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Abstract: Buildings’ long-term techno-economic performance monitoring is critical for benchmarking
in order to reduce costs and environmental impact while providing adequate services. Reliable build-
ing stock performance data provide a fundamental knowledge foundation for evidence-based energy
efficiency interventions and decarbonisation strategies. Simply put, an adequate understanding of
building performance is required to reduce energy consumption, as well as associated costs and
emissions. In this framework, Variable-base degree-days-based methods have been widely used for
weather normalisation of energy statistics and energy monitoring for Measurement and Verification
(M & V) purposes. The base temperature used to calculate degree-days is determined by building
thermal characteristics, operation strategies, and occupant behaviour, and thus varies from building
to building. In this paper, we develop a variable-base degrees days regression model, typically
used for energy monitoring and M & V, using a “proxy” variable, the cost of energy services. The
study’s goal is to assess the applicability of this type of model as a screening tool to analyse the
impact of efficiency measures, as well as to understand the evolution of performance over time, and
we test it on nine public schools in the Northern Italian city of Seregno. While not as accurate as
M & V techniques, this regression-based approach can be a low-cost tool for tracking performance
over time using cost data typically available in digital format and can work reasonably well with
limited resolution, such as monthly data. The modelling methodology is simple, scalable and can be
automated further, contributing to long-term techno-economic performance monitoring of building

stock in the context of incremental built environment digitalization.

Keywords: data-driven methods; data-driven energy modelling; regression-based approaches; inter-

pretable machine-learning; energy analytics; techno-economic analysis; measurement and verification

1. Introduction

Decarbonisation of the building stock is today a fundamental component of strategies
to limit the impact of climate change [1]. Most of the building existing today will be still
in use in 2050 and the current rate of energy retrofits (i.e., 0.4-1.2% depending on the
country) [2] is insufficient to meet the targets set by energy and environmental policies. On
the other hand, techno-economic analysis is a valuable approach to evaluate transparently
the costs and benefits of efficiency measures [3] and to enable the creation of innovative
business models focused on efficiency and carbon reduction [4]. Innovative business
models are crucial to stimulate the market (i.e., increasing the rate of energy retrofit), thereby
accelerating the process of decarbonisation. It is worth noting that innovative technologies
in the building sector are also an important part of the economy recovery strategies that
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can be adopted during the post-pandemic period [5] (i.e., short-term perspective) but also
in a circular economy vision for the built environment [6], in relation to the ambitious goal
of zero carbon emission [7] (i.e., long-term perspective).

The design of efficiency measures has to consider multiple criteria [8] and the impact of
user behaviour on energy performance shouldn’t be neglected or underestimated. For this
reason, energy benchmarking [9] (providing useful statistics on the actual energy consump-
tion of buildings) is an important tool to evaluate the feasibility of an energy refurbishment.
More in general, crowd sourced data [10] are important for the evolution of the building
sector as a whole, because they can provide robust evidence in decision-making processes.
Essentially, the importance of open data for the energy sector is already well-known [11], in
relation also to the built environment co-evolution, because built environment constitutes a
substantial part of global energy demand. To assess the impact of innovative technologies
in buildings as well as their interaction with infrastructures, multiple modelling approaches
and techniques are available today, ranging from top-down [12] to bottom-up [13]. The
increasing use of machine learning (ML) techniques is determining a rapid evolution in
this area of research, but reflection on the concepts of explainability and interpretability is
required. They are described respectively as the “level of understanding how the Al-based
system came up with a given result” (explainability) and the “level of understanding how
the underlying (AI) technology works” (interpretability) in the ISO/IEC TR 29119-11:2020
standard [14] for Artificial Intelligent (Al) software testing. While the distinction may
appear subtle at first, explainability refers to the extent to which the internal mechanics of
a machine learning algorithm can be explained in human terms, whereas interpretability
refers to the extent to which a cause and effect can be observed within a system. Given this
causality stance, interpretability becomes a slippery concept [15], but it is still useful if our
goal is to provide the user with the ability to grasp and predict what will happen when the
model input is changed.

In this framework, energy modelling and energy analytics using interpretable ML
techniques [16] can contribute to the construction sector’s sustainability transition process
by employing (temporally and spatially) scalable techniques that can provide insights and
feedback on performance. Furthermore, they can ensure a certain level of continuity in
the way performance analysis is conducted from design to operation [17]; this aspect is
particularly critical in a “circular” economy perspective. Finally, they can provide a physical
interpretation of the quantities [18], contributing to the further development of harmonised
and standardised approaches [19,20]. The purpose of this paper is to adapt some of the
previously reviewed techniques [16] and use them in a workflow aimed at evaluating the
cost of energy services in buildings and the impact of energy efficiency measures on this
cost. The two fundamental questions are whether variable-base degree-days regression
models can be used for long-term monitoring of energy service costs and what is the
goodness of fit that can be achieved using monthly utility billing data, frequently available
in digital format. The reasons for choosing energy services cost as a variable are discussed
in greater detail in Sections 2 and 3, respectively, in relation to the background knowledge
and to the modelling technique used.

