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Abstract

Zames-Falb multipliers are mathematical constructs which can be used to prove stability of so-called
Lur’e systems: systems that consist of a feedback interconnection of a linear element and a static nonlin-
ear element. The main advantage of Zames-Falb multipliers is that they enable “passivity”’-like results to
be obtained but with a level of conservatism much lower than pure passivity results. However, some of
the papers describing the development of the Zames-Falb multiplier machinery are somewhat abstruse
and not entirely clear. This article attempts to provide a relatively simple construction of Zames and
Falb’s main results which will hopefully be understandable to most graduate-level control engineers.

1 Introduction

Figure 1: Lur’e system: a feedback interconnection of
u(t) y(t) a linear system and a static nonlinearity. In this article
positive feedback is assumed.
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Absolute stability theory is the branch of control theory concerned with establishing stability of a feedback
interconnection of the type depicted in Figure 1. It is routinely taught in graduate courses on nonlinear
control, but often only the popular techniques of the Circle and Popov Criteria are covered, both of which
assume the nonlinearity satisfies so-called sector bounds. This is partly because the Circle and Popov Cri-
teria have a nice Lyapunov interpretation [16] and partly because they have an appealing graphical form
(in the single-input-single-output case). They can however be quite conservative, sometimes not providing
stability guarantees when the feedback interconnection is, in fact, stable.

When one is looking for less conservative results than the Circle and Popov Criteria, one’s attention is in-
evitably drawn to the so-called “Zames-Falb” multipliers which, in a sense, generalise the Circle and Popov



Criteria to the case when the nonlinearity is slope-restricted: a tighter condition than sector-boundedness.
Numerous papers [36, 4, 10] have demonstrated the superiority of the Zames-Falb multipliers over the Cir-
cle/Popov Criteria in terms of lower levels of conservatism. However, a treatment of Zames-Falb multipliers
remains quite difficult to incorporate into a typical UK-style Master’s course.

This article is an attempt to address this problem and has been initiated by student questions on further
reading in my graduate-level Nonlinear Control course, and also by questions I have been asked since 1
published the articles [35, 34] which were based on Zames-Falb multipliers. Central to many of these
questions were some fundamental issues with the understanding of Zames-Falb multipliers. While there
are several excellent texts treating Zames-Falb multipliers and related concepts ([9, 40]) and several papers
which also attempt to provide more background for the reader ([14]), most of these texts are somewhat
terse and difficult for the typical graduate control engineer to understand. In addition, the term “Zames-Falb
Multiplier” seems to be rather off-putting and a cause of anxiety in the student of absolute stability. My aim
here is to provide a fairly simple and easy to follow introduction to Zames-Falb multipliers which prioritises
clarity over succinctness; hence the title. I hope this is of use to readers and fills a niche in the literature on
Zames-Falb multipliers.

1.1 Scope of the article

This article is entirely different from the review paper [5] which provides more of an overview of the state-
of-the-art, and really concentrates on searches and properties of Zames-Falb multipliers. Instead, this article
attempts to give a complete but understandable proof of the main results of Zames-Falb, introduced in their
paper [43]. The article also tries to give some background to the work of Zames-Falb and towards the
end touches on the problems associated with actually finding or computing Zames-Falb multipliers - this is
biased towards my own research.

This article is not a review of absolute stability in general, nor does it cover Zames’ other significant contri-
bution on conic sector stability analysis [41, 42] (see also [26, 2, 33]).

1.2 Style of article

I have tried to keep the article as readable as possible but inevitably there is a certain amount of notation
and some non-trivial concepts which need introducing in order to establish the results. Most of the nota-
tion follows that in [45]. The article tries to use simple terminology and language where possible and the
treatment of some concepts (such as causality and well-posedness) are deliberately light-touch. There is a
certain amount of whimsicality in the writing which is there to, hopefully, ensure the article is fairly light.
The quotes from Reference [1] are hopefully appropriate and in keeping with the nature of the article.

2 Systems under consideration

Zames-Falb multipliers were developed to tackle the absolute stability problem. The best way to understand
the absolute stability problem is from the diagram in Figure 1, which depicts a feedback interconnection
containing a linear-time-invariant (LTI) system G and a static feedback nonlinearity ¢(-) - this interconnec-
tion is sometimes called a Lur’e/Lurie/Lurye system. The linear system G can be thought of as a linear
operator, with an associated transfer function G(s) and impulse response g(t). It is also possible to interpret
it as a state-space system, although this is not required here.
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It’s  the
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The nonlinearity ¢(.) here is considered to be static (sometimes also called memoryless, it has no dynamics)
and scalar valued, that is
o():R—R

The absolute stability problem involves finding conditions which guarantee stability of the interconnection
for classes of nonlinearity i.e. we seek stability for all ¢ € N where A is some class of nonlinearity. In
the Circle and Popov Criteria the class of nonlinearities \ is the class of sector bounded nonlinearities, but
different classes - introduced shortly - will be of interest as well.

