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Abstract
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1 Introduction

Portfolio selection is a fundamental topic in economics and finance and one of the leading

applications of decision theory under uncertainty. Modern portfolio theory derives its main

results on diversification and risk under the important paradigm of the expected utility (EU)

theory; see, for instance, Cochrane (2005) and Campbell (2017). Nevertheless, the EU frame-

work has been subjected to a number of criticisms, mostly arising from experimental evidence.1

Investors may also exhibit a preference for positive skewness of returns that is not captured by

EU. In response to these and other critiques, the EU model has been successfully generalized to

accommodate a variety of behavioral phenomena. Two of the more well-known generalizations

are the inclusion of regret (Bell, 1982) and ambiguity in beliefs about probabilities (Gilboa and

Schmeidler, 1989). Garlappi et al. (2007) develop a portfolio selection model for an investor

with multiple priors and aversion to ambiguity.

Recently, de Castro et al. (2021a) studied the portfolio selection problem in a model with

individuals exhibiting quantile preferences (QP). This alternative specification of individuals’

preferences has been characterized in early work by Manski (1988), who studied properties of

a quantile model for individual’s behavior. More recently, QP have been formally axiomatized

by Chambers (2009), Rostek (2010), and de Castro and Galvao (2020). Mendelson (1987)

introduced the concept of quantile-preserving spread, which is a notion of risk aversion for the

quantile model that establishes a parallelism with mean-preserving spreads in the standard

EU framework. Giovannetti (2013) modeled a two-period economy with one risky and one

risk-free asset, where the agent has QP. de Castro and Galvao (2019) developed a dynamic

model of rational behavior under uncertainty, in which the agent maximizes a stream of the

future quantile utilities. de Castro et al. (2021b) is one of the few studies that employ an

experimental study in which individuals make pairwise choices between risky lotteries to assess

the importance of QP and find evidence of behavior compatible with the presence of QP for a

share of the population between 30 and 50%.

There exists a literature on optimal portfolio allocation using laboratory experiments.

Bossaerts et al. (2007) and Gubaydullina and Spiwoks (2009) study portfolio choices allowing

for individuals’ heterogeneity with EU. Charness and Gneezy (2010) and Baltussen and Post

(2011) investigate diversification in portfolio choice decisions through an experiment. Ahn

et al. (2014) show through experiments how individuals have heterogeneity and different risk

aversion attitudes but also have pessimism or optimism when selecting a portfolio using EU.

Most of the experimental evidence on portfolio allocation has considered the conventional

1Rabin (2000) criticized EU theory arguing that EU would require unreasonably large levels of risk aversion to
explain the data from some small-stakes laboratory experiments. See also Simon (1979), Tversky and Kahneman
(1981), Payne et al. (1992) and Baltussen and Post (2011) as examples providing experimental evidence on
the failure of the EU paradigm. Some studies suggesting that individuals do not always employ objective
probabilities resulted in, among others, Prospect Theory (Kahneman and Tversky, 1979), Rank-Dependent
Expected Utility Theory (Quiggin, 1982), and Cumulative Prospect Theory (Tversky and Kahneman, 1992).



EU framework as the baseline model. Within this framework, studies such as Andreoni and

Sprenger (2012), Brandtner (2013) and Gardner (2019), used the mean-variance (MV) utility

function for analyzing individuals’ rationality. However, we are not aware of experimental

studies on optimal portfolio allocation focusing specifically on the role of QP and comparing

its predictive ability against other competing behavioral models such as the EU framework.

In this paper we depart from the EU framework and investigate through an experimental

exercise the optimal portfolio allocation of individuals endowed with QP. We build on the the-

oretical results on optimal portfolio allocation under QP derived in de Castro et al. (2021a).

These authors explore general conditions under which diversification is optimal, and also pro-

vide results for specific families of distribution functions such as the Normal, the Uniform and

Chi-square distributions. In contrast to the EU framework, the portfolio allocation with QP is

usually characterized by two differentiated regimes. The risk aversion regime given by values

of τ smaller than a threshold τ0 entails diversification between the lotteries comprising the

portfolio. On the other hand, the optimal allocation for large values of τ is usually charac-

terized by a corner solution that entails full allocation into one of the assets in the portfolio,

usually the asset with highest risk and payoff. This unique feature of the portfolio allocation

problem under QP can be used to motivate the presence of under-diversification found in many

portfolio choice problems, see Mitton and Vorkink (2007) and references therein.

A second feature of the portfolio selection problem under QP that differs from the standard

EU framework is the optimal allocation under the presence of a risk-free asset. Whereas the

mutual fund separation theorem of Tobin (1958) obtained under a MV utility function and,

more generally the EU framework, predicts a convex combination of the risk-free and the risky

asset, the optimal allocation under QP predicts full allocation to the risk-free asset for high

levels of risk aversion and full allocation to the risky asset for low levels of risk aversion. This

theoretical result confirms the lack of diversification predicted by the QP model.

The main objective of the current study is to assess through a laboratory experiment

the portfolio selection insights from the viewpoint of the QP model relative to the MV. In

particular, we study the similarities and differences between the optimal portfolio choices of

MV and QP individuals. We consider the MV utility function, but comparisons developed in

this paper could be extended to other utility functions within the EU framework and beyond, as

for example, the prospect theory. Nevertheless, for simplicity and ease of tractability we restrict

to the MV utility function that summarizes individuals’ utility as a linear function of mean and

variance. To compare the optimal portfolio choices across theories, we estimate risk aversion

coefficients associated with the individuals’ empirical portfolio choices under the QP and MV

theories using minimum distance estimators. We employ these methods to construct statistics

for model classification, and also adapt the Diebold and Mariano (1995) test – originally

introduced for evaluating predictive accuracy – to our setting for statistically comparing the
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suitability of the QP and MV models.2

Our experiment simulates a simple portfolio decision exercise and is formed of 90 tasks.

These tasks were answered by 71 subjects. Each task has two assets, either two risky assets

or one risk-free and one risky asset, that comprise an investment portfolio. The experiment

requires individuals to assign weights w1,w2 ∈ [0, 1] to these assets, with w1 + w2 = 1, to

optimize their investment strategy. This strategy is not reported by participants as part of

the experiment. The investment strategy may imply maximizing the expected value of their

utility function, the expected portfolio payoff or some other moment of its distribution. One

of the objectives of the experimental study is to infer which theory (i.e. QP vs. MV) predicts

better individuals’ responses. Subjects for the experiment were recruited from undergrads and

graduates belonging to the Experiment Science Laboratory (ESL) at the University of Arizona.

Due to ongoing Covid-19 pandemic, the experiments were implemented online using Qualtrics

over the period December 2020 to February 2021. The actual payment to participants is

the sum of the payoff of one of the 90 tasks plus a show-up fee, $5, for participating in

the experiment. The choice of the actual task for payment is done randomly as in similar

experiments, see Gubaydullina and Spiwoks (2009), Ahn et al. (2014), and Gardner (2019).

Another important aspect of the experimental exercise is the choice of the distribution

function for the risky assets. Previous experiments have relied on binary lotteries characterized

by Bernoulli distributions to model the distribution of the payoffs, see Andreoni and Sprenger

(2012) and Brandtner (2013). Ahn et al. (2014) is one of the few experimental papers that

go beyond the Bernoulli distribution to characterize the payoffs. In this paper, we explore

the Uniform distribution function for several reasons. First, it is very intuitive and easy to

understand by individuals not familiar with advanced probability theory concepts. Second, it is

analytically tractable. In particular, we derive the optimal allocation to each asset under both

QP and MV theories under the assumption that both lotteries follow independent Uniform

distributions. Third, we avoid the presence of unbounded tails that yield infinite payoffs

with some strictly positive probability. Fourth, we can easily consider the whole spectrum

of combinations between pairs of lotteries. These combinations reflect first and second order

stochastic dominance as particular examples but can also accommodate distributions with

overlapping payoffs and no stochastic dominance order.

