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Abstract. We show that the gauge group of a principal PU(n)-bundle over a compact Riemann

surface decomposes up to homotopy as the product of factors, one of which is a corresponding

gauge group for S2 and the others are immediately recognizable spaces. Further, when n is a

prime p, the gauge group for S2 decomposes as a product of immediately recognizable factors.

These gauge groups have strong connections to moduli spaces of stable vector bundles.

1. Introduction

There is a deep connection between moduli spaces of stable vector bundles over a compact Rie-

mann surface Σg and gauge groups of principal U(n)-bundles over Σg. This was recognized and

exploited in spectacular fashion by Atiyah and Bott [1] to calculate the cohomology of the moduli

spaces in many cases, leading to a whole new area of study that has attracted widespread interest.

Daskalopolous and Uhlenbeck [5] made the connection more explicit by showing that the moduli

space of rank n degree k stable vector bundles over Σg is homotopy equivalent through a dimensional

range to the gauge group of the principal U(n)-bundle over Σg that is classified by having first Chern

class k. Bradlow, Garcia-Prada and Gothen [4] went on to give an analogous homotopy equivalence

in the case of moduli spaces of rank n degree k polystable Higgs bundles.

In [15] the author refined Daskalopolous and Uhlenbeck’s homotopy equivalence in the case of

principal U(p)-bundles when p is a prime by showing that the relevant gauge group decomposes up

to homotopy as a product of recognizable factors. This allows for the calculation of the homotopy

groups of the gauge group, or the moduli space, through a range based on known calculations for the

factors. This approach was subsequently applied to non-orientable surfaces in [16] and real surfaces

in [18]. The purpose of this paper is to return to compact, orientable surfaces but consider instead

principal PU(p)-bundles.

The quotient map U(n) −→ PU(n) induces mod-n reduction Z −→ Z/nZ on π1 and an isomor-

phism on πm for m ≥ 2. The goal, then, is to uncover the effect of this difference in the fundamental

group on the corresponding gauge groups. This has its most complete description when n = p, in

which case the effect is measured precisely by π0 and π1 of the gauge groups. The π1 information is

subtle and takes some work to tease out.
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To be more precise, first consider the case of principal U(n)-bundles over Σg. These are classified

by the homotopy classes of maps [Σg, BU(n)] ∼= Z. Let Pk −→ Σg be the principal U(n)-bundle

classified by k ∈ Z. The gauge group Gk(Σg, U(n)) of Pk is the group of U(n)-equivariant automor-

phisms of Pk which fix Σg. In the special case when Σg = S2, let Gk(U(n)) = Gk(S2, U(n)). In [14]

it was shown that there is an integral homotopy equivalence

(1) Gk(Σg, U(n)) ' Z2g ×

(
2g∏
i=1

ΩSU(n)

)
× Gk(U(n))

where Z2g is the product of 2g copies of Z. This was refined in [15] when n is a prime p by

decomposing Gk(U(n)): if q is a prime different from p then there is a q-local homotopy equivalence

Gk(U(p)) ' U(p)× Ω2U(p);

if p | k there is a p-local homotopy equivalence

Gk(U(p)) '
p−1∏
i=0

S2i+1 ×
p−1∏
j=1

Ω2S2j+1;

and if p - k there is a p-local homotopy equivalence

Gk(U(p)) ' S1 ×
p−2∏
i=0

S2i+1 ×
p∏
j=2

Ω2S2j+1.

In fact, the q-local homotopy equivalences for q 6= p may be assembled to form a Z[ 1
p ]-local homotopy

equivalence since the q-local equivalences are consequences of the fact that Gk(U(p)) is the homotopy

fibre of a map U(p) −→ Ω0U(p) of order p (here, Ω0U(p) is the connected component containing

the basepoint). However, the p-local case is the more interesting and delicate one.

Principal PU(n)-bundles are classified by homotopy classes of maps [Σg, BPU(n)] ∼= Z/nZ. If

Pk −→ Σg is the principal PU(n)-bundle classified by k ∈ Z/nZ the gauge group Gk(Σg, PU(n)) is

the group of PU(n)-equivariant automorphisms of Pk which fix Σg. Write Gk(PU(n)) for Gk(S2, PU(n)).

Making use of the fibration Z/nZ −→ SU(n) −→ PU(n), we prove the following.

Theorem 1.1. For any k ∈ Z/nZ there is a homotopy equivalence

Gk(Σg, PU(n)) ' (Z/nZ)2g ×

(
2g∏
i=1

ΩSU(n)

)
× Gk(PU(n)).

Theorem 1.2. Fix a prime p and let k ∈ Z/pZ. The following hold:

(a) there is a Z[ 1
p ]-local homotopy equivalence

Gk(PU(p)) ' PU(p)× Ω2PU(p);

(b) if k = 0 then there are p-local homotopy equivalences

Gk(PU(p)) ' PU(p)× Ω2
0PU(p) ' L×

(
p−2∏
i=1

S2i+1

)
×

p−1∏
j=1

Ω2S2j+1
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where L is a retract of PU(p) such that π1(L) ∼= π1(PU(p)) and the universal cover

of L is S2p−1;

(c) if k 6= 0 then there is a p-local homotopy equivalence

Gk(PU(p)) '

(
p−2∏
i=0

S2i+1

)
×

 p∏
j=2

Ω2S2j+1

 .

In particular, when k 6= 0, Gk(PU(p)) has one less factor of S1 than the p - k case for Gk(U(p))

and, interestingly, π1(Gk(PU(p))) ∼= Z. The torsion in π1(PU(p)) ∼= Z/pZ is not directly reflected

in a torsion property for the homotopy groups of Gk(PU(p)). A notable special case is for PU(2) ∼=

SO(3), when there is a 2-local homotopy equivalence Gk(PU(2)) ' S1 × Ω2S5 if k 6= 0.

