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A B S T R A C T   

This article presents the evaluation of the Copernicus Sentinel-3 Ocean Land Colour Instrument (OLCI) opera-
tional terrestrial products corresponding to the green instantaneous Fraction of Absorbed Photosynthetically 
Active Radiation (FAPAR) and its associated rectified channels. These products are estimated using OLCI spectral 
measurements acquired at the top of the atmosphere by a physically-based approach and are available opera-
tionally at full (300 m) and reduced (1.2 km) spatial resolution daily. The evaluation of the quality of the FAPAR 
OLCI values was based on the availability of data acquired over several years by Sentinel-3A (S3A) and Sentinel- 
3B (S3B). The evaluation exercise consisted of several stages: first, an overall comparison of the two S3 platform 
products was carried out during the tandem phase; second, comparison with an FAPAR climatology derived from 
the Medium Resolution Imaging Spectrometer (MERIS) provided information on the seasonality of various types 
of land cover. Then, direct comparisons were made with the same type of FAPAR products retrieved from two 
sensors, the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Sentinel-2 (S2) Multispectral 
Instrument (MSI), and with several ground-based estimates. In addition, an analysis of the efficiency of the 
retrieval algorithm with 3D radiative transfer simulations was performed. The results indicated that the con-
sistency between daily and monthly S3A and S3B on a global scale was very good during the tandem phase 
(RMSD = 0.01 and a correlation R2 of 0.99 with a bias of 0.003); we found an agreement with a correlation of 
0.95 and 0.93 (RMSD = 0.07 and 0.09) with JRC FAPAR S2 and JRC FAPAR MODIS, respectively. Compatibility 
with the ground-based data was between 0.056 and 0.24 in term of RMSD depending on the type of vegetation 
with an overall R2 of 0.89. Immler diagrams demonstrate that their variances were lower than the total un-
certainties. The quality assurance using 3D radiative transfer model has shown that the apparent performance of 
the algorithm depends strongly on the type of in-situ measurement and canopy type.   

1. Introduction 

Remote sensing products contribute to the continuous monitoring of 
the Earth’s surface. Within the European Union’s Copernicus program, 
the Sentinel missions were launched with the specific objective of 
monitoring Essential Climate Variables (ECV) identified by the Global 
Climate Observing System (GCOS) (GCOS, 2016). These variables 
include the Fraction of Absorbed Photosynthetically Active Radiation 
(FAPAR), which is provided as a Level 2 land core product by the 

Sentinel-3 (S3) Ocean and Land Colour Instrument (OLCI) sensors at 
300 m and 1.2 km, for each daily acquisition. Sentinel-3A (S3A) and its 
twin Sentinel-3B (S3B) were launched respectively in February 2016 
and April 2018. The S3 OLCI is a direct successor to the Medium Spectral 
Resolution Imaging Spectrometer (MERIS) (Donlon et al., 2012), 
enabling continuity in the monitoring of products like green instanta-
neous FAPAR using the same retrieval algorithms. A series of Joint 
Research Centre (JRC) FAPAR algorithms have been optimised for 
various optical instruments such as SeaWiFS (Gobron et al., 2002), 
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MERIS (Gobron et al., 2004), MODerate resolution Imaging Spectror-
adiometer (MODIS) (Gobron et al., 2006a) and Advanced Very-High- 
Resolution Radiometer (AVHRR) (Gobron et al., 2019). The retrieval 
algorithm is based on a Look Up Table (LUT) of Bidirectional Reflectance 
Factors (BRFs) simulating specific sensor spectral bands and was created 
using the semi-discrete radiative transfer model (Gobron et al., 1997) to 
represent the spectral and directional reflectance of horizontally ho-
mogeneous plant canopies, as well as to compute the associated green 
instantaneous FAPAR values. The Second Simulation of the Satellite 
Signal in the Solar Spectrum (6S) atmospheric model was used to 
represent the atmospheric absorption and scattering effects on the 
measured reflectances at the top of atmosphere (Vermote et al., 1997; 
Kotchenova et al., 2006). The rectified reflectances correspond to the 
amplitude parameter of the BRF entering the Rahman, Pinty, Verstraete 
(RPV) parametric model (Rahman et al., 1993). They are virtual (in that 
they are not directly measurable in the field) spectral reflectances in 
which the atmospheric and angular effects are supressed. The 

information contained in the blue band (OLCI Band O3) is combined 
with that in the red and near-infrared bands (OLCI Band O10 and Band 
O17), traditionally used to monitor vegetation, in order to generate 
rectified bands at the latter two wavelengths. The rectification is done in 
such a way as to minimise the difference between the rectified bands and 
the spectral reflectances that would have been measured at the top of the 
canopy under identical geometrical conditions but in the absence of the 
atmosphere (Gobron, 2011). 

Validation of remote sensing land products encompasses different 
frameworks and steps including at its simplest, quality control, bench-
marking against third-party data and comparison against ground-based 
reference data measurements (Loew et al., 2017). Land products from S3 
OLCI sensors have already been compared against third-party products, 
such as National Aeronautics and Space Administration (NASA) MODIS, 
Visible Infrared Imaging Radiometer Suite (VIIRS), Copernicus Global 
Land Service (CGLS), Multi-angle Imaging Spectro Radiometer (MISR), 
Earth Polychromatic Imaging Camera (EPIC) at 0.2◦ together with Solar- 

Fig. 1. Original FAPAR maps of S3/OLCI, S2/MSI and MODIS using JRC algorithm over US-Ne1 site, 12 September 2017.  

