HOMOTOPY DECOMPOSITIONS OF $P U(n)$-GAUGE GROUPS OVER RIEMANN SURFACES

STEPHEN THERIAULT

Abstract

We show that the gauge group of a principal $P U(n)$-bundle over a compact Riemann surface decomposes up to homotopy as the product of factors, one of which is a corresponding gauge group for S^{2} and the others are immediately recognizable spaces. Further, when n is a prime p, the gauge group for S^{2} decomposes as a product of immediately recognizable factors. These gauge groups have strong connections to moduli spaces of stable vector bundles.

1. Introduction

There is a deep connection between moduli spaces of stable vector bundles over a compact Riemann surface Σ_{g} and gauge groups of principal $U(n)$-bundles over Σ_{g}. This was recognized and exploited in spectacular fashion by Atiyah and Bott [1] to calculate the cohomology of the moduli spaces in many cases, leading to a whole new area of study that has attracted widespread interest. Daskalopolous and Uhlenbeck [5] made the connection more explicit by showing that the moduli space of rank n degree k stable vector bundles over Σ_{g} is homotopy equivalent through a dimensional range to the gauge group of the principal $U(n)$-bundle over Σ_{g} that is classified by having first Chern class k. Bradlow, Garcia-Prada and Gothen [4] went on to give an analogous homotopy equivalence in the case of moduli spaces of rank n degree k polystable Higgs bundles.

In [15] the author refined Daskalopolous and Uhlenbeck's homotopy equivalence in the case of principal $U(p)$-bundles when p is a prime by showing that the relevant gauge group decomposes up to homotopy as a product of recognizable factors. This allows for the calculation of the homotopy groups of the gauge group, or the moduli space, through a range based on known calculations for the factors. This approach was subsequently applied to non-orientable surfaces in [16] and real surfaces in [18]. The purpose of this paper is to return to compact, orientable surfaces but consider instead principal $P U(p)$-bundles.

The quotient map $U(n) \longrightarrow P U(n)$ induces mod- n reduction $\mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}$ on π_{1} and an isomorphism on π_{m} for $m \geq 2$. The goal, then, is to uncover the effect of this difference in the fundamental group on the corresponding gauge groups. This has its most complete description when $n=p$, in which case the effect is measured precisely by π_{0} and π_{1} of the gauge groups. The π_{1} information is subtle and takes some work to tease out.

2010 Mathematics Subject Classification. Primary 55P15, Secondary 55P35, 81T13.
Key words and phrases. gauge group, projective unitary group, Riemann surface, homotopy type.

To be more precise, first consider the case of principal $U(n)$-bundles over Σ_{g}. These are classified by the homotopy classes of maps $\left[\Sigma_{g}, B U(n)\right] \cong \mathbb{Z}$. Let $P_{k} \longrightarrow \Sigma_{g}$ be the principal $U(n)$-bundle classified by $k \in \mathbb{Z}$. The gauge group $\mathcal{G}_{k}\left(\Sigma_{g}, U(n)\right)$ of P_{k} is the group of $U(n)$-equivariant automorphisms of P_{k} which fix Σ_{g}. In the special case when $\Sigma_{g}=S^{2}$, let $\mathcal{G}_{k}(U(n))=\mathcal{G}_{k}\left(S^{2}, U(n)\right)$. In [14] it was shown that there is an integral homotopy equivalence

$$
\begin{equation*}
\mathcal{G}_{k}\left(\Sigma_{g}, U(n)\right) \simeq \mathbb{Z}^{2 g} \times\left(\prod_{i=1}^{2 g} \Omega S U(n)\right) \times \mathcal{G}_{k}(U(n)) \tag{1}
\end{equation*}
$$

where $\mathbb{Z}^{2 g}$ is the product of $2 g$ copies of \mathbb{Z}. This was refined in [15] when n is a prime p by decomposing $\mathcal{G}_{k}(U(n))$: if q is a prime different from p then there is a q-local homotopy equivalence

$$
\mathcal{G}_{k}(U(p)) \simeq U(p) \times \Omega^{2} U(p)
$$

if $p \mid k$ there is a p-local homotopy equivalence

$$
\mathcal{G}_{k}(U(p)) \simeq \prod_{i=0}^{p-1} S^{2 i+1} \times \prod_{j=1}^{p-1} \Omega^{2} S^{2 j+1}
$$

and if $p \nmid k$ there is a p-local homotopy equivalence

$$
\mathcal{G}_{k}(U(p)) \simeq S^{1} \times \prod_{i=0}^{p-2} S^{2 i+1} \times \prod_{j=2}^{p} \Omega^{2} S^{2 j+1}
$$

In fact, the q-local homotopy equivalences for $q \neq p$ may be assembled to form a $\mathbb{Z}\left[\frac{1}{p}\right]$-local homotopy equivalence since the q-local equivalences are consequences of the fact that $\mathcal{G}_{k}(U(p))$ is the homotopy fibre of a map $U(p) \longrightarrow \Omega_{0} U(p)$ of order p (here, $\Omega_{0} U(p)$ is the connected component containing the basepoint). However, the p-local case is the more interesting and delicate one.

Principal $P U(n)$-bundles are classified by homotopy classes of maps $\left[\Sigma_{g}, B P U(n)\right] \cong \mathbb{Z} / n \mathbb{Z}$. If $P_{k} \longrightarrow \Sigma_{g}$ is the principal $P U(n)$-bundle classified by $k \in \mathbb{Z} / n \mathbb{Z}$ the gauge group $\mathcal{G}_{k}\left(\Sigma_{g}, P U(n)\right)$ is the group of $P U(n)$-equivariant automorphisms of P_{k} which fix Σ_{g}. Write $\mathcal{G}_{k}(P U(n))$ for $\mathcal{G}_{k}\left(S^{2}, P U(n)\right)$. Making use of the fibration $\mathbb{Z} / n \mathbb{Z} \longrightarrow S U(n) \longrightarrow P U(n)$, we prove the following.

Theorem 1.1. For any $k \in \mathbb{Z} / n \mathbb{Z}$ there is a homotopy equivalence

$$
\mathcal{G}_{k}\left(\Sigma_{g}, P U(n)\right) \simeq(\mathbb{Z} / n \mathbb{Z})^{2 g} \times\left(\prod_{i=1}^{2 g} \Omega S U(n)\right) \times \mathcal{G}_{k}(P U(n))
$$

Theorem 1.2. Fix a prime p and let $k \in \mathbb{Z} / p \mathbb{Z}$. The following hold:
(a) there is a $\mathbb{Z}\left[\frac{1}{p}\right]$-local homotopy equivalence

$$
\mathcal{G}_{k}(P U(p)) \simeq P U(p) \times \Omega^{2} P U(p) ;
$$

(b) if $k=0$ then there are p-local homotopy equivalences

$$
\mathcal{G}_{k}(P U(p)) \simeq P U(p) \times \Omega_{0}^{2} P U(p) \simeq L \times\left(\prod_{i=1}^{p-2} S^{2 i+1}\right) \times\left(\prod_{j=1}^{p-1} \Omega^{2} S^{2 j+1}\right)
$$ where L is a retract of $P U(p)$ such that $\pi_{1}(L) \cong \pi_{1}(P U(p))$ and the universal cover of L is $S^{2 p-1}$;

(c) if $k \neq 0$ then there is a p-local homotopy equivalence

$$
\mathcal{G}_{k}(P U(p)) \simeq\left(\prod_{i=0}^{p-2} S^{2 i+1}\right) \times\left(\prod_{j=2}^{p} \Omega^{2} S^{2 j+1}\right)
$$

In particular, when $k \neq 0, \mathcal{G}_{k}(P U(p))$ has one less factor of S^{1} than the $p \nmid k$ case for $\mathcal{G}_{k}(U(p))$ and, interestingly, $\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \cong \mathbb{Z}$. The torsion in $\pi_{1}(P U(p)) \cong \mathbb{Z} / p \mathbb{Z}$ is not directly reflected in a torsion property for the homotopy groups of $\mathcal{G}_{k}(P U(p))$. A notable special case is for $P U(2) \cong$ $S O(3)$, when there is a 2-local homotopy equivalence $\mathcal{G}_{k}(P U(2)) \simeq S^{1} \times \Omega^{2} S^{5}$ if $k \neq 0$.