The data gathered by this experiment are individuals’ portfolio weights under a variety

of portfolio combinations within the family of Uniform distributions. These data allow us to

identify and estimate the QP and MV parameters for each individual and also to implement the

Diebold and Mariano (1995) test as a model selection mechanism. The first important finding

of our experimental study is the suitability of both theories to predict individuals’ choices.

There are differences across individuals and tasks but, in general, both models accurately

predict the optimal responses of individuals to the tasks. We obtain two different conclusions

2In contrast to the original work of Diebold and Mariano (1995), we use the test as a model selection
mechanism rather than as a test of predictive accuracy.
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depending on whether we aggregate the results by individual or by task. The aggregation of

results by individual offers support to the MV theory suggesting that the overall behavior of

the individuals participating in the experiment is more aligned with the MV than with the

QP portfolio theory. The aggregation of results by task provides richer information on the

behavior of individuals when confronted with specific portfolio problems. The evaluation of

the results by task shows, in general, more support to the QP theory than the MV theory

although the results depend on the specific task under study.

The main message that emerges from this experimental study is that individuals’ behavior is

better predicted by the MV model when it is difficult to assess the differences in the lotteries’

payoff distributions. Diversification may act as a decision mechanism that individuals use

when it is not clear how to assess the relative gains/losses of one strategy over the other as,

for example, when the lotteries’ payoff distributions overlap. In these cases, MV preferences

seem a safer choice as the optimal outcome of these policies usually yield to diversification.

In contrast, when individuals are able to clearly assess the differences in the lotteries’ payoff

distributions their portfolio choices are closer to the optimal decision of a QP maximizer than

of a MV maximizer. Individuals are able to maximize over the distribution of the portfolio

rather than trading expected return for variance.

The empirical results show evidence that, for pairs of lotteries with very different supports

and entailing a first order stochastic dominance relationship between them, individuals’ port-

folio choices are closer to the predictions of the QP model (full allocation to the dominant

lottery) than the MV model. In contrast, when the supports of the lotteries are similar but

the stochastic dominance relationship still holds, individuals’ choices are closer to the MV

strategy, that usually corresponds to a diversified portfolio. Illustrative examples of this sce-

nario are A : U(0, 2) vs. B : U(0, 20) and A : U(2, 20) vs. B : U(0, 20) for the former case, with

U denoting the Uniform distribution, and A : U(0, 16) vs. B : U(0, 20) and A : U(12, 20) vs.

B : U(0, 20) for the latter case. These tasks exercises reveal that individuals’ choices cannot

be fully rationalized by a single theory. Instead, QP predictions are better suited to explain

individuals’ decisions when the differences in support suggest a clear stochastic dominance re-

lationship between lotteries. In contrast, as these distributional differences vanish, individuals

smoothly change their objective function and trade expected return for variance despite the

fact the stochastic dominance relationship between the lotteries still holds.

We also consider portfolios of lotteries with overlapping supports, such as A : U(2, 22) vs.

B : U(0, 20) and A : U(18, 38) vs. B : U(0, 20). Lottery A stochastically dominates lottery B

in first order in both cases, which corresponds to the optimal portfolio decision under QP and

moderate levels of risk aversion. The MV theory predicts more diversification than what we

observe in the realized individuals’ choices. The distribution of the empirical weights seems

more in line with the optimal portfolio allocation obtained under the QP theory. On the other

hand, whereas the QP theory predicts full allocation to lottery A the empirical weights show
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some non-negligible allocation to lottery B too. This phenomenon is more apparent as the

supports of the Uniform distributions corresponding to each lottery are more separated, as in

the second example above.

The last set of experiments considers combinations of a risk-free and a risky asset. In this

case both theories predict full allocation to the risk-free asset for high levels of risk aversion,

however, as the payoff of the risk-free asset and the degree of risk aversion decrease, the MV

theory predicts full diversification whereas the QP theory predicts a complete shift to the risky

asset (full under-diversification). These differences are reflected in individuals’ responses across

tasks in this category. For example, for A : 2 vs. B : U[0, 20], we find that most individuals

allocate some weight to the risk-free asset in the range (0, 0.25), which is more in line with the

QP theory than with the MV theory. However, as the payoff of the risk-free asset increases,

the predictions of the QP model imply full allocation to the risk-free asset, which may be too

drastic from an investor’s point of view. In these cases, we do observe a positive shift of the

empirical distribution of weights towards the risk-free asset but this increase is smoother than

under the QP theory. MV predictions are better able to explain individuals’ choices than QP

predictions.

Given these empirical results, the overall message that emerges from this analysis is that

individuals’ behavior is better predicted by the MV model when it is difficult to assess the

differences in the payoff distribution of the lotteries comprising the portfolio. Individuals be-

have as QP maximizers, otherwise. This result suggests that diversification may act sometimes

as a decision mechanism that individuals use when it is not clear how to assess the relative

gains/losses of one strategy over the other as, for example, when the lotteries’ payoff distribu-

tions overlap. In these cases, MV preferences seem a safer choice as the optimal outcome of

these policies usually yield to diversification. This outcome involves fewer exposures to single

assets than the QP theory even if the latter might lead to superior monetary rewards. In con-

trast, when individuals are able to clearly assess the differences in the distribution of payoffs

between lotteries their portfolio choices are closer to the optimal decision of a QP maximizer

than of a MV maximizer. In these (simpler) cases, individuals are able to maximize over the

distribution of the portfolio rather than trading expected return for variance.

The remainder of the paper is laid out as follows. Section 2 illustrates the portfolio selec-

tion problem under QP and shows how individuals can optimize portfolio allocations under

this theory. Section 3 sets up our experiment design to obtain individuals’ portfolio allocations.

Section 4 develops the econometric methodology necessary to estimate the risk aversion coef-

ficients and test the underlying theories explaining individuals’ behavior. Section 5 discusses

the empirical results of the experiment and explains the results of the tests across individuals

and tasks. Section 6 concludes. A separate Online Appendix presents the instructions of the

experiment, detailed summary statistics of the experiments, and the payoffs of all the portfolio

combinations under QP and MV.
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2 Optimal portfolio choice problem

This section studies theoretically the optimal portfolio allocation problem for individuals with

quantile preferences under different assumptions on the distribution of the assets’ payoffs. We

start by formally describing the portfolio selection problem under QP. Let

Sw =

n∑
i=1

wiri,

be an investment portfolio comprised by n assets with payoffs (returns) given by ri. The

fraction of wealth allocated to each asset in the portfolio is denoted by w ≡ (w1, ...,wn), with∑n
i=1wi = 1. For illustration purposes, we consider portfolios that do not allow short-selling,

that is, we further assume w ∈ [0, 1]n, but the model can be extended to relax this restriction.

To be consistent with the literature on optimal portfolio theory under EU preferences, we

assume that individuals are endowed with a utility function u(Sw), where u : R → R, for

describing individual’s preferences on wealth. Then, for a given risk attitude τ ∈ (0, 1), the

portfolio choice problem under QP is

max
w∈[0,1]n

Qτ [u (Sw)] , s.t.

n∑
i=1

wi = 1. (1)

A well-known and important property of quantiles is its invariance with respect to mono-

tonic transformations. More formally, if u : R → R is continuous and strictly increasing,

then

Qτ[u(Sw)] = u (Qτ[Sw]) . (2)

It is also important to notice that quantile preferences are in fact independent of the utility

function. Indeed, for any continuous and strictly increasing u : R→ R, from (2),

X � Y ⇐⇒ Qτ[u(X)] > Qτ[u(Y)] ⇐⇒ u(Qτ[X]) > u(Qτ[Y]) ⇐⇒ Qτ[X] > Qτ[Y], (3)

with � denoting a τ-quantile preference. This result shows that the utility function plays

absolutely no role in defining the preference. We can use (2) to make any transformation of u;

therefore, we could transform a concave utility function into a convex one without changing

the preference. Hence the quantile optimization problem (1) using a given utility is equivalent

to maximizing the quantile obtained directly from the distribution of the random variable such

that the problem of interest becomes

max
w∈[0,1]n

Qτ [Sw] , s.t.

n∑
i=1

wi = 1. (4)
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Our aim is to uncover the optimal portfolio choices under QP and assess the similarities

and differences with those under the MV paradigm. To illustrate these differences, and for

simplicity, in what follows, we restrict the analysis to a portfolio of two assets. First, we

consider the case of two risky assets and, second, we study the optimal allocation between a

risk-free and a risky asset. Let the portfolio be defined as

Sw ≡ wX+ (1 −w)Y, (5)

with X and Y continuous random variables, and 0 6 w 6 1 the portfolio weight. First, we

present the optimal allocation between X and Y for the case of two Uniform random variables.