Fig. 2. a) Zoom of S3A OLCI and b) S2B MSI JRC FAPAR over US-Ne1 site.  
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Induced chlorophyll Fluorescence (SIF) space products (Zhang et al., 
2020). The authors found that OLCI FAPAR had the best relationships 
with TROPOspheric Monitoring Instrument (TROPOMI) nSIF740 (e.g. 
solar angle normalised SIF at 740 nm), Orbiting Carbon Observatory-2 
(OCO-2) nSIF757, and airborne (Chlorophyll Fluorescence Imaging 
Spectrometer, CFIS) nSIF755 with a coefficient of determination, R2, of 
0.79 ± 0.17 on a global scale. APAR calculated with OLCI FAPAR also 
showed the best results (R2 = 0.79) with in situ Gross Primary Produc-
tion (GPP) over 25 flux towers (Zhang et al., 2020). This is mainly due to 
the definition of OLCI FAPAR products as it represents the instantaneous 
(direct) green (foliage) component. Alternative FAPAR retrieval algo-
rithms were developed for Sentinel-2 such the one implemented in 
Science Toolbox Exploitation Platform (SNAP) (Weiss and Baret, 2016) 
that used surface reflectance data. Validation of these products was done 
in Putzenlechner et al. (2019) and the authors found high discrepancies 
of absolute FAPAR values, ranging from 13 to 25% over three forests. 
Brown et al. (2021a) proposed a modified version for which only Leaf 
Area Index (LAI) were compared against in-situ data. 

Both SeaWiFS and MERIS FAPAR products, using the same OLCI 
retrieval algorithm, have been already validated against third-party 
products and in-situ ground-measurements. The results indicated that 

the impact of top-of-atmosphere radiance uncertainties on the opera-
tional MERIS FAPAR products accuracy was expected to be at about 
5–10% whereas agreement with the ground-based estimates of the 
Fraction of Intercepted PAR (FIPAR) over different canopy types was 
achieved within ±0.1. An evaluation exercise was also performed by 
direct comparison, by grouping available field information into broad 
categories representing different radiative transfer regimes. This strat-
egy facilitated the interpretation of the results since various levels of 
difficulty and sources of uncertainty associated with the radiative 
sampling of different types of vegetation canopies was shown in (Gobron 
et al., 2008). In recent years, major progress has been made in 3D-Radi-
ative Transfer (RT) canopy modelling for both in-situ and space products 
validation purposes such as the sampling strategy and upscaling pro-
cesses (Adams et al., 2016; Calders et al., 2018). 

In this article, we first compare S3A and S3B during the tandem 
phase at the global scale using daily and monthly products at 1.2 km; 
then we benchmark them against MERIS climatology, MODIS and 
Sentinel-2 Multispectral Instrument (MSI) JRC FAPAR over various 
Sentinel-3 Validation Team (S3VT) local sites (Gobron et al., 2013) that 
cover different vegetation types. Finally, direct comparison against 
ground-based data is carried out, and we perform an algorithm 

Table 1 
S3VT Validation sites.  

Code Latitude (◦N+) Longitude (◦E+) MGRSa/UTMREF Land Cover Type Reference 

DE-Geb 51.1001 10.9143 32UPB34036269 Croplands Truckenbrodt and Baade, 2018 
DE-Rod 50.8300 11.7700 32UPB95063457 Croplands, Evergreen Needleleaf Forest, Deciduous Needleleaf Forest Truckenbrodt and Baade, 2018 
DE-Thf 50.5730 10.8450 32UPB30640396 Mixed Forest Truckenbrodt and Baade, 2018 
IT-Cat 37.2785 14.8832 33SVB89652577 Croplands (Orange) Vuolo et al., 2012 
IT-Isp 45.8128 8.6345 32TMR71537329 Mixed Forest Gruening et al., 2012 
IT-Sro 43.7278 10.2844 32TPP03444244 Pinus Pinea Gruening et al., 2012 
IT-Tra 37.6455 12.8527 33SUB10566865 Croplands (Vineyards and olive trees) Vuolo et al., 2012 
RU-Bol 57.05 93.3700 46VEJ22442301 Mixed Forest n/a 
RU-Kul 52.5611 80.7085 44UMD80242348 Cultivated Areas n/a 
SP-Ala 38.4515 − 1.0645 30SXH68885769 Semi-arid Mediterranean Lopez-Baeza et al., 2013 
SP-Val 39.5207 − 1.2925 30SXJ46767595 Semi-arid Mediterranean Lopez-Baeza et al., 2013 
UK-NFo 50.8498 − 1.5740 30UXB00378341 Natural deciduous forest Brown et al., 2019 
US-Ne1 41.1650 − 96.4766 14TQL11706015 Croplands (Maize) Gitelson et al., 2014 

Suyker, 2021 
US-Ne2 41.1648 − 96.4701 14TQL12246014 Croplands (Irrigated Maize Soybean rotation) Gitelson et al., 2014 

Suyker, 2021 
US-Ne3 41.1797 − 96.4396 14TQL14746186 Croplands (Rainfed Maize Soybean rotation) Gitelson et al., 2014 

Suyker, 2021  

a Military Grid Reference System - Sentinel-2 Tiles. 

Fig. 3. a) View of the Järvselja-2 (birchstand summer) scene and b) the virtual values of total black-sky and white-sky the DHP compared to the ‘true’ values (total and 
foliage only) using 3D-RT modelling. 
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verification using spectral simulations from the JRC virtual laboratory. 
Discussion and conclusions end the paper. 

2. Method and data sets 

2.1. Space FAPAR data 

From June 2018 to October 2018, S3A and S3B were flown in tandem 
mode, i.e., with a 30 s separation, to enable detailed understanding of 
the similarities and differences between the instruments contained on 
each platform (Lamquin et al., 2020a). Therefore, we performed a 
comparison at global scale to ensure the compatibility of FAPAR values 
as retrieved from S3A and S3B OLCI data. Even with only a 30 s dif-
ference, there was no guarantee that both satellite footprints were at the 
exact same geolocation; the results were firstly analysed using a spatial 
average over 3 × 3 pixels to reduce any co-geolocation issues for two 
single days and secondly from June to October 2018 with daily and 
monthly products. 

