A2c)]. Thus, 

from Eq. (B4), we can obtain an inequality within the infinite asymptotic limit as given by  

cosh 𝜎𝐿 ∆ sinh 𝜎𝐿 cosh Re 𝜎𝐿 1 𝛿 𝛿 𝑥 sinh Re 𝜎𝐿    |𝑥| → ∞ , 

(B5) 



 27

where the equality holds only when sin Im 𝜎𝐿 0, i.e., Im 𝜎𝐿 𝑛𝜋 (𝑛 is a non-zero integer for 

|𝑥| ≫ 1). In other words, when |𝑥| ≫ 1, the denominator function of Eq. (A3), i.e., Eq. (B4), can have 

local minima where sin Im 𝜎𝐿 0 if the term of 𝑥  varies in a sufficiently slow manner within 

the limit |𝑥| ≫ 1 . In fact, this consequence implies the amplification ratio 𝑆 ,  can be locally 

maximized wherever sin Im 𝜎𝐿 0 while the depth of oscillation monotonically decreases with 

respect to |Δ𝑘𝐿|, i.e., |𝑥|. In result, it is truly important to note that the RHS of the inequality given by 

Eq. (B5) determines the asymptotic curve by which the trace of the local maxima of  𝑆 ,  is bounded 

above. 

After tedious mathematical manipulations on the RHS of Eq. (B5) via Eqs. (A10) and (B2), we 

eventually obtain 

cosh Re 𝜎𝐿 1 𝛿 𝛿 𝑥 sinh Re 𝜎𝐿 ≅ 𝜒 𝜒 𝜒 𝑥    |𝑥| → ∞ ,  (B6) 

where 

𝜒 cosh sinh exp ,     (B7a) 

𝜒 𝛿 𝛿 sinh .      (B7b) 

Substituting this outcome into Eq. (A3), we finally obtain the asymptotic curve when |𝑥| ≫ 1, by 

which the local maxima of 𝑆 , , are bounded above such that 

 𝑆 , ,
exp 𝑀 1 𝑎 𝐶 𝐷 𝑥    |𝑥| → ∞ ,  (B8) 

where 

𝐶 exp 𝑀 1 𝑎 ,      (B9a) 

𝐷 𝑎𝑀 exp 𝑀 1 𝑎 sinh 𝑀 1 𝑎 .  (B9b) 

It is noteworthy that excluding a constant, the lowest-order term is second order in terms of 𝑥 . In 

other words, the local maxima of 𝑆 ,  are bounded above by 𝐶 𝐷 𝑥 . 
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As for the asymptotic curve by which the local maxima of 𝑆 ,  are bounded above when |𝑥| ≫ 1, 

we just need to figure out when the numerator part of Eq. (A15) is maximized in addition. When 

|𝑥| ≫ 1, the asymptotic formula of the numerator part except for the constant factor can be rewritten 

into 

≅    |𝑥| → ∞ .   (B10) 

Since this function is locally maximized when sin Im 𝜎𝐿 1, i.e., Im 𝜎𝐿 2𝑛 1 𝜋 (𝑛 is an 

integer), we can deduce the following inequality within the infinite asymptotic limit after representing 

all the terms with Taylor series expansions up to second order in terms of 𝑥 : 

4cosh 𝑀 1 𝑎 𝑥    |𝑥| → ∞ .   (B11) 

Substituting Eqs. (B5) and (B11) into Eq. (A15) via Eqs. (B6) and (B8) and collecting all the terms up 

to second order in terms of 𝑥 , we eventually obtain the asymptotic curve when |𝑥| ≫ 1 as given by 

 𝑆 , ,
𝑎𝑀 cosh 𝑀 1 𝑎 𝐶 𝑥    |𝑥| → ∞ ,  (B12) 

It is noteworthy that whilst the minima of the LHS of Eq. (B5) and the maxima of the LHS of Eq. (B11) 

do not take place exactly at the same locations, the asymptotic curve of Eq. (B12) is still valid in the 

limit |𝑥| ≫ 1. 