2.1 Sw is a mixture of two Uniform random variables

The case of two Uniform distribution functions is analytically more cumbersome than the choice

of lotteries with discrete payoff distributions or following a Normal distribution. However,

this choice may be more intuitive for describing the probability law of the payoffs of each

random variable for someone without knowledge on financial markets. Second, it is analytically

tractable. In particular, we present the optimal allocation to each asset under both QP and MV

theories under the assumption that both lotteries follow independent Uniform distributions.

Third, we consider lotteries defined by continuous random variables. In this way, we extend

most of the literature on portfolio choice experiments that considers lotteries with binary

payoffs. Fourth, we avoid the presence of unbounded tails that yield infinite payoffs with

strictly positive probability. Finally, we can easily entertain a large spectrum of investment

scenarios by considering different combinations of pairs of Uniform random variables.

For each lottery the experimenter induces a monetary payoff associated with the probability

of the outcome. Hence, for each quantile τ, we can calculate the optimal theoretical portfolio

allocation as

w∗(τ) = arg max
w∈[0,1]

Qτ (Sw) .

Consider now the MV case. The optimization problem also has a single preference param-

eter γ ∈ Γ ⊂ R+. Then,

w†(γ) = arg max
w∈[0,1]

Uγ(Sw) = arg max
w∈[0,1]

(
E (Sw) −

γ

2
Var (Sw)

)
,

where Uγ is the mean-variance representation with parameter γ.3 The optimal portfolio alloca-

tion for X : U[a,b] and Y : U[c,d] two independent random lotteries with Uniform distributions

3For a CARA utility function, and normally distributed assets, MV is a special case of expected utility
preference. See, for example, Sargent (1987, p.154-155).
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is given by

w†(γ) =


w̃(γ) when 0 < w̃(γ) < 1,

0 when w̃(γ) 6 0,

1 when w̃(γ) > 1.

(6)

where

w̃(γ) =
6[(a+ b) − (c+ d)] + γ(d− c)2

γ[(b− a)2 + (d− c)2]
.

The following paragraphs illustrate these theoretical results on optimal portfolio allocation

for Uniform distributions with different examples. Thus the case of two standard uniform

distributions, X : U(0, 1) and Y : U(0, 1), is reported in Example 2.1.4

Example 2.1. Consider X : U(0, 1) and Y : U(0, 1), independent. The optimal allocation to X

under QP is

w∗(τ) =

{
0.5, if τ ∈

(
0, 1

2

]
1, if τ ∈

(
1
2 , 1
)

.

In contrast, the optimal portfolio allocation to X under MV is w† in (6) with w̃(γ) = 0.5, for

all γ ∈ Γ .

Example 2.2. Consider X : U(0, 2) and Y : U(0, 1) independent. The optimal allocation to X

under QP is

w∗(τ) =

{
0.5, if τ ∈

(
0, 1

4

]
1, if τ ∈

(
1
4 , 1
)

.

In contrast, the optimal portfolio allocation to X under MV is w† in (6) with w̃(γ) = 6+γ
5γ , for

all γ ∈ Γ .

In this case, even though U(0, 2) stochastically dominates U(0, 1), the optimal portfolio weight

w is interior, w∗ = 0.5, implying that diversification under quantile preferences is optimal for

τ 6 1/4. This is an interesting result, because despite the fact that X first order stochastically

dominates Y, there exists a convex combination Sw that dominates both random variables X

and Y for low quantiles. Notice, however, that this feature is desirable, because the indepen-

dence of X and Y makes a convex combination of the two less risky than any of them. For the

MV case, the optimal portfolio allocation is a function of γ such that for large levels of risk

aversion (γ→∞), the optimal allocation to X is 0.2.

Another interesting scenario is the absence of diversification with different lower ends of

the distributions of X and Y. For the QP case, de Castro et al. (2021a) show that the optimal

choice is w∗ = 1 for all τ, provided that the difference between the two distributions at the

4The numerical methods to solve Examples 2.1–2.5 are described in de Castro et al. (2021a).
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left end point is sufficiently large. Example 2.3 illustrates this result for the pair X : U(0.5, 1)

and Y : U(0, 1).

Example 2.3. Consider X : U(0.5, 1) and Y : U(0, 1) independent. Then, the optimal allocation

to X under QP is w∗ = 1 for all τ ∈ (0, 1). In contrast, the optimal portfolio allocation to X

under MV is w† in (6) with w̃(γ) = 3+γ
1.25γ , for all γ ∈ Γ .

The optimal portfolio allocation under the MV case is similar to the QP case. Thus, for large

levels of risk aversion (γ→∞), we obtain w̃(γ) = 0.8. Similarly, for low levels of risk aversion

(γ→ 0), the MV theory predicts w̃(γ) = 1.

Nevertheless, the behavior with different lower end points can be complex under the QP theory.

For instance, it may be the case that the optimal choice is w∗ ∈ {0, 1} for small τ, it becomes

interior for intermediate values of τ and then becomes w∗ ∈ {0, 1} again for large τ’s. The

following example illustrates this scenario further.

Example 2.4. Consider X : U(0.25, 1.25) and Y : U(0, 1) independent. The optimal allocation

to X under QP is w∗ ∈ (0, 1) for τ ∈ (0, 0.25) and w∗ = 1 for τ > 0.25. In contrast, the

optimal portfolio allocation under MV is w† in (6) with w̃(γ) = 3+γ
2γ , for all γ ∈ Γ .

The last example considers the remaining possible combination between X and Y. In this

case, the support of the random variable X is inside the support of Y. Whereas the previous

examples represent lotteries exhibiting first order stochastic dominance, the latter example

does not.

Example 2.5. Consider X : U(0.25, 0.75) and Y : U(0, 1) independent. The optimal allocation

to X under QP is w∗ ∈ (0, 1) for τ ∈
(
0, 1

2

)
and w∗ = 0 for τ ∈

(
1
2 , 1
)
. In contrast, the optimal

portfolio allocation under MV is w† in (6) with w̃(γ) = 0.8, for all γ ∈ Γ .

Figure 1 plots w∗(τ) under the QP paradigm for different examples.

2.2 Optimal portfolio allocation when there is a risk-free asset

Manski (1988) derives the preferences of a quantile maximizer between two outcomes X and Y

when one of the outcome measures is degenerate, and finds a complete separation in preferences

between the degenerate and risky outcome. The deterministic choice is the preferred strategy

for low quantiles. In contrast, for high quantiles, the risky outcome is the preferred strategy.

In this section, we provide further formality to the example in Manski (1988) and frame it

in an optimal asset allocation context. We assume there is a riskless security that pays a rate
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w∗(τ) w∗(τ)

Figure 1: Illustration of Example 2.4 (left panel) and Example 2.5 (right panel).

of return equal to Rf = r̄, and just one risky security that pays a stochastic rate of return equal

to R with distribution function FR. The portfolio return is defined by the convex combination

Rp = wr̄+ (1 −w)R = r̄+ (1 −w)(R− r̄),

and the investor’s maximization problem (4) for a specific quantile τ is arg maxwQτ[u(r̄+(1−

w)(R − r̄))]. Using the monotonicity of the quantile process, for a continuous and increasing

utility function, the investor’s problem simplifies to

arg max
w

(1 −w)Qτ[R] +wr̄.