Daily spectral measurements from MODIS and S2 MSI were used to 
support this analysis. Since 2002, MODIS has provided measurements in 
the red and near-infrared bands at 250 m spatial resolution, whereas 
those in the blue band are available at 500 m. Gobron et al. (2006a) 
already designed a retrieval algorithm at 250 m comparable to OLCI 
FAPAR’s one and that has been used for MERIS validation purposes. 
Since 2016, we also had access to S2A and S2B data, in the form of 
optical spectral measurements with the MSI at 10 m, 20 m and 60 m 
(Drusch et al., 2012). The S2 MSI JRC FAPAR was designed and pro-
duced at 60 m to be used instead of, or together with, ground-based 
measurements. Fig. 1 illustrates the three maps of FAPAR from these 
sensors over the Nebraska site (US-Ne1) in the USA on the 12 September 
2017. To benchmark them, all products were resampled into the WGS 84 
latitude/longitude grid projection using a nearest-neighbour approach 
(see Fig. 2). 

The MERIS FAPAR dataset over 2003–2011 at 300 m (MERIS third- 
reprocessing) was used to define the climatology of various land cover 
types and compared with OLCI FAPAR values. The climatology was 
performed on selected S3VT sites which are in stable and controlled 
conditions concerning the land cover type. As we used MERIS daily data, 
some outliers were still present due to the contamination of remaining 

Table 2 
Ground-based observation for validation Land Product-4 sites.  

ID Name Latitude 
(◦N+) 

Longitude 
(◦E+) 

IGBP 

US-BAR Barlett Experimental 
Forest 

44.0639 − 71.2873 Mixed Forest 

US-BLA Blandy Experimental 
Farm 

39.0603 − 78.0716 Cropland 

US-CPE Central Plains 
Experimental Range 

40.8155 − 104.746 Grassland 

US_DEL Dead Lake 32.54172 − 87.80389 Evergreen 
Broadleaf 

US-DSN Disney Wilderness 
Preserve 

28.125 − 81.4362 Woody 
Savanna 

PR-GUA Guanica Forest 17.9696 − 66.8687 Evergreen 
Broadleaf 

US-HRV Harvard Forest 42.5378 − 72.1715 Mixed Forest 
US-JER Jones Ecological 

Research Center 
31.1948 − 84.4686 Cropland 

US-JOR Jornana 32.5907 − 106.843 Open 
Shrubland 

PRI_LAJ Lajas Experimental 
Station 

18.02125 − 67.0769 Grassland 

US- 
MOA 

Moab 38.2483 − 109.388 Grassland 

US-NRF Niwot Ridge Mountain 
Research Station 

40.0542 − 105.582 Evergreen 
Needleleaf 

US-STE North Sterling 40.4619 − 103.029 Grassland 
US-ORN Oak Ridge 35.9641 − 84.2826 Cropland 
US- 

ONA 
Onaqui Ault 40.1776 − 112.452 Grassland 

US-OSB Ordway Swisher 
Biological Station 

29.6765 − 82.0091 Woody 
Savanna 

US-SCB Smithsonian 
Conservation Biology 
Institute 

38.8929 − 78.1395 Deciduous 
Broadleaf 

US-SER Smithsonian 
Environmental 
Research Center 

38.8901 − 76.56 Cropland 

US_SRE Santa Rita 31.91068 − 110.83549 Closed 
Shrubland 

US-SLS Steigerwalt Land 
Services 

45.5089 − 89.5863 Mixed Forest 

US-TAL Talladega National 
Forest 

32.9505 -87.3933 Mixed Forest 

US- 
UND 

Underc 46.2339 − 89.5372 Mixed Forest 

US- 
WOO 

Woodworth 47.1282 − 99.24414 Cropland  

Table 3 
Validation sites from AMMA-CATCH and direct database.  

Name Latitude 
(◦N+) 

Longitude 
(◦E+) 

Vegetation Type Reference 

TARA 15.2301 − 1.5833 Open Woody 
Savannah 

Mougin 
et al., 2014 

HOMBORI- 
HONDO 

15.3224 − 1.6983 Open Shrub 
Savannah 

KELMA 15.2189 − 1.5657 Acacia Forest 
AGOUFOU 15.3393 − 1.4841 Open Woody 

Savannah 
LIRIA 39.7519 − 0.7005 NeedleLeafForest Garrigues 

et al., 2008 BARRAX- 
LASTIESAS 

39.0543 2.1006 CropLand 

MONCADA 39.5204 − 0.3869 CropLand  

Table 4 
QA4ECV validation sites. Aerosol models are those hardcoded in the 6S RT 
model.  

Site Latitude 
(◦N+) 

Longitude 
(◦E+) 

Scene Aerosol 
Model 

Järvselja-1* 58.313 27.297 Pine Stand Continental 
Järvselja-2* 58.277 27.296 Birch Stand Continental 
Ofenpass* 46.663 10.230 Pine Stand Continental 
Lope − 0.169 11.459 Tropical Forest Biomass 

Burning 
Nghotto 3.867 17.300 Tropical Forest Biomass 

Burning 
Zerbolo* 45.295 8.877 Short Rotation 

Forest (Poplar) 
Continental 

Thiverval- 
Grignon 

48.850 1.966 Wheat Continental 

Wellington* − 33.600 18.933 Citrus Orchard Maritime 
Skukuza − 25.0207 31.497 Savannah Biomass 

Burning 
Janina − 30.077 144.136 Shrub land Desert  

* The corresponding scenes are available on RAMI web site (WWW2, 2021; 
Widlowski et al., 2015). 
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cloud or cloud shadow, even in the climatology, data were therefore 
smoothed using a temporal running average over 15 days. All the 
comparisons with EO products were done over the core validation sites 
selected by the S3VT (Gobron et al., 2013) (see Table 1). They represent 
several land cover types with potential access to time series of ground- 
based data. 