2. Background and Motivation

As introduced before, building stock decarbonisation is a fundamental component
of the strategies to limit the impact of climate change. Buildings for education such
as kindergartens, schools and universities display many similar design, operation and
maintenance features in most countries in EU. The two most notable similarities between
these building types are their high energy consumption and their inclusion in an ageing
building stock, where significant energy saving measures are only rarely implemented
due to decision-makers’ lack of knowledge regarding the effectiveness of potential energy
saving measures [21], which require substantial investment and planning capacity. Beside
energy demand, indoor air quality (IAQ) represents another important issue. In fact, even
though the indoor environmental quality of a school has a strong influence on the health and
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productivity of students and teachers, poor indoor air quality has been reported in many
cases in the published literature, even in newly constructed school buildings. The interplay
between energy efficiency and indoor air quality is therefore a key issue for education
buildings [22] and efficiency measures should address both aspects coherently, with an
appropriate consideration of the trade-off between comfort, cost and environmental impact.
More in general the sustainable long-term management of building stock requires multiple
layers of information regarding its state (e.g., size and composition, etc.), dynamics (e.g.,
rate of new construction, refurbishment, demolition, etc.) and performance (e.g., energy
and indoor air quality, etc.).

As a result, the use of data analytics, which refers to the process of examining datasets
in order to draw conclusions about the information contained within them, is necessary to
understand the temporal evolution of the stock considered [23] and digitalization appears
as a crucial pre-requisite to perform these analytical processes efficiently and in a cost-
effective way. As anticipated, investments are needed to increase the level of efficiency of
the building stock as well as to increase its level of digitalization, but these investments
can contribute to the economic recovery [5,24] in the post-pandemic period, as well as to
the more ambitious (and long-term oriented) targets of net zero emissions and circular
economy for the built environment [6].

Clearly, investments in energy efficiency have to deliver an appropriate level of per-
formance, quantifiable in terms of energy and cost savings, which are the key enablers
for innovative business models [3] built upon smart energy services and technologies.
The techno-economic impact of energy efficiency measures should be assessed using cost-
optimal analysis [25], which allows for the evaluation of the trade-offs between energy
performance (or related carbon emissions) and cost (even life cycle cost) for multiple tech-
nologies at the same time. The operational cost determined by energy consumption is one
of the components of cost-optimal analysis (together with investment cost, replacement
cost and maintenance) and we decided to use it in this research for the reasons that will be
illustrated in Section 3 hereafter.

3. Methods

Following the arguments presented in Section 2, which described the background
and motivations for this research, we decided to use energy services cost as a variable
in our study because it is an essential component of cost-optimal analysis (together with
investment cost and maintenance cost) [25] and may be available in digital format for
relatively long periods of time due to accounting procedures (tracking of expenses). In
fact, even at low resolution, (e.g., monthly data from utility bills), energy performance
monitoring data are rarely available in digital format for long periods (i.e., multiple years).
This clearly represents a limiting factor (i.e., lack of robust evidence regarding energy
performance). For this reason, we use in our research digital records of expenses for energy
services obtained by the local public administration and weather data (air temperature
in particular), from a local weather station. The study’s goal is to test the applicability
of the modelling approach proposed as a screening tool for understanding the impact of
energy efficiency measures and monitor energy related costs. The modelling approach can
be seen as an extension of other regression-based approached for energy monitoring and
Measurement and Verification (M & V), reviewed in recent literature [16,17]. While not as
accurate and reliable as techniques for M & V [20,26,27], this regression-based approach
can be nonetheless an inexpensive tool to track performance in time using cost data that
are normally available in a digital format (e.g., for accounting purpose, as explained before)
and may serve as a screening tool to assess the impact of efficiency measures across multiple
buildings with similar characteristics when more contextual information is available. In this
research, we present data in terms of energy services cost per unit of net floor area, to enable
a comparison independent on the size of the building (but clearly dependent on its specific
characteristics). Indeed, energy services cost is a “proxy” variable. A “proxy” variable is
a variable that is not directly relevant in itself, but serves to replace an unobservable or
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immeasurable variable (in this case we assume energy consumption has not been recorded
digitally). In order to be a good “proxy”, a variable must have a close correlation with
the variable of interest. The cost of an energy service is determined by the amount of
energy consumption and the unitary cost of energy. Therefore, it includes both dimensions
(consumption and energy market dynamics) and it is subject to the temporal evolution
of both. On the one hand, the amount of energy consumption, in particular for heating,
cooling and ventilation services in buildings is highly influenced by weather conditions and
the main independent variable for weather normalization is outdoor air temperature [28].
On the other hand, the unitary cost of energy depends on energy market dynamics and
characteristics of energy service contracts.