The author would like to thank a very careful referee for making several suggestions that have improved the paper.

2. $P U(n)$ gauge groups over Riemann surfaces

In this section we prove Theorem 1.1. The first step is to classify principal $P U(n)$-bundles. For a topological group G, let $B G$ be its classifying space.

Lemma 2.1. There is an isomorphism of groups $\left[S^{2}, B P U(n)\right] \cong \mathbb{Z} / n \mathbb{Z}$.

Proof. The homotopy fibration $\mathbb{Z} / n \mathbb{Z} \longrightarrow S U(n) \longrightarrow P U(n)$ classifies to give a homotopy fibration $B \mathbb{Z} / n \mathbb{Z} \longrightarrow B S U(n) \longrightarrow B P U(n)$. Taking homotopy groups and noting that $B S U(n)$ is 3 -connected immediately gives $\pi_{2}(B P U(n)) \cong \pi_{1}(B \mathbb{Z} / p \mathbb{Z}) \cong \mathbb{Z} / p \mathbb{Z}$.

Let Σ_{g} be a surface of genus g. If $g=0$ then $\Sigma_{g} \simeq S^{2}$, and if $g \geq 1$ then it is well known that there is a homotopy cofibration sequence

$$
\begin{equation*}
S^{1} \xrightarrow{f} \bigvee_{i=1}^{2 g} S^{1} \longrightarrow \Sigma_{g} \xrightarrow{q} S^{2} \xrightarrow{\Sigma f} \bigvee_{i=1}^{2 g} S^{2} \tag{2}
\end{equation*}
$$

where f is the attaching map for the top cell of Σ_{g}, q is the pinch map to the top cell, and Σf is null homotopic.

Lemma 2.2. If Σ_{g} is a surface of genus $g \geq 1$ then the map $\Sigma_{g} \xrightarrow{q} S^{2}$ induces an isomorphism of sets $\left[S^{2}, B P U(n)\right] \xrightarrow{q^{*}}\left[\Sigma_{g}, B P U(n)\right]$. Consequently, $\left[\Sigma_{g}, B P U(n)\right] \cong \mathbb{Z} / n \mathbb{Z}$.

Proof. From the homotopy cofibration (2) we obtain an exact sequence

$$
\left[\bigvee_{i=1}^{2 g} S^{2}, B P U(n)\right] \xrightarrow{(\Sigma f)^{*}}\left[S^{2}, B P U(n)\right] \xrightarrow{q^{*}}\left[\Sigma_{g}, B P U(n)\right] \longrightarrow\left[\bigvee_{i=1}^{2 g} S^{1}, B P U(n)\right]
$$

Observe that $(\Sigma f)^{*}=0$ since Σf is null homotopic and $\left[\bigvee_{i=1}^{2 g} S^{1}, B P U(n)\right] \cong 0$ since $B P U(n)$ is simply-connected. Therefore q^{*} is an isomorphism. That $\left[\Sigma_{g}, B P U(n)\right] \cong \mathbb{Z} / p \mathbb{Z}$ now follows from Lemma 2.1.

Next, we describe a context in which homotopy theory can be used to study gauge groups. In general, let G be a topological group, X a pointed space, and P a principal G-bundle over X classified by a map $f: X \longrightarrow B G$. The gauge group $\mathcal{G}_{f}(P)$ of P is the group of G-equivariant automorphisms of P that fix X. In $[1,6]$ it was shown that there is a homotopy equivalence

$$
B \mathcal{G}_{f}(P) \simeq \operatorname{Map}_{f}(X, B G)
$$

where the right side is the component of the space of continuous maps from X to $B G$ that contains the map f. This description is advantageous as there is an evaluation fibration sequence

$$
\begin{equation*}
G \xrightarrow{\partial_{f}} \operatorname{Map}_{f}^{*}(X, B G) \longrightarrow \operatorname{Map}_{f}(X, B G) \xrightarrow{e v} B G \tag{3}
\end{equation*}
$$

where $e v$ evaluates a map at the basepoint, $\operatorname{Map}_{f}^{*}(X, B G)$ is the component of the space of continuous pointed maps from X to $B G$ that contains f, and ∂_{f} is the fibration connecting map. It is worth pointing out a subtlety in (3): $\operatorname{Map}_{f}(X, B G)$ consists of maps f^{\prime} homotopic to f by unbased homotopies while $\operatorname{Map}_{f}^{*}(X, B G)$ consists of maps homotopic to f by based homotopies, so if f^{\prime} is in the fibre of the evaluation map then an argument is needed to say that the homotopy between f^{\prime} and f may be chosen to be pointed so that $f^{\prime} \in \operatorname{Map}_{f}^{*}(X, B G)$; such an argument is given in $\left[6\right.$, Lemma 5.5]. The salient point of the homotopy fibration (3) is that $\mathcal{G}_{f}(P)$ is the homotopy fibre of ∂_{f}.

In our case, let $\mathcal{G}_{k}\left(\Sigma_{g}, P U(n)\right)$ be the gauge group of the principal $P U(n)$-bundle classified by $k \in\left[\Sigma_{g}, B P U(n)\right] \cong \mathbb{Z} / n \mathbb{Z}$. In the special case when $\Sigma_{g}=S^{2}$ write $\mathcal{G}_{k}(P U(n))$. The isomorphism $\left[S^{2}, B P U(n)\right] \xrightarrow{q^{*}}\left[\Sigma_{g}, B P U(n)\right]$ in Lemma 2.2 implies that the map $\Sigma_{g} \xrightarrow{q} S^{2}$ induces a one-toone correspondence between the components of $\operatorname{Map}^{*}\left(\Sigma^{g}, B P U(n)\right)$ and $\operatorname{Map}^{*}\left(S^{2}, B P U(n)\right)$. Since $P U(n)$ is path-connected, taking π_{0} in the homotopy fibration (3) implies that there is a matching one-to-one correspondence between the components of $\operatorname{Map}\left(\Sigma^{g}, B P U(n)\right)$ and $\operatorname{Map}\left(S^{2}, B P U(n)\right)$. Therefore there is a homotopy commutative diagram of evaluation fibrations

It is well known that the components of $\operatorname{Map}^{*}\left(S^{2}, B P U(n)\right) \simeq \Omega P U(n)$ are all homotopy equivalent. Sutherland [13] showed that the same is true for the components of $\operatorname{Map}^{*}\left(\Sigma_{g}, B P U(n)\right)$, and the homotopy equivalences are compatible in the sense that there is a homotopy fibration diagram

Write ∂_{k} also for the composite $P U(n) \xrightarrow{\partial_{k}} \operatorname{Map}_{k}^{*}\left(S^{2}, B P U(n)\right) \xrightarrow{\simeq} \operatorname{Map}_{0}^{*}\left(S^{2}, B P U(n)\right)$, and do likewise for $\bar{\partial}_{k}$. Write $\operatorname{Map}_{0}^{*}\left(S^{2}, B P U(n)\right)$ as $\Omega_{0} P U(n)$, the component of $\Omega P U(n)$ containing the basepoint. We have $\operatorname{Map}_{k}\left(S^{2}, B P U(n)\right) \simeq B \mathcal{G}_{k}(P U(n))$ and $\operatorname{Map}_{k}\left(\Sigma_{g}, B P U(n)\right) \simeq B \mathcal{G}_{k}\left(\Sigma_{g}, P U(n)\right)$. Then from (4) and (5) we obtain a homotopy fibration diagram