Remark — Robust Control. The absolute stability problem is, in essence, a form of robust control problem
where the nonlinearity ¢(-) represents the uncertainty in the system. In the robust control literature, ¢(-) is
often labelled A where A represents a broader class of uncertainty - see, for example, [20]. ([

2.1 Stability

In this article we are concerned with input-output stability and more specifically with so-called £, stability.
Central to this definition is the so-called £ space and its extension

co={a) + [ el at < o0} 1)
Lo = {:U(t) : /OT||:U(t)|2dt<oo y 0§T<oo} o)

The space Lo represents all square integrable signals and roughly speaking represents most well behaved
signals. The space Lo, represents most signals which we may have to deal with and it is important since,
from an operator perspective we represent systems as mappings between Lo, spaces. For example an LTI
system G can be considered as a mapping between these spaces, that is

G: ,Cge — Eze

From an operator perspective, the nonlinearity ¢ also maps La¢ to Loe.

With reference to Figure 1 stability is then defined with respect to the signal space Lo. Specifically, given a
LTI system G and a static nonlinearity ¢(-):

The feedback system in Figure 1 is said to be stable if the signals u(t),y(t) € Lo for all
exogenous signals r1(t), ro(t) € L.

In other words:
“Well behaved inputs lead to well behaved outputs”

Good references on L stability are [9, 12] and [15]. Here it is sufficient to understand stability as defined
above.

A standing assumption throughout the paper is that the LTI element in Figure 1 is stable and causal: its
transfer function contains only open-left-half-plane poles. Such a system is (again following the robust
control literature) labelled RH .. Specifically, the assumption

G e RHs



is made throughout the paper. The assumption made on the Zames-Falb multiplier, introduced shortly, will
not be as strict. In this case, the only requirement is that the multiplier is bounded on the imaginary axis'.
This is often denoted as

M e RL

and can be interpreted as M consisting of both causal and anti-causal elements:
M=M.+M,

where M. € RHo, and M, € RHL i.e. M, contains poles only in the open right half complex plane.
For much of this article, one may essentially ignore this detail, but it is stressed that for searches there is
often a useful advantage in allowing the multiplier to have an anti-causal component [4]. On a first read this
subtlety can probably be ignored.

2.2 Nonlinearities

,,,,,,,,,,,,,,,,,,,,,,,,, .. Figure 2: Nonlinearities: the

left-hand diagram shows sec-

oty tor [0,1] and an example non-

linearity; the right hand dia-

Gradient stays between gram shows an example slope-
restricted nonlinearity.

The classical Circle and Popov criteria both consider so-called sector bounded nonlinearities in which the
nonlinearity ¢(.) satisfies the sector bounds
(o)

where a1 < ap are two real, not necessarily positive constants. The short hand
¢ € Sector[ay, as]

is used to indicate a nonlinearity satisfying inequality (3). Many nonlinearities satisfy sector bounds: the
saturation and deadzone functions being two common ones. The concept of a sector is illustrated in Figure
2; note often the lower sector bound is taken as zero (something which can be achieved with a loopshift -
see [16], Chapter 10).

The main problem with the sector bounds is that many nonlinearities inhabit the same sector and thus
results obtained using sector information tend to be quite conservative because they need to hold for all
nonlinearities in the same sector. To overcome this, various researchers ([21, 43, 23]) have used the concept
of slope restrictions to lessen the conservatism of the results. A slope restricted nonlinearity is one where

"Here, the multiplier is assumed to be rational, although this is not actually required.

“Just believe ev-
erything I tell you,
and it will all be
very, very Sim-
ple.”

“Ah, well, I'm
not sure I believe
that”



the generalised derivative of the nonlinearity is assumed to lie between certain bounds. Denoting d¢(.) as
the generalised derivative of ¢(.), the slope restriction is equivalent to requiring

0¢ € [0, a]
which is often written as
0< 2@ =00 v er @)
T—y

where the lower bound on the slope has been taken to be zero (again possibly by a loopshift). This therefore
implies (setting y = 0 and under the assumption that ¢(0) = 0) that ¢ € Sector|0, «], but the converse is
not generally true.