2.2. Ground-based data 

In 2016, a specific validation campaign over the New Forest site, UK- 
NFo, provided estimates of FAPAR that could be directly compared to 
OLCI FAPAR. Details of this campaign can be found in Brown et al. 
(2019). In summary, various Digital Hemispherical Photographs (DHPs) 
have been taken at 8 different dates providing 5 measurements in 9 
Elementary Sampling Unit (ESUs) covering an area of 1.2 km × 1.2 km. 
The images were then analysed by the Can-Eye software (Weiss and 
Baret, 2014) to extract the instantaneous black-sky FAPAR (FAPAR_BS), 
the daily integrated black-sky FAPAR and white-sky FAPAR 
(FAPAR_WS) over all ESUs. These ground-based data cannot directly 
infer the exact same physical quantity as OLCI FAPAR because they 
provided the total absorption and not just the foliage absorption. 
Therefore, we evaluated the expected bias using our virtual laboratory 
(see next section) for the Järvselja-2 site, representing the similar can-
opy as the New Forest, e.g. the birchstand summer scene, as illustrated in 
Fig. 3. The difference between the total and the ‘true’ foliage values 
provided information on the expected bias between the two definitions 
of FAPAR, i.e. between typical in-situ measurements and OLCI products. 
For the validation against S3 OLCI FAPAR, the DHP-FAPAR (black-sky) 
calculated at 10.50 AM was therefore bias corrected using our 3D-RT 
results. This has been done by removing the difference between true 
total and true foliage values to DHP. 

More recently, the Ground-Based Observations for Validation 
(GBOV) of Copernicus Global Land Products service delivers up-scaling 
data for validation of various land variables (Brown et al., 2020, 
WWW1, 2021). The raw data were measured with the DHP methodology 
providing FIPAR values and then up-scaled to provide data at 300 m 
over 23 sites, covering different land cover types (see Table 2). Values 
represent the total amount of intercepted radiation, even though DHP 

images were acquired both up and down for understory and overstory 
sites. In theory, it would be also possible to distinguish between the 
foliage and woody elements of the canopy such as stems and branches, 
allowing the ground-based to be corrected. Gobron et al. (2006b) 
demonstrated that expected differences between FIPAR and FAPAR are 
up to 0.1 happen over very bright backgrounds, they can be neglected in 
the overall uncertainty budget under normal conditions (i.e. where a 
vegetated understory is present). We were not able to make any 
correction for GBOV data as this would require intensive measurements 
needed for the 3D-RT simulations. These up-scaled reference data, 
known as Land Products (LPs), also include quality flags and un-
certainties. The comparisons were performed using 3 × 3 pixels during 
the growing season when 100% coverage of valid value was available for 
both space and up-scaling data. A maximum two days’ difference be-
tween acquisitions of OLCI and LPs was imposed. 

In addition to DHP derived data, FAPAR was inferred over three 
agricultural FLUXNET sites (US-Ne1, US-Ne2 and UN-Ne3) located at 
the Lincoln Agricultural research and Development Centre near Mead 
(NE, USA) (Gitelson et al., 2014; Viña and Gitelson, 2005). These 
measurements were performed with Li-Cor quantum sensors that collect 
hourly measurements of PAR components as 1) incoming at top-of- 
canopy, 2) reflected by the canopy and soil, 3) transmitted through 
the canopy and 4) reflected by the soil. All daily values of radiation were 
then inferred by integrating the hourly data during the day when 
incoming PAR exceeded 1 μmol/m2/s. During the vegetative stage, the 
total FAPAR increase coincided with the increase of canopy green LAI. 
However, it remained insensitive to the decreases in crop greenness as 
both photosynthetic and non-photosynthetic components were inter-
cepting radiation. Therefore, to obtain a measure of the FAPAR absorbed 
only by the photosynthetic component of the vegetation, a correction 
was applied to provide the foliage FAPAR using green LAI destructive 
measurements (Gitelson et al., 2003). The absorption PAR for only green 
elements, i.e., FAPARgreen, were obtained with the following correction 
for which LAIgreen and LAItotal have been measured through a destructive 
determination technique: 

FAPARgreen = FAPARtotal
LAIgreen

LAItotal
(1) 

Fig. 4. Global Maps of FAPAR with a-(c) S3A; b-(d) S3B OLCI on 20(− 21) August 2018.  
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These ground-based measurements were therefore more suitable for 
the FAPAR land products validation as they better represented the same 
physical quantity, e.g. absorption by green leaves, but they were not up- 
scaled as these sites are approximately 60-ha fields (Gitelson et al., 2014; 
Chernetskiy et al., 2017). 

Since 2016, ground-based for EO validation purposes were available 
only over few geographical zones. The AMMA-CATCH project (Galle 
et al., 2018) measured both diffuse and direct values over 4 stations in 
West Africa (e.g. in Mali) covering 3 types of vegetation types (see 
Table 3). These measurements were derived from DHP images and 

provided an estimation of direct and diffuse total FIPAR with a differ-
ence of 5% when compared to PAR sensors, having themselves an ac-
curacy of 10% (Mougin et al., 2014). However, these data were not up- 
scaled to match the actual OLCI spatial resolution. In addition, we found 
only four single match-up within the CEOS LPV Direct 2.0 database 
(Garrigues et al., 2008) over two crop sites and one needle leaf forest in 
Europe (see Table 3). The values represent an average value over the 3 
× 3 km2 area. Any correction were applied to these data as no infor-
mation on structural and spectral canopy properties were available. 