The regression model proposed is substantially similar to the standardized ones
described in ASHRAE 14:2014 [20] and ISO 50006:2014 [29] for energy monitoring. A
continuous monitoring process in the long-term (i.e., across multiple years) determines
the possibility to evaluate robustly the change in performance determined by efficiency
measures and, in turn, could enable multiple feedback loops and could stimulate the
continuous improvement process depicted in energy management standards such as ISO
50001:2018 [30].

From a technical standpoint, the model is a variable base degree-days one, proposed
initially from Kissock et al. [31], which has been evolving steadily in time with the introduc-
tion of algorithmic techniques for the selection of base temperatures [32], up to the explicit
solution for the three parameters case (heating and base load, as in this study). The defini-
tion of degree-days is itself part of international standards [33], even though the a-priori
definition of a fixed base temperature (i.e., calculation of degree-days with a temperature
established a priori [34]) is not correct when addressing individual buildings instead of
groups of buildings (for which an average base temperature could be sufficient to perform
weather normalization), as illustrated for example by Meng and Murshed [35]. Overall,
recent technological advances in M & V, leading to M & V 2.0 [36], are yielding promising
results that could be applied to the analysis of building performance at multiple levels and
scales, including a physical interpretation of the regression coefficients [18], which can be
employed also in the calibration [37] of detailed energy models [38]. Better models can
aid in addressing the primary goals of efficiency and achieving stringent decarbonisation
targets [1].

The different phases of the research and modelling workflow are reported in Fig-
ure 1. The data collection phase entails the acquisition of data from previous studies on
the buildings under consideration, as well as the acquisition of digital records of public
administration expenses for energy services for the buildings. The weather data for the
corresponding period were then collected by a local weather station and provided by
Meteonetwork, as mentioned in the acknowledgements. Following that, in the data pre-
processing phase, we calculated the cost per unit of net floor area to improve cross-building
comparability, and we defined the base temperature for calculating variable-base heating
degree days (VB-HDD), using the method described in ISO 15927-6:2007 [33]. Following
that, the regression models (for various buildings) were trained, and their performance
was assessed using R? and adjusted R? (indicated in ISO 50006:2014 [33] as indicators
for baseline energy models), as well as Mean Absolute Deviation (MAD) and Root Mean
Square Error (RMSE) [39] to understand their goodness of fit. Finally, the trained regression
models were used with a reference weather dataset (input) to predict heating service cost
(output) in reference conditions.
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Figure 1. Modelling workflow.

4. Case Study Description

The case study consists of nine public schools in Seregno, Province of Monza-Brianza,
in Northern Italy. All of these buildings were monitored for six years (2009-2014) and two
of them were monitored for an additional two years (2015-2016) after some renovation
measures were implemented. In Table 1, we present a summary of building characteristics,
including the school name, type, total net floor area, floor shape, year of construction and
renovation process. In Figure 1 we indicate the subdivision of space according to different
functions (i.e., space partitioning).

Table 1. Building characteristics summary:.

Milani

5 Total Net Floor Year of .
N School Name Type of School Area (m?) Floor Shape Construction Renovation
1 Asilo Nido Aquilone Nursery 867.2 u 1975 No
Scuola dell'Infanzia H.C. . Yes, 1999,

2 Andersen Kindergarten 2116.4 -. 1973 201314

3 Scuola dell'Infanzia Nobili ~ Kindergarten 2049.6 & 1969 No

4  [Istituto Comprensivo Aldo Primary 4487.2 : 1972 Yes, 2014/15

Moro

Istituto Comprensivo . ! n

5 Gianni Rodari Primary 4815.5 1974 No

¢  [stitutoComprensivo Luigi Primary 6500.1 1920-1940 No

Cadorna

Istituto Comprensivo . I

7 Antonio Stoppani Primary 2325.0 1900-1920 No
Istituto Comprensivo m

8 Alessandro Manzoni Secondary 4255.0 1970 No

9 Scuola Secondaria Don Secondary 6945.3 h 1987 No
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The two buildings renovated are Andersen Kindergarten (number 2 in Table 1) and
Moro School (number 4 in Table 1). The efficiency measures applied were, respectively,
glazing system substitution for Andersen Kindergarten and heating system refurbishment
for Moro School. In the first building, the effect of efficiency measures was already visible
during year 2014, while in the second building the renovations was more profound and the
building was not operated during year 2015 and reopened during 2016. As anticipated,
we can analyse the partitioning of internal spaces based on the reported functions in
Figure 2 to gain a better understanding of the characteristics of all the buildings considered
in this study. All the buildings allocate similar percentages for similar functions, with
the exception of Aquilone Nursery and Nobili Kindergarten, which have more space for
classrooms.