Lemma 2.3. There is a homotopy fibration $\prod_{i=1}^{2 g} \Omega P U(n) \xrightarrow{(\Sigma f)^{*}} \Omega_{0} P U(n) \xrightarrow{q^{*}} M a p_{0}^{*}\left(\Sigma_{g}, B P U(n)\right)$.
Proof. If $g=0$ then q^{*} is the identity map and the product $\prod_{i=1}^{2 g} \Omega P U(n)$ is a point, so the assertion holds. If $g \geq 1$, the homotopy cofibration sequence $\bigvee_{i=1}^{2 g} S^{1} \longrightarrow \Sigma_{g} \xrightarrow{q} S^{2} \xrightarrow{\Sigma f} \bigvee_{i=1}^{2 g} S^{2}$ implies that there is a homotopy fibration sequence
$\operatorname{Map}^{*}\left(\bigvee_{i=1}^{2 g} S^{2}, B P U(n)\right) \xrightarrow{(\Sigma f)^{*}} \operatorname{Map}^{*}\left(S^{2}, B P U(n)\right) \xrightarrow{q^{*}} \operatorname{Map}^{*}\left(\Sigma_{g}, B P U(n)\right) \longrightarrow \operatorname{Map}^{*}\left(\bigvee_{i=1}^{2 g} S^{1}, B P U(n)\right)$.
Observe that there is a homotopy equivalence $\operatorname{Map}^{*}\left(\bigvee_{i=1}^{2 g} S^{1}, B P U(n)\right) \cong \prod_{i=1}^{2 g} P U(n)$; in particular, this space is connected. Restricting the map $\operatorname{Map}^{*}\left(\Sigma_{g}, B P U(n)\right) \longrightarrow \prod_{i=1}^{2 g} P U(n)$ to the 0 -component of $\operatorname{Map}^{*}\left(\Sigma_{g}, B P U(n)\right)$ therefore gives a homotopy fibration sequence

$$
\prod_{i=1}^{2 g} \Omega P U(n) \xrightarrow{\left(\Sigma f^{*}\right)} \operatorname{Map}_{0}^{*}\left(S^{2}, B P U(n)\right) \xrightarrow{q^{*}} \operatorname{Map}_{0}^{*}\left(\Sigma_{g}, B P U(n)\right) \longrightarrow \prod_{i=1}^{2 g} P U(n) .
$$

Rewriting $\operatorname{Map}_{0}^{*}\left(S^{2}, B P U(n)\right)$ as $\Omega_{0} P U(n)$ gives the asserted homotopy fibration.
From the left square of (6) and Lemma 2.3 we obtain a homotopy fibration diagram

which defines the maps a and b.

Proof of Theorem 1.1. Since Σf is null homotopic, so is $(\Sigma f)^{*}$. Therefore the map a in (7) has a right homotopy inverse. The top square in (7) then implies that the map b has a right homotopy inverse
as well. Since $\mathcal{G}_{k}\left(\Sigma_{g}, P U(n)\right)$ is an H-space, the right homotopy inverse for b can be multiplied with the map from the fibre of b to obtain a homotopy equivalence

$$
\mathcal{G}_{k}\left(\Sigma_{g}, P U(n)\right) \simeq\left(\prod_{i=1}^{2 g} \Omega P U(n)\right) \times \mathcal{G}_{k}(P U(n)) .
$$

The statement of the theorem is now obtained by substituting in $\Omega P U(n) \simeq \mathbb{Z} / n \mathbb{Z} \times \Omega S U(n)$, which is obtained from the homotopy fibration $\mathbb{Z} / n \mathbb{Z} \longrightarrow S U(n) \longrightarrow P U(n)$.

3. Properties of ∂_{k} When $n=p$

Fix a prime p. In this section we specialize to $\mathcal{G}_{k}(P U(p))$ and factor the connecting map $P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ for the evaluation fibration. To start, we need some known results about $P U(p)$. In what follows, homology and cohomology will be taken with mod- p coefficients.

The mod- p cohomology of $P U(p)$ was calculated by Baum and Browder [2].

Lemma 3.1. There is an algebra isomorphism

$$
H^{*}(P U(p)) \cong \mathbb{Z} / p \mathbb{Z}[y] /\left(y^{p}\right) \otimes \Lambda\left(z_{1}, z_{3}, \cdots, z_{2 p-3}\right)
$$

where $|y|=2,\left|z_{i}\right|=i$, and $\beta\left(z_{1}\right)=y$.
A p-local homotopy decomposition for $P U(p)$ was proved by Kishimoto and Kono [9].
Proposition 3.2. Localized at an odd prime p, there is a homotopy equivalence

$$
P U(p) \simeq\left(\prod_{i=1}^{p-2} S^{2 i+1}\right) \times L
$$

where L is a space with $\pi_{1}(L) \cong \pi_{1}(P U(p))$ and the universal cover of L is $S^{2 p-1}$.
Remark 3.3. When $p=2, P U(p) \cong S O(3)$ so the statement of Proposition 3.2 still holds.

Observe that by comparing the cohomology decomposition of $H^{*}(P U(p))$ with that induced by the homotopy decomposition in Proposition 3.2, we obtain

$$
H^{*}(L) \cong \mathbb{Z} / p \mathbb{Z}[y] /\left(y^{p}\right) \otimes \Lambda\left(z_{1}\right)
$$

Remark 3.4. The space L is not identified in [9] as the lens space $S^{2 p-1} /(\mathbb{Z} / p \mathbb{Z})$ obtained as the $(2 p-1)$-skeleton of $B \mathbb{Z} / p \mathbb{Z}$, but they are homotopy equivalent. For the generator $z_{1} \in H^{1}(L)$ is represented by a map $f: L \longrightarrow K(\mathbb{Z} / p \mathbb{Z}, 1) \simeq B \mathbb{Z} / p \mathbb{Z}$. It is well known that $H^{*}(B \mathbb{Z} / p \mathbb{Z}) \cong$ $\Lambda(u) \otimes \mathbb{Z} / p \mathbb{Z}[v]$ where $|u|=1,|v|=2$ and $\beta(u)=v$. Now $f^{*}(u)=z_{1}$ and the Bockstein implies that $f^{*}(v)=y$, so as f^{*} is an algebra map it is a surjection. In fact, the restriction of f^{*} to the ($2 p-1$)-skeleton S of $B \mathbb{Z} / p \mathbb{Z}$ is an isomorphism. As a $C W$-complex, L is ($2 p-1$)-dimensional, so by cellular approximation the map f factors through the $(2 p-1)$-skeleton S of $B \mathbb{Z} / p \mathbb{Z}$. Thus the resulting map $L \longrightarrow S$ induces an isomorphism in cohomology and on the fundamental group, and so is a homotopy equivalence by Whitehead's Theorem.

In Lemma 3.6 we will show that ∂_{k} factors through L. This begins with a general definition.

Definition 3.5. Suppose that A is an H-space with multiplication m. A map $f: A \longrightarrow F$ is a homotopy action if there is a map $\theta: A \times F \longrightarrow F$ extending $A \vee F \xrightarrow{f \vee 1} F$ and satisfying a homotopy commutative diagram

The canonical example of a homotopy action is the connecting map $\Omega B \longrightarrow F$ of a homotopy fibration $F \longrightarrow E \longrightarrow B$. In our case, the homotopy fibration sequence $P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p) \longrightarrow$ $B \mathcal{G}_{k}(P U(p)) \longrightarrow B P U(p)$ from (6) gives a homotopy action $\theta: P U(p) \times \Omega_{0} P U(p) \longrightarrow \Omega_{0} P U(p)$.