Two final classes of nonlinearities are needed in order to arrive at the Zames-Falb results: the classes of
monotone and odd monotone nonlinearites. These classes of nonlinearities are essentially 2nd-4th quadrant
(odd) nonlinearities with a linear bound on their “gain”. They are of independent interest, but are also the
stepping stone to perhaps the most useful Zames-Falb results: those devoted to slope-restricted nonlineari-
ties. Formally, these classes of nonlinearities are defined below.

Definition 1 A nonlinearity ¢(-) is said to be a monotone non-decreasing nonlinearity if

(¢(2) = 60)) (@ —y) 20 VayeR

and it is bounded |¢(x)| < ~y|x| for some v > 0 and all x € Lo. A nonlinearity satisfying these properties
is said to belong to Nys. In addition if ¢(.) is odd, that is ¢(x) = —¢(—x), then the nonlinearity is said to
belong to Nyo.

Although, strictly speaking, the above definition defines monotone non-decreasing nonlinearities, with some
abuse of terminology, they are often described as monotone increasing nonlinearities: in this article no
distinction will be made.

2.3 A few further concepts and notation

A few further concepts need emphasizing or introducing. In addition to the plant G, it is often necessary
to introduce other linear operators which will be denoted in bold font. A linear operator P will have an
associated Laplace transform P(s), Fourier transform P(jw) and impulse response p(t). It is recalled that
the output (in the time-domain) of such a system subject to an input u(¢) may be calculated using the

convolution integral
o0

moa/gmwwﬂm

—00

When G is causal and the output at time ¢ = 0 is zero, this can be replaced by

y@zAgmwwﬂw

The Fourier transform of a signal u(t), denoted 4(jw), is needed for the IQC approach introduced shortly.



Stability analysis based on input-output notions of passivity is intrinsically linked to the concept of an inner
product and this is also used frequently in the IQC approach. The inner product of two signals g(¢) and h(t)
is defined as

(9(t), h(t)) = / g(t)h(t) dt

—0o0

By Parseval’s Identity (e.g. Appendix B in [9]), this is equivalent to the frequency domain inner product

(G(jw), h(jw))

1 [ A
5 |8 Gh() do

where (-)* represents complex conjugate transpose. Obviously if the time-domain inner product is non-

negative, then so is the frequency domain inequality.

The main technical idea of the Zames-Falb approach is to ensure a certain integral is non-negative. It
transpires that this is the case if the so-called £; norm of a certain “system” (linear operator) is less than
unity. Given a linear operator P, the £ norm is defined as

oo
el - |
—00

In the subsequent sections it will be seen that this norm arises naturally in the analysis.

Ip(t)|dt

2.4 Multipliers

Figure 3: Lur’e system with multipliers:
Objects M, called multipliers, assist with
stability assessment

There are various approaches one might take to prove stability of the system in Figure 1. In the 1960s
and 1970s the favoured approach was to use multipliers, which is where the term Zames-Falb multiplier
originates. The idea with multipliers effectively comes from the desire to overcome limitations imposed by
passivity. Referring again to Figure 1, it is well known that the (negative) feedback interconnection is stable
if G and ¢(+) are both passive: actually it is more subtle, G must be strictly passive, but a discussion of this
is out of scope. The key point to note is that passivity places a very strong requirement on G which is
often not, and in practice rarely (never?), satisfied. To overcome this strict requirement, one can introduce a
so-called multiplier M, whose inverse M~ is well-defined, and re-draw Figure 1 as in Figure 3. Using the
same passivity arguments it follows that the interconnection is stable if the LTI system G =MG is strictly
passive and the new nonlinearity d=c¢oMlis passive. The advantage of this new arrangement is that by
introducing the multiplier M the passivity requirements are on GM and are hopefully easier to enforce.

Remark: informality. This section has been written in an informal manner. These concepts are used
extensively in classical texts describing Zames-Falb multipliers [40, 9] as well as in the original papers on
the subject. However, the approach taken in this article differs somewhat to that described above. ([l

In  those days
Spirits were
brave, the stakes
were high, men
were real men,
women were real
women and small
furry  creatures
from Alpha
Centauri were
real small furry
creatures  from
Alpha Centauri.



2.5 Integral quadratic constraints (IQC’s)

Instead of using multipliers directly, the proofs given here are based on the IQC approach to stability analysis
[20]. The IQC approach is powerful because it a) captures existing results in robust control; and b) enables
one to combine different stability results into a common analysis framework: The Zames-Falb multiplier
results are a good fit to this. A further advantage of the IQC results is that the approach is arguably more
direct than the multiplier approach and dispenses with some of the loopshifting involved.

