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In this work, we present the first extension of an energy decomposition analysis (EDA) method
to metallic systems. We extend the theory of our Hybrid Absolutely Localized Molecular Orbitals
(HALMO) EDA to take into account that molecular orbitals in metallic systems are partially oc-
cupied, which is done by weighted orthogonalization (WO) of the molecular orbitals using their
associated fractional occupancies as weights in the construction of the projection operators. These
operators are needed for the self-consistent field for molecular interaction (SCF MI) computation of
the polarization-energy contribution to the interaction. The method gives more weight to orbitals
that have higher occupancies and treats each fragment as metallic. The resulting HALMO EDA for
metallic systems naturally reduces to the insulator version and produces identical results when applied
to an insulating system. We present the theory and implementation details of our new approach, and
we demonstrate it with sample calculations of relevance to industrial materials. This work provides
a new EDA paradigm and tool for the study and analysis of interactions in metallic systems within
large-scale DFT calculations.

1 Introduction
Density-functional theory (DFT) aims to estimate the total energy
of a system. Complementing DFT or wave-function methods, the
main objectives of energy decomposition analysis (EDA) is to par-
tition the interaction energy of a supermolecule into their chemi-
cal origins in a similar vein to mono- and diatomic centers1,2 but
for fragments containing arbitrary number of atoms instead. Ex-
amples of the components of an EDA scheme often include elec-
trostatics, exchange-correlation contributions, polarization, and
any other relevant chemical phenomena. Hence, EDA is an ana-
lytical tool that partitions the interaction energy into chemically
interpretable components.

EDA is a family of decomposition methods, each of which is
known as an EDA scheme. EDA schemes can be categorized ac-
cording to the nature of their underlying theory3, of which there
are two major categories: variational-based and perturbation-
based. Variational-based schemes are typically derived from the
early forms of EDA, where the interaction energy is decomposed
by the use of intermediate wave functions. Localized Molec-
ular Orbitals (LMO)4, Absolutely Localized Molecular Orbitals
(ALMO)5, and Block-Localized Wavefunction (BLW)6,7 schemes
are in this category. Perturbation-based schemes approach EDA
from symmetry-adapted perturbation theory (SAPT) scheme8,9,
where the interactions among the fragments are seen as pertur-
bations to the non-interacting description and are constructed as
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corrections resulting from different physical effects. EDA can also
facilitate the creation of new force fields in molecular mechan-
ics by parameterization against EDA data, thereby yielding force
fields that are more accurate and transferable10,11.

Whenever the interaction energy is concerned, basis set super-
position error (BSSE) must be taken into account. There are many
approaches to addressing BSSE12, but a common approach taken
by some EDA schemes is the self-consistent field for molecular
interaction (SCF MI), which optimizes the molecular orbitals in
the presence of all fragments without BSSE13. Essentially, SCF
MI expands the molecular orbitals of each fragment in the ba-
sis functions of the fragment only, which minimizes the amount
of charge transfer that occurs among the fragments14. As such,
SCF MI can also be used for computing the energy arising from
charge transfer, which is evaluated by taking the difference be-
tween applying and not applying SCF MI. In the context of EDA,
charge transfer is a useful and interpretable component that indi-
cates the amount of charge that is transferred from one fragment
to another5. While different approaches to SCF MI have been
proposed, the method of localized molecular orbitals (LMO) SCF
MI15 is chosen here for its amenability to fractional occupancies
inherent in species with sufficiently small band gaps at finite elec-
tronic temperatures.

In the family of finite-temperature DFT methods, various ap-
proaches have been employed to study systems under finite elec-
tronic temperatures16,17, at excited states18,19, or open systems
that have fractional electron numbers20. For the validation of
metallic systems presented in this work, the finite-temperature
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DFT algorithm of ensemble DFT (EDFT)21,22 in the ONETEP soft-
ware package23,24 is used to optimize a set of sample non-excited
metallic systems with sufficiently small band gaps that produces
fractional occupancies at specific electronic temperatures. With-
out EDA, metallic systems can be fragmented into subsystems in
order to obtain the interaction energy, but nothing beyond such
a coarse-grained energy value would be available. EDA meth-
ods serve to decompose the interaction energy but are normally
developed for the pure state where the occupancies are inte-
gral. EDA schemes, particularly those that require SCF MI as
in ALMO/HALMO EDA, pose difficulties in decomposing the in-
teraction energy of a metallic system due to the fractional occu-
pancies that are part of the optimization process in EDFT. Hence,
fractional occupancies must also be incorporated in the SCF-MI
optimization process of the fragmented system.

Although EDA is normally developed and applied to non-
conducting species at the pure state, developing EDA for species
that have a conduction band or have fragments that interact with
each other through the conduction of charge necessitates the in-
corporation of EDA in EDFT, such that the interactions (which
could possibly involve covalent bonding) can be dissected into
contributing factors as EDA components. In this work, we present
an extended implementation of HALMO EDA that allows it to be
incorporated into EDFT for metallic systems at finite electronic
temperatures. EDA and EDFT are first given an overview. The
problem of extending SCF MI to fractional occupancies in EDA
for each fragment with weighted orthogonalization (WO)25 is
then discussed. WO is essential in orthogonalizing the molecu-
lar orbitals based on their differing fractional occupancies for the
projection operators needed by SCF MI. Finally, motivation of and
results from EDA with EDFT applied to sample metallic systems
with small band gaps are presented.