Simple algebra shows that the individual portfolio choice w is then given by the following:

w∗ =


1 when Qτ[R] < r̄

0 when Qτ[R] > r̄

any w ∈ [0, 1] when Qτ[R] = r̄.

The intuition of this solution is simple. For small values of τ the individual’s optimal portfolio

choice is w∗ = 1 and corresponds to full investment on the risk-free asset. This is so because

r̄ > Qτ[R] for any combination Rp characterized by 0 < w < 1. For larger values of τ, such

that Qτ[R] > r̄, the optimal portfolio decision reverses and yields w∗ = 0. For Qτ[R] = r̄, the

QP maximizer is indifferent between the risk-free and the risky asset for any w ∈ [0, 1] defining

the portfolio return.

In particular, for the example of Uniform distributions discussed above, we can consider

X = a, with a a fixed payoff, and Y : U(c,d), where c 6 a. The optimal portfolio allocation
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under QP is

w∗ =


1 when Qτ[R] <

a−c
d−c

0 when Qτ[R] >
a−c
d−c

any w ∈ [0, 1] when Qτ[R] =
a−c
d−c .

The corresponding optimal portfolio allocation for mean-variance investors yields

w†(γ) =


w̃(γ) when 0 < w̃(γ) < 1,

0 when w̃(γ) 6 0,

1 when w̃(γ) > 1,

(7)

where

w̃(γ) = 1 −
6(c+ d− 2a)

γ(d− c)2
.

The outcome of the latter optimal asset allocation problem is known in the literature as the

mutual fund separation theorem, see Tobin (1958). In this setting, there is an interior solution

to the portfolio allocation problem that is given by a convex combination of a risk-free and

a risky asset. The allocation to the risky asset depends on the degree of risk aversion γ.

In contrast, under quantile preferences, the investor does not diversify at all. The optimal

portfolio specializes in the risk-free asset for quantiles below the magnitude of the standarized

risk-free rate and on the risky asset, otherwise.

3 Experiment design

In Section 2, we discussed analytically the optimal allocation between two assets in a portfolio

under QP preferences and provide illustrative examples. In the following sections, we present

an experiment to assess with real data individuals’ optimal portfolio choices, and compare those

choices with the predictions of the QP and MV models. This section explains the experiment

design. Each experiment session has 90 independent decision-making tasks. Each of these 90

tasks corresponds to an optimal allocation of tokens between two lotteries. The list of tasks

is explained in detail in Appendix A. Tasks are divided into five categories and each category

considers a different type of relationship between two independent Uniform distributions, each

corresponding to a different lottery A and B. Section 3 in the Online Appendix also presents

graphs with the optimal portfolio allocation w∗ to lottery A. Left panels plot the optimal

allocation under the MV framework and the right panels plot the optimal allocation under

the QP framework. For the MV case, the x-axis is given by 1/γ, with γ the risk aversion

coefficient, and for the QP case ,the x-axis is given by τ.

Table 1 summarizes the composition of the lotteries, stochastic dominance relationship

between them, and the optimal allocation to lottery A under quantile preferences. The optimal

allocation under MV is given in expression (6). The following paragraphs summarize the cases
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under investigation.

The first class of experiments in tasks 1 to 20 presents lotteries A and B. These lotteries

share the same left end point of the distribution. In this scenario, lottery B first order stochas-

tically dominates lottery A. Example 2.2 above is in this family of lotteries. The optimal

allocation to A is given by full diversification for risk averse individuals (characterized by a

small τ). For individuals with higher tolerance to risk, the optimal allocation under QP is

determined by the FSD relationship.

The second class of experiments in tasks 21 to 35 considers lotteries that share the same

right end point of the Uniform distributions. In this scenario, lottery A first order stochastically

dominates lottery B. Example 2.3 above is in this family of lotteries. The optimal allocation

to A is determined by the FSD relationship if a < b/2, otherwise, the QP optimal portfolio

decision differs from the FSD relationship and implies an interior solution given by a convex

combination of the two lotteries.

The third class of experiments in tasks 36 to 55 considers two lotteries with overlapping

supports. In these examples, lottery A first order stochastically dominates lottery B. Example

2.4 above is in this family of lotteries. The optimal allocation to A is given by full diversification

for risk averse individuals (characterized by a small τ). For individuals with higher tolerance

to risk, the optimal allocation under QP is determined by the FSD relationship.

In the fourth class represented by tasks 56 to 69, there is no stochastic dominance rela-

tionship between the variables. Example 2.5 above is in this family of lotteries. The optimal

allocation to A is given by an interior solution for risk averse individuals (characterized by

values of τ 6 0.5). For individuals with higher risk tolerance (τ > 0.5), the optimal allocation

under QP is lottery B.

The last class given by tasks 70 to 90 is given by different combinations of a risk-free

asset, represented by a fixed deterministic payoff a, and a risky asset given by a Uniform

distribution. In this case, full allocation to the risk-free asset is optimal for values of τ below

Table 1: The 90 tasks in our experiment

Tasks Composition of lotteries Stochastic dominance
w∗(τ) by QP

(w∗: optimal allocation)

1 to 20
A : U(a,b) and B : U(a,d)
with b < d.

B FSD A
0.5 if τ 5 τ0
0, otherwise

21 to 35
A : U(a,b) and B : U(0,b)
with a > 0

A FSD B
1 if a > b/2
w∗ ∈ (0.5, 1), otherwise

36 to 55
A : U(a,b) and B : U(c,d)
with a > c and b > d

A FSD B
0.5 if τ 5 τ0
1, otherwise

56 to 69
A : U(a,b) and B : U(c,d)
with a > c and b < d

There is no FSD
between A and B

w∗ ∈ (0, 1) if τ 5 τ0
0, otherwise

70 to 90
A: a (constant number)
and B: U(c,d)

-
1 if τ 5 τ0
0, otherwise
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Table 2: Descriptive data

Total Male Female Non-binary
Subjects 71 35 35 1

Earnings ($)
21.16
(5.94)

22.62
(6.19)

19.93
(5.27)

13.27
(-)

Duration of time for experiment (min)
34.00
(9.34)

33.51
(8.59)

33.80
(9.25)

58.46
(-)

Quiz score (out of 3)
2.54

(0.84)
2.8

(0.40)
2.26

(1.05)
3

(-)

*Numbers in parentheses indicate standard deviation.

τ0, with τ0 =
a−c
d−c . Otherwise, the optimal allocation is the risky asset with payoffs driven by

the Uniform distribution.

Our online experiments were programmed in Qualtrics. To create a setting similar to that

of a lab-experiment, we used a Zoom meeting room with cameras and informed students they

were being observed. We did this because student concentration dropped drastically in the pilot

tests when cameras were off. In addition to observing concentration levels, we used the Zoom

setting to give students instructions regarding the rules of the experiment. The currency used

in the experiment was USD, and subject earnings were paid after each experiment by Venmo

or online transfer. We obtained 71 subjects for the experiment. Individuals were a mix of

undergraduate and graduate students recruited from the Experiment Science Laboratory (ESL)

at the University of Arizona. Due to Covid 19, the experiments were implemented online from

December 2020 to February 2021. The experiment consisted of the consent of participating

in the experiment (3-5min), introduction for uniform distributions (5-10 min), quiz (5-10min),

reading instruction (5-10 min), the main experiment (average of 34min), and payment (3-

5min). Because some of the subjects did not have much background in probability theory

or mathematics, we explained the basic concept of Uniform distributions and then checked

subjects’ understanding with three simple questions. This was done prior to the experiment

and took about 15 minutes. The instructions shown to subjects in the experiment are found in

Section 1 of the Online Appendix. Each session of our experiments lasted about one hour and

fifteen minutes on average, and the main experiment took an average of 34 minutes. There was

no time limit to complete the experiment; a few individuals took almost an hour to complete

it. The standard deviation of the time for the experiment, shown in Table 2, was 8.59 minutes

for males and 9.25 minutes for females.