The key to applying IQC results is to establish that a nonlinearity satisfies an IQC. In the frequency domain
the nonlinearity ¢(-) is said to satisfy the IQC defined by I1(jw), where II(jw) = II*(jw) and IT € RL,
if the following inequality holds for all v(jw):

o o) |" [ oGw)
/. [¢<v<jw>>] H(ge) Ls(v(jw))] =0 ®

Such an IQC is often established, and will be in this article, by first deriving a time-domain integral quadratic
constraint and then converting this into the frequency domain form (5) via Parseval’s Identity.

The beauty of establishing an IQC of the form (5) is that the IQC theory established in [20] can then be
directly applied in order to obtain a frequency domain stability condition, as indicated in the theorem below.

Theorem 1 ([20]) Let G € RH~ and assume ¢(-) is a bounded, causal operator. Assume that:

i) The interconnection in Figure 1 with ¢(-) is well posed.
ii) The IQC defined by ¢(+) is satisfied.

iii) There exists an € such that

{G(;w)} 1) {Gg‘w)} <—eI YweR (©6)

Then the interconnection in Figure 1 is stable.

This is the main stability result which will be used in this article: it is a considerable simplification of the
original result in [20] and is allowed due to the form of the nonlinearites ¢(-) and the IQC’s which will be
developed. In general, more attention needs to be paid to the well-posedness of the feedback system and the
form of the IQC - see [20, 15]. Much more could be written about IQC’s but in an effort to keep the article
reasonably brief and readable, further discussion is omitted. An excellent reference on the subject is [15]
and interesting connections between time-domain and frequency domain IQC’s are made in [29] (see also
[24]). A recent review of IQC’s is given in [38].

3 Monotone Nonlinearities

Zames and Falb developed analysis techniques for two important classes of nonlinearity: monotone non-
decreasing nonlinearities and slope restricted nonlinearities. In addition, both odd and non-odd versions of
these nonlinearities were treated. However, Zames and Falb’s results are best appreciated first for monotone
nonlinearities, and these results can then be adapted for slope-restricted nonlinearities. In this section it will
be shown how the monotone property can be used to establish an IQC for these classes of nonlinearities.



3.1 A preliminary result involving convex functions
Firstly, note that if ¢ € N}y, then the integral
g
F(o) = / ¢(x)dx
0

is a convex function, since its derivative exists and is monotone non-decreasing by assumption, viz

dF(o)

“do = ¢(0)
o
Convexity of F'(¢) implies that, for all 01,09 € R,
(01— 02)F'(01) > F(01) — F(02) 7
(01— 02)P(01) = F(o1) — F(o2) 8)

where F' (o) represents the derivative of F'(o) at o;. Since this inequality holds for any o1, 09 € R, then it
holds for oy = z(t) and o9 = x(t 4+ 7), where ¢ and 7 are arbitrary, which gives

(2(t) — =t — 7))o(x(t) = Fla(t)) — Fa(t + 7)) ©)

Integrating both sides w.r.t. ¢ then gives

o0

/_ Z (a(t) — 2(t — 7)) dla(t))dt > /_ ) (F(e(t) ~ Flalt + 7))t (10)
>
= /Oo (z(t) —z(t — 7)) o(z(t))dt >0 (11)
which can then be re—a:anged to give the remarkable, and perhaps unexpected, result that
[ stistaonar= [~ s+ nota (12)

for all 7. Inequality (12) is sometimes called the area inequality.

In fact, it will also be useful to develop another version of the area inequality as well which applies in the
special case that ¢(-) is an odd function. First note that if ¢(.) is odd then its integral, F'(-) is even. Hence
replacing oo with —o in inequality (8) thus gives:

(01 = (=02))¢(01) = F(

o1) > F(o1)
& (01 + 02)d(01) > F(

)

Again, noting that the above inequality holds for any o1,02 € R, then it holds for o1 = z(t) and 09 =
x(t + 7), which gives

F(=03) (13)
F(o9) (14)

o1
o1

(2(t) + 2t — 7))o(x(t) > Fa(t)) — Fla(t+ 7)) (15)

As before, integrating both sides w.r.t. ¢ then gives

| )+t —m)otanar = |

—00

= [ (@) + ot =)o) de > 0 a7

o0

(F(:c(t)) — Fa(t+ T)))dt (16)

“If, he thought to
himself, an infi-
nite improbability
machine is a vir-
tual impossibility,
then it must log-
ically be a finite
improbability.”



which can then be re-arranged to give a mirrored result to inequality (12):

/_Z 2w (t))dt > —/_Zx(t+7)¢(x(t))dt (18)
Combining inequalities (12) and (20) we have
- [ attotatende < [ ot oty < [ aott) (19
which of course implies that
‘ /_ Zx(t—i—T)(b(x(t))dt‘ < /_ Zx(t)qﬁ(m(t))dt 20)

which is an area inequality for odd nonlinearities. The two area inequalities can be packaged into the
following Lemma.

