
Modelling Wheezing Spells Identifies Phenotypes with Different 

Outcomes and Genetic Associates 

Sadia Haider1, Raquel Granell2, John Curtin3, Sara Fontanella1, Alex Cucco MSc1, Stephen Turner4,5, 

Angela Simpson3, Graham Roberts6,7,8, Clare S Murray3, John W. Holloway6,7, Graham Devereux9, Paul 

Cullinan1, Syed Hasan Arshad7,8,10, Adnan Custovic1

1National Heart and Lung Institute, Imperial College London, UK

2MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University 

of Bristol, UK

3Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of 

Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science 

Centre, UK

4Royal Aberdeen Children's Hospital NHS Grampian Aberdeen, AB25 2ZG, UK

5Child Health, University of Aberdeen, Aberdeen, UK

6Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, 

UK

7 NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS 

Foundation Trust, Southampton, UK

8David Hide Asthma and Allergy Research Centre, Isle of Wight, UK

9Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK

10Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, 

UK

Correspondence to: Adnan Custovic MD PhD FMedSci, Imperial College London, 

a.custovic@imperial.ac.uk

Page 1 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



Contributions: SH, AC, SF and RG conceived and planned the study, and wrote the manuscript. SH, 

RG, SF and JC analysed the data.  All authors contributed to the interpretation of the results. All 

authors provided critical feedback and helped shape the research, analysis, and manuscript.

Funding: Consortium is funded by the UK Medical Research Council (MRC) Programme Grant 

MRCMR/S025340/1 and was funded through MRC grants G0601361 and MR/K002449/1. RG is in 

part funded through Wellcome Trust Strategic Award 108818/15/Z. The UK Medical Research 

Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support 

for ALSPAC. MAAS was supported by the Asthma UK Grants No 301 (1995-1998), No 362 (1998-

2001), No 01/012 (2001-2004), No 04/014 (2004-2007), BMA James Trust (2005) and the JP Moulton 

Charitable Foundation (2004-2016), The North west Lung Centre Charity (1997-current) and the 

Medical Research Council (MRC) grant MR/L012693/1 (2014-2018)  

Abstract word count: 250

Word count: 3496

At a Glance

What is the current scientific knowledge on this subject?

Longitudinal modelling of current wheezing identified similar phenotypes, but their characteristics 

often differ between studies.

What does this study add to the field?

Transformation of binary wheeze data into a set of multi-dimensional variables better captures the 

temporal characteristics of wheeze development and provides a more robust input for phenotype 

derivation. Modelling using multi-dimensional variables of wheezing spells identified a stable and 

consistent architecture of wheezing illness, including a novel intermittent phenotype associated with 

early lung function decline to early adulthood. Different wheezing phenotypes are underpinned by 

unique mechanisms and genetic associates.
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This article has an online data supplement, which is accessible from this issue’s table of content 

online at www.atsjournals.org. 
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ABSTRACT

Background: Longitudinal modelling of current wheezing identified similar phenotypes, but their 

characteristics often differ between studies. We propose that more comprehensive description of 

wheeze may better describe trajectories than binary information on presence/absence of wheezing. 

Methods: We derived 6 multi-dimensional variables of wheezing spells from birth to adolescence 

(including duration, temporal sequencing, and the extent of persistence/recurrence). We applied 

Partition-Around-Medoids clustering on these variables to derive phenotypes in five birth cohorts. 

We investigated within- and between-phenotype differences compared to binary latent class 

analysis models (LCA-phenotypes), and ascertained associations of these phenotypes with asthma 

and lung function, and with polymorphisms in asthma loci 17q12-21 and CDHR3.

Findings: Analysis among 7719 participants with complete data identified 5 spell-based wheeze 

phenotypes with high degree of certainty: Never (NWZ-54.1%), Early-transient (ETW-23.7%), Late-

onset (LOW-6.9%), Persistent (PEW-8.3%), and a novel phenotype, Intermittent wheeze (INT-6.9%). 

FEV1/FVC was lower in PEW and INT compared to ETW and LOW, and declined from age 8 years to 

adulthood in INT. 17q12-21 and CDHR3 polymorphisms were associated with higher odds of PEW 

and INT, but not ETW or LOW. LCA- and spell-based-phenotypes appeared similar, but within-

phenotype individual trajectories and phenotype allocation differed substantially. The spell-based 

approach was much more robust in dealing with missing data, and the derived clusters more stable 

and internally homogenous.

Conclusions: Modelling of spell variables identified a novel intermittent wheeze phenotype 

associated with lung function decline to early adulthood. Using multi-dimensional spells variables 

may better capture wheeze development and provide a more robust input for phenotype derivation.
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INTRODUCTION

Wheeze in most children remits by school age, but in others may persist, with or without periods of 

remission. Over the past decades, a substantial effort has been devoted to understanding the 

heterogeneity of childhood wheezing illness, using both hypothesis-driven approaches (in which 

phenotypes are specified a priori based on clinical insights (1)) and data-driven ones, which 

incorporate a variety of multivariate statistical and machine learning methodologies (2). The latter 

have largely used latent class modelling, such as latent class analysis (LCA), in which repeated 

information of wheeze presence is used to uncover the temporal patterns over a specified time 

interval (3-15). These different symptom patterns may indicate distinct causes and biological 

mechanisms (16, 17), and their discovery may facilitate stratified treatment (18). However, to 

facilitate identification of genetic associates and underlying mechanisms, phenotypes should be 

internally homogenous and consistent between different populations/studies.

The number of phenotypes reported in previous analyses which used LCA varied by study, but four 

were identified in all cohorts (19): Never/infrequent wheeze, Transient early, Late−onset and 

Persistent wheeze. Some analyses identified one or two further “intermediate” phenotypes (3, 4, 

20), which mostly arose from transient or late-onset patterns (21). However, although phenotypes in 

different studies are usually designated with the same name, they often differ in temporal 

trajectories, distributions within a population, and associated risk factors (19, 22). These differences 

are in part a consequence of the sample size and the timing and frequency of data collection (21). 