Localize at p. By Proposition 3.2, there is a homotopy equivalence $P U(p) \simeq\left(\prod_{i=1}^{p-2} S^{2 i+1}\right) \times L$. Let δ_{k} be the composite

$$
\delta_{k}: L \hookrightarrow P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p) .
$$

Lemma 3.6. Localize at p. For any $k \in \mathbb{Z} / p \mathbb{Z}$ there is a homotopy commutative diagram

where ϖ has a right homotopy inverse.

Proof. The argument proceeds in several steps.
Step 1: Alter the homotopy equivalence $P U(p) \simeq\left(\prod_{i=1}^{p-2} S^{2 i+1}\right) \times L$ so it is written as a product of maps. The decomposition implies that in mod-p cohomology there is an algebra isomorphism $H^{*}(P U(p)) \cong \otimes_{i=1}^{p-2} H^{*}\left(S^{2 i+1}\right) \otimes H^{*}(L)$. For $1 \leq i \leq p-2$, let $g_{i}: S^{2 i+1} \longrightarrow P U(p)$ be the inclusion and let $\mathfrak{g}: L \longrightarrow P U(p)$ be the inclusion. Since each g_{i} for $1 \leq i \leq p-2$ and \mathfrak{g} have left homotopy inverses, the maps g_{i}^{*} and \mathfrak{g}^{*} are surjections. Consider the composite

$$
e:\left(\prod_{i=1}^{p-2} S^{2 i+1}\right) \times L \xrightarrow{\left(\prod_{i=1}^{p-2} g_{i}\right) \times \mathfrak{g}} \prod_{i=1}^{p-1} P U(p) \xrightarrow{m} P U(p)
$$

where m is the iterated multiplication on $P U(p)$. For $1 \leq i \leq p-2$, the restriction of e to $S^{2 i+1}$ is g_{i}, so e^{*} surjects onto $H^{*}\left(S^{2 i+1}\right)$. The restriction of e to L is \mathfrak{g}, so e^{*} surjects onto $H^{*}(L)$. Therefore e^{*} is an algebra map surjecting onto the generating set of $\left(\otimes_{i=1}^{p-2} H^{*}\left(S^{2 i+1}\right)\right) \otimes H^{*}(L)$, implying that e^{*} is a surjection. The homotopy equivalence $P U(p) \simeq\left(\prod_{i=1}^{p-2} S^{2 i+1}\right) \times L$ implies that $H^{*}(P U(p))$ and $\left(\otimes_{i=1}^{p-2} H^{*}\left(S^{2 i+1}\right)\right) \otimes H^{*}(L)$ have the same Euler-Poincaré series, so e^{*} being a surjection implies it must be an isomorphism. Therefore, e is a homotopy equivalence by Whitehead's Theorem.

Step 2: For $1 \leq i \leq p-2$ the composite $\partial_{k} \circ g_{i}$ is null homotopic. Consider the composite

$$
S^{2 i+1} \xrightarrow{g_{i}} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p) .
$$

Since $S U(p)$ is the universal cover of $P U(p)$ and the even dimensional homotopy groups of $S U(p)$ are trivial in dimensions $\leq 2 p-2$, we have $\pi_{2 i+1}\left(\Omega_{0} P U(p)\right) \cong \pi_{2 i+1}(\Omega S U(p)) \cong 0$. Thus $\partial_{k} \circ g_{i}$ is null homotopic.

Step 3: A null homotopy for ∂_{k} applied to the product of the maps g_{i}. For $2 \leq t \leq p-2$, let f_{t} be the composite

$$
f_{t}: \prod_{i=1}^{t} S^{2 i+1} \xrightarrow{\prod_{i=1}^{t} g_{i}} \prod_{i=1}^{t} P U(p) \xrightarrow{m} P U(p) .
$$

We now claim that the composite $\prod_{i=1}^{p-2} S^{2 i+1} \xrightarrow{f_{p-2}} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ is null homotopic. Since ∂_{k} is the connecting map in a homotopy fibration, there is a homotopy action $\theta: P U(p) \times \Omega_{0} P U(p) \longrightarrow$ $\Omega_{0} P U(p)$. Consider the diagram

The left triangle homotopy commutes since $\partial_{k} \circ g_{t}$ is null homotopic and the right square homotopy commutes since θ is a homotopy action. The top row is homotopic to f_{t}. As the restriction of θ to $P U(p)$ is ∂_{k}, the lower direction around the diagram is homotopic to $\partial_{k} \circ f_{t-1} \circ \pi$, where π is the projection onto $\prod_{i=1}^{t-1} S^{2 i+1}$. Thus the homotopy commutativity of the diagram implies that $\partial_{k} \circ f_{t} \simeq \partial_{k} \circ f_{t-1} \circ \pi$. Consequently, a null homotopy for $\partial_{k} \circ f_{t-1}$ implies that $\partial_{k} \circ f_{t}$ is also null homotopic. When $t=2$ we have $f_{t-1}=g_{1}$ and $\partial_{k} \circ g_{1}$ is null homotopic. Thus, iteratively, f_{t} is null homotopic for all $2 \leq t \leq p-2$. In particular, f_{p-2} is null homotopic, as claimed.

Step 4: The factorization of ∂_{k} through δ_{k}. Consider the diagram

where π is the projection and i_{1} is the inclusion of the first factor. The left square homotopy commutes since $\partial_{k} \circ f_{p-2}$ is null homotopic and the right square homotopy commutes since θ is a homotopy action. Along the top row, $m \circ\left(\mathfrak{g} \times f_{p-2}\right)$ is homotopic to e so the top row is homotopic to the identity map. Since the restriction of θ to $P U(p)$ is ∂_{k}, the bottom row is homotopic to $\partial_{k} \circ \mathfrak{g}$, which by definition, is δ_{k}. Thus the homotopy commutativity of the diagram implies that
$\partial_{k} \simeq \delta_{k} \circ \pi \circ e^{-1}$. Finally, let $\varpi=\pi \circ e^{-1}$. Then ϖ has a right homotopy inverse since π does and since e^{-1} is a homotopy equivalence, and $\partial_{k} \simeq \delta_{k} \circ \varpi$, as asserted.

Next, we consider δ_{k} more closely. An important step is to determine a p-local homotopy decomposition for $\Sigma L_{2 p-2}$ when p is odd, where $L_{2 p-2}$ is the $(2 p-2)$-skeleton of L. We will freely use the cohomology of $P U(p)$ and L described earlier.

For $t \geq 2$, the mod- p Moore space $P^{t}(p)$ is the homotopy cofibre of the degree p map on S^{t-1}. Note that $\Sigma P^{t}(p) \simeq P^{t+1}(p)$. The Moore space is characterized by the fact that $H^{*}\left(P^{t}(p)\right) \cong$ $\mathbb{Z} / p \mathbb{Z}\left\{u_{t-1}, v_{t}\right\}$ where $\left|u_{t-1}\right|=t-1,\left|v_{t}\right|=t$ and $\beta(u)=v$. In particular, this implies that the 2-skeleton of $P U(p)$ is $P^{2}(p)$. Let $j: P^{2}(p) \longrightarrow P U(p)$ be the skeletal inclusion. Writing u, v for u_{2}, v_{2}, we have $j^{*}\left(z_{1}\right)=u$ and $j^{*}(y)=v$. For $1 \leq m \leq p-1$, let \bar{j}_{m} be the composite

$$
\bar{j}_{m}: \prod_{i=1}^{m} P^{2}(p) \xrightarrow{\prod_{i=1}^{m} j} \prod_{i=1}^{m} P U(p) \xrightarrow{m} P U(p)
$$