The author would like to thank a very careful referee for making several suggestions that have

improved the paper.

2. PU(n) gauge groups over Riemann surfaces

In this section we prove Theorem 1.1. The first step is to classify principal PU(n)-bundles. For

a topological group G, let BG be its classifying space.

Lemma 2.1. There is an isomorphism of groups [S2, BPU(n)] ∼= Z/nZ.

Proof. The homotopy fibration Z/nZ −→ SU(n) −→ PU(n) classifies to give a homotopy fibra-

tion B Z/nZ −→ BSU(n) −→ BPU(n). Taking homotopy groups and noting that BSU(n) is

3-connected immediately gives π2(BPU(n)) ∼= π1(B Z/pZ) ∼= Z/pZ. �

Let Σg be a surface of genus g. If g = 0 then Σg ' S2, and if g ≥ 1 then it is well known that

there is a homotopy cofibration sequence

(2) S1 f−→
2g∨
i=1

S1 −→ Σg
q−→ S2 Σf−→

2g∨
i=1

S2

where f is the attaching map for the top cell of Σg, q is the pinch map to the top cell, and Σf is

null homotopic.

Lemma 2.2. If Σg is a surface of genus g ≥ 1 then the map Σg
q−→ S2 induces an isomorphism of

sets [S2, BPU(n)]
q∗−→ [Σg, BPU(n)]. Consequently, [Σg, BPU(n)] ∼= Z/nZ.

Proof. From the homotopy cofibration (2) we obtain an exact sequence

[

2g∨
i=1

S2, BPU(n)]
(Σf)∗−→ [S2, BPU(n)]

q∗−→ [Σg, BPU(n)] −→ [

2g∨
i=1

S1, BPU(n)].

Observe that (Σf)∗ = 0 since Σf is null homotopic and [
∨2g
i=1 S

1, BPU(n)] ∼= 0 since BPU(n) is

simply-connected. Therefore q∗ is an isomorphism. That [Σg, BPU(n)] ∼= Z/pZ now follows from

Lemma 2.1. �
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Next, we describe a context in which homotopy theory can be used to study gauge groups. In

general, let G be a topological group, X a pointed space, and P a principal G-bundle over X classified

by a map f : X −→ BG. The gauge group Gf (P ) of P is the group of G-equivariant automorphisms

of P that fix X. In [1, 6] it was shown that there is a homotopy equivalence

BGf (P ) ' Mapf (X,BG)

where the right side is the component of the space of continuous maps from X to BG that contains

the map f . This description is advantageous as there is an evaluation fibration sequence

(3) G
∂f−→ Map∗f (X,BG) −→ Mapf (X,BG)

ev−→ BG

where ev evaluates a map at the basepoint, Map∗f (X,BG) is the component of the space of con-

tinuous pointed maps from X to BG that contains f , and ∂f is the fibration connecting map. It

is worth pointing out a subtlety in (3): Mapf (X,BG) consists of maps f ′ homotopic to f by un-

based homotopies while Map∗f (X,BG) consists of maps homotopic to f by based homotopies, so

if f ′ is in the fibre of the evaluation map then an argument is needed to say that the homotopy

between f ′ and f may be chosen to be pointed so that f ′ ∈ Map∗f (X,BG); such an argument is given

in [6, Lemma 5.5]. The salient point of the homotopy fibration (3) is that Gf (P ) is the homotopy

fibre of ∂f .

In our case, let Gk(Σg, PU(n)) be the gauge group of the principal PU(n)-bundle classified by

k ∈ [Σg, BPU(n)] ∼= Z/nZ. In the special case when Σg = S2 write Gk(PU(n)). The isomorphism

[S2, BPU(n)]
q∗−→ [Σg, BPU(n)] in Lemma 2.2 implies that the map Σg

q−→ S2 induces a one-to-

one correspondence between the components of Map∗(Σg, BPU(n)) and Map∗(S2, BPU(n)). Since

PU(n) is path-connected, taking π0 in the homotopy fibration (3) implies that there is a matching

one-to-one correspondence between the components of Map(Σg, BPU(n)) and Map(S2, BPU(n)).

Therefore there is a homotopy commutative diagram of evaluation fibrations

(4)

PU(n)
∂k // Map∗k(S2, BPU(n)) //

q∗

��

Mapk(S2, BPU(n))
ev //

q∗

��

BPU(n)

PU(n)
∂k // Map∗k(Σg, BPU(n)) // Mapk(Σg, BPU(n))

ev // BPU(n).

It is well known that the components of Map∗(S2, BPU(n)) ' ΩPU(n) are all homotopy equiv-

alent. Sutherland [13] showed that the same is true for the components of Map∗(Σg, BPU(n)), and

the homotopy equivalences are compatible in the sense that there is a homotopy fibration diagram

(5)

Map∗k(S2, BPU(n))
' //

q∗

��

Map∗0(S2, BPU(n))

q∗

��
Map∗k(Σg, BPU(n))

' // Map∗0(Σg, BPU(n)).
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Write ∂k also for the composite PU(n)
∂k−→ Map∗k(S2, BPU(n))

'−→ Map∗0(S2, BPU(n)), and do

likewise for ∂k. Write Map∗0(S2, BPU(n)) as Ω0PU(n), the component of ΩPU(n) containing the

basepoint. We have Mapk(S2, BPU(n)) ' BGk(PU(n)) and Mapk(Σg, BPU(n)) ' BGk(Σg, PU(n)).

Then from (4) and (5) we obtain a homotopy fibration diagram

(6)

PU(n)
∂k // Ω0PU(n) //

q∗

��

BGk(PU(n))
ev //

q∗

��

BPU(n)

PU(n)
∂k // Map∗0(Σg, BPU(n)) // BGk(Σg, PU(n))

ev // BPU(n).