The experiment proceeded as follows: students were asked three questions before the ex-

periment to demonstrate their understanding of Uniform distributions. Subjects then received

a bonus depending on how many of these questions they got correct. If they got 3 out of 3,

then $2 were offered. If 2 out of 3, then $1 was offered, otherwise they received no bonus. The

average overall score for these questions was 2.54 out of 3 (84%). See Table 2 for summary
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statistics on earnings, duration of experiment, and quiz score. After the quiz, subjects started

the main experiment. The investigator gave a short instruction about the experiment, and

then subjects reread the instructions to reinforce their understanding about the lotteries in

each task, how to assign the 100 tokens, and how their own earnings would be decided as a

result of the experiment. As mentioned earlier, subjects completed 90 tasks during the ex-

periment. These tasks are randomly shown in the screen to avoid distractions or a monotonic

choice such as (100,0) or (0,100) across tasks. The questions are presented on 6 pages with 15

tasks per page. In each task, 100 tokens are given to the subject. These tokens can be viewed

as the weights that subjects allocate to each lottery. They assign between 0 to 100 tokens to

each lottery such that the sum of the weights allocated to the two lotteries is 100. If the sum

of weights between lotteries within a task is different from 100, the system reports an error

message and the subject has to reintroduce the allocation of weights to the lotteries.

Individuals’ earnings from taking part in the experiment are given by the sum of the bonus

from taking the initial quiz, the fixed show-up fee of $5, and the earnings from one randomly

selected task out of the 90 tasks completed as part of the experiment. Including the show-up

fee of $5, subjects obtained an average of $21.16. As an illustrative example, suppose the

payment-determining task for a subject has two lotteries, where lottery A = $6 and lottery

B = U[$0, $20]. Assume the subject assigns 40 tokens to A and 60 tokens to B. Then, the

computer picks a random number in the interval [0, 20] (for the sake of example, let this

number be 11). Then, the subject’s payoff will be $6× 0.4 + $11× 0.6 = $9. Table 2 includes

subject earnings and consumed time for the main experiment by gender.

4 Econometric methodology

In this section we describe the econometric methods to estimate the parameter of interest –

risk attitude – for both the QP and MV cases, as well as the procedure used to compare the

fit of these models.

4.1 Identification

The identification of the parameters of interest, for both QP and MV cases, is achieved by

varying the shape and support of the lotteries presented to the subjects. Consider the QP

case. As discussed in Section 2, for a given quantile τ and lotteries X and Y, the economic

agent chooses the weight w. Hence, we are able to identify the τ by using different Uniform

distribution across tasks, and varying their associated support – see, e.g., Examples 2.1–2.5

above. Thus, for a given preference parameter τ, we induce different choices of portfolio, and

identify the parameter from the data. In other words, identification is attained by assuming

that individuals are endowed with the same quantile independently of the magnitude of the

payoffs involved, and by varying the support of the Uniform distributions in the lotteries. This
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variation induces different choices for different tasks. An analogous argument is valid for the

MV case.5 The previous section and Appendix A discuss the different combinations of supports

used to elicit the parameters of interest.

4.2 Estimation methods

We use minimum distance (MD) estimators to estimate the parameters of interest.6 The MD

estimator is very simple to implement in practice. In particular, it is computed by minimizing

the quadratic distance of an observed variable and its theoretical counterpart. In particular,

we will minimize the distance using either the quantile or the expected value, for QP and MV

respectively.

Consider individuals i = 1, 2, ..., I. Let j = 1, 2, ..., J index the J tasks each individual face

in the experiment. For the experiments in this empirical exercise we have I = 71 and J = 90.

First, from the experiments, we observe data for the choices wij ∈ (0, 1), the portfolio selection

each individual i make for task j. Second, from the theoretical results for the portfolio section

discussed in Section 2, for each fixed parameter, we are able to calculate the optimal choices.

Of course, this optimal choice depends on the underlying preference risk parameter, which

is the parameter to be estimated by the MD method. We propose estimators based on MD

to estimate τi and γi for each individual i. For the latter, we will assume that it lies on a

compact set Γ , which is assumed the same for all individuals. We consider a mean-squared

loss function estimator. For any portfolio w and task j, we can compute the implied objective

function, Qτ(S
j
w) for QP and Uγ(S

j
w) for MV. Moreover, we can compute the optimal value of

the objective function, Qτ

[
S
j
w∗j (τ)

]
for QP and Uγ

[
S
j

w
†
j(γ)

]
for MV. Thus, for each individual,

we define

τ̂i = arg min
τ∈(0,1)

J∑
j=1

(
Qτ

[
Sjwij

]
−Qτ

[
S
j
w∗j (τ)

])2
, (8)

γ̂i = arg min
γ∈Γ

J∑
j=1

(
Uγ

[
Sjwij

]
− Uγ

[
S
j

w
†
j(γ)

])2

, (9)

for QP and MV, respectively.

The standard asymptotic properties of MD estimators are established in Newey and Mc-

Fadden (1994). We omit the details for brevity, but notice that, for these estimators, the

5We are assuming that there is no measurement error in the data, as for example, systematic rounding errors.
6The minimum distance (MD) estimator dates back to Berkson (1944), Neyman (1949), Taylor (1953), and

Ferguson (1958), whose among others, aimed to produce statistically efficient and computationally tractable
alternatives to maximum likelihood estimators. Although very simple conceptually, MD estimation has been
used by many scholars in statistics and econometrics since Malinvaud (1970) and Rothenberg (1973). The
literature on MD is vast, hence we only list a limited set of examples: Amemiya (1976, 1978), Nagaraj and
Fuller (1991), Lee (1992), Koenker et al. (1994), Newey and McFadden (1994), Lehmann and Casella (1998),
Moon and Schorfheide (2002), and Lee (2010).
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validity of asymptotic results assume that J→∞ and independence across tasks.

To implement the estimators we use a grid search where we consider τ ∈ (0, 1) and γ ∈ [0, 20]

with a grid size of 2000.

4.3 Explaining individuals’ preferences using experimental data

We divide the exercise into classification and testing of individuals’ portfolio choices.

4.3.1 Classification

We consider the following strategy to compare and classify both preferences. The estimators

can be compared on the same decision choice, i.e. w. We define a minimum distance indicator

using

d̂ij = 1
[
|wij −w

∗
j (τ̂i)| < |wij −w

†
j(γ̂i)|

]
. (10)

Equation (10) defines an indicator function that, for each individual i and task j, compares

the distance of the observed choices wij to the theoretical choices using the estimated quantile,

w∗j (τ̂i), with the corresponding distance for the MV case. Therefore, the statistic d̂ij provides

a notion of whether the optimal QP weight is closer to the individual’s portfolio choice than

the MV weight counterpart.

We then define the following statistics for the indicator. For each task j we can compute

the proportion of cases where the QP provides a better fit than MV,

d̄j =
1

I

I∑
i=1

d̂ij. (11)

Similarly, for each individual i, we can compute the proportion over the tasks as

d̄i =
1

J

J∑
j=1

d̂ij. (12)

Intuitively, the statistic in (11) provides the proportion of subjects such that the decisions

are a better fit for the QP for each task j. Moreover, the statistic in (12) shows the proportion

of tasks that are better explained for QP for each individual.

4.3.2 Testing

We also formally test which model has a better fit for the observed choices. To do so, we

use a Diebold-Mariano (DM) testing strategy (Diebold and Mariano, 1995). Provided that

both estimators can be compared on the same loss function, i.e. comparing actual choice and
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optimal choice, then we can evaluate goodness-of-fit measures between QP and MV. Define

φij(τ̂i) =
[
wij −w

∗
j (τ̂i)

]2
and

ψij(γ̂i) =
[
wij −w

†
j(γ̂i)

]2
,

the value of the loss function for QP and MV, respectively.