where m is the multiplication on $P U(p)$. In cohomology, m^{*} induces the comultiplication in the Hopf algebra structure on $H^{*}(P U(p))$, and this Hopf algebra structure implies that $m^{*}\left(y^{m}\right)=\otimes_{i=1}^{m} y+A$ where A is a sum of tensor products involving y^{k} for $k \geq 2$. As $j^{*}(y)=v$ and $j^{*}\left(y^{k}\right)=0$ for $k \geq 2$, we obtain $\left(\bar{j}_{m}\right)^{*}\left(y^{m}\right)=\otimes_{i=1}^{m} v$. After suspending, we obtain a map

$$
\overline{\bar{j}}_{m}: \Sigma \bigwedge_{i=1}^{m} P^{2}(p) \longrightarrow \Sigma\left(\prod_{i=1}^{m} P^{2}(p)\right) \xrightarrow{\Sigma \bar{j}_{m}} \Sigma P U(p)
$$

with $\left(\overline{\bar{j}}_{m}\right)^{*}\left(\sigma y^{m}\right)=\sigma\left(\otimes_{i=1}^{m} v\right)$. By [11], if p is odd there is a homotopy equivalence $P^{s}(p) \wedge P^{t}(p) \simeq$ $P^{s+t}(p) \vee P^{s+t-1}(p)$. Iterating this, we obtain a map $P^{2 m+1}(p) \longrightarrow \Sigma \bigwedge_{i=1}^{m} P^{2}(p)$ which induces an isomorphism on $H_{2 m+1}()$. Therefore we obtain a composite

$$
j_{m}: P^{2 m+1}(p) \longrightarrow \Sigma \bigwedge_{i=1}^{m} P^{2}(p) \xrightarrow{\overline{\bar{j}}_{m}} \Sigma P U(p)
$$

with the property that $\left(j_{m}\right)^{*}\left(\sigma y^{m}\right)=v_{2 m+1}$, where $v_{2 m+1}$ is a generator of $H^{2 m+1}\left(P^{2 m+1}(p)\right)$. Let $u_{2 m} \in H^{2 m}\left(P^{2 m+1}(p)\right)$ be a generator with the property that $\beta\left(u_{2 m}\right)=v_{2 m+1}$. Since $\beta\left(z_{1} \otimes y^{m-1}\right)=$ y^{m} in $H^{*}(P U(p))$, the naturality of the Bockstein implies that $\left(j_{m}\right)^{*}\left(\sigma\left(z_{1} \otimes y^{m-1}\right)\right)=u_{2 m}$. Therefore $\left(j_{m}\right)^{*}$ is an epimorphism. Let $\bar{\psi}$ be the wedge sum of the maps j_{m} for $1 \leq m \leq p-1$,

$$
\bar{\psi}: \bigvee_{m=1}^{p-1} P^{2 m+1}(p) \longrightarrow \Sigma P U(p)
$$

Localize at p. Using the map ϖ in Lemma 3.6 gives a composite

$$
\psi: \bigvee_{m=1}^{p-1} P^{2 m+1}(p) \xrightarrow{\bar{\psi}} \Sigma P U(p) \xrightarrow{\Sigma \varpi} \Sigma L
$$

Notice that the domain of ψ has dimension $2 p-1$, so ψ factors as a composite

$$
\bigvee_{m=1}^{p-1} P^{2 m+1}(p) \xrightarrow{\psi^{\prime}} \Sigma L_{2 p-2} \longrightarrow \Sigma L
$$

for some map ψ^{\prime}.
Lemma 3.7. Localized at an odd prime p, the $\operatorname{map} \bigvee_{m=1}^{p-1} P^{2 m+1}(p) \xrightarrow{\psi^{\prime}} \Sigma L_{2 p-2}$ is a homotopy equivalence.

Proof. Since $P U(p) \xrightarrow{\varpi} L$ has a right homotopy inverse, it induces an inclusion onto the subalgebra $\mathbb{Z} / p \mathbb{Z}[y] /\left(y^{p}\right) \otimes \Lambda\left(z_{1}\right)$ in cohomology. Therefore the definition of ψ as the wedge sum of the maps j_{m} for $1 \leq m \leq p-1$ implies that ψ^{*} induces an isomorphism in cohomology in dimensions $\leq 2 p-1$. If $\Sigma L_{2 p-2} \longrightarrow \Sigma L$ also induces an isomorphism in cohomology in dimensions $\leq 2 p-1$, then $\left(\psi^{\prime}\right)^{*}$ induces an isomorphism in cohomology in all dimensions and so is a homotopy equivalence by Whitehead's Theorem.

To finish, it suffices to show that the skeletal inclusion $L_{2 p-2} \longrightarrow L$ induces an isomorphism in cohomology in dimensions $\leq 2 p-2$. This is true for skeletal reasons in dimensions $\leq 2 p-3$. In dimension $2 p-2$, the homotopy cofibration $L_{2 p-2} \xrightarrow{s} L \xrightarrow{t} S^{2 p-1}$, where s is the skeletal inclusion and t is the pinch map to the top cell, induces a long exact sequence

$$
0 \longrightarrow H^{2 p-1}(\Sigma L) \xrightarrow{(\Sigma s)^{*}} H^{2 p-1}\left(\Sigma L_{2 p-2}\right) \longrightarrow H^{2 p-1}\left(S^{2 p-1}\right) \xrightarrow{t^{*}} H^{2 p-1}(L) \longrightarrow 0
$$

Since $H^{2 p-1}\left(S^{2 p-1}\right)$ and $H^{2 p-1}(L)$ have a single $\mathbb{Z} / p \mathbb{Z}$ generator and t^{*} is a surjection by exactness, t^{*} must be an isomorphism. Thus, by exactness, $(\Sigma s)^{*}$ is also an isomorphism. Hence $L_{2 p-2} \xrightarrow{s} L$ induces an isomorphism in cohomology in dimensions $\leq 2 p-2$.

Remark 3.8. When $p=2, L=P U(2)$, the analogue of ψ is the map $P^{3}(2) \xrightarrow{\Sigma j} \Sigma P U(2)$, and the analogue of ψ^{\prime} is the identity map. Thus the statement of Lemma 3.7 also holds for $p=2$.

To use Lemma 3.7 to further analyze the map δ_{k} in Lemma 3.6, we need a general lemma. For a space X, let $X^{\times m}$ be the m-fold Cartesian product of X with itself.

Lemma 3.9. Suppose that there is a homotopy fibration sequence $\Omega B \xrightarrow{\partial} F \longrightarrow E \longrightarrow B$ and a map $a: A \longrightarrow \Omega B$ such that $\partial \circ a$ is null homotopic. For $m \geq 1$, let a_{m} be the composite

$$
a_{m}: A^{\times m} \xrightarrow{a^{\times m}} \Omega B^{\times m} \xrightarrow{\mu} \Omega B
$$

where the right map is loop multiplication on ΩB. Then $\partial \circ a_{m}$ is null homotopic for all $m \geq 1$.

Proof. The proof is by induction on m. Since $a_{1}=a$, the statement is true for $m=1$ by hypothesis. Suppose that $\partial \circ a_{m-1}$ is null homotopic. Consider the diagram

where π_{1} is the projection onto the first factor, i_{1} is the inclusion of the first factor, and θ is the homotopy action associated to the given homotopy fibration sequence. The left square homotopy commutes by the inductive hypothesis and the right square homotopy commutes by the homotopy action. Notice that the top row is homotopic to a_{m}, while the bottom row is homotopic to $\partial \circ a$, which is null homotopic. Thus the homotopy commutativity of the diagram as a whole implies that $\partial \circ a_{m}$ is null homotopic.

Lemma 3.10. Let p be a prime and suppose that the composite $P^{2}(p) \xrightarrow{j} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ is null homotopic. Then, localized at p, the composite $L_{2 p-2} \longrightarrow L \xrightarrow{\delta_{k}} \Omega_{0} P U(p)$ is null homotopic.