Lemma 2.3. There is a homotopy fibration
∏2g
i=1 ΩPU(n)

(Σf)∗−→ Ω0PU(n)
q∗−→ Map∗0(Σg, BPU(n)).

Proof. If g = 0 then q∗ is the identity map and the product
∏2g
i=1 ΩPU(n) is a point, so the assertion

holds. If g ≥ 1, the homotopy cofibration sequence
∨2g
i=1 S

1 −→ Σg
q−→ S2 Σf−→

∨2g
i=1 S

2 implies

that there is a homotopy fibration sequence

Map∗(

2g∨
i=1

S2, BPU(n))
(Σf)∗−→ Map∗(S2, BPU(n))

q∗−→ Map∗(Σg, BPU(n)) −→ Map∗(

2g∨
i=1

S1, BPU(n)).

Observe that there is a homotopy equivalence Map∗(
∨2g
i=1 S

1, BPU(n)) ∼=
∏2g
i=1 PU(n); in partic-

ular, this space is connected. Restricting the map Map∗(Σg, BPU(n)) −→
∏2g
i=1 PU(n) to the

0-component of Map∗(Σg, BPU(n)) therefore gives a homotopy fibration sequence

2g∏
i=1

ΩPU(n)
(Σf∗)−→ Map∗0(S2, BPU(n))

q∗−→ Map∗0(Σg, BPU(n)) −→
2g∏
i=1

PU(n).

Rewriting Map∗0(S2, BPU(n)) as Ω0PU(n) gives the asserted homotopy fibration. �

From the left square of (6) and Lemma 2.3 we obtain a homotopy fibration diagram

(7)

ΩMap∗0(Σg, BPU(n))

��

ΩMap∗0(Σg, BPU(n))

a

��

Gk(PU(n)) // Gk(Σg, PU(n))
b //

��

∏2g
i=1 ΩPU(n)

(Σf)∗

��
Gk(PU(n)) // PU(n)

∂k //

∂k

��

Ω0PU(n)

q∗

��
Map∗0(Σg, BPU(n)) Map∗0(Σg, BPU(n))

which defines the maps a and b.

Proof of Theorem 1.1. Since Σf is null homotopic, so is (Σf)∗. Therefore the map a in (7) has a right

homotopy inverse. The top square in (7) then implies that the map b has a right homotopy inverse
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as well. Since Gk(Σg, PU(n)) is an H-space, the right homotopy inverse for b can be multiplied with

the map from the fibre of b to obtain a homotopy equivalence

Gk(Σg, PU(n)) '

(
2g∏
i=1

ΩPU(n)

)
× Gk(PU(n)).

The statement of the theorem is now obtained by substituting in ΩPU(n) ' Z/nZ×ΩSU(n), which

is obtained from the homotopy fibration Z/nZ −→ SU(n) −→ PU(n). �

3. Properties of ∂k when n = p

Fix a prime p. In this section we specialize to Gk(PU(p)) and factor the connecting map

PU(p)
∂k−→ Ω0PU(p) for the evaluation fibration. To start, we need some known results about

PU(p). In what follows, homology and cohomology will be taken with mod-p coefficients.

The mod-p cohomology of PU(p) was calculated by Baum and Browder [2].

Lemma 3.1. There is an algebra isomorphism

H∗(PU(p)) ∼= Z/pZ[y]/(yp)⊗ Λ(z1, z3, · · · , z2p−3)

where |y| = 2, |zi| = i, and β(z1) = y. �

A p-local homotopy decomposition for PU(p) was proved by Kishimoto and Kono [9].

Proposition 3.2. Localized at an odd prime p, there is a homotopy equivalence

PU(p) '

(
p−2∏
i=1

S2i+1

)
× L

where L is a space with π1(L) ∼= π1(PU(p)) and the universal cover of L is S2p−1. �

Remark 3.3. When p = 2, PU(p) ∼= SO(3) so the statement of Proposition 3.2 still holds.

Observe that by comparing the cohomology decomposition of H∗(PU(p)) with that induced by

the homotopy decomposition in Proposition 3.2, we obtain

H∗(L) ∼= Z/pZ[y]/(yp)⊗ Λ(z1).

Remark 3.4. The space L is not identified in [9] as the lens space S2p−1/(Z/pZ) obtained as the

(2p − 1)-skeleton of BZ/pZ, but they are homotopy equivalent. For the generator z1 ∈ H1(L)

is represented by a map f : L −→ K(Z/pZ, 1) ' BZ/pZ. It is well known that H∗(BZ/pZ) ∼=

Λ(u) ⊗ Z/pZ[v] where |u| = 1, |v| = 2 and β(u) = v. Now f∗(u) = z1 and the Bockstein implies

that f∗(v) = y, so as f∗ is an algebra map it is a surjection. In fact, the restriction of f∗ to the

(2p− 1)-skeleton S of BZ/pZ is an isomorphism. As a CW -complex, L is (2p− 1)-dimensional, so

by cellular approximation the map f factors through the (2p − 1)-skeleton S of BZ/pZ. Thus the

resulting map L −→ S induces an isomorphism in cohomology and on the fundamental group, and

so is a homotopy equivalence by Whitehead’s Theorem.
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In Lemma 3.6 we will show that ∂k factors through L. This begins with a general definition.

Definition 3.5. Suppose that A is an H-space with multiplication m. A map f : A −→ F is a

homotopy action if there is a map θ : A×F −→ F extending A∨F f∨1−→ F and satisfying a homotopy

commutative diagram

A×A
m //

1×f
��

A

f

��
A× F

θ // F.