Fig. 5. Scatter-plots between S3A and S3B products on the 20 August 2018 and the 21 August 2018 for the FAPAR (a-b), rectified spectral reflectance at 681 nm (c-d) 
and at 865 nm (e-f) at global scale. 
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2.3. Virtual laboratory 

The FAPAR retrieval algorithm was applied with a single-pixel based 
processor using as input data the simulated OLCI TOA BRFs over Quality 
Assurance for Essential Climate Variables (QA4ECV) validation sites. 
These simulations were performed during the QA4ECV project (Euro-
pean Union FP7 grant No.: 607405; Lanconelli et al., 2018). The JRC 
FAPAR values were evaluated against the ‘true’ value associated to the 
FAPAR computed by the 3D RT model Raytran (Govaerts and Verstraete, 
1998) considering different physical definitions: total absorption 2-flux 
and 4-flux methods (representing ground-based protocols), and ab-
sorption by only the foliage component. The 2-flux and 4-flux are ob-
tained by combining the downwelling and upwelling PAR fluxes at the 
top and bottom of the canopy as detailed in Widlowski (2010, AFM) such 
as: 

FAPAR2 flux = 1. − T (2)  

FAPAR4 flux = 1. − T + aT − R (3)  

where T is the transmitted flux at bottom of canopy (BOC), R is the re-
flected flux at BOC (i.e. the surface reflectance) and a the albedo at the 
TOC. The upwelling and downwelling PAR flux measurements were 
simulated over a matrix of 180 × 180 × (h/50 cm) at 50 cm horizontal 
and vertical resolution within the canopy. As the 3D ray tracing model 
allows to trace photon lifetime, the definition of reference value is based 
on the count of photons absorbed only by leaves for assessing the foliage 
absorption, i.e. ‘abs_fol’. The BOC level is fixed to 50 cm in all scenes. 

Table 4 lists the QA4ECV virtual validation sites that cover different 
vegetation types. For each site, 3D scenes were developed and used in a 
3D-RT model coupled with the atmospheric model to simulate OLCI 
sensor data in the blue, red and near-infrared. The ray tracing canopy 

model was coupled with the 6S model and the simulations were per-
formed using the MODIS Aerosol Optical Depth (AOD) from the MOD08 
and MYD08 D3 products over an area of 1◦ × 1◦ containing each site 
geographical coordinates (Levy et al., 2015). The water vapour (g/cm2) 
and ozone column contents (cm − atm equivalent to DU/1000) that are 
the main absorbing gases in the near-infrared and visible (ozone Chap-
puis) spectral region, respectively were obtained from the actual OLCI 
Land 1 products that come from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) data. The aerosol model adopted for each 
site was selected according to geographical location considering the 
predominant air mass advections (see Table 4). The actual geometry for 
both illumination and viewing angles was used to run the simulations 
and the OLCI FAPAR algorithm was then applied using the pixel-based 
process. 

3. Results 

3.1. S3A and S3B comparison 

S3A and S3B FAPAR maps at 1.2 km for the 20 and 21 August 2018 
are displayed in the top and bottom panels of Fig. 4, respectively. The 
corresponding scatter-plots are shown in Fig. 5. 

We report the number of points which have been used, as well as the 
RMSD (equal to 0.012) with a bias of 0.004 and correlation of 0.999. 
These results indicate that S3A and S3B OLCI FAPAR products provide 
almost identical values, and that these twin sensors, which double the 
frequency of FAPAR data acquisition, can be confidently used inter-
changeably. The rectified spectral reflectance scatter-plots are displayed 
for both spectral bands at 681 nm and 865 nm with RMSD equal to 0.005 
and 0.008, and a bias of 0.003 and 0.005, respectively. Rectified chan-
nels represent the spectral values that are decontaminated from atmo-
spheric and angular effects and used as inputs for the FAPAR 
calculations. 

In addition to these two specific days, we also compared the global 
average of daily FAPAR between the two platforms as shown in Fig. 6. 
The blue and orange curves correspond to S3A and S3B FAPAR, 
respectively. The global average was made using only for valid and 
common pixels. One note that S3A values are slightly greater that the 
ones from S3B, but with a systematic and very small bias as confirmed 
when comparing monthly products (see Table 5). 

3.2. MERIS climatology 

The MERIS climatology is plotted together with Sentinel-3A daily 
products time series over SV3T sites corresponding to various land cover 
types. The running average period is 15 days for both the OLCI datasets 
and the MERIS climatology over 2003–2011. The six crop phenology 
profiles show that the seasonality of OLCI overlaps well with the MERIS 
climatology, except over IT-Cat and DE-Geb (see Fig. 7e and Fig. 7f). 
Panels a, b and c illustrate the typical crop evolution over the US-Ne 
sites, with the start of growing season in May up to the peak in August 
and the senescence phase at the end of summer. We can notice that, over 
US-Ne2 site (Fig. 7b), a small-time lag exists between each annual OLCI 
FAPAR time series and the climatology; and 2019 is late in comparison 
to previous years, which may be due to different climatic conditions. The 
FAPAR profile over IT-Cat contains a maximum peak at the end of 
September 2018 due to heavy rain, meaning that vegetation at lower 
levels grew more than usual (Fig. 7e). The fact that, over DE-Geb, all 
seasonal features are different compared to the climatology is mainly 
due to the rotation of different crops (Truckenbrodt and Baade, 2018). 
These features were confirmed using alternative space products (not 
shown here). 