Consider now the null hypothesis that for a given task j = 1, ..., J and for a sequence of

independent individuals i = 1, 2, ..., both models have the same loss

H
j
0 : E

[
φij(τi) −ψij(γi)

]
= 0,

against one-sided and two-sided alternative hypotheses. The null hypothesis states that both

preferences representations give the same expected loss, while the alternatives look for system-

atic differences across representations. A positive (negative) sign indicates that MV (QP) is

better than QP (MV), i.e. QP (MV) has a higher value of the loss function than MV (QP).

Then, define the following test statistic

DMj := I
1/2

1
I

∑I
i=1

[
φij(τ̂i) −ψij(γ̂i)

]√
Vj

, (13)

where Vj =
1
I

∑I
i=1 Var

[
φij(τ̂i) −ψij(γ̂i)

]
. One can show that under the null hypothesis Hj0,

DMj
d→ N(0, 1), as I→∞,

and hence the critical values are taken from a simple standard normal distribution.

In order to implement the test in (13) one needs a consistent estimator of the variance Vj.

We consider the following estimator

V̂j = V̂φj + V̂ψj − 2Ĉφψj, (14)

with

V̂φj =
1

I

I∑
i=1

(
φij(τ̂i) − φ̄j

)2
,

V̂ψj =
1

I

I∑
i=1

(
ψij(γ̂i) − ψ̄j

)2
,

Ĉφψj =
1

I

I∑
i=1

(
φij(τ̂i) − φ̄j

) (
ψij(γ̂i) − ψ̄j

)
,
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Figure 2: The left panel reports the selected portfolio weights by task, and the right panel the
selected portfolio weights by individual. The solid and dashed horizontal lines are the overall
mean and median values, respectively.

where φ̄j =
1
I

∑I
i=1φij(τ̂i) and ψ̄j =

1
I

∑I
i=1ψij(γ̂i).

In a similar fashion one can produce DM statistics for a given individual i = 1, ..., I for a

sequence of independent tasks j = 1, 2..., using the number of tasks to compute the asymptotic

results. That is, under the null hypothesis Hi0 : E
[
φij(τi) −ψij(γi)

]
= 0, it follows that

DMi := J
1/2

1
J

∑J
j=1

[
φij(τ̂i) −ψij(γ̂i)

]
√
Vi

d→ N(0, 1), as J→∞, (15)

where Vi =
1
J

∑J
j=1 Var

[
φij(τ̂i) −ψij(γ̂i)

]
.

5 Empirical results

5.1 Data description

We have 90 tasks per individual and 71 individuals. The total is thus 6390 selections. Figure

2 reports the selected weights by task and individual, respectively. These scatter plots provide

a rough description of the heterogeneity across tasks and individuals. All answers are in

the graphs, albeit some are repeated (i.e.one task could have more than one w value or one

individual could have selected the same w in different tasks). In both cases we observe that

choices are not systematically fixed on a given value of w, but that there is heterogeneity on

individuals’ and tasks’ responses.

Now, we discuss the parameter estimates associated to individuals’ preferences. For QP

we consider the estimated individual-specific quantile indexes {τ̂i}
71
i=1 in equation (8). The left

panel of Figure 3 presents the histogram of estimated τs. The average τ̂ is about 0.32 while

the median is 0.33, and the standard deviation is 0.15. For the MV approach, we consider

the estimated individual-specific gamma estimates {γ̂i}
71
i=1 obtained from expression (9) in the
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Figure 3: Left panel histogram of the estimated τ for QP preferences by individual. Right
panel for the histogram of the estimated γ for MV preferences by individual. The solid and
dashed vertical lines are the mean and median values, respectively.

right panel of Figure 3. The average γ̂ is about 4.74 while the median is 4.43, and the standard

deviation is 3.06.

The next exercise compares the estimates of individuals’ risk aversion across theories. For

each individual i, we report in Figure 4 the pair (γ̂i, τ̂i). These estimates are obtained from

minimizing the distance between the implied quantiles, for τ̂, and the expected values, for γ̂.

The results show a negative relationship between the two. This result shows that both theories

(QP and MV) capture individuals’ underlying risk attitude. A high risk aversion given by a

large value of γ for the MV model is corresponded by a low τ, the parameter that reflects risk

aversion under the QP model. In general, individuals exhibit a risk-averse behavior with just

a few individuals characterized by values of τ greater than 0.5 and values of γ smaller than

one.

5.2 Discussion of results per individual

In this subsection, we study the allocation to each lottery per individual. To do this, we

aggregate by task. The left panel of Figure 5 reports the pairs {d̄i,DMi}
71
i=1, which corresponds

to the estimates of the proportion of tasks that are closer to the QP than to the MV model

(d̄i) and the DM statistics.

The overall analysis of the results suggests that the MV utility function is better able

to describe individuals’ behavior than the QP approach. This is so because most of the

observations are above zero in the x-axis, reflecting a positive DM statistic, and are below 0.5

in the y-axis, reflecting a proportion smaller than 0.5 for the QP theory. The graph also reveals

the presence of individuals that can be clearly categorized as QP maximizers using one or the

other metric. Note also that in order to gain a better understanding into individuals’ behavior

we need to study the individuals’ choices by task. This is done in the next subsection.
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Figure 4: Scatter plot of (γ̂i, τ̂i). The solid and dashed vertical and horizontal lines are the
mean and median values, respectively.

5.3 Discussion of results per task

The right panel of Figure 5 reports the pairs {d̄j,DMj}
90
j=1 by task. These statistics allow us

to classify the tasks as MV and QP driven. The scatter plot shows a negative correlation

between the statistics d̄j and DMj, across tasks. This negative correlation shows that large

values of the statistic d̄j are corresponded by small (or negative) values of the DM statistic.

The interpretation of this scatter plot is as follows. For a given task, a large value of d̄j implies

that the proportion of individuals with portfolio allocations closer to the quantile model is

higher than with the MV theory. This is reflected in the DM statistic, such that if this value is

smaller than −1.96, we obtain statistical evidence favoring the model driven by QP. In contrast,

for low values of d̄j, the DM statistic usually takes positive values such that if the statistic is

greater than 1.96, we obtain statistical evidence favoring the MV model with respect to the

QP model. Visual inspection of the graph suggests that there is evidence of both types of

results across tasks. In contrast to the analysis per individual, we find a negative DM statistic

for many tasks, which suggests that the QP model is better able to explain individuals’ choices

than the MV counterpart. In some cases, these values are also statistically significant at 5%

significance level.

To obtain further insights into the relationship between the tasks and the type of preferences

that drive the optimal portfolio choices, we explore these choices for each task separately. Table

3 in Section 2 of the Online Appendix presents summary statistics on portfolio weights by task.
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Figure 5: Left panel for the scatter plot for the pairs {d̄i,DMi}
71
i=1, by individual. Right panel

for the scatter plot of pairs {d̄j,DMj}
90
j=1, by task.

These statistics reflect the empirical distribution of weights across individuals and illustrate

the heterogeneity in individuals’ responses per task. We compare the empirical results in

this table with the optimal allocation to lotteries A and B for each task under the QP and

MV theories derived above. To illustrate the optimal portfolio choice under each theory and

for all tasks, Figures 1-90 in Section 3 of the Online Appendix report the optimal values of

the portfolio weight as the risk aversion coefficient (τ or γ) varies in the intervals (0, 1) and

(0, 4), respectively. These graphs show the optimal allocation to lottery A as the risk aversion

coefficient decreases.

Tasks 1 - 20:

The specific tasks within this group are found in Appendix A.1. A canonical example of

this class of experiments is reported in Example 2.2. This class is characterized by A : U(a,b)

vs. B : U(a,d), with b < d. Lottery B first order stochastically dominates (FSD) lottery

A. Figures 1-20 in the Online Appendix show a decrease in the optimal allocation to lottery

A as the risk aversion coefficient decreases. This decrease is more pronounced under QP

and depends on the specific value of b. Similarly, for high levels of risk aversion, individuals

with MV preferences allocate more wealth to lottery A than QP individuals. The latter type

allocates a maximum weight of 0.5 to lottery A. These differences in portfolio allocations are

more important for tasks that involve lotteries where b is much smaller than d. More formally,

the theoretical optimal weight allocation under QP preferences is w∗(τ) = 0.5 for values of τ

below some threshold τ0 and w∗(τ) = 0, otherwise. The specific value of τ0 depends on the

choice of the payoff b in lottery A.