Proof. Let $a=j$ and for each $m \geq 1$, let a_{m} be the composite

$$
a_{m}: P^{2}(p)^{\times m} \xrightarrow{a^{\times m}} P U(p)^{\times m} \xrightarrow{\mu} P U(p) .
$$

Since ∂_{k} is the connecting map for the homotopy fibration $\Omega_{0} P U(p) \longrightarrow B \mathcal{G}_{k}(P U(p)) \xrightarrow{e v} B P U(p)$ and $\partial_{k} \circ a$ is null homotopic, Lemma 3.9 implies that $\partial_{k} \circ a_{m}$ is null homotopic for all $m \geq 1$. Taking adjoints, the composite

$$
\Sigma P^{2}(p)^{\times m} \xrightarrow{\Sigma a_{m_{m}}} \Sigma P U(p) \xrightarrow{\bar{\partial}_{k}} P U(p)
$$

is null homotopic, where $\bar{\partial}_{k}$ is the adjoint of ∂_{k}. Localize at p and consider the diagram

where $\bar{\delta}_{k}$ is the adjoint of δ_{k}. The left square homotopy commutes since $\bar{\partial}_{1} \circ \Sigma a_{k}$ is null homotopic and the right square homotopy commutes by taking the adjoint of the homotopy commutative diagram in the statement of Lemma 3.6. Recall the maps that were defined leading to the homotopy decomposition of $\Sigma L_{2 p-2}$ in Lemma 3.7. The composite $P^{2 m+1}(p) \longrightarrow \Sigma\left(P^{2}(p)^{\times m}\right) \xrightarrow{\Sigma a_{r}} \Sigma P U(p)$ along the top row in (8) is the definition of the map j_{m}. Thus the diagram shows that $\bar{\partial}_{k} \circ j_{m}$ is null homotopic. The map $\bigvee_{m=1}^{p-1} P^{2 m+1}(p) \xrightarrow{\bar{\psi}} \Sigma P U(p)$ is the wedge sum of the maps j_{m} for $1 \leq m \leq p-1$, so $\bar{\partial}_{k} \circ \bar{\psi}$ is null homotopic. The map $\bigvee_{m=1}^{p-1} P^{2 m+1}(p) \xrightarrow{\psi} \Sigma L$ is the composite of $\bar{\psi}$ with $\Sigma \varpi$, so the homotopy commutativity of the right square in (8) implies that $\bar{\delta}_{k} \circ \psi$ is null homotopic. The map $\bigvee_{m=1}^{p-1} P^{2 m+1}(p) \xrightarrow{\psi^{\prime}} \Sigma L_{2 p-2}$ is the factorization of ψ through the $(2 p-1)$ skeleton of ΣL, so $\bar{\delta}_{k} \circ \psi^{\prime}$ is null homotopic. But by Lemma $3.7, \psi^{\prime}$ is a homotopy equivalence, so the composite $\Sigma L_{2 p-2} \longrightarrow \Sigma L \xrightarrow{\bar{\delta}_{k}} P U(p)$ is null homotopic. Hence, taking adjoints, the composite $L_{2 p-2} \longrightarrow L \xrightarrow{\delta_{k}} \Omega_{0} P U(p)$ is null homotopic.

4. Samelson products on $P U(p)$ and the fundamental group of $\mathcal{G}_{k}(P U(p))$.

In this section we use the information obtained about the boundary map ∂_{k} to show the existence of a non-trivial Samelson product on $P U(p)$ and use this to determine $\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right)$.

We need to compare $P U(p)$ gauge groups with those for $U(p)$. In general, for any $n \geq 2$, the fibration $S^{1} \longrightarrow U(n) \longrightarrow P U(n)$ induces an epimorphism $\pi_{1}(U(n)) \cong \mathbb{Z} \longrightarrow \pi_{1}(P U(n)) \cong$ $\mathbb{Z} / n \mathbb{Z}$. Equivalently, there is an epimorphism $\left[S^{2}, B U(n)\right] \cong \mathbb{Z} \longrightarrow\left[S^{2}, B P U(n)\right] \cong \mathbb{Z} / n \mathbb{Z}$. For $\bar{k} \in \mathbb{Z}$, let $\mathcal{G}_{\bar{k}}(U(n))$ be the gauge group of the principal $U(n)$-bundle over S^{2} classified by the degree \bar{k} map in $\mathbb{Z} \cong\left[S^{2}, B U(n)\right]$. As was the case for $P U(n)$, there is a homotopy equivalence $B \mathcal{G}_{\bar{k}}(U(n)) \simeq \operatorname{Map}_{\bar{k}}\left(S^{2}, B U(n)\right)$ and the components of $\operatorname{Map}^{*}\left(S^{2}, B U(n)\right)$ are all homotopy equivalent to $\operatorname{Map}_{0}^{*}\left(S^{2}, B U(n)\right)=\Omega_{0} U(n)$. If the mod- n reduction of \bar{k} is k then the epimorphism $\left[S^{2}, B U(n)\right] \longrightarrow\left[S^{2}, B P U(n)\right]$ and the naturality of the evaluation fibration implies that there is a homotopy commutative diagram of fibration sequences

Note that $\Omega_{0} U(n) \simeq \Omega S U(n) \simeq \Omega_{0} P U(n)$ and the map $\Omega_{0} U(n) \longrightarrow \Omega_{0} P U(n)$ in (9) is a homotopy equivalence.

Let $\epsilon_{1}: S^{1} \longrightarrow U(n)$ represent a generator of $\pi_{1}(U(n)) \cong \mathbb{Z}$ and let $i: S^{1} \longrightarrow P U(n)$ be the composite $S^{1} \xrightarrow{\epsilon_{1}} U(n) \longrightarrow P U(n)$, so i represents a generator of $\pi_{1}(P U(n)) \cong \mathbb{Z} / n \mathbb{Z}$. Write 1 for the identity map of $U(n)$ or $P U(n)$, the context making clear which is intended. The following was proved in [10].

Lemma 4.1. The adjoint of $\partial_{\bar{k}}$ is \bar{k} times the Samelson product $\left\langle\epsilon_{1}, 1\right\rangle: S^{1} \wedge U(n) \longrightarrow U(n)$, and the adjoint of ∂_{k} is k times the Samelson product $\langle i, 1\rangle: S^{1} \wedge P U(n) \longrightarrow P U(n)$.

Let $\epsilon_{n}: S^{2 n-1} \longrightarrow U(n)$ represent the generator of $\pi_{2 n-1}(U(n)) \cong \mathbb{Z}$. By Lemma 4.1 and the naturality of the Samelson product, the adjoint of the composite $S^{2 n-1} \xrightarrow{\epsilon_{n}} U(n) \xrightarrow{\partial_{\bar{k}}} \Omega_{0} U(n)$ is \bar{k} times the Samelson product $\left\langle\epsilon_{1}, \epsilon_{n}\right\rangle: S^{1} \wedge S^{2 n-1} \longrightarrow U(n)$. By [3], $\left\langle\epsilon_{1}, \epsilon_{n}\right\rangle$ has order n. By Remark 3.4, we may regard L up to homotopy equivalence as the lens space $S^{2 p-1} /(\mathbb{Z} / p \mathbb{Z})$.

Lemma 4.2. Localize at a prime p. There is a homotopy commutative diagram

where i_{p} is homotopic, up to multiplication by a unit in $\mathbb{Z}_{(p)}$, to the quotient map for the lens space L.

Proof. If $p=2$ then $L=P U(2)$ and $U(2) \longrightarrow P U(2)$ induces an isomorphism on π_{3}, so we can choose ϵ_{2} to be a lift of the quotient map $S^{3} \longrightarrow P U(2)$, in which case i_{2} is the quotient map.