The annual profiles over several forest types provide different 
climatology patterns that are well represented by OLCI FAPAR time 
series (see Fig. 8). However, we can notice that over DE-THF the levels 
measured by OLCI appear to be higher than the climatology ones 

Fig. 6. Time series of global average of FAPAR from S3A (blue line) and S3B 
(orange line) from June to October 2018. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 5 
Benchmark statistic between monthly FAPAR products from S3A and S3B in 
2018.   

Slope Intercept R2 RMSD Bias 

June 0.973 0.003 0.993 0.016 0.004 
July 0.976 0.003 0.995 0.016 0.003 
August 0.975 0.003 0.994 0.017 0.004 
September 0.973 0.003 0.995 0.015 0.003 
October 0.973 0.004 0.992 0.018 0.003  
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Fig. 7. Climatology of MERIS FAPAR over 2003–2011 (grey shadow) and daily S3A OLCI products in 2016 (blue), 2017 (green), 2018 (red) and 2019 (light blue) 
over S3VT croplands sites. The colour shades represent the spatial deviation within 3 × 3 pixels. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Fig. 8. Climatology of MERIS FAPAR over 2003–2011 (grey shadow) and daily OLCI products in 2016 (blue), 2017 (green), 2018 (red) and 2019 (light blue) over 
S3VT forests. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Climatology of MERIS FAPAR over 2003–2011 (grey shadow) and daily OLCI products in 2016 (blue), 2017 (green), 2018 (red) and 2019 (light blue) over a) 
S3VT SP-Val semi-arid mediterranean and b) SP-Ala cultivated areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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(Fig. 8a). We have the same outcome over IT-Isp except for 2018 at the 
start of the growing season (Fig. 8b). Conversely, over IT-Sro, the 2018 
values are highest amongst all the years and the climatology (Fig. 8c). 

The fact that climatology values are lower than OLCI ones may be 
because the MERIS third-reprocessing was missing additional land 
products Quality and Science Flags (QSF) such as CLOUD_AMBIGUOUS 
and CLOUD_MARGIN. Hence, unflagged cloud/cloud shadow contami-
nations may decrease the MERIS derived climatology values of FAPAR 
when compared to OLCI. 

The two last profiles are over the semi-arid Mediterranean site, SP- 
Val, and cultivated areas SP-Ala are displayed in Fig. 9a and Fig. 9b, 
respectively. Both seasonalities and FAPAR values agree well but with 
inter-annual variations that may arise from different climatic conditions. 

3.3. JRC-FAPAR using MODIS and Sentinel-2 MSI data 

The initial comparison was made against JRC-FAPAR MODIS prod-
ucts at 250 m over all the S3VT sites over several years. Average values 
were taken over a 3 × 3 pixels grid using only valid pixels, i.e. 100% 
coverage, to avoid any cloud or cloud-shadow contaminations and to 
decrease the impact of sensors’ geo-location. Fig. 10 shows the results of 
comparisons against a) MODIS for S3A and b) S3B. As the S3B data 
availability is less than the S3A one, the number of match-up points 
drops from 1384 to 739. The day lag between MODIS and OLCI dates is 
±1 day. The results show that the S3A (S3B) OLCI products agree with 
MODIS with an RMSD of 0.0878 (0.0937). This benchmark was done 
after remapping the OLCI products at 250 m. Note that the JRC MODIS 
FAPAR algorithm at 250 m used the blue band which is originally at 500 
m (see Gobron et al., 2006a): these may include geographical mis-
matches and then explain a strong deviation in the regression line. 

The second comparison was done using S2 MSI data for which JRC 
FAPAR was computed at 60 m spatial resolution over the S3VT sites. 
Spatial averages from S2 at 60 m to 300 m (900 m) were calculated using 
only fully valid pixels to remove cloud or cloud-shadow contaminations. 
Fig. 11 displays the scatter-plots between S3A (a-b) and S3B (c-d) 
against S2A/B at 300 m (a-c) and 900 m (b-d), respectively. The 
maximum time lag between S2 and S3 dates is ±4 days. The results show 
a better agreement when using 900 m spatial resolution as geolocation 
issues and contamination of cloud/cloud shadow are reduced. RMSD 
values are at about 0.062 (0.069) for S3A (S3B) at 900 m and 0.088 
(0.095) at 300 m, respectively. The slight bias is also explained by the 

non-linearity of radiative transfer theory: it makes a difference whether 
we aggregate FAPAR products generated at the native resolution (e.g. 
60 m to 300 m) or compute the FAPAR on the aggregated spectral bands 
(Kaminski et al., 2017). Times of acquisition of both instruments are not 
the same as the S3 orbit is a near-polar, sun-synchronous orbit with a 
descending node equatorial crossing at 10:00 Mean Local Solar time 
(MLST) whereas the MLST of S2 at the descending node is 10:30. 

3.4. Ground-based measurements 

In order to check the consistency and seasonality of OLCI FAPAR, we 
first plot time series of various in-situ ground-based data that were not 
up-scaled, per se. Issues concern the availability of uncertainties of such 
data and their spatial representation, as well as the geo-location differ-
ences between them and OLCI observations. In addition, the so-called 
‘green’ FAPAR calculated using Eq. 1 with the assumption of a linear 
correlation between LAI and FAPAR inevitably introduces some errors 
for the US-Ne sites. Nevertheless, these ground-based measurements 
represent well the seasonality during the growing season as shown in 
Fig. 12. Satellite and ground-based FAPAR estimations over the three 
USA sites compare very well with each other during the growing period. 
The OLCI products show systematically lower values (about 0.1) than 
the ground-based estimations during the summer season. The mea-
surements derived from DHP were also plotted over the New Forest site, 
UK-NFo (Fig. 13a): only few in-situ measurements were available for 
2016 (Brown et al., 2019). They were adjusted using 3D-RT simulations 
correction factors as explained in Section 2. The S3 FAPAR vary from 
year to year. Up to the senescence phase, we found the same range of 
values by both measurement types whereas the ones in October show a 
large difference up to 0.2. 