In similar manners, we can also obtain the other asymptotic curves when |𝑥| ≫ 1 as given by 

𝑆 , ,
𝑎𝑀 cosh 𝑀 1 𝑎 𝐶 𝑥 , 

𝑆 , ,
exp 𝑀 1 𝑎 𝐶 𝐷 𝑥 . 
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APPENDIX C. PHASE-PULLING EFFECT BY THE FWM GAIN UNDER QUASI-

RESONANT CONDITION 

Whilst under the perfect phase-matching condition, the interplay between SBS and BEFWM is 

exactly anti-resonant, we can see some quasi-resonant behavior particular when ~ 2𝜋 rad |Δ𝑘𝐿|

~ 5 2𝜋 rad  as shown in Fig. 4. This consequence is due to the fact the common denominator 

function expressed by cosh 𝜎𝐿 ∆ sinh 𝜎𝐿 is sustainably reduced to a very small quantity like 

what normally happens under resonant condition [21]. In fact, when |Δ𝑘𝐿| ≫ 1, i.e., |𝑥| ≫ 1, the 

common denominator function is represented by Eq. (B4), which is further reduced to Eq. (B6) 

particularly when Im 𝜎𝐿 𝑛𝜋 (𝑛 is a non-zero integer). In Appendix B, the consequence by the term 

of 𝑥  in Eq. (B4) has been excluded under the assumption that 𝑥 is sufficiently larger than unity, i.e., 

|𝑥| ≫ 1. This actually leads to the characteristic equation for determining the 𝑛-th local maximum as 

given by 

𝑥 𝛿 𝛿 𝑥 2𝑛𝜋   (𝑛 is a non-zero integer).  (C1) 

Under the condition when |𝑥| ≫ 1, we can readily obtain the solution to Eq. (C1) as given by 

𝑥 𝑛𝜋 1 1 𝑎    (𝑛 is a non-zero integer).   (C2) 

This solution eventually converges to 𝑥 ≅ 2𝑛𝜋 for a sufficiently large 𝑥, i.e., |𝑥| ≫ 1. For example, 

we can readily see in Fig. 4(e) that the fifth local maximum takes place nearly at 𝑥 ≅ 5 2𝜋, which is 

typically in the case for 𝑀 9.21 and 𝑎 0.04. 

In contrast, if we suppose that 𝑥  is within the quasi-resonant regime, i.e., when ~ 2𝜋 𝑥

~ 5 2𝜋, the situation becomes slightly different in that 𝑥 is rather in the lower part of the range 

defined by |𝑥| ≫ 1. Thus, to be more specific, we should take account of both the 𝑥  term and the 

additive sinusoidal term at the same time in dealing with Eq. (B4). Although we can numerically find 

where the most significant local maximum takes place in Fig. 4(e), the result can also be obtained by an 

asymptotic approach that follows. In fact, the additive sinusoidal term can be represented by its zeroth-
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order Taylor series expansion via 𝑥  2𝑚𝜋 𝑥  where 𝑚 is the largest integer number making 𝑥  as 

small as possible while making 𝑥  be the location for the most significant local maximum, because 

there is already a second-order infinitesimal factor of 𝑥  in front of it. Substituting the zeroth-order 

correction term into Eq. (B4) and finding the root which makes the full equation zero, we obtain 

𝑥 ,      (C3) 

where  

𝜒 𝛿 𝛿 1 𝛿 𝛿 sin .   (C4) 

In fact, this relation determines where the most significant quasi-resonance takes place. With 𝑚 2, 

the result of Eq. (C3) yields 1.88 2𝜋, whilst the result calculated by Eq. (C2) yields 2.02 2𝜋. For 

comparison, the full numerical result for the most significant quasi-resonance is given by 1.89 2𝜋. 

This means the prediction by the asymptotic approach is really of high accuracy. 

Moreover, the discrepancy between the results predicted by Eqs. (C2) and (C3) actually unveil that 

there is a phase-pulling effect in the interplay between SBS and BEFWM, which is caused by the 

significant FWM gain within its gain bandwidth like the frequency-pulling effect which normally 

occurs in the resonance of a laser cavity oscillation [30]. Similar to the laser gain, the FWM gain 

induces the phase-pulling effect towards its peak. The phase-pulling effect gradually diminishes with a 

factor of 𝑥  beyond the range where the FWM gain is significant. Consequently, for sufficiently large 

values of 𝑥  beyond the quasi-resonant regime, the locations of the local maxima can simply be 

determined by the formula given by Eq. (C2) as can be seen in Fig. 4(e). In this case, there is no 

significant phase-pulling effect in the interplay between SBS and BEFWM, so that we can eventually 

see that the local maxima of anti-Stokes fields simply take place where there are the local minima of 

Stokes fields. SBS and BEFWM are inherently anti-resonant processes to each other as pointed out in 