Furthermore, the confidence with which individuals are assigned to a phenotype varies across 

phenotypes, and a substantial number of children in such analyses are classified imprecisely (e.g. 

individuals with identical wheeze patterns may be assigned to different phenotypes, or, individual 

trajectories may not follow wheeze patterns suggested by the phenotype label (13, 21, 23)). 

We propose that within−class heterogeneity and inaccurate allocation of individual children may, in 

part, be responsible for a lack of consistent associations of discovered phenotypes with risk factors 
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(24), and may adversely impact the ability to identify phenotype-specific genetic associates and 

underlying mechanisms. We hypothesise that incorporating more comprehensive description of 

wheeze may better describe wheeze trajectories and derive more within-phenotype homogeneity to 

facilitate better understanding of their differing aetiology. To address our hypothesis, we drew on 

research in other fields, specifically the ‘spells’ approach  pioneered in the social sciences research 

on poverty dynamics (25-28), to move from the point prevalence of current wheeze, to a dynamic 

approach which takes into account the duration of wheezing spells, their temporal sequencing, and 

the extent of persistence and recurrence (further details in the Supplementary Introduction). To this 

end, we first developed a set of multi-dimensional variables to describe more comprehensively the 

temporal variation of wheeze, and then applied a clustering approach based on the Partition Around 

Medoids (PAM) algorithm (29) on these variables. We then investigated variation within and 

between phenotypes from binary (LCA) and indicator-based (PAM) models to ascertain whether we 

achieved increased within-phenotype homogeneity, and investigated the associations of the derived 

clusters with early−life factors and asthma−related outcomes in adolescence. Finally, we tested the 

hypothesis that phenotypes defined using this approach have distinct genetic associates by 

investigating their associations with the known asthma loci (17q12-21 and CDHR3).

METHODS

Study design, setting and participants 

The Study Team for Early Life Asthma Research (STELAR) consortium (30) brings together five UK 

population−based birth cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC) (31), 

Ashford (32), Isle of Wight (IOW) (33) and Aberdeen (SEATON) (34) cohorts, and Manchester Asthma 

and Allergy Study (MAAS) (35). The cohorts are described in detail in the Supplementary Appendix. 

All studies were approved by research ethics committees. Informed consent was obtained from 

parents, and study participants gave their assent/consent when applicable. Data were harmonised 

into the web−based knowledge management platform to enable joint analyses (30). 
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Data sources and definition of variables 

Validated questionnaires were completed on multiple occasions from infancy to adolescence (23). 

The cohort−specific time points and sample sizes are shown in Table S1. For the analyses of pooled 

data, we defined epochs based on the data availability at shared time points across cohorts: infancy 

(½-1 year); early childhood (2-3 years); pre-school/early school (4-5 years); middle childhood (8-10 

years); and adolescence (14-18 years) (23). For each child, we derived 6 wheeze variables: 

1 Age of the first episode 

2 Age of the last recorded episode  

3 Total number of separate records over the observation period 

4 Duration of the longest spell based on the number of consecutive records of wheeze

5 Total number of separate wheeze spells

6 Spell type: a categorical variable defined as 0=no wheeze, 1=single spell, 2=intermittent 

spells (defined as at least two non-consecutive spells of wheeze of any length). 

An illustrative example of the derivation of the variables is shown in Table S2. 

We performed spirometry in adolescence in all cohorts, and in ALSPAC and MAAS on at least three 

follow-ups from school-age to early adulthood. We recorded FEV1 and FVC and expressed data as z-

scores for each population. 

Skin testing was carried out in early/mid-school age in all cohorts, and on six follow-ups in MAAS. 

Definition of all variables can be found in the Supplementary appendix. 

Statistical analysis 

We analysed pooled data from participating cohorts. Figure S1 provides an overview of the analytical 

steps. A detailed description is provided in the Supplementary appendix. 
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Wheeze phenotypes from infancy to adolescence from 6 derived variables: To derive longitudinal 

wheeze patterns captured by the multi-dimensional variables, we used PAM (29) algorithm coupled 

with the Wishart distance for mixed data (36), initially among 7719 participants with complete data 

on wheezing at all five time-points. To investigate whether our findings were influenced by missing 

data, we adopted the framework of Basagaña et al. (37) which integrates multiple imputation (38) 

into cluster analysis, and applied it to data of 15,848 participants with at least 2 observations. 

Comparison of wheeze phenotypes derived using binary LCA and spells PAM approaches: We first 

repeated analyses from our previous study which used LCA to identify 5 wheeze phenotypes in the 

same 7719 participants (Never/infrequent, Pre−school remitting, Mid−childhood remitting, 

Persistent and Late−onset (23)), and assigned participants to phenotypes according to the maximum 

posterior probability. We then compared the within-class homogeneity of both models. We checked 

the stability of cluster allocations using the adjusted Rand index (ARI) (39), and plotted the 

magnitude of transitions of phenotype membership between models using alluvial plots. 

Association of spell-based PAM-phenotypes with early−life risk factors and clinical outcomes in 

adolescence: We used multinomial logistic regression to ascertain early−life associates of each PAM-

phenotype and examine their relationship with doctor−diagnosed asthma and asthma medication 

use in adolescence; results are reported as relative risk ratios (RRR) with 95% confidence intervals 

(CI). Associations with lung function (Z−scores for FEV1, FVC and FEV1/FVC adjusted for height, age 

and sex) were investigated using linear regression. Models were adjusted for potential confounders, 

including maternal history of asthma, maternal smoking and low birth weight.  