The canonical example of a homotopy action is the connecting map ΩB −→ F of a homotopy

fibration F −→ E −→ B. In our case, the homotopy fibration sequence PU(p)
∂k−→ Ω0PU(p) −→

BGk(PU(p)) −→ BPU(p) from (6) gives a homotopy action θ : PU(p)× Ω0PU(p) −→ Ω0PU(p).

Localize at p. By Proposition 3.2, there is a homotopy equivalence PU(p) '
(∏p−2

i=1 S
2i+1

)
× L.

Let δk be the composite

δk : L ↪→ PU(p)
∂k−→ Ω0PU(p).

Lemma 3.6. Localize at p. For any k ∈ Z/pZ there is a homotopy commutative diagram

PU(p)
∂k //

$

��

Ω0PU(p)

L
δk // Ω0PU(p)

where $ has a right homotopy inverse.

Proof. The argument proceeds in several steps.

Step 1: Alter the homotopy equivalence PU(p) '
(∏p−2

i=1 S
2i+1

)
× L so it is written as a product

of maps. The decomposition implies that in mod-p cohomology there is an algebra isomorphism

H∗(PU(p)) ∼= ⊗p−2
i=1H

∗(S2i+1)⊗H∗(L). For 1 ≤ i ≤ p− 2, let gi : S
2i+1 −→ PU(p) be the inclusion

and let g : L −→ PU(p) be the inclusion. Since each gi for 1 ≤ i ≤ p− 2 and g have left homotopy

inverses, the maps g∗i and g∗ are surjections. Consider the composite

e :

(
p−2∏
i=1

S2i+1

)
× L

(
∏p−2

i=1 gi)×g−−−−−−−−→
p−1∏
i=1

PU(p)
m−−−−−−−−→ PU(p)

where m is the iterated multiplication on PU(p). For 1 ≤ i ≤ p−2, the restriction of e to S2i+1 is gi,

so e∗ surjects onto H∗(S2i+1). The restriction of e to L is g, so e∗ surjects onto H∗(L). Therefore e∗

is an algebra map surjecting onto the generating set of
(
⊗p−2
i=1H

∗(S2i+1)
)
⊗H∗(L), implying that e∗

is a surjection. The homotopy equivalence PU(p) '
(∏p−2

i=1 S
2i+1

)
×L implies that H∗(PU(p)) and(

⊗p−2
i=1H

∗(S2i+1)
)
⊗H∗(L) have the same Euler-Poincaré series, so e∗ being a surjection implies it

must be an isomorphism. Therefore, e is a homotopy equivalence by Whitehead’s Theorem.
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Step 2: For 1 ≤ i ≤ p− 2 the composite ∂k ◦ gi is null homotopic. Consider the composite

S2i+1 gi−→ PU(p)
∂k−→ Ω0PU(p).

Since SU(p) is the universal cover of PU(p) and the even dimensional homotopy groups of SU(p)

are trivial in dimensions ≤ 2p− 2, we have π2i+1(Ω0PU(p)) ∼= π2i+1(ΩSU(p)) ∼= 0. Thus ∂k ◦ gi is

null homotopic.

Step 3: A null homotopy for ∂k applied to the product of the maps gi. For 2 ≤ t ≤ p − 2, let ft be

the composite

ft :

t∏
i=1

S2i+1
∏t

i=1 gi−−−−→
t∏
i=1

PU(p)
m−−−−→ PU(p).

We now claim that the composite
∏p−2
i=1 S

2i+1 fp−2−→ PU(p)
∂k−→ Ω0PU(p) is null homotopic. Since ∂k

is the connecting map in a homotopy fibration, there is a homotopy action θ : PU(p)×Ω0PU(p) −→

Ω0PU(p). Consider the diagram

(∏t−1
i=1 S

2i+1
)
× S2t+1

ft−1×gt //

ft−1×∗ ))SSS
SSSS

SSSS
SSS

PU(p)× PU(p)
m //

1×∂k
��

PU(p)

∂k

��
PU(p)× Ω0PU(p)

θ // Ω0PU(p).

The left triangle homotopy commutes since ∂k ◦ gt is null homotopic and the right square homotopy

commutes since θ is a homotopy action. The top row is homotopic to ft. As the restriction of θ

to PU(p) is ∂k, the lower direction around the diagram is homotopic to ∂k ◦ ft−1 ◦ π, where π is

the projection onto
∏t−1
i=1 S

2i+1. Thus the homotopy commutativity of the diagram implies that

∂k ◦ ft ' ∂k ◦ ft−1 ◦ π. Consequently, a null homotopy for ∂k ◦ ft−1 implies that ∂k ◦ ft is also null

homotopic. When t = 2 we have ft−1 = g1 and ∂k ◦ g1 is null homotopic. Thus, iteratively, ft is null

homotopic for all 2 ≤ t ≤ p− 2. In particular, fp−2 is null homotopic, as claimed.

Step 4: The factorization of ∂k through δk. Consider the diagram

PU(p)
e−1

// L×
(∏p−2

i=1 S
2i+1

) g×fp−2
//

π

��

PU(p)× PU(p)
m //

1×∂k
��

PU(p)

∂k

��
L

i1◦g // PU(p)× Ω0PU(p)
θ // Ω0PU(p)

where π is the projection and i1 is the inclusion of the first factor. The left square homotopy

commutes since ∂k ◦ fp−2 is null homotopic and the right square homotopy commutes since θ is a

homotopy action. Along the top row, m ◦ (g× fp−2) is homotopic to e so the top row is homotopic

to the identity map. Since the restriction of θ to PU(p) is ∂k, the bottom row is homotopic to

∂k ◦ g, which by definition, is δk. Thus the homotopy commutativity of the diagram implies that
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∂k ' δk ◦ π ◦ e−1. Finally, let $ = π ◦ e−1. Then $ has a right homotopy inverse since π does and

since e−1 is a homotopy equivalence, and ∂k ' δk ◦$, as asserted. �

Next, we consider δk more closely. An important step is to determine a p-local homotopy decom-

position for ΣL2p−2 when p is odd, where L2p−2 is the (2p− 2)-skeleton of L. We will freely use the

cohomology of PU(p) and L described earlier.