2 Methods

2.1 Energy Decomposition Analysis

The EDA scheme used in this work is Hybrid Absolutely Localized
Molecular Orbitals (HALMO)26,27, which decomposes the inter-
action energy into three major components based on the first-
generation ALMO EDA5: frozen density, polarization, and charge
transfer. Further decomposition of the frozen-density component
is based on LMO EDA4 and is discussed below. HALMO is a hybrid
EDA scheme that has components sharing some names for simi-
lar, though not identical, components in LMO, whereas HALMO
is compatible with and has the same corresponding component
names as ALMO. The interaction energy, ∆Eint, is decomposed into
the three major components of HALMO EDA as

∆Eint = ∆EHALMO
frz +∆EHALMO

pol +∆EHALMO
ct (1)

in the same manner as ALMO EDA. Frozen density, ∆EHALMO
frz , is

further decomposed as

∆EHALMO
frz = ∆EHALMO

es +∆EHALMO
ex +∆EHALMO

rep +∆EHALMO
corr (2)

and charge transfer is separated into a delocalization term and
BSSE correction.

Electrostatics component, ∆EHALMO
es , is the change in classical-

like terms of the Kohn-Sham (KS) energy containing the Coulom-
bic repulsions when going from isolated fragments to the super-
molecule without orbital orthogonalization. Letting Ψ be the
wave function of any intermediate quantum state, the electro-
statics component is defined4,26 as

∆EHALMO
es = Ecl [ΨX̃ ]− ∑

J∈X̃

Ecl [ΨJ ] (3)

where Ecl is the energy functional for the classical-like part of the
KS energy, and X̃ is the set of fragments whose molecular orbitals
are localized and variationally optimized within their respective
fragments in isolation of other fragments. Exchange component,
∆EHALMO

ex , is the change in exchange energy when going from
isolated fragments to the supermolecule without orbital orthogo-
nalization. It is defined4,26 as

∆EHALMO
ex = Ex [ΨX̃ ]− ∑

J∈X̃

Ex [ΨJ ] (4)

where Ex is the energy functional for the exchange part of the KS
energy. Pauli-repulsion component, ∆EHALMO

rep , is the change in
energy upon orbital orthogonalization excluding correlation. It is
defined4,26 as

∆EHALMO
rep = (Ecl [ΨX∗]+Ex [ΨX∗])− (Ecl [ΨX̃ ]+Ex [ΨX̃ ]) (5)

where X∗ is the set of fragments whose molecular orbitals are
localized and were first variationally optimized within their re-
spective fragments in isolation of other fragments and are then
orthogonalized across the supermolecule. Correlation compo-
nent, ∆EHALMO

corr , is the change in correlation energy when going
from isolated fragments to the supermolecule with orthogonal-
ized molecular orbitals. It is defined26 as

∆EHALMO
corr = Ec [ΨX∗]− ∑

J∈X̃

Ec [ΨJ ] (6)

where Ec is the energy functional for the correlation part of the
KS energy.

HALMO polarization component, ∆EHALMO
pol , is the change in

energy when going from the supermolecule with orthogonal-
ized molecular orbitals to the supermolecule with SCF-MI opti-
mized13–15 molecular orbitals. It is defined5,26 as

∆EHALMO
pol = E

[
Ψ_

X

]
−E [ΨX∗] (7)

where
_
X is the set of fragments whose molecular orbitals are op-

timized under SCF-MI constraints. Charge-transfer component,
∆EHALMO

ct , is the change in energy when going from the super-
molecule with SCF-MI optimized molecular orbitals to the super-
molecule with optimized delocalized molecular orbitals. It is de-
fined5,26 as

∆EHALMO
ct = ∆EHALMO

deloc +∆EBSSE (8)
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where

∆EHALMO
deloc = E [ΨX ]−E

[
Ψ_

X

]
(9)

is the delocalization term, X is the set of fragments whose molec-
ular orbitals are expanded in all nonorthogonal generalized Wan-
nier functions (NGWFs)28 and variationally optimized across the
supermolecule, and ∆EBSSE is the BSSE-correction term.

To determine the components of HALMO EDA, various quan-
tum states are evaluated that represent the intermediate wave
functions used in defining each component. The steps for evalu-
ating such quantum states are depicted in Figure 1.

Isolated Fragments

Superimposed Fragments

Weight-Orthonormalized Orbitals

SCF-MI Supermolecule

Total Electronic
Energy-Minimized

Supermolecule

Electrostatics
Exchange

Correlation

Pauli Repulsion

Polarization

Charge Transfer

Fig. 1 Steps for evaluating the quantum states for the corresponding
components in HALMO EDA.

2.2 Ensemble DFT

Ensemble DFT (EDFT) as in ONETEP treats a supermolecule as a
whole without the concept of fragmentation as in EDA. EDFT in-
volves occupancies that are fractional, since a species is no longer
evaluated at the pure state and, hence, the density operator is no
longer idempotent. The lack of idempotency complicates SCF MI
due to the fact that SCF-MI methods were originally developed
under the pervasive assumption of the pure state. Therefore, SCF
MI must be extended to include fractional occupancies. Before
considering EDFT with fragmentation and under the constraints
of SCF MI, an overview of EDFT is given first.

A system of interacting electrons22 satisfies the Kohn-Sham
(KS) equation,

Ĥ |ψi〉= εi |ψi〉 (10)

where { |ψi〉} are orthonormalized molecular orbitals, {εi} are
eigenvalues, and Ĥ is the Hamiltonian as

Ĥ = T̂ +V̂ext +V̂H [n]+V̂xc [n] (11)

T̂ is the kinetic energy operator, V̂ext is the potential operator due
to the field of the nucleus, V̂H is the Hartree operator, V̂xc is the
exchange-correlation operator, and n(r) = ρ (r,r) is the electron
density.