Genetic associates of spell-based PAM-phenotypes: We investigated the association of derived 

clusters with 17q12-21 SNPs (Table S3) and CDHR3 SNP rs6967330 (40). We selected one 

representative 17q12-21 SNP per linkage disequilibrium block, leaving rs7216389, rs4795408 and 

rs3894194 in the final analysis. We tested additive model using multinomial logistic regression. 
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RESULTS

Characteristics of the study population

Of 7719 children with complete data on wheezing, 50.4% were male.  At the follow-up in 

adolescence, 12.9% had current asthma and 11.4% reported using asthma medication. Demographic 

characteristics are shown in Table S4, and wheeze prevalence in Table S5. The prevalence of current 

wheeze decreased from 22.8% in infancy to 13.7% in adolescence.

Wheeze phenotypes obtained using 6 derived variables and PAM algorithm 

A five−cluster solution was selected as the optimal based on statistical fit (Figure S2). After 

inspection of trajectories for each cluster (Figure 1), the clusters (phenotypes) were characterised as: 

(1) Never wheeze (NWZ) (54.1%); (2) Early transient (ETW) (23.7%); (3) Late-onset (LOW) (6.9%); (4) 

Persistent (PEW) (8.3%); and (5) Intermittent (INT) wheeze (6.9%). The same 5-class structure was 

evident when we modelled each cohort separately (Table S6), and the optimal solution was stable to 

changes in sample size (Table S7). 

Impact of missing data on cluster derivation: Detailed analysis is shown in Supplementary results. 

The optimal solution from the model using 15,848 individuals with >2 observations was very similar 

to that from 7719 participants with complete data (Table S8). Children were assigned to clusters 

with a high degree of certainty (Table S9). There was a very high agreement between phenotype 

assignment of individual children when using complete or imputed data (ARI=0.94); only 195/7719 

(2.5%) children changed phenotype allocation (Figure S3). 

Comparison of wheezing phenotypes derived using binary LCA and spells PAM approaches

Figures S4 shows latent classes (phenotypes) identified by LCA. Phenotypes derived using the two 

methods among the same 7719 participants appeared very similar, and four appeared identical 

(NWZ, ETW, PEW and LOW) (Figures 1 and S4). However, the within-phenotype structure differed 

substantially (Figure 2). For example, in PAM-NWZ cluster no participants reported wheezing at any 
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time point (Figure 2a), while in LCA-NWZ 10% reported occasional wheezing (Figure 2c). In PAM-

ETW, no participants reported wheezing after age 10 years, and nobody in PAM-LOW wheezed 

before age 8; in contrast, in the LCA-ETW class, 8% reported wheeze up to age 18 years, and wheeze 

before age 10 was present among 42% in LCA-LOW.

Figure 2 (b/d) and Table S10 show the distribution of wheeze variables between phenotypes from 

the two approaches. In PAM-LOW, the earliest observed age of wheeze onset was 7 years later than 

in LCA-LOW. PAM-PEW only contained children with a long single spell of wheeze, whereas subjects 

in the LCA-PEW also had intermittent spells. 

We further investigated the differences between individual allocations to PAM and LCA phenotypes 

for all 32 possible wheeze sequences across the 5 time points (Table S11). We did not observe any 

inconsistencies across cohorts in the PAM model (i.e., the same sequences were always assigned to 

the same cluster). In contrast, children with identical sequences were assigned by LCA to different 

phenotypes (e.g., “0-1-0-1-0” was assigned to 3 different LCA phenotypes, while PAM spell-based 

analysis always assigned this sequence to the INT phenotype). 

Figure S5 shows differences in individual assignment to PAM and LCA phenotypes. One quarter of 

subjects transitioned to a different phenotype. A higher stability was observed for ETW and LOW 

(>70%), but was relatively poor in the PEW (60%). Children in PAM-INT cluster transitioned from all 

LCA phenotypes. 

Finally, we applied PAM algorithm to the binary current wheeze variable (yes/no) to investigate 

whether the algorithm or the transformation to spell-based variables gave rise to homogeneous 

phenotypes. A 5-cluster solution was optimal; however, the clusters resembled LCA phenotypes 

(with no INT wheeze) and were structurally internally much more heterogeneous than phenotypes 

obtained using the derived variables (Figure S6). Therefore, it is likely that the derived variables 

were, primarily, the precursor for deriving more homogeneous phenotypes.
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Association of spell-based phenotypes with early−life risk factors and asthma-related outcomes 

Family history, early−life factors and environmental exposures: Univariable analyses are shown in 

Table S12. Table S13 shows results of multivariable logistic regression models. Males had higher risk 

of developing PEW, ETW, and INT, but not LOW. Maternal asthma and parental smoking were 

associated with all four clusters. Low birth weight was associated with ETW, INT and PEW (with the 

strongest association with PEW), but not with LOW.

Asthma: Compared with NWZ, all 4 wheeze clusters were associated with a higher risk of asthma 

diagnosis and medication use in adolescence (Table 1). The associations were strongest for PEW and 

weakest for ETW (e.g., the risk of using asthma medication was approximately 14-fold higher for 

PEW than ETW). Variability in the proportion of asthmatics by spell-based phenotype and the 

proportion of subjects with asthma diagnosis in adolescence in each phenotype are shown in Figure 

3; of note, 5.7% of children with asthma diagnosis in adolescence never reported wheezing.   

Allergic sensitization: All phenotypes were associated with sensitisation in early-school age (Table 

S13), with the magnitude of risk being higher for PEW and LOW. Trajectories of sensitization from 

infancy to adolescence in MAAS were almost identical in PEW, INT and LOW, and differed from those 

in NWZ and ETW (Figure 4), i.e., highly concordant longitudinal sensitization patterns were 

associated with different wheeze phenotypes. In general, wheeze preceded sensitization in PEW and 

INT clusters, while sensitization preceded wheeze in LOW. 