For t ≥ 2, the mod-p Moore space P t(p) is the homotopy cofibre of the degree p map on St−1.

Note that ΣP t(p) ' P t+1(p). The Moore space is characterized by the fact that H∗(P t(p)) ∼=

Z/pZ{ut−1, vt} where |ut−1| = t − 1, |vt| = t and β(u) = v. In particular, this implies that the

2-skeleton of PU(p) is P 2(p). Let j : P 2(p) −→ PU(p) be the skeletal inclusion. Writing u, v for

u2, v2, we have j∗(z1) = u and j∗(y) = v. For 1 ≤ m ≤ p− 1, let j̄m be the composite

j̄m :

m∏
i=1

P 2(p)
∏m

i=1 j−−−−→
m∏
i=1

PU(p)
m−−−−→ PU(p)

where m is the multiplication on PU(p). In cohomology, m∗ induces the comultiplication in the Hopf

algebra structure on H∗(PU(p)), and this Hopf algebra structure implies that m∗(ym) = ⊗mi=1y+A

where A is a sum of tensor products involving yk for k ≥ 2. As j∗(y) = v and j∗(yk) = 0 for k ≥ 2,

we obtain (j̄m)∗(ym) = ⊗mi=1v. After suspending, we obtain a map

¯̄jm : Σ

m∧
i=1

P 2(p) −−→ Σ

( m∏
i=1

P 2(p)

)
Σj̄m−−→ ΣPU(p)

with (¯̄jm)∗(σym) = σ(⊗mi=1v). By [11], if p is odd there is a homotopy equivalence P s(p) ∧ P t(p) '

P s+t(p)∨P s+t−1(p). Iterating this, we obtain a map P 2m+1(p) −→ Σ
∧m
i=1 P

2(p) which induces an

isomorphism on H2m+1( ). Therefore we obtain a composite

jm : P 2m+1(p) −→ Σ

m∧
i=1

P 2(p)
¯̄jm−→ ΣPU(p)

with the property that (jm)∗(σym) = v2m+1, where v2m+1 is a generator of H2m+1(P 2m+1(p)). Let

u2m ∈ H2m(P 2m+1(p)) be a generator with the property that β(u2m) = v2m+1. Since β(z1⊗ym−1) =

ym inH∗(PU(p)), the naturality of the Bockstein implies that (jm)∗(σ(z1⊗ym−1)) = u2m. Therefore

(jm)∗ is an epimorphism. Let ψ be the wedge sum of the maps jm for 1 ≤ m ≤ p− 1,

ψ :

p−1∨
m=1

P 2m+1(p) −→ ΣPU(p).

Localize at p. Using the map $ in Lemma 3.6 gives a composite

ψ :

p−1∨
m=1

P 2m+1(p)
ψ−→ ΣPU(p)

Σ$−→ ΣL.

Notice that the domain of ψ has dimension 2p− 1, so ψ factors as a composite

p−1∨
m=1

P 2m+1(p)
ψ′−→ ΣL2p−2 −→ ΣL
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for some map ψ′.

Lemma 3.7. Localized at an odd prime p, the map
∨p−1
m=1 P

2m+1(p)
ψ′−→ ΣL2p−2 is a homotopy

equivalence.

Proof. Since PU(p)
$−→ L has a right homotopy inverse, it induces an inclusion onto the subalgebra

Z/pZ[y]/(yp)⊗Λ(z1) in cohomology. Therefore the definition of ψ as the wedge sum of the maps jm

for 1 ≤ m ≤ p − 1 implies that ψ∗ induces an isomorphism in cohomology in dimensions ≤ 2p − 1.

If ΣL2p−2 −→ ΣL also induces an isomorphism in cohomology in dimensions ≤ 2p − 1, then (ψ′)∗

induces an isomorphism in cohomology in all dimensions and so is a homotopy equivalence by

Whitehead’s Theorem.

To finish, it suffices to show that the skeletal inclusion L2p−2 −→ L induces an isomorphism in

cohomology in dimensions ≤ 2p − 2. This is true for skeletal reasons in dimensions ≤ 2p − 3. In

dimension 2p−2, the homotopy cofibration L2p−2
s−→ L

t−→ S2p−1, where s is the skeletal inclusion

and t is the pinch map to the top cell, induces a long exact sequence

0 −→ H2p−1(ΣL)
(Σs)∗−→ H2p−1(ΣL2p−2) −→ H2p−1(S2p−1)

t∗−→ H2p−1(L) −→ 0.

Since H2p−1(S2p−1) and H2p−1(L) have a single Z/pZ generator and t∗ is a surjection by exactness,

t∗ must be an isomorphism. Thus, by exactness, (Σs)∗ is also an isomorphism. Hence L2p−2
s−→ L

induces an isomorphism in cohomology in dimensions ≤ 2p− 2. �

Remark 3.8. When p = 2, L = PU(2), the analogue of ψ is the map P 3(2)
Σj−→ ΣPU(2), and the

analogue of ψ′ is the identity map. Thus the statement of Lemma 3.7 also holds for p = 2.

To use Lemma 3.7 to further analyze the map δk in Lemma 3.6, we need a general lemma. For a

space X, let X×m be the m-fold Cartesian product of X with itself.