The occupancy, f , of a molecular orbital is determined from the

Fermi-Dirac distribution as a function of its orbital energy, ε:

fi(εi; µ) =
1

1+ e(εi−µ)/(kBT )
(12)

where kB is the Boltzmann constant, T is a non-zero electronic
temperature, and µ is the Fermi level as a parameter. Also called
chemical potential, a Fermi level is determined algorithmically
(as in ONETEP22) from a known number of electrons and a given
set of orbital energies. For a fixed set of orbital energies at a
specified electronic temperature, the search begins with an ini-
tial guess of the Fermi level and calculates the occupancies of
the molecular orbitals using Equation (12). If the sum of the
occupancies differs from the expected number of electrons, the
search adjusts the Fermi level in the appropriate direction and
recalculates the occupancies. The algorithm repeats and adjusts
the Fermi level until the occupancies computed from the Fermi-
Dirac distribution sum to the number of electrons, thereby deter-
mining the Fermi level of the species. Fractional occupancies re-
sulting from finite electronic temperature should be distinguished
from correlation-induced fractional occupancies in strongly cor-
related systems. Higher temperature translates to higher kinetic
energy of the electrons, causing them to partially occupy orbitals
of greater energies. In strongly correlated systems, electrons can-
not be treated as non-interacting, since Coulomb repulsion is no
longer an insignificant factor and could cause higher energy levels
to be partially occupied due to the strong repulsion.

The entropy, S , depends on the occupancies by

S (f) = − kB ∑
i
( fi ln fi +(1− fi) ln(1− fi)) (13)

The Helmholtz free energy, A, relates the KS energy and the en-
tropy via the electronic temperature, T , by

A
[
Ĥ,Ψ, f;T

]
= ∑

i
fi
〈
ψi
∣∣T̂ +V̂ext

∣∣ψi
〉
+EH [n]+Exc [n]−TS (f)

(14)

where n is the electron density and is formed from the molecu-
lar orbitals, Ψ, and the occupation numbers, f. The Helmholtz
free energy can be expressed in terms of NGWFs and expansion
coefficients as

A
[
Ĥ,M,Φ, f;T

]
= fM†

Φ
† (T̂ +V̂ext

)
ΦM+EH [n]+Exc [n]−TS (f)

(15)

where M is the expansion coefficient matrix, and Φ =
(
|φ1〉 |φ2〉 ···

)
is the NGWFs. Since the Hamiltonian also depends on the den-
sity operator, (14) must be evaluated in a self-consistent manner.
The density kernel, K ≡ MfM†, contains the fractional occupa-
tion numbers and is used in constructing the density operator as
ΦKΦ

†.

In ONETEP’s implementation of EDFT, the Hamiltonian is op-
timized by a line-search algorithm in the space of Hamiltonian
elements29 for a fixed set of NGWFs. Let H̃(m) denote the Hamil-
tonian that is formed from the m-th electron density, n(m), whose
molecular orbitals were in turn solved from a trial Hamiltonian,
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H(m), as

H(m)M(m) = SM(m)
ε
(m) (16)

where H(m) and H̃(m) are the matrix representations of the cor-
responding Hamiltonian in NGWFs, S is the overlap matrix of
NGWFs, M(m) is the coefficient matrix for the molecular orbitals
expanded in NGWFs, and ε(m) is a diagonal matrix of eigenvalues.
According to the line-search algorithm, the next Hamiltonian is
determined by

H(m+1) = H(m)+λ∆
(m) (17)

with the definition of

∆
(m) ≡ H̃(m)−H(m) (18)

and λ is a damping parameter fitted against a polynomial such
that the Helmholtz free energy is minimized21,29. Equation (17)
can then be rewritten as

H(m+1) = (1−λ )H(m)+λ H̃(m) (19)

The line-search algorithm performs the iterations over m until the
Liouville equation is satisfied when the commutator,

[
H̃(m),K(m)

]
,

attains zero, with the definition of the elements of the density
kernel, K, as

Ki j =
Nelec

∑
k

Mi
k fk
(

M†
)

k
j (20)

2.3 Self-Consistent Field for Molecular Interaction

Basis set superposition error (BSSE) is a problem that has been
widely studied with many methods and variations thereof being
proposed in eliminating it12,30. A family of methods for describ-
ing and dealing with such error used by some EDA schemes is
self-consistent field for molecular interaction (SCF MI)13–15,30–33.
SCF MI constructs molecular orbitals using basis functions from
each corresponding fragment only, which reduces charge trans-
fer among fragments14. LMO SCF MI is chosen as the SCF-MI
method for HALMO EDA due to its mathematical amenability of
incorporating fractional occupancies. For ONETEP, BSSE is not
exhibited34, since the NGWFs that ONETEP uses for expanding
the molecular orbitals are themselves expanded in terms of a
plane-wave basis set defined as periodic sinc (psinc) functions35.
The psinc functions homogeneously span the simulation cell and
are not biased by the atomic positions. As such for ONETEP,
SCF MI is used exclusively for the purpose of separating out the
charge-transfer component26,36.