We compare these theoretical allocations with the distribution of weights across individuals

per task reported in Table 3 in the Online Appendix. The empirical weights oscillate between 0

and 0.5 for most tasks in this group, with a median between 0.1 and 0.5 and a 90% percentile in

the range (0.5, 0.8). These weights are in line with the optimal allocations obtained under both

QP and MV theories. For those tasks that involve significant differences between the supports
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of lotteries A and B (b is much smaller than d) the empirical weights are closer to the QP

theory than to the MV theory. However, for the other tasks, the empirical weights take large

values being more in line with the predictions of the MV theory. To provide statistical support

to these findings, Table 4 in the Online Appendix reports the values of the pairs {d̄j,DMj}
20
j=1

computed using the mean square distance and the quantile implied measures developed above.

The results confirm the findings described above and uncover those tasks for which individuals

behave as QP maximizers and those tasks for which they behave as MV maximizers.

Tasks 21 - 35:

The specific tasks within this group are found in Appendix A.2. These portfolio experiments

are represented by lotteries A : U(a,b) vs. B : U(0,b), with a > 0 and different values of b. A

canonical example is A : U(0.5, 1) vs. B : U(0, 1) in Example 2.3. This family of tasks satisfies

that A FSD B and the optimal allocation under QP theory depends on the value of a. Figures

21-35 in Section 3 of the Online Appendix report the optimal allocations to lottery A under

QP and MV theories as the risk aversion coefficient decreases. For Lotteries A with large a

(beyond the mean of lottery B), we find that w∗(τ) = 1 for all τ ∈ (0, 1), however, if a is small

then the optimal QP allocation is between 0.5 and 1. Similar results are found for the MV

theory. In this case, the optimal allocation under MV theory converges to w∗ = 1 when a is

greater than the average of lottery B. Diversification is only present in this group under high

levels of risk aversion and for tasks where the support of A is large enough (small a).

The analysis of the distribution of the weights provides interesting insights, though. The

10th quantile for these tasks is around 0.50, the average oscillates between 0.70 and 0.868, and

the median is even higher, which suggests that individuals behave according to these theories.

The DM statistic driven by the squared distance between the weights does not yield conclusive

evidence and in some cases the DM statistic is NA. This is because the two proportions are

exactly the same and it is not possible to calculate the variance and covariance for the DM

statistic. In contrast, the statistics based on the implied quantiles provide very informative

results. The corresponding DM statistic is negative and statistically significant giving support

to the QP theory compared to the MV theory. Individuals when confronted with these tasks

seem to follow the first order stochastic dominance rule and diversify less than under the MV

theory.

Tasks 36 - 55:

The specific tasks within this group are found in Appendix A.3. These portfolio experiments

are represented by overlapping lotteries such that A : U(a,b) vs. B : U(c,d), with a > c and

b > d. A canonical example is A : U(0.25, 1.25) vs. B : U(0, 1) in Example 2.4. This family

of tasks satisfies that A FSD B and the optimal allocation under QP theory is w∗ ∈ (0, 1) for

τ 6 τ0 and w∗ = 1, otherwise. In contrast, the optimal allocation under MV theory starts
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at w∗ = 0.5 for all tasks for high levels of risk aversion and increases towards one as the risk

aversion coefficient decreases. These allocations are reported in Figures 36-55 of the Online

Appendix.

In contrast to the preceding example, the analysis of the theoretical weights in expression

(6) and visual inspection of Figures 36-55, allow us to clearly discriminate between MV and QP.

Thus, the empirical distribution of weights in Table 3 (Online Appendix) provides results that

align very well with the theoretical predictions of both QP and MV theories. More specifically,

the 10th quantile for these tasks is around 0.50 in most cases, the average oscillates between

0.70 and 0.878, and the median is usually higher than the mean. A closer look to the summary

statistics suggests, however, that these values are only consistent with the MV case for γ < 1,

otherwise, the MV theory predicts more diversification than what we observe in individuals’

choices. The distribution of the empirical weights seems to be more in line with the optimal

portfolio allocation obtained under the QP theory. On the other hand, whereas the QP theory

predicts full allocation to lottery A, the empirical weights show some non-negligible allocation

to lottery B too. These empirical findings are inconclusive so the inspection of the statistics

{d̄j,DMj}
55
j=36 in Table 4 (Online Appendix) may be useful in this case to discriminate between

theories. The d̄j statistic yields values greater than 0.5 for several tasks but values close to

zero for many other tasks in this group. In general, the DM statistic under both estimation

methods is very positive providing statistical support to the MV case. The overall analysis

of the empirical results for this group suggests that the observed weights are closer to the

predictions of the MV model for individuals with low levels of risk aversion.

Tasks 56 - 69:

The specific tasks within this group are found in Appendix A.4 and the optimal allocations

are reported in Figures 56-69 of the Online Appendix. These portfolio experiments are repre-

sented by lotteries such as A : U(a,b) vs. B : U(c,d), with a > c and b < d. The support

of A is strictly included in the support of B, implying that the variance of the latter lottery

is larger than the former. A canonical example is A : U(0.25, 0.75) vs. B : U(0, 1) in Example

2.5. The optimal portfolio allocation is an interior solution for τ 6 τ0 and w∗ = 0, otherwise.

In contrast, the optimal allocation to lottery A under the MV theory oscillates between 0.5

and 1. It approaches w∗ = 1 as the variance of lottery A compared to lottery B decreases (the

support of A decreases with respect to the support of B). For many of the tasks in this class

(those with same mean) this scenario corresponds to A that stochastically dominates lottery

B in second order.

The analysis of the distribution of the weights in Table 3 (Online Appendix) provides in-

teresting findings that align very well with both theories. The empirical distribution of weights

seems to be in the range (0.5, 1) and the median is also quite high. It is difficult to discrim-

inate between both theories using the empirical weight distribution. However, inspection of
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the statistics {d̄j,DMj}
69
j=56 in Table 4 (Online Appendix) sheds further light on the empirical

results. This table provides strong statistical support on the superiority of the QP theory com-

pared to MV for this class of tasks. The d̄j statistic yields values greater than 0.5 for several

tasks, which indicates that there is a larger proportion of individuals that can be classified as

QP maximizers compared to MV maximizers. Similarly, the DMj statistic is negative in many

cases and provides statistically significant results.

Tasks 70 - 90:

Tasks in this experiment include a risk-free asset. The specific tasks within this group are

found in Appendix A.5 and the optimal allocations are reported in Figures 70-90 of the Online

Appendix. Both theories predict similar optimal portfolio allocations. The MV allocation is

smoother than the QP allocation, nevertheless, both allocations predict full investment on the

risk-free asset for high levels of risk aversion. As the level of risk aversion decreases, the QP

theory predicts a complete shift to the risky asset. In contrast, the MV theory predicts some

diversification. This is only the case if the payoff of the risk-free asset is lower than the mean

of the risky asset, otherwise, the optimal allocation is full investment on the risk-free asset

independently of the risk aversion coefficient.

The distribution of weights in Table 3 (Online Appendix) exhibits some heterogeneity

across individuals for some tasks. For example, for Task 70 given by A : 2 vs. B : U[0, 20],

we find that most individuals allocate a weight to the risk-free asset in the range (0, 0.25),

which is more in line with the QP theory than with the MV theory. For the latter theory to

be consistent with the observed empirical distribution of weights, γ needs to be smaller than

1/3, which corresponds to very low levels of risk aversion. Similar findings are obtained for

the analysis of Task 71. However, as the payoff of the risk-free asset increases, we observe

a positive shift of the empirical distribution of weights. In these cases, the MV predictions

are better able to explain individuals’ choices than the QP predictions. This is mainly due to

the additional flexibility of the MV case that accommodates some diversification for moderate

values of the risk aversion coefficient, in contrast to the QP case. Finally, for those cases when

the payoff of the risk-free asset is high both theories yield the same optimal portfolios given

by full allocation into the risk-free asset.