Internal space partitioning

Nursery Aquilone
Kindergarten Andersen
Kindergarten Nobili
Primary Moro

Primary Rodari

Primary Cadorna
Primary Stoppani
Secondary Manzoni

Secondary Don Milani

0 20 40 60 80 100

Percentage [%]

I Classroom

[ Office

I Connection

[ Toilets/Changing Rooms
I Kitchen/Dining Rooms
[ Emergency stairs

Hl Gym/Auditorium

[ Storage

I Unheated spaces

[ Caretaker Rooms

Figure 2. Building internal space partitioning.

As explained in Section 3, the goal of this paper is to adapt a well-developed regression-
based approach used for energy data analysis to another “proxy” variable, heating service
cost. By comparing the data in a weather-normalized manner, we can determine the impact
of efficiency measures on energy services costs per unit of net floor area before and after
renovation. In our analysis, we concentrate on the cost of heating service, which is the
highest cost and has a significant temperature dependence, implying the necessity of
weather normalisation of data. The use of a “proxy” variable is considered because it could
allow long-term analysis of energy performance even when energy consumption data have
not been recorded digitally for a long period of time, which is what happens in many
cases, especially in old buildings. While energy data may not be directly available, utility
bill payments may be available in digital form, at least in recent years, due to accounting
procedures. As a result, where these data are available in digital form, this represents
an opportunity for building stock digitalization, both in the public and private sectors.
Therefore, in this research we use monthly utility billing data, made available in digital
format by the local public administration, and weather data, recorded from a local weather
monitoring station. As anticipated in Section 3, the model proposed is similar to the ones
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used reported in ASHRAE 14:2014 [20] and in particular to the three parameters model,
focused on heating and baseline energy demand.

As anticipated in Section 3 and in Figure 1, we consider monthly heating service
cost per unit of floor area, expressed in €/m?, as the dependent variable and variable
base heating degree-days (VB-HDD) as the independent variable to enable a meaningful
comparison independent on the size of each individual building. The calculation of VB-
HDD is performed after determining a base temperature specific to each building, as
discussed in greater detail in the following section, using the method described in ISO
15927-6:2007 [33]. The developed regression models are then used to compare performance
with a reference design weather data file [40] for which the VB-HDD variable was calculated
with the same building specific base temperature mentioned before.

5. Results and Discussion

As reported in the introduction, the two fundamental questions are whether it is
possible to use variable-base degree-days regression models for the long-term monitoring
of energy services cost and what is the goodness of fit that they can achieve using monthly
utility billing data, frequently available in digital format. First of all, we report the ranges
of cost for heating and electricity services for all the buildings, from year 1 to year 6 (2009—
2014). The cost of heating service is much larger and generally much more variable (due to
weather dependence) than the one for electricity as can be seen in Figure 3.

Cost of heating service Cost of electricity service

50 - 12 4
40 4

30

Cost per unit of net floor area [€/m2]

Cost per unit of net floor area [€/m?]
@

Years Years

Nursery Aguilone
- Kindergarten Andersen
Kindergarten Nobili
Primary Moro
- Primary Cadorna
Primary Rodari

. - Primary Stoppani
——— Secondary Manzoni
— — — - Secondary Don Milani

——— Nursery Aquilone

+  Kindergarten Andersen
Kindergarten Nobili
Primary Moro

Primary Cadorna
Primary Rodari

- Primary Stoppani
Secondary Manzoni
— — — - Secondary Don Milani

Figure 3. Yearly costs of heating and electricity services per unit of net floor area for all the buildings.

The data are then reported in Tables 2 and 3, respectively, for heating service and
electricity service, with summary statistics minimum, average, maximum.
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Table 2. Yearly costs of heating service per unit of net floor area for all the buildings.

School Name and Type Monitoring Years Range of Data
2009 2010 2011 2012 2013 2014 Min Avg Max
€/m? €/m? €/m? €/m? €/m? €/m? €/m? €/m? €/m?
Nursery Aquilone 25.8 25.8 26.1 34.5 414 354 25.8 31.5 41.4
Kindergarten Andersen 10.4 13.9 12.5 12.6 13.2 8.7 8.7 11.9 13.9
Kindergarten Nobili 159 15.5 12.2 15.0 255 20.9 12.2 17.5 25.5
Primary Moro 10.7 12.0 13.2 18.0 17.5 12.9 10.7 14.1 18.0
Primary Cadorna 8.8 13.2 8.3 19.0 19.7 14.0 8.3 13.8 19.7
Primary Rodari 12.6 13.2 12.4 16.3 16.1 10.3 10.3 13.5 16.3
Primary Stoppani 123 9.3 114 14.3 16.9 123 9.3 12.8 16.9
Secondary Manzoni 114 11.6 8.5 13.0 11.8 10.9 8.5 11.2 13.0
Secondary Don Milani 13.9 17.2 12.1 15.5 20.1 15.2 12.1 15.7 20.1

Table 3. Yearly costs of electricity service per unit of net floor area for all the buildings.