LMO SCF MI15 uses localized molecular orbitals and con-
strained minimization of energy to ensure orthogonality within
each fragment. It has no relations to LMO EDA4. Localized
molecular orbitals are expressed as

|ψAα 〉= ∑
p

∣∣φAp
〉

MAp
Aα (21)

where A is a fragment, Ap is the index of a basis function in A, Aα

is the index of a molecular orbital in A, and

MAp
Bα =

{
MAp

Aα A = B

0 A 6= B
(22)

are the expansion coefficients for some Fragment B.

The lowest energy can be constructed15 from the molecular
orbitals in Equation (21) by evaluating

Ĥ |ψAα 〉= |ψAα 〉εAα (23)

for each fragment, where {ψAα} are the localized molecular or-
bitals on Fragment A, {εAα} are the orbital energies as eigenval-
ues, and Ĥ is the Hamiltonian. Each dual molecular orbital is
defined as ∣∣∣ψAα

〉
= ∑

Bβ

∣∣ψBβ

〉(
σ

MI
)Bβ ,Aα

(24)

where

σMI = Ψ
†
MIΨMI (25)

σ
MI = σ

−1
MI (26)

ΨMI =
(

ΨA ΨB · · ·
)

(27)

ΨJ =
(∣∣ψJ,1

〉 ∣∣ψJ,2
〉
· · ·
)

(28)

In LMO SCF MI, Ψ
†
JΨJ is constrained to be an identity matrix for

Fragment J for all J. The dual molecular orbitals localized to
Fragment J are expressed as

Ψ
J = ΨMI

(
σ

MI
)

J
(29)

where
(
σMI)

J is the matrix of column vectors from σMI that cor-
respond to Fragment J. Extending Equation (29) to include all
localized molecular orbitals becomes

Ψ
MI =

(
Ψ

A
Ψ

B · · ·
)

=
(

ΨMI
(
σMI)

A ΨMI
(
σMI)

B · · ·
)

= ΨMIσ
MI (30)

Performing LMO SCF MI involves finding the energy minimum
using the first derivative of the energy with respect to the expan-
sion coefficients,

{
MJq

Jβ

}15:

∂E
∂MJq

Jβ

= 4 fJβY Jq
Jβ (31)
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for all J, where

Y Jq
Jβ =

〈
φJq
∣∣ (1− P̂

)
Ĥ
∣∣∣ψJβ

〉
(32)

P̂ = ∑
i

∣∣∣ψ i
〉
〈ψi| = ∑

i
|ψi〉

〈
ψ

i
∣∣∣ (33)

= Ψ
MI

Ψ
†
MI = ΨMIΨ

MI†

= ΨMIσ
MI

Ψ
†
MI (34)

and fJβ is the occupancy of ψJβ . The stationary point can be
determined by solving an eigenvalue problem casted from Equa-
tion (31) set to 0. By solving an eigenvalue problem, molecular
orbitals and their orbital energies are obtained, and an effective
Hamiltonian can then be constructed from the projection opera-
tors. The process repeats until the energy is minimized (Figure 2).
This allows solving the expansion coefficients, MJ , for the molec-
ular orbitals localized to Fragment J to be part of the optimization
process.

Attaining the energy minimum results in Equation (31) becom-
ing zero:

Y Jq
Jβ = 0 (35)

which can be extended to all dual molecular orbitals localized to
Fragment J as

Φ
†
J
(
1− P̂

)
ĤΨ

J = 0 (36)

To rewrite Equation (36) as an eigenvalue problem with an effec-
tive Hamiltonian that is Hermitian, the partial projection operator
for Fragment J is defined as

P̂J ≡ ∑
i

∣∣∣ψJi
〉
〈ψJi| = Ψ

J
Ψ

†
J (37)

and has the property that

P̂J
Ψ

K =

{
Ψ

J J = K

0 J 6= K
(38)

for some Fragment K. Using the partial projection operator, the
effective Hamiltonian for Fragment J in LMO SCF MI15 is

ˆ̃HJ =
(

1− P̂+ P̂J†
)

Ĥ
(

1− P̂+ P̂J
)

(39)

whose matrix representation37 in NGWFs can be obtained by dis-
tributing the operators on the right-hand side and then multiply-
ing by Φ

†
J and ΦJ from the left and right, respectively:

H̃J = Φ
†
J

ˆ̃HJ
ΦJ = HJ−HJ•DS•J +HJ•DJSJ

−SJ•DH•J +SJ•DHDS•J−SJ•DHDJSJ

+S†
JD†

JH•J−S†
JD†

JHDS•J +S†
JD†

JHDJSJ

(40)

with the definitions of

HJ• ≡Φ
†
JĤΦ (41)

H•J ≡Φ
†ĤΦJ (42)

D≡MMIσ
MIM†

MI (43)

DJ ≡MMI

(
σ

MI
)

J
M†

J (44)

During the line-search algorithm of EDFT, the constrains of
SCF MI are imposed, thereby affecting the search direction in
the Hamiltonian space and, in turn, the molecular orbitals solved
from it (Figure 2). The resulting molecular orbitals, expanded
in the NGWFs of the corresponding fragments, would therefore
satisfy the constraints of SCF MI. Along with the fractional occu-
pancies determined from the Fermi-Dirac distribution during the
line search of EDFT, the density kernel can thus be constructed
and used in calculating the electron density.