The comparison of the theories using the statistics {d̄j,DMj}
90
j=71 in Table 4 (Online Ap-

pendix) also present mixed results. There are, however, more tasks that are better represented

by the MV theory than by the QP theory.

6 Conclusion

This paper has studied optimal portfolio allocation under quantile preferences using a labo-

ratory experiment with 71 undergraduate and graduate students from University of Arizona.
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The experiment simulates a simple portfolio decision exercise and is formed of 90 tasks. Each

task has two assets, either two risky assets or one risk-free and one risky asset, with the risky

assets following a Uniform distribution function. We have used this experiment to assess the

insights of the quantile preference model with real data. We have studied the suitability of

the predictions of the MV and QP theories to explain the data on portfolio weights collected

from the experiment. The results of the experiment confirm that both theories help to predict

individuals’ optimal choices. Subjects in the experiment are clearly risk averse under both

specifications of individuals’ preferences. The aggregation of results by individual offers par-

tial support to the MV theory whereas the aggregation of results by task is more supportive

of the QP theory.

The overall message that emerges from this analysis is that individuals’ behavior is better

predicted by the MV model when it is difficult to assess the differences in the payoff distribution

of the lotteries comprising the portfolio. Individuals behave as QP maximizers, otherwise. This

result suggests that diversification may act sometimes as a decision mechanism that individuals

use when it is not clear how to assess the relative gains/losses of one strategy over the other as,

for example, when the lotteries’ payoff distributions overlap. In these cases, MV preferences

seem a safer choice as the optimal outcome of these policies usually yield to diversification.

This outcome involves fewer exposures to single assets than the QP theory even if the latter

might lead to superior monetary rewards. In contrast, when individuals are able to clearly

assess the differences in the distribution of payoffs between lotteries their portfolio choices are

closer to the optimal decision of a QP maximizer than of a MV maximizer. In these (simpler)

cases, individuals are able to maximize over the distribution of the portfolio rather than trading

expected return for variance.
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A Tasks for experiment

Here we show the optimal portfolio MV allocations and the optimal portfolio QP allocations

from all of the tasks. These 90 tasks are divided in five categories from A.1 to A.5. Each

category considers a different type of relationship between two Uniform distributions, each

corresponding to a different lottery A and B. The section also presents figures with the op-

timal portfolio allocation w∗, that corresponds to lottery A. Left panels plot the optimal

allocation under the MV framework and the right panel plot the optimal allocation under the

QP framework. The x-axis captures risk aversion. For the MV case, we report w∗ as a function

of 1/γ, and for the QP case, we report w∗ as a function of τ.

A.1 Experiments replicating Example 2.2:

In these examples, B first order stochastically dominates A. Note that the options in this

experiment, described as lotteries, are reversed compared to the example.

[1] A : U[0, 2] B : U[0, 20] [2] A : U[0, 4] B : U[0, 20] [3] A : U[0, 6] B : U[0, 20]

[4] A : U[0, 8] B : U[0, 20] [5] A : U[0, 10] B : U[0, 20] [6] A : U[0, 12] B : U[0, 20]

[7] A : U[0, 14] B : U[0, 20] [8] A : U[0, 16] B : U[0, 20] [9] A : U[0, 18] B : U[0, 20]

[10] A : U[0, 20] B : U[0, 20] [11] A : U[4, 10] B : U[4, 20] [12] A : U[4, 12] B : U[4, 20]

[13] A : U[4, 14] B : U[4, 20] [14] A : U[4, 16] B : U[4, 20] [15] A : U[4, 18] B : U[4, 20]

[16] A : U[10, 16] B : U[10, 25] [17] A : U[10, 18] B : U[10, 25] [18] A : U[10, 20] B : U[10, 25]

[19] A : U[10, 22] B : U[10, 25] [20] A : U[10, 24] B : U[10, 25]

A.2 Experiments replicating Example 2.3:

In these examples, lottery A first order stochastically dominates lottery B. Note that there are

different lower ends of the distributions.

[21] A : U[2, 20] B : U[0, 20] [22] A : U[4, 20] B : U[0, 20] [23] A : U[8, 20] B : U[0, 20]

[24] A : U[12, 20] B : U[0, 20] [25] A : U[16, 20] B : U[0, 20] [26] A : U[4, 25] B : U[0, 25].

[27] A : U[8, 25] B : U[0, 25] [28] A : U[12, 25] B : U[0, 25] [29] A : U[16, 25] B : U[0, 25]

[30] A : U[20, 25] B : U[0, 25] [31] A : U[2, 10] B : U[0, 10] [32] A : U[4, 10] B : U[0, 10]

[33] A : U[6, 10] B : U[0, 10] [34] A : U[8, 10] B : U[0, 10] [35] A : U[10, 15] B : U[0, 15]

A.3 Experiments replicating Example 2.4:

In these examples, lottery A stochastically dominates lottery B. The support of the random

variables overlaps.
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[36] A : U[2, 22] B : U[0, 20] [37] A : U[4, 24] B : U[0, 20] [38] A : U[6, 26] B : U[0, 20]

[39] A : U[8, 28] B : U[0, 20] [40] A : U[10, 30] B : U[0, 20] [41] A : U[12, 32] B : U[0, 20]

[42] A : U[14, 34] B : U[0, 20] [43] A : U[16, 36] B : U[0, 20] [44] A : U[18, 38] B : U[0, 20]

[45] A : U[16, 26] B : U[10, 20] [46] A : U[2, 12] B : U[0, 10] [47] A : U[14, 30] B : U[0, 16]

[48] A : U[12, 28] B : U[0, 16] [49] A : U[10, 26] B : U[0, 16] [50] A : U[8, 24] B : U[0, 16]

[51] A : U[6, 22] B : U[0, 16] [52] A : U[4, 20] B : U[0, 16] [53] A : U[2, 18] B : U[0, 16]

[54] A : U[2, 16] B : U[0, 14] [55] A : U[4, 18] B : U[0, 14].

A.4 Experiments replicating Example 2.5:

In these examples, there is no stochastic dominance on either side.

[56] A : U[2, 18] B : U[0, 20] [57] A : U[4, 16] B : U[0, 20] [58] A : U[6, 14] B : U[0, 20]

[59] A : U[8, 12] B : U[0, 20] [60] A : U[6, 22] B : U[4, 24] [61] A : U[8, 22] B : U[4, 24]

[62] A : U[6, 20] B : U[4, 24] [63] A : U[8, 20] B : U[4, 24] [64] A : U[12, 18] B : U[10, 20]

[65] A : U[14, 18] B : U[10, 20] [66] A : U[16, 18] B : U[10, 20] [67] A : U[14, 16] B : U[12, 20]

[68] A : U[13, 17] B : U[12, 18] [69] A : U[14, 16] B : U[12, 18]

A.5 Example with risk-free asset:

In these examples, there is no stochastic dominance on either side. Lottery A corresponds to

a risk-free asset with fixed payoff.

[70] A : 2 B : U[0, 20] [71] A : 4 B : U[0, 20] [72] A : 6 B : U[0, 20]

[73] A : 8 B : U[0, 20] [74] A : 10 B : U[0, 20] [75] A : 12 B : U[0, 20]

[76] A : 14 B : U[0, 20] [77] A : 16 B : U[0, 20] [78] A : 18 B : U[0, 20]

[79] A : 20 B : U[0, 20] [80] A : 12 B : U[8, 16] [81]A : 9 B : U[8, 20]

[82] A : 8 B : U[4, 24] [83] A : 10 B : U[8, 12] [84] A : 6 B : U[2, 10]

[85] A : 14 B : U[4, 24] [86] A : 16 B : U[4, 24] [87] A : 18 B : U[4, 24]

[88] A : 20 B : U[4, 24] [89] A : 22 B : U[4, 24] [90]A : 24 B : U[4, 24]
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