Lemma 1 (Area Lemma) Consider the nonlinearity ¢(-) € Nys. Then, for all T € R, inequality (12)
holds. Furthermore, if ¢(-) € Najo then, for all T € R, inequality (20) holds.

This result is covered in [43, 9, 40] and as Willems notes, has its roots in re-arrangement inequalities [13].

3.2 Zames-Falb IQC for monotone nonlinearities

This section establishes an IQC involving a dynamic multiplier M, with transfer function M (s) = 1— H(s)
and impulse response m(t) = §(t) — h(t), for the nonlinearity ¢ € Aj;. Consider the integral

I =(Ma(t), 6(x(1))) @1
(I = H)a(t), (x(1))) 22)
—(a(t), 6(1)) — (Hx(t), 6(x(1))) 23)
~Ga(t),0(0)) - | ( IRGEE T>d7) oa(t))dt (24)
Changing the order of integration then gives
I =(e®.0(0) — [ n(r ( | ate- T>¢<x<t>>dt) dr @)
Next, assuming h(t) > 0 V¢, the area inequality (12) means that
) [ awotalni = 1) [ ate+r)otea 6)
for all 7, which then implies
> (ol 000) ~ [ b ([ eotattyar) dr @
= 0,00~ [ niryar [~ atotear (28)
= (@(t), 6() — [H1 (2(2), 6l (1)) (29)
= (1— [H) (). 6()) (30)

Now since (z(t), ¢(t)) > 0, we see that I; > 0 if |[H||; < 1. The results can be summarised in the
following theorem.
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Theorem 2 (Monotone Nonlinearities) Ler ¢ € Ny, and let M = I — H be such that h(t) > 0 for all
t € Rand |[H||; < 1, then the following time-domain integral quadratic constraint holds:

| va@oate 2 0

—00

It is more usual to express this in the frequency domain and, indeed using Parseval’s Identity, it follows that
above “time-domain” IQC can be written in the more familiar frequency domain form as

<[ 2Ge) 11 0 g [ 2t |,
/. [¢<x <jw>] ety o H«b(x)(jm]d =0

3.3 Zames-Falb IQC for monotone odd nonlinearities

3D

The strange thing about Theorem 2 is that there is a requirement for the impulse response of the dynamic
element of the multiplier (that is, H) to be non-negative: h(t) > 0 for all time. If more is known about
the nonlinearity, namely that it is odd and hence ¢ € N);0, the requirement that A(¢) > 0 can be omitted.
Consider again the integral:

I =(Mz(t), 8(x(1)))
— (a0.000) ~ [ nn) ( I T>¢<x<t>>dt) i

(32)

(33)

where the same steps have been applied as in the previous section. Previously, at this point, positivity of
h(t) was invoked, but suppose this is not assumed; instead use will be made of the other version of the area
inequality - inequality (20). From equation (33) it follows that

I > {a(t), 6(t)) \ | ( | ate- T>¢<x<t>>dt) dr (34)
> (al0),00) ~ [ o) ] |t T>¢<x<t>>dt\ dr 35)
Using the second version of the area inequality (20) yields
> (@000~ [ Ihir) ( | z<t>¢<x<t>>dt) dr 36)
= (a(t), 6(0)) — |1 (a(t). (1) 37
= (1~ [H) (1), (1)) 38)

Again, note that if ||H|| < 1itis clear that /; > 0. This result can be stated as the following theorem:

Theorem 3 (Monotone Odd Nonlinearities) Let ¢ € N0, and let M = I —H and be such that |H||; <
1, then the following time-domain integral quadratic constraint holds:

| aasm)o) =0

Again, this time-domain integral can be expressed as a more familiar frequency domain IQC (31).