2.3.1 Incorporating Fractional Occupancies

Many EDA schemes were developed for the pure state. By assum-
ing the pure state, an EDA scheme and its implementation can
simplify what otherwise could be a complicated scheme. Recent
developments of the ALMO EDA scheme allow for excited sys-
tems38 but involves accommodating the EDA components for the
system at an excited state into the same EDA scheme by including
a difference term for each EDA component. While this has ad-
vantages such as being able to compare the same system at pure
and excited states, it introduces complexities to an existing EDA
scheme in the interpretation and in the implementation. While
excited systems are not studied in this work, EDA with EDFT is
applied to systems in ensemble states at finite electronic temper-
atures without modifying the EDA scheme itself.

For incorporating ensemble-state calculations into EDA, the
fractional occupancies that are part of the density kernel are in-
cluded in the implementation of SCF MI. The problem of per-
forming ensemble-state calculations as part of an EDA scheme
then becomes a problem of determining the fractional occupan-
cies during the energy decomposition. Determining the fractional
occupancies themselves is performed by the existing implemen-
tation of EDFT in ONETEP22 using the Fermi-Dirac distribution,
and the HALMO-EDA scheme itself remains unmodified with the
same components.

The density kernel varies depending on the quantum state of
the system. Specifically, the molecular orbitals differ via the ex-
pansion coefficients, and the molecular orbitals would have an-
other set of orbital energies. In turn, occupancies depend on the
orbital energies22,39,40. Therefore, the density kernel must be re-
constructed along with a changing set of occupancies throughout
an EDA calculation. According to the Fermi-Dirac distribution for
fragmented systems, the occupancy, fJi, of a molecular orbital lo-
calized to Fragment J as a function of its orbital energy, εJi, is

fJi = f (εJi; µJ) =
1

e(εJi−µJ)/(kBT )+1
(45)

where µJ is the Fermi level of Fragment J as the parameter. The
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number of electrons in each fragment is known from the opti-
mization of the fragments in isolation. For each fragment, its
own Fermi level is determined, followed by calculating the de-
sired occupancies. By evaluating the Fermi-Dirac distribution for
each fragment, the SCF-MI constraint of disallowing charge trans-
fer to take place is satisfied, and the occupancies of the molecular
orbitals in a fragment are calculated without the orbital energies
from other fragments. The process of incorporating occupancies
from EDFT in SCF MI is diagrammed in Figure 2.

System Hamiltonian

Construct Effective Hamiltonian
for Each Fragment

Solve Molecular Orbitals
for Each Fragment

Weight-Orthonormalize Orbitals
and Construct Coefficient Matrix

Orbital Energies
Grouped by Fragment

Fermi-Dirac Distribution

SCF-MI Density Kernel

Number of Electrons
of Each Fragment

Fermi Level of
Each Fragment

Occupancies

Calculate SCF-MI
Internal Energy

Update Hamiltonian that
Minimizes Helmholtz Energy

Calculate Entropy

Calculate SCF-MI
Helmholtz Energy

Energy Minimized
Density Kernel

Update NGWFs in the
Direction of Lower Energy

Energy Minimized?

[yes]

[no]

Fig. 2 LMO SCF MI with occupancies from EDFT. EDFT uses the Fermi-
Dirac distribution to calculate the occupancies of the molecular orbitals.
Once calculated, the occupancies are incorporated into the density kernel.
From the density kernel and occupancies, the internal and Helmholtz
energies are evaluated. The Helmholtz energy is used in the line search
of EDFT to find the energy minimum.

2.4 Weighted Orthogonalization
Treating all molecular orbitals equally during orthogonalization
would be inconsistent with their relative importance. Some of
the orthogonalized molecular orbitals should take higher priority
in minimizing their displacements from their nonorthogonalized
counterparts in a least-squares fashion. Such orthogonalization
can be done using weighted orthogonalization (WO)25. The pri-
ority of a molecular orbital in relation to others depends on the
context and the application. In this work, molecular orbitals are
orthogonalized using occupation numbers as weights.

WO is a two-step process. First step is the preliminary orthog-
onalization of molecular orbitals,

{∣∣ f j
〉}

(not occupation num-

bers), without weights using symmetric orthogonalization to yield
an intermediate set of molecular orbitals,

{∣∣∣g′j〉}. Second step

orthogonalizes the intermediate set such that the weighted over-
lap sum, OVLPS, is maximized:

OVLPS = ∑
i

wi 〈 fi|gi〉 (46)

where wi is the i-th weight for | fi〉, and
{∣∣g j

〉}
is the set of

weight-orthogonalized molecular orbitals. Maximizing OVLPS is
achieved by performing sweeps of Givens rotations until no rota-
tions are needed based on a threshold. (46) is essentially a refor-
mulation of the least-squares problem for orbitals with weights.

{∣∣g j
〉}

are the unknowns and can be expressed in terms of the

known intermediate set,
{∣∣∣g′j〉}. For a pair of molecular orbitals,

the Givens rotation angle, θ , is |gk〉

|g`〉

=

cosθ −sinθ

sinθ cosθ

∣∣g′k〉∣∣g′`〉
 (47)

=

∣∣g′k〉cosθ −
∣∣g′`〉sinθ∣∣g′k〉sinθ +
∣∣g′`〉cosθ

 (48)

which can be multiplied by the nonorthogonal counterparts with
weights to obtain the weighted overlap sum for the pair, OVLPSk`:

OVLPSk` =
(

wk 〈 fk| w` 〈 f`|
) |gk〉

|g`〉



=
(

wk 〈 fk| w` 〈 f`|
)∣∣g′k〉cosθ −

∣∣g′`〉sinθ∣∣g′k〉sinθ +
∣∣g′`〉cosθ


= wk

〈
fk
∣∣g′k〉cosθ −wk

〈
fk
∣∣g′`〉sinθ

+w`

〈
f`
∣∣g′k〉sinθ +w`

〈
f`
∣∣g′`〉cosθ

(49)