Lung function: FEV1/FVC in adolescence was lower in all four wheeze phenotypes compared to 

children who never wheezed, with those in PEW having the lowest lung function, markedly lower 

compared to NWZ (z-score: -0.71; 85% CI [-0.83, -0.59], P<0.0001) (Table 1). FVC was similar across 

clusters. Longitudinal lung function was available in 6729, 4567 and 3749 participants at ages 8, 15 

and 24 years respectively in ALSPAC, and 790, 801, 630 and 504 at ages 8, 11, 16 and 20 in MAAS. 

FEV1/FVC was significantly lower in all wheeze phenotypes compared to NWZ throughout the follow 
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up (Figure 5), and was consistently lower in PEW and INT compared to ETW and LOW (Table S14). 

FEV1/FVC declined from age 8 years to early adulthood in INT, but not other phenotypes. 

Association between spell-based phenotypes and genetic variants in 17q12-21 and CDHR3 

9655 subjects of white European ancestry had genotyping data and were included in the meta-

analysis of genetic associations. Figure 6 shows forest plots of the associations for representative 

SNPs. Sub-group level p-values are presented in Table S15. We found strong evidence of an 

association between all 17q12-21 SNPs and PEW. INT was also associated with 17q12-21 SNPs. 

However, we found little evidence of an association between 17q12-21 SNPs and ETW and LOW. 

We found strong evidence of an association between CDHR3 SNP rs6967330 and PEW (OR 1.45, 95% 

CI 1.03-2.04) and INT (1.40, 1.04-1.89), but there was no association with ETW and LOW clusters. 

DISCUSSION

We applied a framework which focussed on wheezing spells to describe the temporal patterns of 

wheeze from infancy to adolescence. Our results suggest that this approach better captures wheeze 

development than presence/absence of wheezing alone and provides a more robust input for data-

driven phenotype derivation. It is much more robust in dealing with missing data, and the derived 

clusters are stable and internally homogenous. Our spells-based analysis applied to data from five 

population-based birth cohorts identified a novel wheezing phenotype, intermittent wheeze, to 

which ~7% of participants were assigned. FEV1/FVC trajectory from school-age to physiological peak 

in early adulthood showed consistently diminished lung function in all four wheeze phenotypes 

determined using the spells-based approach compared to never wheezers, and in Persistent and 

Intermittent compared to Transient-early and Late-onset wheezing. Lung function declined from age 

8 years to early adulthood in intermittent, but not other phenotypes. Finally, associations with 

17q12-21 and CDHR3 SNPs differed across wheezing phenotypes, and carriers of risk variants had 

significantly increased risk for persistent and intermittent, but not of transient or late-onset wheeze.
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Wheezing phenotypes developed using spells appeared more clinically intuitive than those derived 

based on wheeze presence/absence. For example, no subjects in spell-based-ETW reported 

wheezing after age 10 years, and nobody in LOW wheezed before age 10 years; in contrast, in the 

LCA-ETW, some children reported wheeze to age 18 years, and early-life wheeze was reported in 

some individuals assigned to LCA-LOW. In spell-based-LOW, the earliest observed age of wheeze 

onset was 7 years later than in LCA-LOW. 

Within-class heterogeneity may dilute associations with biomarkers, genetic variants, and 

environmental factors. Therefore, for such analyses, phenotypes derived using data-driven methods 

should be homogenous, and individual patterns of symptoms within each phenotype should be 

distinct from individuals in other subgroups. Our previous LCA showed that a substantial number of 

children are classified imprecisely using binary information on wheeze, particularly when an 

individual’s posterior probability of assignment is <0.80 (21). Similarly, a recent US study which 

derived wheeze phenotypes using LCA found that one third of subjects had a posterior probability 

<0.80 (13). Our current analysis demonstrates that when using binary representation of wheeze, 

some wheeze patterns are not assigned to phenotypes with high precision, and consequently, 

individuals with the same longitudinal wheezing patterns can be assigned to different phenotypes. 

The intermittent patterns contributed to substantial within-class heterogeneity when using binary 

data in both LCA and PAM models. Once the spells approach isolated these intermittent patterns, 

ETW, LOW and PEW were more internally homogeneous, and a novel INT cluster emerged. 

Our previous analysis in the same study population showed that data imputation has a major impact 

on the assignment of individual participants to different phenotypes in LCA (e.g., ~40% of children 

switched from Early−onset middle−childhood remitting to PEW from model with complete data to 

that with imputed data (23)). In contrast, in the current study, there was a remarkably high 

agreement between assignment of individuals into clusters when using complete or imputed data, 
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and only 2.5% of children changed phenotype. This is of key importance for longitudinal studies in 

which data missingness is inevitable, and for genetic analyses in which large sample size is essential.

The important question as to whether different longitudinal wheezing phenotypes are underpinned 

by unique pathophysiological mechanisms has been asked by Koppelman and Kersten (41) in an 

editorial following the recent finding from the CREW consortium which investigated the association 

of 17q12-21 SNPs with LCA-derived phenotypes (13). In this study, contrary to the hypothesis of 

differential genetic associations of different wheeze phenotypes, associations between multiple 

17q12-21 SNPs were similar for all LCA phenotypes, suggesting that all wheezing phenotypes have 

shared genetic origin in relation to this locus (13). In contrast, we found a clear differential 

association of genetic markers between phenotypes derived using spells-based variables. We found 

no association of the SNPs in this locus with transient and late-onset wheezing, and our results do 

not support the notion that the 17q locus should be considered a “wheezing locus”.  