“Listen, three
eyes,” he said,
“don’t you try to
outweird me, I get
stranger  things
than you free
with my breakfast
cereal.”
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4 Slope-restricted nonlinearities

Most frequently, the Zames-Falb results are applied to systems where the nonlinearity ¢(-) is a slope-
restricted nonlinearity: this means that the generalised derivative of the nonlinearity lies between two val-
ues. In this work, the lower slope of the nonlinearity is O and the upper slope is some positive number o
0¢ € [0,«]. A little generality is lost with this, but again, loopshifting can be used to guarantee this; the
exposition is also simplified with this assumption.

The trick to applying Zames-Falb multiplier results to systems with slope restrictions is essentially one of
re-arranging the system so that instead of working with the original nonlinearity, a modified nonlinearity
is created such that it is simply monotone increasing: this then enables the original results (on monotone
nonlinearities) to be applied to the case of slope-restricted nonlinearities. In the original results of Zames
and Falb ([43] - see also [9]) the transformation of the original nonlinearity into a modified nonlinearity
was done using the commonly used absolute stability trick of loopshifting. The same approach is effectively
used here, but the results are a little more direct.

4.1 Zames-Falb IQC for slope-restricted nonlinearities

= 1/a Figure 4: A loopshifted nonlinearity: ¢(-)
is slope-restricted, ¢(-) is monotone. The
idea is to establish an IQC for ¢(-) and then
~ use this to find one for ¢(-).
B((1)
= Q)

Consider the modified nonlinearity shown in Figure 4. This nonlinearity, ¢ can be written as

s o) = ov)
Assuming solutions exist to this implicit equation, one can write:
. 1 L
() = do (1 —4(.)" (7) (40)
Note that because ao — ¢(o) is a monotone nonlinearity (by virtue of the slope restriction d¢ € [0, «]), then
1
1——o(.
—(.)

also is and so is its inverse. Furthermore, again by the slope restriction, ¢(.) is monotonically increasing
function, and hence so is (Z) defined above. From Section 3.2, on monotone nonlinearities, it follows that
<z~5 therefore satisfies the IQC (31) where H should have a positive impulse response. Note that this IQC
essentially defines a relationship between <;~S and ©: one between ¢ and v is actually what is sought. However,
from equation (39), the following relationship holds:

Mvﬂ - B _H [qu@)] (41)
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Therefore if ¢(.) satisfies the IQC defined by II(jw) given in equation (31), then ¢ satisfies the relationship
defined by the matrix

M(jw) = X'TI(jw)X @)
=1 Yo M0 ﬂ 43)
- [M(ij) —;(M*%;gji)M(M)} (44)

or, multiplying through by o > 0, the more familiar form emerges:

M= (jw)
LvMuw) —M*(jw)—M(ij )

(jw) =

As before, this result can be packaged into the theorem below.

Theorem 4 (Slope restricted nonlinearities) Let ¢(-) be such that 0¢ € [0,a], and let M = I — H be
such that h(t) > 0 for all t and |H||1 < 1. Then ¢(-) satisfies the IQC defined by I1(jw) in inequality (45).

4.2 Zames-Falb IQC for odd slope-restricted nonlinearities

The previous subsection effectively explained how a slope-restricted nonlinearity could be transformed into
a monotone nonlinearity and how the results of Section 3.2, or more precisely Theorem 2, could be used
to derive an IQC for the original slope restricted nonlinearity. The same is done in this section, but the
additional assumption that ¢(-) is odd will be imposed: this then allows the results of Section 3.3 to be used,
and in particular Theorem 3, to be harnessed to provide a similar result.

Firstly, again consider the modified nonlinearity depicted in Figure 4. This can again be described by the
implicit equation (39) or, more compactly by equation (40). Note that if it is assumed that ¢(.) is odd,
then this implies that &() is also odd because the composition and inverse of odd functions is also odd.
Therefore, it follows that g?)() is both odd and monotone (from the discussion in the previous section). With
this in mind, from Theorem 3, é() satisfies the IQC defined by (31). In exactly the same way as in the
previous subsection, using the relationship (41), it thus follows that ¢(-) satisfies the IQC defined by (45)
except without the stipulation that the impulse response of the dynamic part of the multiplier, H, is positive.
The conclusion of this section can be summarised in the following theorem.

Theorem 5 (Odd Slope restricted nonlinearities) Let 0¢ € [0, a] be an odd nonlinearity, and let M =
I —Hwith |H||y < 1. Then ¢(.) satisfies the IQC defined by I1(jw) in inequality (45).