Factoring by the trigonometric functions gives

OVLPSk` = Bk` cosθ +Ck` sinθ (50)

where

Bk` = wk
〈

fk
∣∣g′k〉+w`

〈
f`
∣∣g′`〉 (51a)

Ck` = w`

〈
f`
∣∣g′k〉−wk

〈
fk
∣∣g′`〉 (51b)

By using the trigonometric identity

cos(θ − γ) = cosθ cosγ + sinθ sinγ (52)

the two terms in (50) can be combined into one by multiplying
(52) by Ak` and comparing with it:

OVLPSk` = Ak` cos(θ − γ) (53)
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where

cosγ =
Bk`

Ak`
(54)

sinγ =
Ck`

Ak`
(55)

Ak` =
√

B2
k`+C2

k` (56)

OVLPSk` is maximized when θ = γ in (53). cosγ and sinγ are used
to construct the rotation matrix in (47) to determine |gk〉 and |g`〉.
Givens rotations occur in sweeps, where each sweep is a sequence
of (47) for all combinations of k and `, and the process repeats
until no more rotations are needed in a sweep. The algorithm for
weighted orthogonalization and its parallelization are described
by Algorithms 1 and 2.

Algorithm 1 Weighted Orthogonalization of Orbitals

Ψ0← nonorthogonal orbitals
Ψ1← symmetric orthogonalization of Ψ0
n← 2
repeat

Ψn←Ψn−1
for i = 1 to Norbs−1 do

for j = i to Norbs do
OVLP(i, j)← wi

〈
ψi,0
∣∣ψi,n

〉
+w j

〈
ψ j,0

∣∣ψ j,n
〉

G(i, j,θ)←max(OVLP(i, j))(∣∣ψi,n
〉 ∣∣ψ j,n

〉)
←
(∣∣ψi,n

〉 ∣∣ψ j,n
〉)

GT(i, j,θ)

end for
end for
n← n+1

until ‖Ψn−1−Ψn−2‖< δ

Algorithm 2 Parallelization of Weighted Orthogonalization

Ψ0← nonorthogonal orbitals
Ψ1← symmetric orthogonalization of Ψ0
n← 2
repeat

Ψn← super-step Ψn−1(
Ψa Ψb · · ·

)
← partition Ψn

for α = a to Npartitions do
Ψα ← weight-orthogonalize Ψα

end for
Ψn← sort Ψn to original order
n← n+1

until ‖Ψn−1−Ψn−2‖< δ

Expressing Bk` and Ck` in terms of NGWFs, Φ, (51) can be writ-
ten as

Bk` = wkm†
fk

Φ
†g′k +w`m

†
f`Φ

†g′` (57)

Ck` = w`m
†
f`Φ

†g′k−wkm†
fk

Φ
†g′` (58)

where g′ = ΦM f

(
M†

f SM
)− 1

2 , g′j is the j-th preliminarily sym-

metrically orthonormalized molecular orbital, m f j is the column
matrix of coefficients in the expansion of NGWF for

∣∣ f j
〉
, M f is

the expansion coefficients for all nonorthogonalized molecular or-
bitals, S = Φ

†
Φ is the overlap matrix of NGWFs, and f j is again

the j-th nonorthogonalized molecular orbital and not an occupa-
tion number.

3 Results and Discussion
HALMO EDA with EDFT was performed for Pt13-CO(atop),
Pt55-CO(atop), anatase-Pt13-CO(atop), Pt210-phenol, and Li12-
graphite. These systems have sufficiently small band gaps that
they exhibit fractional occupancies at finite electronic tempera-
tures and, therefore, serve as test systems for HALMO EDA with
EDFT. All systems were analyzed at the electronic temperature of
0.1 eV except Pt210-phenol, which was analyzed at the electronic
temperature of 1000 K. Furthermore, in relevance to the inter-
actions that occur in heterogeneous catalysis, fragmentation of
each system for EDA occurs at the bonds between the adsorbate
and the catalyst.

The frozen-density component of HALMO EDA contains elec-
trostatics, exchange, Pauli repulsion, and correlation as its sub-
components. For all species in this study, the frozen-density com-
ponents exhibit similar characteristics. Energy values of electro-
statics, exchange, and correlation are negative, indicating that
the interactions from these factors are favorable. Energy values
of Pauli repulsion, however, are positive and large, which stems
from the unfavorable exclusion repulsions caused by overlapping
molecular orbitals.

For Pt13-CO(atop), Pt55-CO(atop), and anatase-Pt13-CO(atop),
a carbon-monoxide molecule is bonded to the platinum portion
of the system. In anatase-Pt13-CO(atop), the platinum nanoparti-
cle is supported by titanium dioxide (TiO2, also called titania)41.
These systems are depicted in Figure 3. HALMO EDA at an elec-
tronic temperature of 0.1 eV was performed for each of the species
fragmented at the bond between carbon monoxide and the plat-
inum nanoparticle (Table 1) except anatase-Pt13-CO(atop), which
has an additional fragmentation scheme between the platinum
nanoparticle and the anatase support (Table 2). HALMO-EDA re-
sults for these systems demonstrate some trends among them (Ta-
ble 1). Unlike Helmholtz interaction energy, internal interaction
energy does not contain the entropic term due to temperature. As
such, any fractional occupancies result in the two types of interac-
tion energies being different. Indeed, the three platinum species
are expected to have fractional occupancies at the specified finite
electronic temperature and have unequal internal and Helmholtz
interaction energies. From SCF MI, the large charge-transfer en-
ergies suggest that the covalency between the carbon monoxide
and the platinum are substantial5, which is to be expected for
heterogeneous catalysis in general.