Both 17q21 locus and CDHR3 are linked to differential susceptibility to infection by rhinoviruses (42, 

43), and our data suggest that such susceptibility is common and important for early-onset non-

transient phenotypes (both persistent and intermittent). However, most children who wheeze in 

early life stop wheezing by school-age (~2/3 in our data set, all of whom clustered to spell-based-

ETW), and known genetic markers of susceptibility to rhinoviruses were not apparent in this group. 

This is consistent with recent data showing that even among children with severe recurrent 

preschool wheeze, ~50% had no evidence of either inflammation or infection in their lower airways 

(44).  It is possible that diminished lung function in early childhood (as suggested by the seminal 

study from Tucson cohort (45) and indirectly confirmed in one of our cohorts (46, 47)), is associated 

with poor growth in early childhood (48) or specific genetic susceptibility (49, 50), and is a principal 

cause of early-onset transient wheezing, while susceptibility to viruses may contribute to persistence 

and exacerbations. We cannot exclude that the immune response to other viruses (such as RSV) may 

also be important in ETW (51). Our data also suggest that LOW (which in the current analysis started 
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after age 10 years) in most children may not be associated with susceptibility to viruses but is 

predominantly allergic airway disease (as suggested by the analysis of the pattern of in vitro immune 

responses to viruses (52)). In these individuals, allergen exposure may be the principal contributor to 

severity and exacerbations (53). However, it is important to emphasize that all wheeze phenotypes 

were associated with diminished lung function in adolescence and early adulthood, with the greatest 

impairment in PEW and INT. This is a precursor of COPD (54-56), early all-cause mortality (57) and 

early-onset cardio−vascular, respiratory and metabolic comorbidities (58). 

We found that 5.7% of children with asthma diagnosis in adolescence belonged to the NWZ (and a 

similar proportion to the ETW group). This emphasises the heterogeneity of doctor-diagnosed 

asthma at the population level, and the fact that children with other respiratory symptoms such as 

cough (even in the absence of wheezing) are diagnosed as being asthmatic.

One limitation of our study is that the population is not ethnically diverse. In addition, early life 

pulmonary/airway function tests were not performed, which limits the inference to the potential 

role of pre-morbid lung function. We also acknowledge that our study was not able to investigate 

the relationship between wheeze treatment, disease severity, and patterns of wheeze spells. With 

respect to genetic analyses, further investigations are needed at a genome-wide level to help 

distinguish mechanisms of early-life wheeze and subsequent asthma.  

In conclusion, our data are consistent with the notion that in addition to shared pathophysiology, 

distinct wheezing phenotypes are underpinned by unique mechanisms and genetic associates. 

Modelling using multi-dimensional variables of wheezing spells identified a stable and consistent 

architecture of wheezing illness, including a novel intermittent phenotype associated with early lung 

function decline to early adulthood. We suggest that the transformation of binary data into a set of 

multi-dimensional variables may better capture the temporal characteristics of wheeze development 

and may provide a more robust input for phenotype derivation. 
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This article is dedicated to the memory of our wonderful colleague and friend Professor John 

Henderson (1958-2019), whose contribution to the understanding of the heterogeneity of childhood 

asthma cannot be overstated. Rainbow-chasers and UNICORN riders forever.

Page 16 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



REFERENCES

1. Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ, Bean J, Bianchi H, Curtiss 

J, Ey J, Sanguineti A, Smith B, Vondrak T, West N, Mclellan M. Asthma and Wheezing in the 

First 6 Years of Life. New Engl J Med 1995; 332: 133-138.

2. Howard R, Rattray M, Prosperi M, Custovic A. Distinguishing Asthma Phenotypes Using Machine 

Learning Approaches. Current allergy and asthma reports 2015; 15: 38.

3. Henderson J, Granell R, Heron J, Sherriff A, Simpson A, Woodcock A, Strachan DP, Shaheen SO, 

Sterne JAC. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung 

function and airway responsiveness in mid-childhood. Thorax 2008; 63: 974-980.

4. Granell R, Henderson AJ, Sterne JA. Associations of wheezing phenotypes with late asthma 

outcomes in the Avon Longitudinal Study of Parents and Children: A population-based birth 

cohort. J Allergy Clin Immun 2016; 138: 1060-1070.

5. Granell R, Sterne J, Savenije O, Kerkhof M, Smit H, Jongste JC, Postma DS, Koppelman G, Henderson 

J. Identification And Replication Of Wheezing Phenotypes Using Longitudinal Latent Class 

Analysis. American Thoracic Society 2010 International Conference. New Orleans 2010. p. 

A6242.

6. Fitzpatrick AM, Bacharier LB, Guilbert TW, Jackson DJ, Szefler SJ, Beigelman A, Cabana MD, Covar R, 

Holguin F, Lemanske RF, Jr., Martinez FD, Morgan W, Phipatanakul W, Pongracic JA, Zeiger RS, 

Mauger DT, AsthmaNet NN. Phenotypes of Recurrent Wheezing in Preschool Children: 

Identification by Latent Class Analysis and Utility in Prediction of Future Exacerbation. J Allergy 

Clin Immunol Pract 2019; 7: 915-924 e917.

7. Depner M, Fuchs O, Genuneit J, Karvonen AM, Hyvarinen A, Kaulek V, Roduit C, Weber J, Schaub B, 

Lauener R, Kabesch M, Pfefferle PI, Frey U, Pekkanen J, Dalphin JC, Riedler J, Braun-Fahrlander 

Page 17 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



C, von Mutius E, Ege MJ, Group PS. Clinical and epidemiologic phenotypes of childhood 

asthma. Am J Respir Crit Care Med 2014; 189: 129-138.

8. Spycher BD, Silverman M, Pescatore AM, Beardsmore CS, Kuehni CE. Comparison of phenotypes of 

childhood wheeze and cough in 2 independent cohorts. J Allergy Clin Immunol 2013; 132: 

1058-1067.