Lemma 3.9. Suppose that there is a homotopy fibration sequence ΩB
∂−→ F −→ E −→ B and a

map a : A −→ ΩB such that ∂ ◦ a is null homotopic. For m ≥ 1, let am be the composite

am : A×m
a×m

−→ ΩB×m
µ−→ ΩB

where the right map is loop multiplication on ΩB. Then ∂ ◦ am is null homotopic for all m ≥ 1.

Proof. The proof is by induction on m. Since a1 = a, the statement is true for m = 1 by hypothesis.

Suppose that ∂ ◦ am−1 is null homotopic. Consider the diagram

A×A×(m−1)
a×am−1//

π1

��

ΩB × ΩB
µ
//

1×∂
��

ΩB

∂

��
A

i1◦a // ΩB × F
θ // F
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where π1 is the projection onto the first factor, i1 is the inclusion of the first factor, and θ is the

homotopy action associated to the given homotopy fibration sequence. The left square homotopy

commutes by the inductive hypothesis and the right square homotopy commutes by the homotopy

action. Notice that the top row is homotopic to am, while the bottom row is homotopic to ∂ ◦ a,

which is null homotopic. Thus the homotopy commutativity of the diagram as a whole implies that

∂ ◦ am is null homotopic. �

Lemma 3.10. Let p be a prime and suppose that the composite P 2(p)
j−→ PU(p)

∂k−→ Ω0PU(p) is

null homotopic. Then, localized at p, the composite L2p−2 −→ L
δk−→ Ω0PU(p) is null homotopic.

Proof. Let a = j and for each m ≥ 1, let am be the composite

am : P 2(p)×m
a×m

−→ PU(p)×m
µ−→ PU(p).

Since ∂k is the connecting map for the homotopy fibration Ω0PU(p) −→ BGk(PU(p))
ev−→ BPU(p)

and ∂k ◦a is null homotopic, Lemma 3.9 implies that ∂k ◦am is null homotopic for all m ≥ 1. Taking

adjoints, the composite

ΣP 2(p)×m
Σam−→ ΣPU(p)

∂k−→ PU(p)

is null homotopic, where ∂k is the adjoint of ∂k. Localize at p and consider the diagram

(8)

P 2m+1(p) // Σ(P 2(p)×m)
Σam //

��

ΣPU(p)
Σ$ //

∂k

��

ΣL

δk
��

∗ // PU(p) PU(p).

where δk is the adjoint of δk. The left square homotopy commutes since ∂1 ◦Σak is null homotopic

and the right square homotopy commutes by taking the adjoint of the homotopy commutative

diagram in the statement of Lemma 3.6. Recall the maps that were defined leading to the homotopy

decomposition of ΣL2p−2 in Lemma 3.7. The composite P 2m+1(p) −→ Σ(P 2(p)×m)
Σam−→ ΣPU(p)

along the top row in (8) is the definition of the map jm. Thus the diagram shows that ∂k ◦ jm
is null homotopic. The map

∨p−1
m=1 P

2m+1(p)
ψ−→ ΣPU(p) is the wedge sum of the maps jm for

1 ≤ m ≤ p − 1, so ∂k ◦ ψ is null homotopic. The map
∨p−1
m=1 P

2m+1(p)
ψ−→ ΣL is the composite

of ψ with Σ$, so the homotopy commutativity of the right square in (8) implies that δk ◦ ψ is null

homotopic. The map
∨p−1
m=1 P

2m+1(p)
ψ′−→ ΣL2p−2 is the factorization of ψ through the (2p − 1)-

skeleton of ΣL, so δk ◦ ψ′ is null homotopic. But by Lemma 3.7, ψ′ is a homotopy equivalence, so

the composite ΣL2p−2 −→ ΣL
δk−→ PU(p) is null homotopic. Hence, taking adjoints, the composite

L2p−2 −→ L
δk−→ Ω0PU(p) is null homotopic. �
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4. Samelson products on PU(p) and the fundamental group of Gk(PU(p)).

In this section we use the information obtained about the boundary map ∂k to show the existence

of a non-trivial Samelson product on PU(p) and use this to determine π1(Gk(PU(p))).

We need to compare PU(p) gauge groups with those for U(p). In general, for any n ≥ 2,

the fibration S1 −→ U(n) −→ PU(n) induces an epimorphism π1(U(n)) ∼= Z −→ π1(PU(n)) ∼=

Z/nZ. Equivalently, there is an epimorphism [S2, BU(n)] ∼= Z −→ [S2, BPU(n)] ∼= Z/nZ. For

k̄ ∈ Z, let Gk̄(U(n)) be the gauge group of the principal U(n)-bundle over S2 classified by the

degree k̄ map in Z ∼= [S2, BU(n)]. As was the case for PU(n), there is a homotopy equivalence

BGk̄(U(n)) ' Mapk̄(S2, BU(n)) and the components of Map∗(S2, BU(n)) are all homotopy equiv-

alent to Map∗0(S2, BU(n)) = Ω0U(n). If the mod-n reduction of k̄ is k then the epimorphism

[S2, BU(n)] −→ [S2, BPU(n)] and the naturality of the evaluation fibration implies that there is a

homotopy commutative diagram of fibration sequences

(9)

U(n)
∂k̄ //

��

Ω0U(n) //

��

BGk̄(U(n)) //

��

BU(n)

��
PU(n)

∂k // Ω0PU(n) // BGk(PU(n)) // BPU(n).

Note that Ω0U(n) ' ΩSU(n) ' Ω0PU(n) and the map Ω0U(n) −→ Ω0PU(n) in (9) is a homotopy

equivalence.

Let ε1 : S1 −→ U(n) represent a generator of π1(U(n)) ∼= Z and let i : S1 −→ PU(n) be the

composite S1 ε1−→ U(n) −→ PU(n), so i represents a generator of π1(PU(n)) ∼= Z/nZ. Write 1 for

the identity map of U(n) or PU(n), the context making clear which is intended. The following was

proved in [10].