To get a sense of the charge distribution in relation to the
charge-transfer energy, Mulliken population analysis was also
performed for each of the platinum-nanoparticle systems in the
last part of their respective calculations where charge transfer has
occurred (Table 3). Charges of the atoms in each subspecies were
summed to give the charge of the subspecies. For the HALMO
polarized state from SCF MI, the Mulliken charge of each frag-
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ment is zero (data not shown), which is in accordance with a
constraint of SCF MI where the delocalization of electrons among
fragments is disallowed. Pt13-CO(atop) has a charge-transfer en-
ergy of −92.2 kcal/mol, and Pt55-CO has a less negative value of
−89.0 kcal/mol. This correlates with the Mulliken charge of car-
bon monoxide not being as negative in Pt55-CO(atop) (−0.126)
as compared to Pt13-CO(atop) (−0.130). Anatase-Pt13-CO(atop),
however, does not agree with the trend. A possible explanation
is that some of the charge has transferred from anatase to car-
bon monoxide and made the covalent bonding between carbon
monoxide and the platinum nanoparticle less stable. If instead the
fragmentation is between the platinum nanoparticle and anatase
(Table 2), the charge-transfer energy is much more negative than
any of the species in Table 1, and the Mulliken charge on anatase
agrees with the charge-transfer energy being more negative.

Fig. 3 Pt13-CO(atop), Pt55-CO(atop), and anatase-Pt13-CO(atop). Red
atom is oxygen, light blue atom is carbon, gold atom is platinum, and
pink atom is titanium.

Visualizing the major EDA components can be done with
electron-density differences (EDD)42. Figure 4 illustrates the po-
larization and charge-transfer components for Pt13-CO(atop). Po-
larization can be thought of as the change in quantum state where
the fragments in the supermolecule are preparing for electron
transfer among each other. This can be visualized as an increase
in the electron density close to the nucleophilic carbon atom on
the side facing the electrophilic platinum atom. During charge
transfer, the region between the carbon atom and the platinum
atom experiences an increase in electron density as the two atoms
form a covalent bond. A corresponding decrease in electron den-
sity is observed at the face of the carbon atom, indicating that
the electrons migrated from the carbon atom toward the bonding
region with the platinum atom. This suggests that the energy de-
composition of Pt13-CO(atop) is qualitatively reasonable with the
covalency between the Pt nanoparticle and carbon monoxide.

Pt210-phenol is another heterogeneous catalysis system (Fig-
ure 5) that was tested with HALMO EDA at an electronic temper-
ature of 1000 K (Table 4). Fragmentation is along the binding be-
tween Pt210 (the slab) and phenol (the adsorbate). Similar to the
other systems tested, Pt210-phenol exhibits large negative charge-
transfer energy (−238.1 kcal/mol) according to HALMO EDA, in-
dicating that there is significant transfer of electrons and, hence,
covalency between the two fragments. The relatively small differ-
ence (1.3 kcal/mol) between the internal and Helmholtz interac-
tion energies implies that the interaction due to entropic effects
from electronic temperature is not very substantial. This in turn

Fig. 4 Difference in electron densities for polarization (left) and for
charge transfer (right) of Pt13-CO(atop). Red atom is oxygen, light blue
atom is carbon, and gold atom is platinum. Red wireframe indicates an
increase in electron density; blue wireframe, decrease. Isovalue is set at
±0.05eÅ

−3
.

indicates that the interaction between Pt210 and phenol stems sig-
nificantly from their binding. From this HALMO EDA, the im-
provement of a catalysis system similar to Pt210-phenol would
benefit from optimizing the interaction between the slab and the
adsorbate such that the interaction is more favorable for catalysis.

Fig. 5 Pt210-phenol with its periodic unit cell.

As a final example, HALMO EDA with EDFT of lithium nucle-
ation at graphite models of battery electrodes was performed.
Lithium metal plating is an undesired side effect in lithium-ion
cells and decreases the lifetime of the battery43. Plating is caused
by the nucleation of lithium ions on the graphite. Increasing the
nucleation barrier would be desirable in the design of lithium-ion
cells so that a battery’s lifetime can be improved. Since lithium
nucleation can be viewed as an interaction between lithium ions
and graphite, EDA is suitable for examining the factors that con-
tribute to such interaction and could offer some insight on which
factors are more prevalent compared to others, otherwise the
overall interaction energy would be too coarse-grained. Further-
more, competing designs of lithium-ion cells can also be com-
pared using EDA as part of a methodology that aims to increase
the nucleation barrier where some of the EDA components could
have an effect on the overall lifetime.

Table 5 lists the HALMO-EDA components of graphite and a
cluster of 12 lithium atoms (Figure 6) in vacuum, with graphite as
one fragment and the lithium cluster as the other. Similar to the
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Table 1 HALMO EDA with EDFT of Pt13-CO(atop), Pt55-CO(atop), and anatase-Pt13-CO(atop) using the RPBE exchange-correlation functional at
electronic temperature of 0.1 eV. Fragmentation is indicated by the bracketing. All energy values are in kcal/mol.