If p is odd then Proposition 3.2 states that there is a p-local homotopy equivalence $P U(p) \simeq$ $\left(\prod_{i=1}^{p-2} S^{2 i+1}\right) \times L$. Taking homotopy groups p-locally, by $[17] \pi_{2 p-1}\left(S^{2 i+1}\right) \cong 0$ for $1 \leq i \leq p-2$. Therefore the composite $S^{2 p-1} \xrightarrow{\epsilon_{p}} U(p) \longrightarrow P U(p)$ factors through L, as claimed. Observe that the map $L \longrightarrow P U(p)$ is an isomorphism on $\pi_{2 p-1}$, so i_{p} represents the generator of $\pi_{2 p-1}(L) \cong \mathbb{Z}_{(p)}$. Therefore i_{p} is homotopic to the lens space quotient map, up to multiplication by a unit in $\mathbb{Z}_{(p)}$.

Proposition 4.3. Let p be a prime and suppose that $(k, p)=1$. The following hold:
(a) the composite $P^{2}(p) \xrightarrow{j} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ is nontrivial;
(b) the Samelson product $\langle i, j\rangle: S^{1} \wedge P^{2}(p) \longrightarrow P U(p)$ is nontrivial;
(c) $\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \simeq \mathbb{Z}$.

Proof. For part (a), consider the cofibration $L_{2 p-2} \longrightarrow L \longrightarrow S^{2 p-1}$. The standard cell structure of the lens space $L=S^{2 p-1} /(\mathbb{Z} / p \mathbb{Z})$ implies that the composite $S^{2 p-1} \longrightarrow L \longrightarrow S^{2 p-1}$ of the quotient map on the left and the pinch map to the top cell on the right is the degree p map. Now suppose that the composite $P^{2}(p) \xrightarrow{j} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ is null homotopic. We will show that this leads to a contradiction. Localize at p. Then by Lemma 3.10 the composite $L_{2 p-2} \longrightarrow L \xrightarrow{\delta_{k}} \Omega_{0} P U(p)$ is null homotopic. Therefore δ_{k} extends to a map $\delta_{k}^{\prime}: S^{2 p-1} \longrightarrow \Omega_{0} P U(p)$. Consider the diagram

The upper left square homotopy commutes by Lemma 4.2, the upper right square homotopy commutes by (9), and the lower triangle homotopy commutes by the definition of δ_{k}^{\prime}.

The adjoint of $\partial_{\bar{k}} \circ \epsilon_{p}$ is \bar{k} times the Samelson product $\left\langle\epsilon_{1}, \epsilon_{p}\right\rangle$, and $\left\langle\epsilon_{1}, \epsilon_{p}\right\rangle$ has order p. Note that $\pi_{2 p-1}\left(\Omega_{0} U(p)\right) \cong \pi_{2 p}(U(p)) \cong \mathbb{Z} / p!\mathbb{Z}(\cong \mathbb{Z} / p \mathbb{Z}$ as we are localized at $p)$. Therefore if $(\bar{k}, p)=1$ then $\partial_{\bar{k}} \circ \epsilon_{p}$ represents a generator of $\pi_{2 p-1}\left(\Omega_{0} U(p)\right)$. On the other hand, by Lemma 4.2, i_{p} is homotopic to the quotient map defining the lens space, up to multiplication by a unit in $\mathbb{Z}_{(p)}$. Therefore the left column in (10) is $u \cdot p$ for some unit $u \in \mathbb{Z}_{(p)}$. The homotopy commutativity of (10) then implies that $\partial_{\bar{k}} \circ \epsilon_{p} \simeq u \cdot p \cdot \delta_{k}^{\prime}$. This is a contradiction since $\partial_{\bar{k}} \circ \epsilon_{p}$ generates $\pi_{2 p-1}\left(\Omega_{0} U(p)\right) \cong \mathbb{Z} / p \mathbb{Z}$. Hence the composite $P^{2}(p) \xrightarrow{j} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ is nontrivial, proving part (a).

For part (b), by Lemma 4.1 and the naturality of the Samelson product, the adjoint of the composite $P^{2}(p) \xrightarrow{j} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ is k times the Samelson product $\langle i, j\rangle: S^{1} \wedge P^{2}(p) \longrightarrow$ $P U(p)$. Therefore part (b) follows immediately from part (a).

For part (c), consider the homotopy fibration sequence $\Omega P U(p) \longrightarrow \Omega_{0}^{2} P U(p) \longrightarrow \mathcal{G}_{k}(P U(p)) \longrightarrow$ $P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$. Applying π_{1} gives an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z} \longrightarrow \pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow 0 \tag{11}
\end{equation*}
$$

There are two options: either (11) splits or $\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \cong \mathbb{Z}$. If (11) splits then there is a map $\delta: S^{1} \longrightarrow \mathcal{G}_{k}(P U(p))$ representing the $\mathbb{Z} / p \mathbb{Z}$ generator of $\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right)$ that extends to a map $\delta^{\prime}: P^{2}(p) \longrightarrow \mathcal{G}_{k}(P U(p))$. The composite $P^{2}(p) \xrightarrow{\delta^{\prime}} \mathcal{G}_{k}(P U(p) \longrightarrow P U(p)$ therefore induces an isomorphism on π_{1} and hence an isomorphism on $H_{1}(; \mathbb{Z})$ by the Hurewicz Isomorphism. This implies that the inclusion $P^{2}(p) \xrightarrow{j} P U(p)$ lifts through $\mathcal{G}_{k}(P U(p)) \longrightarrow P U(p)$, and hence the composite $P^{2}(p) \xrightarrow{j} P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$ is null homotopic. If $(k, p)=1$ this contradicts part (a). Thus, if $(k, p)=1$ we must have $\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \cong \mathbb{Z}$, proving part (c).

Remark 4.4. Rounding off the story on the fundamental group of $\mathcal{G}_{k}(P U(p))$, when $k=0$ part (a) of Theorem 1.2 will show that $\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \cong \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z}$.

5. The proof of Theorem 1.2

Two more preliminary lemmas are needed.

Lemma 5.1. Let p be a prime. If $(k, p)=1$ then there is an isomorphism $\pi_{2}\left(\mathcal{G}_{k}(P U(p))\right) \cong 0$.

Proof. The homotopy fibration $\Omega_{0}^{2} P U(p) \longrightarrow \mathcal{G}_{k}(P U(p)) \longrightarrow P U(p)$ induces an exact sequence

$$
\begin{equation*}
\pi_{3}(P U(p)) \xrightarrow{\left(\partial_{k}\right)_{*}} \pi_{2}\left(\Omega_{0}^{2} P U(p)\right) \longrightarrow \pi_{2}\left(\mathcal{G}_{k}(P U(p))\right) \longrightarrow \pi_{2}(P U(p)) \tag{12}
\end{equation*}
$$

Using the universal cover $S U(p)$ of $P U(p)$, we have $\pi_{2}(P U(p)) \cong \pi_{2}(S U(p)) \cong 0$ while $\pi_{2}\left(\Omega_{0}^{2} P U(p)\right) \cong$ $\pi_{4}(S U(p))$ is 0 if $p>2$ and is $\mathbb{Z} / 2 \mathbb{Z}$ if $p=2$. Thus if $p>2$ then $\pi_{2}\left(\mathcal{G}_{k}(P U(p))\right) \cong 0$. Note that this works for all $k \in \mathbb{Z} / p \mathbb{Z}$. If $p=2$ then $\pi_{3}(P U(2)) \cong \mathbb{Z}$ and we claim that $\left(\partial_{k}\right)_{*}$ is an epimorphism if $(2, k)=1$. By (9) and the fact that the quotient map $U(2) \longrightarrow P U(2)$ induces an isomorphism on π_{m} for $m \geq 2$, it is equivalent to show that $\pi_{3}(U(2)) \xrightarrow{\left(\partial_{\bar{k}}\right)_{*}} \pi_{2}\left(\Omega_{0}^{2} U(2)\right)$ is an epimorphism. But ϵ_{2} represents a generator of $\pi_{3}(U(2))$ and $\left(\partial_{\bar{k}}\right)_{*}\left(\epsilon_{2}\right)=\partial_{\bar{k}} \circ \epsilon_{2}$ has order 2 if $(2, k)=1$, as noted following Lemma 4.1. Hence $\left(\partial_{k}\right)_{*}$ is onto. Therefore, in this case, exactness in (12) implies that $\pi_{2}\left(\mathcal{G}_{k}(P U(p))\right) \cong 0$.