Lemma 4.1. The adjoint of ∂k̄ is k̄ times the Samelson product 〈ε1, 1〉 : S1 ∧ U(n) −→ U(n), and

the adjoint of ∂k is k times the Samelson product 〈i, 1〉 : S1 ∧ PU(n) −→ PU(n). �

Let εn : S2n−1 −→ U(n) represent the generator of π2n−1(U(n)) ∼= Z. By Lemma 4.1 and the

naturality of the Samelson product, the adjoint of the composite S2n−1 εn−→ U(n)
∂k̄−→ Ω0U(n) is

k̄ times the Samelson product 〈ε1, εn〉 : S1 ∧ S2n−1 −→ U(n). By [3], 〈ε1, εn〉 has order n. By

Remark 3.4, we may regard L up to homotopy equivalence as the lens space S2p−1/(Z/pZ).

Lemma 4.2. Localize at a prime p. There is a homotopy commutative diagram

S2p−1
εp
//

ip

��

U(p)

��
L // PU(p)

where ip is homotopic, up to multiplication by a unit in Z(p), to the quotient map for the lens space L.
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Proof. If p = 2 then L = PU(2) and U(2) −→ PU(2) induces an isomorphism on π3, so we can

choose ε2 to be a lift of the quotient map S3 −→ PU(2), in which case i2 is the quotient map.

If p is odd then Proposition 3.2 states that there is a p-local homotopy equivalence PU(p) '(∏p−2
i=1 S

2i+1
)
× L. Taking homotopy groups p-locally, by [17] π2p−1(S2i+1) ∼= 0 for 1 ≤ i ≤ p − 2.

Therefore the composite S2p−1 εp−→ U(p) −→ PU(p) factors through L, as claimed. Observe that

the map L −→ PU(p) is an isomorphism on π2p−1, so ip represents the generator of π2p−1(L) ∼= Z(p).

Therefore ip is homotopic to the lens space quotient map, up to multiplication by a unit in Z(p). �

Proposition 4.3. Let p be a prime and suppose that (k, p) = 1. The following hold:

(a) the composite P 2(p)
j−→ PU(p)

∂k−→ Ω0PU(p) is nontrivial;

(b) the Samelson product 〈i, j〉 : S1 ∧ P 2(p) −→ PU(p) is nontrivial;

(c) π1(Gk(PU(p))) ' Z.

Proof. For part (a), consider the cofibration L2p−2 −→ L −→ S2p−1. The standard cell structure of

the lens space L = S2p−1/(Z/pZ) implies that the composite S2p−1 −→ L −→ S2p−1 of the quotient

map on the left and the pinch map to the top cell on the right is the degree p map. Now suppose

that the composite P 2(p)
j−→ PU(p)

∂k−→ Ω0PU(p) is null homotopic. We will show that this leads

to a contradiction. Localize at p. Then by Lemma 3.10 the composite L2p−2 −→ L
δk−→ Ω0PU(p) is

null homotopic. Therefore δk extends to a map δ′k : S2p−1 −→ Ω0PU(p). Consider the diagram

(10)

S2p−1
εp
//

ip

��

U(p)
∂k̄ //

��

Ω0U(p)

'
��

L //

��

PU(p)
∂k // Ω0PU(p)

S2p−1

δ′k

44jjjjjjjjjjjjjjjjjjj

The upper left square homotopy commutes by Lemma 4.2, the upper right square homotopy com-

mutes by (9), and the lower triangle homotopy commutes by the definition of δ′k.

The adjoint of ∂k̄ ◦ εp is k̄ times the Samelson product 〈ε1, εp〉, and 〈ε1, εp〉 has order p. Note that

π2p−1(Ω0U(p)) ∼= π2p(U(p)) ∼= Z/p!Z (∼= Z/pZ as we are localized at p). Therefore if (k̄, p) = 1 then

∂k̄ ◦ εp represents a generator of π2p−1(Ω0U(p)). On the other hand, by Lemma 4.2, ip is homotopic

to the quotient map defining the lens space, up to multiplication by a unit in Z(p). Therefore the

left column in (10) is u ·p for some unit u ∈ Z(p). The homotopy commutativity of (10) then implies

that ∂k̄ ◦ εp ' u ·p · δ′k. This is a contradiction since ∂k̄ ◦ εp generates π2p−1(Ω0U(p)) ∼= Z/pZ. Hence

the composite P 2(p)
j−→ PU(p)

∂k−→ Ω0PU(p) is nontrivial, proving part (a).

For part (b), by Lemma 4.1 and the naturality of the Samelson product, the adjoint of the

composite P 2(p)
j−→ PU(p)

∂k−→ Ω0PU(p) is k times the Samelson product 〈i, j〉 : S1 ∧ P 2(p) −→

PU(p). Therefore part (b) follows immediately from part (a).
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For part (c), consider the homotopy fibration sequence ΩPU(p) −→ Ω2
0PU(p) −→ Gk(PU(p)) −→

PU(p)
∂k−→ Ω0PU(p). Applying π1 gives an exact sequence

(11) 0 −→ Z −→ π1(Gk(PU(p))) −→ Z/pZ −→ 0.

There are two options: either (11) splits or π1(Gk(PU(p))) ∼= Z. If (11) splits then there is a map

δ : S1 −→ Gk(PU(p)) representing the Z/pZ generator of π1(Gk(PU(p))) that extends to a map

δ′ : P 2(p) −→ Gk(PU(p)). The composite P 2(p)
δ′−→ Gk(PU(p) −→ PU(p) therefore induces an

isomorphism on π1 and hence an isomorphism on H1( ;Z) by the Hurewicz Isomorphism. This

implies that the inclusion P 2(p)
j−→ PU(p) lifts through Gk(PU(p)) −→ PU(p), and hence the

composite P 2(p)
j−→ PU(p)

∂k−→ Ω0PU(p) is null homotopic. If (k, p) = 1 this contradicts part (a).