9. Belgrave DCM, Simpson A, Semic-Jusufagic A, Murray CS, Buchan I, Pickles A, Custovic A. Joint 

modeling of parentally reported and physician-confirmed wheeze identifies children with 

persistent troublesome wheezing. J Allergy Clin Immunol 2013; 132: 575-583 e512.

10. Spycher BD, Silverman M, Brooke AM, Minder CE, Kuehni CE. Distinguishing phenotypes of 

childhood wheeze and cough using latent class analysis. Eur Respir J 2008; 31: 974-981.

11. Sordillo JE, Coull BA, Rifas-Shiman SL, Wu AC, Lutz SM, Hivert MF, Oken E, Gold DR. 

Characterization of longitudinal wheeze phenotypes from infancy to adolescence in Project 

Viva, a prebirth cohort study. J Allergy Clin Immunol 2020; 145: 716-719 e718.

12. Kotecha SJ, Watkins WJ, Lowe J, Granell R, Henderson AJ, Kotecha S. Comparison of the 

Associations of Early-Life Factors on Wheezing Phenotypes in Preterm-Born Children and 

Term-Born Children. Am J Epidemiol 2019; 188: 527-536.

13. Hallmark B, Wegienka G, Havstad S, Billheimer D, Ownby D, Mendonca EA, Gress L, Stern DA, Myers 

JB, Khurana Hershey GK, Hoepner L, Miller RL, Lemanske RF, Jackson DJ, Gold DR, O'Connor 

GT, Nicolae DL, Gern JE, Ober C, Wright AL, Martinez FD, Echo C. Chromosome 17q12-21 

Variants are Associated with Multiple Wheezing Phenotypes in Childhood. Am J Respir Crit 

Care Med 2021;203(7):864-870.

14. Odling M, Wang G, Andersson N, Hallberg J, Janson C, Bergstrom A, Melen E, Kull I. Characterization 

of asthma trajectories from infancy to young adulthood. J Allergy Clin Immunol Pract 

2021;9(6):2368-2376.e3.

Page 18 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



15. Savenije OE, Granell R, Caudri D, Koppelman GH, Smit HA, Wijga A, de Jongste JC, Brunekreef B, 

Sterne JA, Postma DS. Comparison of childhood wheezing phenotypes in 2 birth cohorts: 

ALSPAC and PIAMA. J Allergy Clin Immunol 2011; 127: 1505-1512. e1514.

16. Saria S, Goldenberg A. Subtyping: What it is and its role in precision medicine. IEEE Intelligent 

Systems 2015; 30: 70-75.

17. Belgrave D, Simpson A, Custovic A. Challenges in interpreting wheeze phenotypes: the clinical 

implications of statistical learning techniques. Am J Respir Crit Care Med 2014; 189: 121-123.

18. Saglani S, Custovic A. Childhood Asthma: Advances Using Machine Learning and Mechanistic 

Studies. Am J Respir Crit Care Med 2019; 199: 414-422.

19. Owora AH, Zhang Y. Childhood wheeze trajectory-specific risk factors: A systematic review and 

meta-analysis. Pediatr Allergy Immunol 2021; 32: 34-50.

20. Granell R, Sterne JA, Savenije O, Kerkhof M, Smit HA, Jongste JD, Postma D, Koppelman G, 

Henderson J. Identification and Replication of Wheezing Phenotypes using Longitudinal Latent 

Class Analysis. Am J Resp Crit Care 2010; 181.

21. Oksel C, Granell R, Mahmoud O, Custovic A, Henderson AJ, Stelar, Breathing Together i. Causes of 

variability in latent phenotypes of childhood wheeze. J Allergy Clin Immunol 2019; 143: 1783-

1790 e1711.

22. Oksel C, Haider S, Fontanella S, Frainay C, Custovic A. Classification of Pediatric Asthma: From 

Phenotype Discovery to Clinical Practice. Front Pediatr 2018; 6: 258.

23. Oksel C, Granell R, Haider S, Fontanella S, Simpson A, Turner S, Devereux G, Arshad SH, Murray CS, 

Roberts G, Holloway JW, Cullinan P, Henderson J, Custovic A, Stelar investigators bTi. 

Distinguishing Wheezing Phenotypes from Infancy to Adolescence. A Pooled Analysis of Five 

Birth Cohorts. Ann Am Thorac Soc 2019; 16: 868-876.

Page 19 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



24. Belgrave DC, Custovic A, Simpson A. Characterizing wheeze phenotypes to identify endotypes of 

childhood asthma, and the implications for future management. Expert review of clinical 

immunology 2013; 9: 921-936.

25. Bane MJ, Ellwood DT. Slipping into and out of Poverty - the Dynamics of Spells. J Hum Resour 1986; 

21: 2-23.

26. Layte R, Whelan CT. Moving in and out of poverty - The impact of welfare regimes on poverty 

dynamics in the EU. Eur Soc 2003; 5: 167-191.

27. Mendola D, Busetta A. The Importance of Consecutive Spells of Poverty: A Path-Dependent Index 

of Longitudinal Poverty. Rev Income Wealth 2012; 58: 355-374.

28. Stevens AH. Climbing out of poverty, falling back in - Measuring the persistence of poverty over 

multiple spells. J Hum Resour 1999; 34: 557-588.

29. Partitioning Around Medoids (Program PAM). Finding Groups in Data 1990.

30. Custovic A, Ainsworth J, Arshad H, Bishop C, Buchan I, Cullinan P, Devereux G, Henderson J, 

Holloway J, Roberts G, Turner S, Woodcock A, Simpson A. The Study Team for Early Life 

Asthma Research (STELAR) consortium 'Asthma e-lab': team science bringing data, methods 

and investigators together. Thorax 2015; 70: 799-801.