4.3 Comparison of Results

The relationship between the results is perhaps best summarised by the Venn diagram in Figure 5, assuming
that the lower slope restriction is zero. Note that Theorem 3 is a special case of Theorem 2 with the added
restriction that ¢(-) should be odd, but with the corresponding relaxation that the impulse response of H
need not be positive. Likewise Theorem 4 is a special case of Theorem 3 but with the added restriction that
¢(+) should be odd, but again with the relaxation that the impulse response of H need not be positive.
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Monotone nonlinearities

-~

/ Monotone odd nonlinear‘i‘ries\

~

Slope restricted nonlinearities

Thm 3 Thm 5

Thm 4

/

Thm 2

Figure 5: Venn diagram showing relationship between the various Zames-Falb results, assuming the lower
bound on the slope is zero.

S Notes and Further Reading

The purpose of these notes was to give a clear exposition of the theory behind Zames-Falb multipliers. The
subject is still an active area of research and for more up-to-date results, one is advised to consult the latest
literature in this area. In this section a few brief additional comments are given but the comments are indeed
brief and are by no means self-contained.

5.1 Applying Zames-Falb multipliers - searches

Using Zames-Falb multipliers for stability analysis is significantly more difficult than using the Circle or
Popov criteria because one has to somehow find or choose the dynamics of the Zames-Falb multiplier, M.
This is made more difficult by the observation that they may be drawn from a very wide range of linear
operators: it was noted in the original work of Zames and Falb that these operators do not have to even be
rational or causal 2. The natural question is then: how does one pick “the best” Zames-Falb multiplier for
stability analysis? Or more precisely: what is the Zames-Falb multiplier associated with the largest slope
restriction or the smallest £ gain (of an appropriate mapping)?

In the frequency domain, for slope-restricted nonlinearities, the IQC results of Theorem 1 mean that the
following inequality must be verified for some ¢ > 0:

Giw)|" [ 0 aM (jw)* G(jw)
[ T ] [aM(jw) _M(jw) —M*(jw)} [ T } s € (46)
M (jw)* (aG(jw)* —I) + (aG(jw) — )M (jw) < —€ (47)

To assist in the search, the above inequality is often transformed into a search over symmetric matrices using
the KYP Lemma (see [25]). This yields a matrix inequality of the form

[A’P +PA PB+(C

BP+C D+D (48)

} <0 P=P
Unfortunately, matrix inequality is bilinear because the state-space matrices (A, B, C, D) are affine func-
tions of the multiplier parameters. Therefore, one still needs to find some way in to search, efficiently, for
an appropriate multiplier. It is important to emphasize that:

*Irrationality has been exploited in the work of [11, 6, 3].

Infinity is  just
so big that by
comparison, big-
ness itself looks
really titchy.
Gigantic  multi-
plied by colossal
multiplied by
staggeringly huge
is the sort of con-
cept we’re trying
to get across here.
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Approach | Order L1 bound Comments

[7, 10] chosen exact User must choose order and poles

[35, 4] plant order upper bound | Line search required

[31] 2x plant order | exact Non-causal multipliers; symmetric state-space structure
[6] irrational exact Competitive but perhaps fragile

Table 1: Comparison between some different approaches for proving stability with Zames-Falb multipliers

The frequency domain “passivity” constraint (47) must also be combined with a
time-domain constraint enforcing |H||1 < 1 (sometimes called the L1 condition).

This observation is, effectively, what makes analysis using Zames-Falb multipliers challenging in practice.

There are three prevailing approaches to Zames-Falb multiplier searches in the literature. Perhaps the most
common was proposed by [7] which, in essence, requires one to choose multipliers of a particular form:

k.
! 7H s+zal-

=1

(49)

Note that in the case that M € RH, a; > 0 and therefore choosing k; > 0 one immediately has that
h(t) > 0 for all . The £; condition then simply becomes a case of ensuring ||H||; = []" ki/a; < 1.
Equipped with this form, one can then simply insert this multiplier in equation (45) and use this to evaluate
the frequency domain inequality in Theorem 1. Note that this frequency domain inequality is equivalent to
a matrix inequality by the KYP Lemma [25]. The main issue with this approach is that one needs to choose
the poles of the multiplier a; to ensure that the arising matrix inequalities are linear. The key advantage is
that one has an exact expression for the £1 norm of H. References [39, 38] discuss this approach further.