School Name and Type Monitoring Years Range of Data
2009 2010 2011 2012 2013 2014 Min Avg Max
€/m? €/m? €/m? €/m? €/m? €/m? €/m? €/m? €/m?
Nursery Aquilone 6.2 5.8 5.7 6.6 6.7 6.8 5.7 6.3 6.8
Kindergarten Andersen 2.1 3.1 2.5 29 3.3 34 21 29 3.4
Kindergarten Nobili 7.0 7.0 7.4 8.9 9.1 9.4 7.0 8.1 9.4
Primary Moro 52 4.6 4.7 52 6.0 6.2 4.6 5.3 6.2
Primary Cadorna 44 4.8 5.0 5.1 5.8 53 44 5.1 5.8
Primary Rodari 4.4 4.2 4.5 53 5.6 5.7 4.2 5.0 5.7
Primary Stoppani 45 4.0 44 44 4.7 42 4.0 44 4.7
Secondary Manzoni 2.6 2.1 1.8 2.1 23 2.0 1.8 21 2.6
Secondary Don Milani 3.3 3.5 32 4.0 43 42 3.2 3.8 4.3

In the next Section we focus on the two buildings that have been renovated, Andersen
Kindergarten and Moro School, developing a more in-depth analysis.

5.1. Analysis of Heating Service Cost before and after Renovation for Andersen Kindergarten and
Moro School

Hereafter, we present the application of the regression-based approach introduced in
Section 3 to the two renovated buildings, Andersen Kindergarten and Moro School. The
main steps of the analysis process are depicted below. In the first phase, we established the
base temperature to be used when calculating variable base heating degree-days (VB-HDD)
by plotting heating service cost (per unit of net floor area) with respect to temperature.
This is depicted graphically in Figure 3 and will be explained more in detail later. After
determining the base temperature, the VB-HDD was calculated using the method described
in ISO 15927-6:2007 [33]. The third step was the training and evaluation of regression
models. The fourth and final step was to use the regression models with a reference design
weather data file to allow for a weather-normalized comparison of heating service cost.
While the original regression method was the one proposed in ASHRAE 14:2014 [20], which
provides rigorous rules and thresholds for the acceptability of models using statistical
indicators such as Normalized Mean Bias Error (NMBE) and Coefficient of Variation
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of Root Mean Square Error (CV(RMSE)), in this case we consider more basic statistical
indicators such as R?, adjusted R?. Mean Absolute Deviation (MAD) and Root Mean Square
Error (RMSE) [39]. R? and adjusted R? are indicated in ISO 50006:2014 [29] as indicators
to understand the goodness of fit of energy models. These two statistical indicators range
from 0 (no correlation) to 100% (perfect fit to a linear model).

In Figure 4, we plot the cost of heating service per unit of floor area on a monthly
basis (y-axis) for both Andersen Kindergarten and Moro School, in relation to the monthly
average outdoor air temperature (x-axis). In this manner, we can graphically identify the
correlation between the two variables as well as the appropriate model to use. We can
clearly see that the shape in this case is the one of a three parameter model, as defined
in ASHRAE 14:2014 [20], i.e., a piecewise linear regression with a constant term and
a temperature dependent term that starts below the base temperature, which in both
buildings is approximately 17.5 °C. The base temperature is essentially the average outdoor
temperature that corresponds to a heating demand equal to zero. When the temperature is
lower than the base temperature, we can have a base load determined by hot water demand
for sanitary use. The base temperature depends on the thermal characteristics of the
building, the use of spaces, the operational strategies, and the behaviour of the occupants.
As a result, it may differ from building to building, as shown in recent research [35], and
must be considered as the first step in developing an appropriate regression model for the
specific building. The piecewise linear pattern is clear for Andersen Kindergarten while
data are more scattered for Moro School. However, in both cases the base temperature is
approximately 17.5 °C.

Cost of heating service Andersen Cost of heating service Moro
44 4
Fay
o v A @
a A a
n
CED ~ u% om % .
g °] g ° 0
© " ® . =
i - o
2 @ Ce 8 * a0V
= el = v =] & A
22 re) 22 o '° &
- -
2 2%t u = @ QuY
E 5 T
5 e 5 e D
= o =
- %o, M; -3 o am’
0 0 o
8 " & 4
L [=]
“x A o S
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g [Ra s Yo w oy o WY & u o Qﬂﬂlgﬁ
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Temperature [°C] Temperature [°C]
® 2009 & 2009
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v 2011 v 2011
a 2012 A 2012
| 2013 B 2013
o 2014 0 2014
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Figure 4. Correlation between monthly costs of heating service per unit of net floor area and average
outdoor air temperature—Andersen Kindergarten and Moro School.