Over the AMMA-CATCH sites in Mali, we see that the phenology 
from in-situ and EO products was well represent over the four types of 
vegetation. However, the expected negative bias over the Acacia forest 
can be seen during the winter season (Fig. 13e). Over the Direct 2.0 sites, 
we found a very good agreement with RMSD of 0.07 with a bias of 0.05 
(not shown). 

The results using ground-based measurements from the Copernicus 
GBOV service are shown in Fig. 14. Each panel shows the scatter-plot 
between a) S3A OLCI and b) S3B OLCI against the FIPAR value of the 
GBOV LP4 products (Version 2.1). RMSD was computed for the different 
types of vegetation. OLCI products and the ground-based values agreed 

Fig. 10. Comparisons between daily S3A-OLCI (a) and S3B-OLCI (b) against JRC FAPAR MODIS over all the S3VT sites.  
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generally within ±0.10, which is within the expected bias when using 
FIPAR as a proxy of FAPAR (Gobron et al., 2006b). Over the mixed forest 
(dark blue symbols), OLCI FAPAR values are smaller than the ground- 
based ones. 

To analyse better the results in term of uncertainty closure assess-
ment, we plot the variance between EO data and in-situ measurements 
against the total uncertainties, i.e. the square root of the sum of squares 
of each uncertainty, together with their frequencies as proposed by 
Immler et al. (2010) over three types of land cover for each sensor 
Fig. 15. They indicate that the variances between EO and ground-based 
products and the total uncertainties are within ±0.1 over forest sites. 
35% of the points have a total uncertainty value of 0.05 together with a 
very small variance. The total uncertainties show greater fluctuations for 
cropland and grassland sites with a maximum of 0.4 respectively, but 
with smaller variances. 

3.5. 3D-RT modelling over the QA4ECV sites 

Simulations of various types of FAPAR ground-based measurements 
were compared to FAPAR computed with two years of daily OLCI TOA 
simulations that coupled Raytran and 6S models. The reference FAPAR 
values correspond to the 2-flux, 4-flux estimates and actual foliage ab-
sorption, the latter of which can only be computed through model 
simulations (as the absorption from flux measurements can only be 
associated to the whole canopy, including leaves, trunks and stem ele-
ments). Fig. 16 shows the scatter-plots between OLCI FAPAR and 3D-RT 
reference values for each virtual site and in-situ definition. It demon-
strates that the evolution of validation results depends on the in-situ 
measurement definition together with the type of vegetation cover. In 
general, the results are much better when the foliage absorption is used, 
as was expected. However, the OLCI FAPAR values were close to the 

Fig. 11. Comparisons between daily FAPAR from S3A (a and b) and S3B (c and d) OLCI against JRC FAPAR MSI S2A/S2B using at 300 m (a and c) and 900 m (b and 
d) over all S3VT sites. 
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Fig. 12. Time series of daily OLCI S3A and in-situ data, based on Li-cor quantum sensors, over a) US-Ne1, b) US-Ne2 and c) US-Ne3 sites.  
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fluxes measurements for the Nghotto forest and Skukuza savannah and 
disagreed when the foliage absorption was taken as reference. In the first 
case, the foliage absorption was smaller than with the 2- and 4-flux 
methods because of the strong contribution of woody elements. In the 
second case, the value was much larger and deviated from the OLCI 
results, mainly because of the understory (grass) contribution to ab-
sorption of the Savannah scene (Disney et al., 2011), which was not 
considered in 2- or 4-flux modelling. Over the LOPE tropical forest site, 
the biases were always higher than 0.25 in all reference cases. This may 
be due to spectral values associated to the scene. Fig. 17 illustrates the 
histogram of variance between references and OLCI results as function of 
their associated uncertainties. We can see that except for the small 
values the agreement in term of variance is better for the foliage 
absorption. 

4. Discussion 

4.1. Impact of spectral response 

Recently, Lamquin et al. (2020a) indicate that even though OLCI-A 

and OLCI-B have the same design characteristics, they do not have the 
identical spectral characterisation nor radiometric and geometric cali-
brations. These small dissimilarities impact the Level 1 data and there-
fore Level 2 as well. Lamquin et al. (2020b) showed the impacts of 
spectral response at the level of each detector over Amazonia and 
Europe and found that calibration correction reduces the relative dif-
ferences to 0.7%. In this paper, the small spectral response difference for 
S3A and S3B impact the green FAPAR values with a bias at about 0.003 
in monthly products during the tandem period at the global scale. It 
means that S3A FAPAR is slightly higher than S3B, which is within the 
range of the uncertainties. Nevertheless, the foreseen correction of L1 
will positively impact the FAPAR consistency between the two plat-
forms. When we compare S3A/S3B against JRC products using MODIS 
or S2 data, we consider the differences of sensor spectral responses 
through the retrieval algorithm as each spectral response were used in 
the radiative transfer simulations to optimize both rectified channels 
and FAPAR equations. 

Fig. 13. Time series of daily OLCI S3A and in-situ data, based on DHP, over a) UK-NFo b-e) AMMA-CATCH sites.  