Thus, if (k, p) = 1 we must have π1(Gk(PU(p))) ∼= Z, proving part (c). �

Remark 4.4. Rounding off the story on the fundamental group of Gk(PU(p)), when k = 0 part (a)

of Theorem 1.2 will show that π1(Gk(PU(p))) ∼= Z/pZ⊕ Z.

5. The proof of Theorem 1.2

Two more preliminary lemmas are needed.

Lemma 5.1. Let p be a prime. If (k, p) = 1 then there is an isomorphism π2(Gk(PU(p))) ∼= 0.

Proof. The homotopy fibration Ω2
0PU(p) −→ Gk(PU(p)) −→ PU(p) induces an exact sequence

(12) π3(PU(p))
(∂k)∗−→ π2(Ω2

0PU(p)) −→ π2(Gk(PU(p))) −→ π2(PU(p)).

Using the universal cover SU(p) of PU(p), we have π2(PU(p)) ∼= π2(SU(p)) ∼= 0 while π2(Ω2
0PU(p)) ∼=

π4(SU(p)) is 0 if p > 2 and is Z/2Z if p = 2. Thus if p > 2 then π2(Gk(PU(p))) ∼= 0. Note that this

works for all k ∈ Z/pZ. If p = 2 then π3(PU(2)) ∼= Z and we claim that (∂k)∗ is an epimorphism if

(2, k) = 1. By (9) and the fact that the quotient map U(2) −→ PU(2) induces an isomorphism on

πm for m ≥ 2, it is equivalent to show that π3(U(2))
(∂k̄)∗−→ π2(Ω2

0U(2)) is an epimorphism. But ε2

represents a generator of π3(U(2)) and (∂k̄)∗(ε2) = ∂k̄ ◦ ε2 has order 2 if (2, k) = 1, as noted fol-

lowing Lemma 4.1. Hence (∂k)∗ is onto. Therefore, in this case, exactness in (12) implies that

π2(Gk(PU(p))) ∼= 0. �

For a space X, let X̃ be its universal cover.

Lemma 5.2. Let p be a prime. If (k, p) = 1 then there is a homotopy equivalence of universal covers

G̃k̄(U(p)) ' G̃k(PU(p)).
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Proof. Consider the homotopy fibration diagram

S1

��

S1

��
Gk̄(U(p)) //

��

U(p)
∂k̄ //

��

Ω0U(p)

'
��

Gk(PU(p)) // PU(p)
∂k // Ω0PU(p)

induced by taking homotopy fibres in (9), where we assume that the mod-p reduction of k̄ ∈ Z is k.

Taking homotopy groups for the homotopy fibration in the left column gives an exact sequence

π2(Gk(PU(p))) −→ π1(S1) −→ π1(Gk̄(U(p))) −→ π1(Gk(PU(p))) −→ π0(S1).

Since (k, p) = 1, by Lemma 5.1 we have π2(Gk(PU(p))) ∼= 0, and clearly π0(S1) ∼= 0. Thus we in

fact have a short exact sequence

0 −→ π1(S1) −→ π1(Gk̄(U(p))) −→ π1(Gk(PU(p))) −→ 0.

The fact that the homotopy fibration S1 −→ Gk̄(U(p)) −→ Gk(PU(p)) induces a short exact sequence

on π1 implies that, upon taking universal covers, there is a homotopy fibration ∗ −→ G̃k̄(U(p)) −→

G̃k(PU(p)). Hence G̃k̄(U(p)) ' G̃k(PU(p)) �

Finally we prove Theorem 1.2.

Proof of Theorem 1.2. Consider the homotopy fibration Gk(PU(p)) −→ PU(p)
∂k−→ Ω0PU(p). By

Lemma 4.1, the adjoint of ∂k is k times the Samelson product S1∧PU(p)
〈i,1〉−→ PU(p). Consequently,

∂k ' k ◦ ∂1. By [12, Theorem 1], ∂1 has order p. Therefore, if we either localize away from p or if

k = 0 then ∂k is null homotopic, implying that there is a homotopy equivalence

Gk(PU(p)) ' PU(p)× Ω2PU(p).

(Here, note that Ω(Ω0PU(p)) ' Ω2PU(p) since π2(PU(p)) ∼= π2(U(p)) ∼= 0 so the space Ω2PU(p)

has a single component.) This proves part (a) since it assumes localization away from p. The k = 0

case in part (b) follows by substituting in the homotopy equivalence PU(p) ' L ×
(∏p−2

i=1 S
2i+1

)
from Proposition 3.2 and noting that ΩL ' ΩS2p−1 because the universal cover of L is S2p−1.

Next, suppose that k 6= 0, or equivalently, that (k, p) = 1. Consider the homotopy fibration

defining the universal cover,

G̃k(PU(p)) −→ Gk(PU(p)) −→ K(π1(Gk(PU(p))), 1).

By Proposition 4.3 (c), π1(Gk(PU(p))) ∼= Z, implying (i) K(π1(Gk(PU(p))), 1) ' S1 and (ii) the

map Gk(PU(p)) −→ S1 has a right homotopy inverse. Therefore, as Gk(PU(p)) is an H-space, there



16 STEPHEN THERIAULT

is a homotopy equivalence Gk(PU(p)) ' S1 × G̃k(PU(p)). By Lemma 5.2, G̃k(PU(p)) ' G̃k̄(U(p)),

so we obtain

Gk(PU(p)) ' S1 × G̃k̄(U(p)).

The asserted homotopy decompositions in part (c) now follows from the analogous decomposition

for Gk̄(U(p)) stated in the Introduction. �
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