Variable-base heating degree-days (VB-HDD) were computed after selecting 17.5 °C
as the base temperature, and the same data in Figure 4 were reported in Figure 5 as a
function of VB-HDD. It is clear in this case how multiple linear models can be used to
fit the behaviour year after year. We created one model for each year because we didn’t
know a priori the evolution of the unitary energy cost for the service (i.e., the variation
of the unitary cost year on year) and wanted to test it as a top-down approach to identify
anomalies in the cost’s evolution.
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Cost of heating service Andersen Cost of heating service Moro
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Figure 5. Variable-base degree-days regression of monthly costs per unit of net floor area—Andersen
Kindergarten and Moro School.

Following the correlation analysis in Figure 4, we can see how for Moro School data
have a larger spread than for Andersen Kindergarten. This is reflected in a much greater
year-to-year variation in the slopes of regression models. In turn, this indicates an anomaly
because, after removing the temperature dependence (VB-HDD), the slope variability can
be determined by tariff evolution, operational changes or performance degradation, which
should have a reasonably a smaller magnitude (as in Andersen Kindergarten for example)
compared to what we see in the case of Moro School in Figure 5 on the right. In this case,
the rapid variation of slope was determined by a performance degradation of the heating
system, which has been renovated then in 2014 /15.

Hereafter we present the numerical results of the regression analysis for both buildings,
respectively in Table 4 for Andersen Kindergarten and in Table 5 for Moro School. The
goodness of fit achieved by the models in the first case (Andersen Kindergarten) is high (R?
in the range 87.4-97.9%, Adj-R? 88.7-97.7%) and the uncertainty in the prediction of cost
on a yearly base is relatively small, as expected due to the relative modest spread of data.

Table 4. Results of VB-HDD regression models—Andersen Kindergarten.

N° Year Weather Economic Indicators Statistical Indicators
VB-HDD  Yearly Cost Measured Yearly Cost Predicted R? Adj-R? MAD RMSE

°cd €/m? €/m? % % €/m? €/m?
1 2009 1936 10.4 104 +£1.2 97.9 97.7 0.10 0.13
2 2010 2178 13.9 139 +£22 92.8 92.1 0.22 0.30
3 2011 1766 12.5 125+ 3.6 87.4 86.1 0.25 0.39
4 2012 1898 12.6 12.6 £34 89.7 88.7 0.26 0.37
5 2013 1973 13.2 13.2+1.6 97.2 96.9 0.15 0.18
6 2014 1510 8.7 87+13 96.6 96.3 0.10 0.14
7 2015 1717 10.6 10.6 £1.2 97.3 97.1 0.10 0.13
8 2016 1818 10.3 103 +£1.3 97.2 96.9 0.11 0.14
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Table 5. Results of VB-HDD regression models—Moro School.

N° Year Weather Economic Indicators Statistical Indicators
VB-HDD  Yearly Cost Measured  Yearly Cost Predicted R? Adj-R> MAD  RMSE
°cd €/m? €/m? % % €/m? €/m?
1 2009 1936 10.7 10.7 £ 2.0 95.5 95.0 0.16 0.21
2 2010 2178 129 129 +£27 87.3 86.0 0.27 0.38
3 2011 1766 13.2 132 4+3.8 86.3 84.9 0.29 0.41
4 2012 1898 18.0 18.0+27 96.1 95.7 0.21 0.29
5 2013 1973 17.5 175+21 97.5 97.3 0.17 0.23
6 2014 1510 12.9 129+1.8 96.9 96.6 0.11 0.19
7 2015 1717 - - - - - -
8 2016 1818 10.9 109 £3.0 86.9 85.6 0.22 0.33

On the other hand, in the second building (Moro School) the goodness of fit achieved
by the models (R? in the range 86.3-97.5%, Adj-R? 84.9-97.3%) is high as well, but the
uncertainty in the prediction of cost on a yearly base is much larger, despite having similar
values, as expected due to the larger spread of data already highlighted in the previous steps
of the analysis. The results of the regression predictions are then plotted in time (monthly
intervals) in Figure 6 for the entire monitoring period (96 months) for both buildings; the
Moro building was not in operation in 2015.

Cost of heating service monitoring Andersen Cost of heating service monitoring Moro

Cost per unit of net floor area [€/m”]
Cost per unit of net flocr area [€/m”]

80 100

Months Months

Cost of heating service per unit of floor area (before retrofit) Cost of heating service per unit of floor area (before retrofit)
= ReQression models of cost of heating service per unit of floor area (before retrofit) s Regression models of cost of heating service per unit of floor area (before retrofit)
—————— Cost of heating service per unit of floor area (after retrofit) —=—=——=—=— Costof heating service per unit of floor area (after retrofity

————s Regression models of cost of heating service per unit of floor area (after retrafit) ——t—— Regression models of cost of heating service per unit of floor area (after retrofit)

Figure 6. Time series of monthly costs of heating service per unit of net floor area—Andersen
Kindergarten and Moro School.

