The University of Southampton
University of Southampton Institutional Repository

In Situ Development of Efficient Electrogenic Bacterial Community in Urine Fed Microbial Fuel Cell Cascades

In Situ Development of Efficient Electrogenic Bacterial Community in Urine Fed Microbial Fuel Cell Cascades
In Situ Development of Efficient Electrogenic Bacterial Community in Urine Fed Microbial Fuel Cell Cascades
Microbial fuel cell technology harnesses the potential of some naturally occurring bacteria for electricity generation. To initiate the operation of microbial fuel cells, inoculation with different types of bacterial community, including those found in activated sludge, are employed. There are however, health hazards associated with the use of digested activated sludge and this of course depends on where the sample has been sourced from. Organisms such as Mycobacterium tuberculosis, Pseudomonas aeruginosa and enteric viruses have been reported in activated sludge, which can have practical difficulties when working with such samples. Therefore, the development of an efficient electroactive bacterial community, capable of producing optimum power output without the need for sludge inoculation, would eliminate any potential risks. In the current study, we developed an efficient electroactive bacterial community within a ceramic based MFC system, using only fresh urine as the inoculum. Efficient biofilm development was achieved by stepwise adjustment of the external resistance, following 48 hours of open circuit operation. This resulted in a uniform bacterial community with power output levels >50% higher than those inoculated (as per standard practice) with activated sludge. The results showed that power generation begins within 2 days of experimental set-up, compared to at least 5 days in sludge inoculated systems, thus significantly reducing start up time. Incidentally, the development of the bacterial community occurs irrespective of the freshness or age of the urine feed. Given the difficulty in moving suitable activated sludge across countries/borders and that practical application of MFCs technology is more likely to occur in remote rural locations, it is possible that suitable activated sludge might not be available for inoculation locally. Therefore, deployment of MFC systems capable of producing optimum power without the need for sludge-inoculation would be beneficial to their widespread global application. This is the first report of an in situ development of an electroactive bacterial community in urine-fed MFC systems that outperform those initially inoculated with activated sludge.
110701
Obata, Oluwatosin
a4215b3c-fcf2-4894-b1a7-f82707a0632b
Walter, Xavier Alexis
67c83b61-76af-4e37-aec8-79ebc723b807
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13
Obata, Oluwatosin
a4215b3c-fcf2-4894-b1a7-f82707a0632b
Walter, Xavier Alexis
67c83b61-76af-4e37-aec8-79ebc723b807
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13

Obata, Oluwatosin, Walter, Xavier Alexis, Greenman, John and Ieropoulos, Ioannis (2018) In Situ Development of Efficient Electrogenic Bacterial Community in Urine Fed Microbial Fuel Cell Cascades. 233rd ECS Meeting, , Seattle, United States. 13 - 17 May 2018. p. 110701 .

Record type: Conference or Workshop Item (Paper)

Abstract

Microbial fuel cell technology harnesses the potential of some naturally occurring bacteria for electricity generation. To initiate the operation of microbial fuel cells, inoculation with different types of bacterial community, including those found in activated sludge, are employed. There are however, health hazards associated with the use of digested activated sludge and this of course depends on where the sample has been sourced from. Organisms such as Mycobacterium tuberculosis, Pseudomonas aeruginosa and enteric viruses have been reported in activated sludge, which can have practical difficulties when working with such samples. Therefore, the development of an efficient electroactive bacterial community, capable of producing optimum power output without the need for sludge inoculation, would eliminate any potential risks. In the current study, we developed an efficient electroactive bacterial community within a ceramic based MFC system, using only fresh urine as the inoculum. Efficient biofilm development was achieved by stepwise adjustment of the external resistance, following 48 hours of open circuit operation. This resulted in a uniform bacterial community with power output levels >50% higher than those inoculated (as per standard practice) with activated sludge. The results showed that power generation begins within 2 days of experimental set-up, compared to at least 5 days in sludge inoculated systems, thus significantly reducing start up time. Incidentally, the development of the bacterial community occurs irrespective of the freshness or age of the urine feed. Given the difficulty in moving suitable activated sludge across countries/borders and that practical application of MFCs technology is more likely to occur in remote rural locations, it is possible that suitable activated sludge might not be available for inoculation locally. Therefore, deployment of MFC systems capable of producing optimum power without the need for sludge-inoculation would be beneficial to their widespread global application. This is the first report of an in situ development of an electroactive bacterial community in urine-fed MFC systems that outperform those initially inoculated with activated sludge.

This record has no associated files available for download.

More information

Published date: 2018
Venue - Dates: 233rd ECS Meeting, , Seattle, United States, 2018-05-13 - 2018-05-17

Identifiers

Local EPrints ID: 454341
URI: http://eprints.soton.ac.uk/id/eprint/454341
PURE UUID: 62133b8a-5ee6-477e-b086-536c4f439dcc
ORCID for Ioannis Ieropoulos: ORCID iD orcid.org/0000-0002-9641-5504

Catalogue record

Date deposited: 07 Feb 2022 17:51
Last modified: 17 Mar 2024 04:10

Export record

Contributors

Author: Oluwatosin Obata
Author: Xavier Alexis Walter
Author: John Greenman

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×