31. Golding J, Pembrey M, Jones R. ALSPAC-the Avon longitudinal study of parents and children. I. 

Study methodology. Paediatric and perinatal epidemiology 2001; 15: 74-87.

32. Cullinan P, MacNeill SJ, Harris JM, Moffat S, White C, Mills P, Newman Taylor AJ. Early allergen 

exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study. 

Thorax 2004; 59: 855-861.

Page 20 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



33. Arshad SH, Holloway JW, Karmaus W, Zhang H, Ewart S, Mansfield L, Matthews S, Hodgekiss C, 

Roberts G, Kurukulaaratchy R. Cohort Profile: The Isle Of Wight Whole Population Birth Cohort 

(IOWBC). Int J Epidemiol 2018; 47: 1043-1044i.

34. Martindale S, McNeill G, Devereux G, Campbell D, Russell G, Seaton A. Antioxidant intake in 

pregnancy in relation to wheeze and eczema in the first two years of life. Am J Resp Crit Care 

2005; 171: 121-128.

35. Custovic A, Simpson BM, Murray CS, Lowe L, Woodcock A, Asthma NACM, Allergy Study G. The 

National Asthma Campaign Manchester Asthma and Allergy Study. Pediatr Allergy Immunol 

2002; 13: 32-37.

36. Wishart D. k-Means Clustering with Outlier Detection, Mixed Variables and Missing Values. In: 

Schwaiger M, Opitz O, editors. Exploratory Data Analysis in Empirical Research. Berlin, 

Heidelberg: Springer Berlin Heidelberg; 2003. p. 216-226.

37. Basagana X, Barrera-Gomez J, Benet M, Anto JM, Garcia-Aymerich J. A Framework for Multiple 

Imputation in Cluster Analysis. American Journal of Epidemiology 2013; 177: 718-725.

38. Little RJA, Rubin DB. Statistical analysis with missing data. New York: John Wiley & Sons Inc; 2Rev 

Ed edition (24 Sept. 2002); 2002.

39. Hubert L, Arabie P. Comparing partitions. Journal of Classification 1985; 2: 193-218.

40. Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, den Dekker HT, 

Husby A, Sevelsted A, Faura-Tellez G, Mortensen LJ, Paternoster L, Flaaten R, Molgaard A, 

Smart DE, Thomsen PF, Rasmussen MA, Bonas-Guarch S, Holst C, Nohr EA, Yadav R, March 

ME, Blicher T, Lackie PM, Jaddoe VW, Simpson A, Holloway JW, Duijts L, Custovic A, Davies DE, 

Torrents D, Gupta R, Hollegaard MV, Hougaard DM, Hakonarson H, Bisgaard H. A genome-

wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma 

with severe exacerbations. Nat Genet 2014; 46: 51-55.

Page 21 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



41. Koppelman GH, Kersten ETG. Understanding How Asthma Starts: Longitudinal Patterns of Wheeze 

and the Chromosome 17q Locus. Am J Respir Crit Care Med 2021; 203: 793-795.

42. Zhang Y, Willis-Owen SAG, Spiegel S, Lloyd CM, Moffatt MF, Cookson W. The ORMDL3 Asthma 

Gene Regulates ICAM1 and Has Multiple Effects on Cellular Inflammation. Am J Respir Crit 

Care Med 2019; 199: 478-488.

43. Basnet S, Bochkov YA, Brockman-Schneider RA, Kuipers I, Aesif SW, Jackson DJ, Lemanske RF, Jr., 

Ober C, Palmenberg AC, Gern JE. CDHR3 Asthma-Risk Genotype Affects Susceptibility of 

Airway Epithelium to Rhinovirus C Infections. Am J Respir Cell Mol Biol 2019; 61: 450-458.

44. Robinson PFM, Fontanella S, Ananth S, Martin Alonso A, Cook J, Kaya-de Vries D, Polo Silveira L, 

Gregory L, Lloyd C, Fleming L, Bush A, Custovic A, Saglani S. Recurrent Severe Preschool 

Wheeze: From Prespecified Diagnostic Labels to Underlying Endotypes. Am J Respir Crit Care 

Med 2021; 204: 523-535.

45. Morgan WJ, Stern DA, Sherrill DL, Guerra S, Holberg CJ, Guilbert TW, Taussig LM, Wright AL, 

Martinez FD. Outcome of asthma and wheezing in the first 6 years of life: follow-up through 

adolescence. Am J Respir Crit Care Med 2005; 172: 1253-1258.

46. Lowe LA, Simpson A, Woodcock A, Morris J, Murray CS, Custovic A, Asthma NACM, Allergy Study 

G. Wheeze phenotypes and lung function in preschool children. Am J Respir Crit Care Med 

2005; 171: 231-237.

47. Belgrave DC, Buchan I, Bishop C, Lowe L, Simpson A, Custovic A. Trajectories of lung function during 

childhood. Am J Respir Crit Care Med 2014; 189: 1101-1109.

48. Voraphani N, Stern DA, Zhai J, Wright AL, Halonen M, Sherrill DL, Hallberg J, Kull I, Bergström A, 

Murray CS, Lowe L, Custovic A, Morgan W, Martinez FD, Melén E, Simpson A, Guerra S. Early 

Origins of Spirometric Restriction: The Role of Growth and Nutrition. Lancet Respiratory 

Medicine 2022;10(1):59-71.

Page 22 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



49. Simpson A, Custovic A, Tepper R, Graves P, Stern DA, Jones M, Hankinson J, Curtin JA, Wu J, Blekic 

M, Bukvic BK, Aberle N, Marinho S, Belgrave D, Morgan WJ, Martinez FD. Genetic variation in 

vascular endothelial growth factor-a and lung function. Am J Respir Crit Care Med 2012; 185: 

1197-1204.