For a space X, let \widetilde{X} be its universal cover.

Lemma 5.2. Let p be a prime. If $(k, p)=1$ then there is a homotopy equivalence of universal covers $\widetilde{\mathcal{G}}_{\bar{k}}(U(p)) \simeq \widetilde{\mathcal{G}}_{k}(P U(p))$.

Proof. Consider the homotopy fibration diagram

induced by taking homotopy fibres in (9), where we assume that the mod-p reduction of $\bar{k} \in \mathbb{Z}$ is k. Taking homotopy groups for the homotopy fibration in the left column gives an exact sequence

$$
\pi_{2}\left(\mathcal{G}_{k}(P U(p))\right) \longrightarrow \pi_{1}\left(S^{1}\right) \longrightarrow \pi_{1}\left(\mathcal{G}_{\bar{k}}(U(p))\right) \longrightarrow \pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \longrightarrow \pi_{0}\left(S^{1}\right)
$$

Since $(k, p)=1$, by Lemma 5.1 we have $\pi_{2}\left(\mathcal{G}_{k}(P U(p))\right) \cong 0$, and clearly $\pi_{0}\left(S^{1}\right) \cong 0$. Thus we in fact have a short exact sequence

$$
0 \longrightarrow \pi_{1}\left(S^{1}\right) \longrightarrow \pi_{1}\left(\mathcal{G}_{\bar{k}}(U(p))\right) \longrightarrow \pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \longrightarrow 0 .
$$

The fact that the homotopy fibration $S^{1} \longrightarrow \mathcal{G}_{\bar{k}}(U(p)) \longrightarrow \mathcal{G}_{k}(P U(p))$ induces a short exact sequence on π_{1} implies that, upon taking universal covers, there is a homotopy fibration $* \longrightarrow \widetilde{\mathcal{G}}_{\bar{k}}(U(p)) \longrightarrow$ $\widetilde{\mathcal{G}}_{k}(P U(p))$. Hence $\widetilde{\mathcal{G}}_{\bar{k}}(U(p)) \simeq \widetilde{\mathcal{G}}_{k}(P U(p))$

Finally we prove Theorem 1.2.
Proof of Theorem 1.2. Consider the homotopy fibration $\mathcal{G}_{k}(P U(p)) \longrightarrow P U(p) \xrightarrow{\partial_{k}} \Omega_{0} P U(p)$. By Lemma 4.1, the adjoint of ∂_{k} is k times the Samelson product $S^{1} \wedge P U(p) \xrightarrow{\langle i, 1\rangle} P U(p)$. Consequently, $\partial_{k} \simeq k \circ \partial_{1}$. By [12, Theorem 1], ∂_{1} has order p. Therefore, if we either localize away from p or if $k=0$ then ∂_{k} is null homotopic, implying that there is a homotopy equivalence

$$
\mathcal{G}_{k}(P U(p)) \simeq P U(p) \times \Omega^{2} P U(p) .
$$

(Here, note that $\Omega\left(\Omega_{0} P U(p)\right) \simeq \Omega^{2} P U(p)$ since $\pi_{2}(P U(p)) \cong \pi_{2}(U(p)) \cong 0$ so the space $\Omega^{2} P U(p)$ has a single component.) This proves part (a) since it assumes localization away from p. The $k=0$ case in part (b) follows by substituting in the homotopy equivalence $P U(p) \simeq L \times\left(\prod_{i=1}^{p-2} S^{2 i+1}\right)$ from Proposition 3.2 and noting that $\Omega L \simeq \Omega S^{2 p-1}$ because the universal cover of L is $S^{2 p-1}$.

Next, suppose that $k \neq 0$, or equivalently, that $(k, p)=1$. Consider the homotopy fibration defining the universal cover,

$$
\widetilde{\mathcal{G}}_{k}(P U(p)) \longrightarrow \mathcal{G}_{k}(P U(p)) \longrightarrow K\left(\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right), 1\right)
$$

By Proposition $4.3(\mathrm{c}), \pi_{1}\left(\mathcal{G}_{k}(P U(p))\right) \cong \mathbb{Z}$, implying (i) $K\left(\pi_{1}\left(\mathcal{G}_{k}(P U(p))\right), 1\right) \simeq S^{1}$ and (ii) the $\operatorname{map} \mathcal{G}_{k}(P U(p)) \longrightarrow S^{1}$ has a right homotopy inverse. Therefore, as $\mathcal{G}_{k}(P U(p))$ is an H-space, there
is a homotopy equivalence $\mathcal{G}_{k}(P U(p)) \simeq S^{1} \times \widetilde{\mathcal{G}}_{k}(P U(p))$. By Lemma 5.2, $\widetilde{\mathcal{G}}_{k}(P U(p)) \simeq \widetilde{\mathcal{G}}_{\bar{k}}(U(p))$, so we obtain

$$
\mathcal{G}_{k}(P U(p)) \simeq S^{1} \times \widetilde{\mathcal{G}}_{\bar{k}}(U(p))
$$

The asserted homotopy decompositions in part (c) now follows from the analogous decomposition for $\mathcal{G}_{\bar{k}}(U(p))$ stated in the Introduction.

References

1. M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
2. P. Baum and W. Browder, The cohomology of quotients of classical groups, Topology 3 (1965), 305-336.
3. R. Bott, A note on the Samelson product in the classical Lie groups, Comment. Math. Helv. 34 (1960), 245-256.
4. S.B. Bradlow, O. Garcia-Prada, and P.B. Gothen, Homotopy groups of moduli spaces of representations, Topology 47 (2008), 203-224.
5. G.D. Daskalopoulos, K.K. Uhlenbeck, An application of transversality to the topology of the moduli space of stable bundles, Topology 34 (1995), 203-215.
6. D.H. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23-50.
7. S. Hasui, D. Kishimoto, A. Kono and T. Sato, The homotopy types of $P U(3)$ - and $P S p(2)$-gauge groups, Algebr. Geom. Topol. 16 (2016), 1813-1825.
8. D. Husemoller, Fibre bundles. Third edition, Graduate Texts in Math. 20, Springer-Verlag, New York, 1994.
9. D. Kishimoto and A. Kono, Mod-p decompositions of non-simply connected Lie groups, J. Math. Kyoto Univ. 48 (2008), 1-5.
10. G.E. Lang, The evaluation map and EHP sequences, Pacific J. Math. 44 (1973), 201-210.
11. J.A. Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc. 232, (1980).
12. S. Rea, Homotopy types of gauge groups of $P U(p)$-bundles over spheres, J. Homotopy Relat. Struct. 16 (2021), 61-74.
13. W.A. Sutherland, Function spaces related to gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 185190.
14. S.D. Theriault, Odd primary homotopy decompositions of gauge groups, Algebr. Geom. Topol. 10 (2010), 535-564.
15. S.D. Theriault, Homotopy decompositions of gauge groups of Riemann surfaces and applications to moduli spaces, Internat. J. Math. 22 (2011), 1711-1719.
16. S.D. Theriault, The homotopy types of gauge groups of nonorientable surfaces and applications to moduli spaces, Illinois J. Math. 57 (2013), 59-85.
17. H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies 49, Princeton Univ. Press, Princeton, NJ, 1962.
18. M. West, Homotopy decompositions of gauge groups over real surfaces, Algebr. Geom. Topol. 17 (2017), 2429-2480.