We can see how, despite their simplicity, the models can approximate the temporal
pattern quite well, with only a few points where the difference (measured-predicted)
is significant. To go deeper into the analysis from a time series perspective, we would
obviously need energy consumption and unitary cost of energy as separate variables (the
selected “proxy” variable is the product of the two, as discussed in Section 3), but this is
not part of this research, which aims to highlight the possibility of using this method as
a screening tool. Nonetheless, we can try to identify if there is a recurrent pattern in the
deviations between measured data and model predictions for monthly costs of heating
service per unit of net floor area, which could depend on the utility billing method.

As can be seen in Figure 7 there is a quite large oscillation of the deviations, but we
cannot identify a clear pattern in them. After that, we summed up the monthly values
of regression predictions to obtain the yearly value (with its confidence interval) and the
results are reported in Figure 8, again for both buildings.
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Figure 7. Time series of deviations between measured data and model predictions for monthly costs
of heating service per unit of net floor area—Andersen Kindergarten and Moro School.
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Figure 8. Yearly costs of heating service per unit of net floor area—Model prediction and ranges—
Andersen Kindergarten and Moro School.

The cost for 2015 for Moro School is reported as a linear interpolation due to the
missing data point and we can see how the cost increase is particularly relevant between
year 3 and 4 (2011-2012), probably determined by a rapid performance degradation and
operational changes. The results identified in Figure 8 are still dependent on the specific
weather year on year but our goal is identifying the actual evolution by projecting the cost
using a reference design weather data file [40], for which VB-HDD has been calculated,
using 17.5 °C as base temperature, for the reasons specified before. With this weather data
file, we obtain 2147 °Cd and the corresponding results are reported (with their confidence
interval) in Figure 9, highlighting a consistent increase in cost for Moro School from year 2
(2010) up to 4 (2012).
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Figure 9. Yearly costs of heating service per unit of net floor area—Weather normalized model
predictions—Andersen Kindergarten and Moro School.

Finally, we employ the same method as in Figure 9 to determine the cost savings
achieved by efficiency measures, employing 2147 °Cd (reference year) and 2013 for An-
dersen and 2014 for Moro School. The savings percentages achieved, 16% and 30%, are
indicated in Table 6 and are plausible for the renovation measures implemented, namely
the replacement of the glazing system for Andersen Kindergarten and the refurbishment
of the heating system for Moro School. This confirms the suitability of the approach as a
screening tool.

Table 6. Identification of cost savings using VB-HDD regression models for typical design year—
Andersen Kindergarten and Moro School.

School Name VB-HDD B;:?:;E:g;}g;r_ Before Retrofit—Cost  After Retrofit—Cost Variatli{:lia—ti‘slzvings
°Cd €/m? €/m? %
Andersen 2147 2013 144+17 121+£13 —16%
Moro 2147 2014 18.0+£1.8 128 £3.1 —30%

5.2.dComparison of Heating Service Cost after Weather Normalisation for All the Buildings in This
Study

In this Section we use the same methodological approach employed before for the
weather normalization of heating service cost for Andersen Kindergarten and Moro (pre-
sented in Section 5.1), but we apply it to the all the building considered in the study for the
first 6 years of monitoring (2009-2014).

We present the data in Figure 10, similarly to Figure 3 and Table 2 at the beginning
of this section, but we compute them with the VB-HDD of the reference year chosen for
comparison [40]. The corresponding data are reported in Table 7. We can see that there is a
moderate shift in costs between year 3 (2011) and 4 (2012) for most of the buildings, but
the most evident anomalies are represented by Aquilone Nursery and Nobili Kindergarten
which show a strong increasing trend in cost of heating service and should be considered
for more in-depth analysis.
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Figure 10. Yearly costs of heating service per unit of net floor area—Weather normalized model
predictions for all buildings.

Table 7. Yearly costs of heating services per unit of net floor area—Weather normalized model
predictions for all buildings.