Section IV or Appendix A. In fact, the upper limit of the quasi-resonant regime of ~ 5 2𝜋 has been 

determined in this respect. 
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APPENDIX D. ASYMPTOTIC EXTRA-GAIN FACTOR FOR STOKES INTENSITY WHEN 

|𝚫𝒌𝑳| ≫ 𝟏 

The extra-gain factor for the Stokes intensity can be defined from 𝐼 0 𝐼 exp 𝐺

Δ𝐺  such that 

Δ𝐺 ln ,    (D1) 

where 𝐺  is the nominal gain factor by SBS without taking account of BEFWM, which is equal to 

𝑀  in our notation. Since 𝐼 0  is given by Eq. (10a) and the asymptotic formulae for the local maxima 

of 𝑆 ,  and 𝑆 ,  when |𝑥| ≫ 1 are as given by Eqs. (B8) and (B12), we can readily obtain 

,  
exp 𝑀 1 𝑎 𝐶 1 𝜂 𝑥    |𝑥| → ∞ ,  (D2) 

where 

𝜂 𝑎𝑀 cosh 𝑀 1 𝑎 exp 𝑀 1 𝑎 .  (D3) 

It is noteworthy that since both initial Stokes and anti-Stokes fields are assumed to arise from white 

background noise components,   can be set to unity from the statistical point of view. Substituting 

Eq. (D2) into Eq. (D1), we eventually obtain the asymptotic extra-gain factor for the Stokes intensity 

when |𝑥| ≫ 1 as given by 

Δ𝐺 | ,  ln 1 𝜂 𝑥 ≅ 𝜂 𝑥    |𝑥| → ∞ ,  (D4) 

where a Taylor series expansion of the natural logarithmic function up to second order in terms of 𝑥  

has been used. It is noteworthy that asymptotic extra-gain factor for the Stokes intensity when |𝑥| ≫ 1 

is invariably formulated by a function of 𝜂 𝑥 . Moreover, the asymptotic formulations based on the 

Taylor series expansions up to second order in terms of Δ𝑘𝐿  are in excellent agreement with the 

full numerical results as can be verified in Fig. 5. 
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Figure Captions. 

 

Fig. 1. Schematic of SBS and BEFWM by the forward- and backward-pump fields in an optical fiber. 

 

Fig. 2. BEFWM in a standard SMF: (a) Energy diagram for BEFWM, where |𝑒 ⟩, 𝑒 , |𝑖⟩, and |𝑔⟩ 

denote the virtual states for the anti-Stokes and forward-pump fields, the vibration state for the acoustic 

field, and the ground state, respectively. (b) Frequency and phase-matching diagram for BEFWM based 

on the optical and acoustic fields’ dispersion relations. (c) Phase mismatch ∆𝑘 and effective interaction 

length of BEFWM 𝐿  with respect to birefringence 𝐵 . The ranges shaded in pink (i.e., ~ 

|Δ𝑘𝐿| ~ 2𝜋) denote where BEFWM instability may occur and our current analysis is, thus, no longer 

valid. 

 

Fig. 3. Critical gain factor of BEFWM-induced temporal instability in various conditions: (a) Critical 

gain factor with respect to ∆𝑘𝐿 for 𝑎 0.04. The red-dotted line denotes the nominal 𝑀 value, i.e., 𝑀 , 

for comparison. The inset displays the magnified view of the power limit for small values of ∆𝑘𝐿. (b) 

Critical gain factor with respect to 𝑎 for 
∆

1, 10, and 100. The red-dotted line denotes the nominal 

𝑀 value, i.e., 𝑀 , for comparison. (c) Steady state time constant of BEFWM’s transient response for 

𝑎 0.04. 

 

 Fig. 4. Asymptotic behaviors of the amplification ratios of the ensemble-averaged output Stokes and 

anti-Stokes intensities: (a) 𝑆 , , (b) 𝑆 , , (c) 𝑆 , , (d) 𝑆 , , (e) 𝑆 , 𝑆 , , and (f) 

𝑆 , 𝑆 , . The red-solid lines denote the corresponding asymptotic curves based on the 

formulae obtained from Appendices A and B. The ranges shaded in pink (i.e., ~ |Δ𝑘𝐿| ~ 2𝜋) 
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denote where BEFWM instability may occur and our current analysis is, thus, no longer valid. The 

insets display the magnified views of the corresponding ranges. 

 

Fig. 5. The extra-gain factors to the local maxima of the Stokes intensity (scatter points) and the 

corresponding asymptotic extra-gain factors (solid lines) with respect to 
∆

 for 𝑎 0.04, 0.01, 0.001, 

and 0.0001. The individual asymptotic curves are formulated by 𝜂 Δ𝑘𝐿 , where 𝜂  is determined 

with the corresponding 𝑎-paramter (see Appendix D for more details). 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

 

 

 