N. Gobron et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 270 (2022) 112850

14

4.2. Impact of time of acquisition and spatial scale 

The JRC FAPAR is defined to be the instantaneous value at the time 
of acquisition. As there is around 30 min between OLCI and MODIS, this 
small difference in illumination geometries condition has almost no 
impact between the products. Li and Fang (2015) showed the instanta-
neous values of FAPAR as function of sun zenith angle for several LAI 
using radiative transfer model. The main sources of potential discrep-
ancies are indeed the difference in their viewing geometries and their 
spatial resolution as OLCI and MODIS sensors do not have the same 
technical characteristics. MODIS is a scanner (250 m at nadir view) 
whereas OLCI (300 m) is a push-broom imaging spectrometer with five 
cameras: therefore, original pixels do not have the spatial resolution nor 
are they geo-located. To benchmark EO products, remapping them over 
a geographical grid is mandatory and therefore includes some geo- 
spatial uncertainties, specially for vegetated areas that are not homog-
enous. Any remapping step should be added for deriving additional 
uncertainties when comparing EO products as discussed on Loew et al. 
(2017). 

4.3. ‘Mixture’ of ground-based measurements 

Unfortunately, ground-measurements providing the exact same 
quantity as the Earth Observation products, i.e. green foliage absorption 
at time of sensor of acquisition, were not available. In this paper, we thus 
relied only on a limited number of proxy data sets that were available 
mainly over the North American continent using GBOV data (Version 
2.1). We indeed used various sources of in-situ measurements over 
different types of vegetation coming from different projects. These 
ground-based measurements were mainly derived from DHP techniques, 
using different sampling or/and up-scaling protocols and few of them 
came from hourly Li-Cor quantum measurements. None of them repre-
sents the actual FAPAR OLCI definition, but as already shown in Gobron 
et al. (2008), these data are valuable as proxy to assess its quality within 
a certain range of uncertainties, i.e. +/− 0.1. Depending on the type of 
land cover, these ground-based measurements may serve a good proxy 
for seasonality of vegetated activities. The difference between the total 
absorbed value and that of the foliage simulated by the 3D-RT model for 

the Järvselja-2 site was used for the New Forest canopy, only. As pointed 
out in Niro et al. (2021), radiative transfer modelling should play a 
future and very important role in correcting ground measurements. This 
would require additional measurements so that all the spectral and 
structural variables used in a 3D-RT model are known and would also 
allow realizing the uncertainty budget for the validation data. Even so 
there are now few vegetation Fiducial Reference Measurements (FRM) 
(Brown et al., 2021a, 2021b), they still do not supply this required in-
formation to infer the foliage values. 

The main outliers were due to the limitations of using DHP meth-
odology in forest environments during and after the senescence period 
and winter. Using the total intercepted radiation to infer FIPAR with 
DHP instead of the (green) foliage absorption induced a strong differ-
ence as shown by the 3D-RT simulations. 

5. Conclusions 

The performance of both S3A and S3B OLCI terrestrial products was 
assessed using various methods, including comparison with MODIS and 
S2 MSI data using the same retrieval algorithm, various type of ground- 
based measurements and 3D-RT modelling virtual simulations. We 
found that during the tandem phase period, S3A and S3B provided the 
almost identical values of FAPAR at global scale with RMSD <0.02 and 
R2 = 0.99. This means that with these twin Copernicus S3 OLCI in-
struments, the number of observations provides users with increased 
geographical and temporal global coverage. Using ‘match-up’ daily 
products from JRC FAPAR MODIS and JRC FAPAR S2 MSI, we showed 
that the agreement achieved the expected goal of R2 greater than 0.9 and 
RMSD less than 0.1 over the S3VT sites. The fact that daily S2 MSI and 
daily S3 OLCI can provide the same values at different scales also opens 
the range of Copernicus applications such as agriculture management 
and local to regional climate adaptation studies. 

By filtering the good quality values in both space and up-scaled 
ground-measurements (GBOV LP4), we found that 65% of OLCI prod-
ucts at 300 m spatial resolution were within ±0.1 of uncertainties that 
could be expected when comparing intercepted and absorbed compo-
nents (Gobron et al., 2006b). Using the AMMA-CATCH measurements, 
we checked the seasonality over additional locations covering other type 

Fig. 14. Comparisons between daily green instantaneous FAPAR from a) S3A OLCI and b) S3B OLCI against FIPAR GBOV LP4 products. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 15. Variance against total uncertainties (with frequency) for the daily green instantaneous FAPAR from S3A (top panels) and S3B (bottom panels) OLCI for a-d) 
Forest b-e) Savanna and Shrubland and c-f) Cropland and Grassland. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 16. FAPAR using OLCI simulations data against a) 2-flux, b) 4-flux and c) actual foliage absorption (abs_fol) as reference values.  
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of land cover. We found a good agreement over low vegetation sites and 
same phenology over Acacia Forest. 

The results from the 3D-RT modelling demonstrated that bias should 
decrease when using the foliage absorption as the reference. As foliage 
absorption is very difficult to measure at ground-level, there is a need to 
correct in-situ data for biases, using modelling studies, in future vali-
dation frameworks. 

The next generation of GBOV measurements will provide such 
ground-based data using Wireless Sensor Networks (WSNs) as per-
formed in Putzenlechner et al., (2019). Finally, supplementary work 
should focus on validating the uncertainties of OLCI FAPAR that will be 
available, at pixel level, in the near future. 
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Gobron, N., Aussédat, O., Pinty, B., Taberner, M., Verstraete, M.M., 2004. Medium 
Resolution Imaging Spectrometer (MERIS) - Level 2 Land Surface Products - 
Algorithm Theoretical Basis Document-Revision 3.0. EUR Report No. 21387 EN. 
Institute for Environment and Sustainability. 
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Gobron, N., Pinty, B., Aussédat, O., Chen, J.M., Cohen, W.B., Fensholt, R., Gond, V., 
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