An alternative approach to the above, which was originally suggested in [35] and then used in [4, 3, 31, 32]
and elsewhere, is to assume a particular order of multiplier (at least plant-order) and then to use a change of
variables similar to that used in [28] to obtain convex conditions for stability. The approach is algebraically
involved and either uses a bound on the £; norm [28], which is known to be extremely conservative in some
cases; or one can use symmetric multipliers [31] which remove the conservatism in the £; norm, but then
one must accept the phase restrictions imposed by the symmetry of the multiplier. My own - and somewhat
biased view - is that this general approach is somewhat more intellectually satisfying than the previous one
where effectively one makes, in practice, some arbitrary choices for poles and order - but improvements
need to be made to overcome the current conservatism which plagues the approach in some cases.

The final approach that is worth mentioning is that in Zames and Falb’s original results, the multiplier M
may actually be chosen irrational and this has been exploited by several authors [11] and [6] in order to
obtain stability results. Recently [3] Carrasco, Heath and co-authors have proposed discrete-time search for
multipliers, based on FIR functions, which when interpreted in continuous time provides irrational multipli-
ers which appear to be competitive with the state of the art. The potential disadvantage with this technique
is that it may not be easy to combine this with synthesis techniques.

Table 1 gives a rough comparison between the three different approaches: a detailed comparison is out of
scope and the interested reader should consult [5] or [10] for more detailed discussion. It is interesting
that opinions on the superiority of a particular form of multiplier vary and that the same property may be
perceived to be an advantage by some researchers, but a disadvantage by others. At this point it is fair to say
“the jury is out” on which approach is best.

...man had always

assumed that
he was more
intelligent  than

dolphins because
he had achieved
so much - the
wheel, New York,
wars and so on
- whilst all the
dolphins had
ever done was
muck about in the
water having a

good time. But
conversely,  the
dolphins had
always  believed
that they were far
more intelligent
than man - for
precisely the

same reasons.
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5.2 Multivariable systems

This article, and the original results of Zames and Falb, has been dedicated to the case when ¢(-) is a scalar
nonlinearity. More generally, ¢(-) : R” +— R™ and hence multivariable generalisations of Zames-Falb
multipliers must be used. This extension was only carried out relatively recently by Safonov and co-authors
in a number of papers [27, 18, 19]. The generalisations are not trivial and require further assumptions on
the form of the nonlinearity to be made, but they do have IQC interpretations in much the same way as
their scalar-valued counterparts [8]. The search for multipliers is somewhat more involved however: the
generalisation of [35] to the multivariable case [37] is effectively too conservative and too computationally
demanding?. The approaches given in [10, 30] both have merit but require choices to be made which are not
entirely systematic. Therefore, while it seems that much of the spirit of the Zames-Falb multipliers carries
over to the multivariable case, the search for suitable multipliers seems inherently more difficult *.

5.3 How conservative are Zames-Falb multipliers?

It has been known for some time that Zames-Falb multipliers are potentially much less conservative than
either the Circle or Popov criteria — in the sense that they may conclude stability when the Circle/Popov
Criteria fail to do so. It is not yet certain whether a Zames-Falb Multiplier is a necessary as well as sufficient
condition for absolute stability. Results in both continuous ([17]) and discrete time ([44]) seem to suggest
that the existence of a Zames-Falb multiplier is fairly close to necessary” for absolute stability, and thus
using Zames-Falb multipliers should give the control engineer some confidence in the results obtained.

5.4 A historical note

An often overlooked contributor to the development of Zames-Falb multipliers is the person at their origin:
R O’Shea ®. In a few papers [21, 22], O’Shea introduces the idea of the sort of multipliers which have
now become known as ‘“Zames-Falb” multipliers. Although O’Shea did not quite work out the precise
mathematics of the multipliers, he should at least be credited with their inception.

6 Conclusion

The purpose of this article was to introduce the main technical ideas behind Zames-Falb multiplier’s in a
reasonably accessible way. After finalising the article, it was evident that I skimmed over some topics and,
in places, introduced notation which was either excessive, unclear or both. These two deficiencies have
undoubtedly jeopardised my original intention of readability. Then, of course, there are the inevitable typos
which will have exacerbated this. This document is, however, something of a working document which I
intend to update; in the next version I hope to address some of the weaknesses of this version.

3The word “tractable” in the title is, in hindsight, misleading; “intractable” might be more appropriate.

“This section needs improvement and more detail. Similar sentiments probably apply to the article as a whole.

31t is believed by some that W.P. Heath’s dog has worked out the necessary conditions.

81t was J. Carrasco and W.P. Heath who impressed upon me the importance of R. O’Shea in the development of Zames-Falb
multipliers. His contribution is acknowledged in the paper [5].

You live and
learn. At any
rate, you live.
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