EDA Component [Pt13][CO(Atop)] [Pt55][CO(Atop)] [Anatase-Pt13][CO(Atop)]

Electrostatics −36.1 −38.3 −39.7
Exchange −56.3 −53.9 −56.6

Pauli repulsion 214.2 216.9 220.1
Correlation −22.1 −22.1 −22.8
Polarization −78.2 −68.4 −45.6

Charge transfer −92.3 −90.9 −87.8

Internal interaction energy −70.9 −56.7 −32.5
Helmholtz interaction energy −67.5 −54.0 −30.5

Table 2 HALMO EDA with EDFT of anatase-Pt13-CO(atop) using the RPBE exchange-correlation functional at electronic temperature of 0.1 eV.
Fragmentation is between the platinum nanoparticle and the anatase support, indicated by the bracketing. All energy values are in kcal/mol.

EDA Component [Anatase][Pt13-CO(Atop)]

Electrostatics −130.0
Exchange −87.2

Pauli repulsion 418.2
Correlation −61.0
Polarization −88.6

Charge transfer −145.2

Internal interaction energy −93.9
Helmholtz interaction energy −92.4

Table 3 Mulliken population analyses of Pt13-CO(atop), Pt55-CO(atop), and anatase-Pt13-CO(atop) for the optimized supermolecule state after
charge transfer has occurred.

Subspecies Pt13-CO(Atop) Pt55-CO(Atop) Anatase-Pt13-CO(Atop)

Carbon Monoxide −0.130 −0.126 −0.137
Platinum Nanoparticle 0.130 0.126 0.558

Anatase N/A N/A −0.421

Table 4 HALMO EDA with EDFT of Pt210-phenol using the optB88 exchange-correlation functional at electronic temperature of 1000 K. Fragmentation
is indicated by the bracketing. All energy values are in kcal/mol.

EDA Component [Pt210][Phenol]

Electrostatics −139.3
Exchange −307.7

Pauli repulsion 756.6
Correlation −39.0
Polarization −147.8

Charge transfer −238.1

Internal interaction energy −115.3
Helmholtz interaction energy −114.0
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other species in this work, the Li12-graphite system exhibits large
negative charge-transfer energy (−308.8 kcal/mol) from the inter-
action between the graphite and lithium cluster. The possibility
of making the charge-transfer component less negative could sug-
gest a candidate design that can mitigate the lithium-nucleation
effect, which in turn cannot be gleaned from the interaction en-
ergy alone. Effects of the finite electronic temperature (0.1 eV)
are also exhibited in the difference of 13.7 kcal/mol between in-
ternal (−230.6 kcal/mol) and Helmholtz (−216.9 kcal/mol) inter-
action energies. Electronic temperature lessens the interaction
between the lithium ions and graphite due to entropic effects.

Fig. 6 Li12-graphite.

4 Conclusions
We have extended energy decomposition analysis (EDA) methods
to metallic systems using a modified version of ONETEP that can
dissect the interaction energy of a species at an ensemble state.
EDA and self-consistent field for molecular interaction (SCF MI)
methods have usually been developed and applied to systems at
the pure state. In this work, EDA and SCF MI were expanded to
species that are studied with ensemble DFT (EDFT).

SCF MI was combined with EDFT by removing the assump-
tions of the pure state and incorporating fractional occupancies
into the implementation of SCF MI. Fractional occupancies deter-
mined by EDFT are normally for the supermolecule as a whole
using the Fermi-Dirac distribution. However, in order for SCF MI
to accommodate the occupancies into its process, the evaluation
of Fermi-Dirac distribution was restricted to individual fragments,
resulting in each fragment having a different Fermi level.

Throughout the line search of EDFT in finding the minimum
energy, the constraints of SCF MI were imposed such that the
molecular orbitals and the associated orbital energies are solved
from the effective Hamiltonian of LMO SCF MI15. The effective
Hamiltonian of LMO SCF MI contains projection operators that
require weighted orthogonalization (WO) to be constructed due
to the fractional occupancies from the ensemble state. Construct-
ing the projection operators was adapted to orthogonalizing the
molecular orbitals with fractional occupancies as orthogonaliza-
tion weights. Using WO, the construction of such SCF-MI pro-
jection operators and the level of occupancy of each molecular
orbital are therefore made consistent in the formulation and im-
plementation of SCF MI.

The adaptations of EDA and SCF MI to metallic systems were
validated using samples from catalysis and batteries, such as
carbon-monoxide-bound platinum nanoparticle systems (in vac-
uum and supported on titania), platinum slab with phenol ad-
sorbed, and graphite with lithium cluster that have sufficiently
small band gaps. Across these sample metallic systems, HALMO

EDA has provided reasonable decompositions of interactions en-
ergies and revealed some trends from SCF MI that correlate with
charge distributions and chemical intuition.

This work has provided a new paradigm and tool for the study
and analysis of metallic systems using a combination of EDA and
EDFT within large-scale quantum chemistry calculations. HALMO
EDA has shown to be a useful tool in decomposing the interaction
energy into components for comparisons and analysis of systems
at ensemble states that require EDFT. It has been demonstrated
by this work that EDA with SCF MI can be extended and applied
to metallic systems at finite electronic temperatures. With such
advancement, EDA and SCF MI are no longer restricted to species
at the pure state. Future work can involve more in-depth study
of the nature of interactions in some technologically important
systems, such as conductors, semiconductors, heterogeneous cat-
alysts, and lithium-ion batteries.
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