School Name and Type Monitoring Years Range of Data
2009 2010 2011 2012 2013 2014 Min Avg Max
€/m? €/m? €/m? €/m? €/m? €/m? €/m? €/m? €/m?
Nursery Aquilone 28.6 25.4 31.7 39.0 45.0 50.3 25.4 36.7 50.3
Kindergarten Andersen 10.4 13.9 12.5 12.6 13.2 8.7 8.7 11.9 13.9
Kindergarten Nobili 17.6 15.3 14.9 17.0 27.8 29.8 14.9 20.4 29.8
Primary Moro 10.7 12.9 13.2 18.0 17.5 12.9 10.7 14.2 18.0
Primary Cadorna 9.8 13.0 10.0 21.5 21.4 19.8 9.8 15.9 21.5
Primary Rodari 14.0 13.0 15.1 18.5 17.5 14.6 13.0 15.5 18.5
Primary Stoppani 13.7 9.2 13.8 16.2 184 17.5 9.2 14.8 18.4
Secondary Manzoni 12.7 11.5 10.3 14.7 12.8 15.5 10.3 12.9 15.5
Secondary Don Milani 15.4 17.0 14.7 17.6 21.8 21.6 14.7 18.0 21.8

Overall, the modelling process described here allows for the normalisation of energy
cost data as well as the detection of anomalies and changes of relevant entity. As anticipated,
it could be used for a low-cost screening analysis when billing and temperature data are
easily accessible in digital format, with some potential extensions discussed in the following
section.

5.3. Limitations and Further Research

The limitations of this research have been partially anticipated in Section 3 and they
reside in the fact that we are using a consolidated technique (regression using variable-
base degree-days) on a “proxy” variable, heating service cost, which depends on both the
amount of energy consumption for heating (influenced by weather as well as other factors)
and the unitary cost of energy (influenced by energy market dynamics). The method
presented cannot be as accurate as the ones for M & V from which it has been derived (due
to the multiple underlying dynamic and potential errors). Furthermore, as described in
Section 5.1 and indicated in Figure 3, the selection of the base temperature (i.e., the change-
point for the piecewise linear regression) has been determined by means of graphical
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analysis. This step can be automated further, as Paulus et al. [32] discuss, and the search
range for base temperatures can be informed by an analysis of building characteristics [35].
Nonetheless, even in absence of long-term energy monitoring data, when energy services
costs are available in digital format for accounting purpose, this modelling approach can be
applied as a simple screening tool effectively and its application can be easily automated,
exploiting also the interpretability of the regression modelling techniques [16] to identify
the impact of building characteristics on base temperature and slope. Overall, our study
aims to help in the process of building stock digitalization that is a key step in the process
of meeting decarbonisation targets and can be framed within an area of research that
uses the fundamentals of building energy calibration techniques [37] to create data-driven
workflows that can be applied at different stages of the building life cycle, e.g., early
design stage optimization [41], automated identification of best-fitting models [42] and
operational patterns [43] and linking with top-down statistical analysis [44]. In this sense,
different types of models, if properly designed for interoperability and combined into
systems [45] can determined a radical contribution to the digital transformation of the
built environment, becoming “digital twins”. A “digital twin” is a computer-generated
representation of a physical object, process, or service (i.e., a digital replica) that can
overcome the limitations of the simulation-based approaches normally used in engineering.
While simulations and “digital twins” are both virtual representations of objects, digital
twins can verify how a physical object, process or service performs in real time and in real
world conditions, providing a continuous feedback loop (and consequently continuous
improvements). Furthermore, when interpretable data-driven techniques are employed [16]
it is becomes possible to combine human and machine intelligence in a virtuous circle
(human-in-the-loop approach), whose fundamental goals can be that of accelerating the
transition towards a net zero carbon society.

6. Conclusions

The essential goals of this research work were fundamentally two. The first one
was testing the applicability of regression-based techniques, originally developed for
Measurement & Verification (M & V), to energy services cost analytics. The second one
was to normalize energy services cost with respect to weather conditions and highlight the
actual reduction determined by energy efficiency measures, with an approach resembling
the one used for energy consumption in M & V, but applied to a “proxy” variable, in this case
heating service cost. Overall, we highlighted the fact that a regression-based approach can
work reasonably well as a screening method even with limited information such as monthly
data, making it suitable for quick and inexpensive performance assessment (potentially on
a large-scale base, due to its scalability and possibility of automation), using data records
of utility bills and basic weather data. Additionally, multiple directions for further research
in this area have been indicated, highlighting the fact that different data-driven models can
work a system, if properly conceived. The more relevant directions for further research are
related to model automation and integration with other techniques, to complement them.
The first aspect is related to the automation of base point temperature selection in regression-
based models and subsequently to the calculation of variable-base degree-days. As already
discussed in the paper, base temperature depends on several building characteristics and
can have a certain variability; the ability to define it in an automated way for multiple
building typologies, can greatly enhance the scalability of the approach. The second aspect
is related to the integration of this approach with other regression-based approaches for
M & V; in this case, measured energy services cost could be helpful as a benchmark which
involves both energy tariffs and energy consumption in an integrated way, together with
contextual information. As a conclusion, the possibility to combine multiple analytical
techniques, from top-down to bottom-up, can highly increase the reliability of estimates in
techno-economic assessment, which is crucial for the deployment of innovative business
models and technologies in the built environment in present state and in future perspective.
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