50. Simpson A, Maniatis N, Jury F, Cakebread JA, Lowe LA, Holgate ST, Woodcock A, Ollier WE, Collins 

A, Custovic A, Holloway JW, John SL. Polymorphisms in a disintegrin and metalloprotease 33 

(ADAM33) predict impaired early-life lung function. Am J Respir Crit Care Med 2005; 172: 55-

60.

51. Raita Y, Perez-Losada M, Freishtat RJ, Harmon B, Mansbach JM, Piedra PA, Zhu Z, Camargo CA, 

Hasegawa K. Integrated omics endotyping of infants with respiratory syncytial virus 

bronchiolitis and risk of childhood asthma. Nat Commun 2021; 12: 3601.

52. Custovic A, Belgrave D, Lin L, Bakhsoliani E, Telcian AG, Solari R, Murray CS, Walton RP, Curtin J, 

Edwards MR, Simpson A, Rattray M, Johnston SL. Cytokine Responses to Rhinovirus and 

Development of Asthma, Allergic Sensitization, and Respiratory Infections during Childhood. 

Am J Respir Crit Care Med 2018; 197: 1265-1274.

53. Custovic A, Custovic D, Kljaic Bukvic B, Fontanella S, Haider S. Atopic phenotypes and their 

implication in the atopic march. Expert review of clinical immunology 2020; 16: 873-881.

54. Bui DS, Lodge CJ, Burgess JA, Lowe AJ, Perret J, Bui MQ, Bowatte G, Gurrin L, Johns DP, Thompson 

BR, Hamilton GS, Frith PA, James AL, Thomas PS, Jarvis D, Svanes C, Russell M, Morrison SC, 

Feather I, Allen KJ, Wood-Baker R, Hopper J, Giles GG, Abramson MJ, Walters EH, Matheson 

MC, Dharmage SC. Childhood predictors of lung function trajectories and future COPD risk: a 

prospective cohort study from the first to the sixth decade of life. Lancet Respir Med 2018; 6: 

535-544.

Page 23 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



55. Belgrave DCM, Granell R, Turner SW, Curtin JA, Buchan IE, Le Souef PN, Simpson A, Henderson AJ, 

Custovic A. Lung function trajectories from pre-school age to adulthood and their associations 

with early life factors: a retrospective analysis of three population-based birth cohort studies. 

Lancet Respir Med 2018; 6: 526-534.

56. Berry CE, Billheimer D, Jenkins IC, Lu ZJ, Stern DA, Gerald LB, Carr TF, Guerra S, Morgan WJ, Wright 

AL, Martinez FD. A Distinct Low Lung Function Trajectory from Childhood to the Fourth Decade 

of Life. Am J Respir Crit Care Med 2016; 194: 607-612.

57. Vasquez MM, Zhou M, Hu C, Martinez FD, Guerra S. Low Lung Function in Young Adult Life Is 

Associated with Early Mortality. Am J Respir Crit Care Med 2017; 195: 1399-1401.

58. Agusti A, Noell G, Brugada J, Faner R. Lung function in early adulthood and health in later life: a 

transgenerational cohort analysis. Lancet Respir Med 2017; 5: 935-945.

Page 24 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



LEGENDS FOR FIGURES

Figure 1. Trajectories of 5 wheeze classes obtained with Partition-Around-Medoids (PAM) algorithm: 

percentage of participants with reported wheezing in each time interval in the 5 cohorts

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)

Figure 2. Comparison of internal homogeneity of wheezing phenotypes derived using the spells 

Partition-Around-Medoids (PAM) (panels a and b) and binary LCA approaches (panels c and d) 

among 7719 subjects with complete data on wheezing from infancy to adolescence

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)

*For Intermittent, 0=No wheeze, 1=single spell, 2=intermittent spells

Plots b) and d) are multi-dimensional heatmaps, which show the density of the distribution of each of the six 

derived variables, each of which are represented as a row. The scale of the variables (quantitative and 

categorical) is shown at the bottom on the plot. The segments in the top bar represent each cluster and their 

relative sizes. The distribution of each indicator within each cluster is shown vertically. In Figure 2b, for example, 

intermittent spells (as represented by category 2 for the Intermittent variable) is only present in the pink INT 

cluster; in the LCA model (2d), intermittent wheeze is present in all classes. 

Figure 3. The proportion of study participants with asthma diagnosis in adolescence in each 

Partition-Around-Medoids (PAM) wheeze phenotype (panel a) and the proportion of subjects with 

asthma diagnosis in adolescence belonging to each PAM phenotype (panel b).  

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)

Figure 4. Proportion of children with allergic sensitization in each Partition-Around-Medoids (PAM) 

wheeze cluster (Manchester Asthma and Allergy Study)

Never wheeze (NWZ); Early transient (ETW); (3) Late onset (LOW); (4) Persistent (PEW); Intermittent (Int)
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Figure 5. Lung function trajectories from early school age to early adulthood in MAAS (a) and 

ALSPAC (b)

Never wheeze (NWZ); Early transient (ETW); (3) Late onset (LOW); (4) Persistent (PEW); Intermittent (INT)

Figure 6. Forest plots of associations of 17q12-21 SNPs (a-c) and CDHR3 (d) with Partition-Around-

Medoids (PAM) wheeze clusters 
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Table 1. Associations of wheezing phenotypes with asthma-related outcomes in adolescence: results from multinomial logistic regression using children 

with 2+ observations on wheeze (reference class: No wheeze) using weighted membership probabilities. Weights derived from probabilities of class 

membership across 10 imputation samples from the PAM model. Results are reported as adjusted odds ratios with 95% confidence intervals. 

* Models adjusted for maternal history of asthma (recruitment), maternal smoking (recruitment), and low birth weight; ** Available at the latest follow−up (18 years in 
IOW, 16 years in MAAS, 15 years in SEATON, 15 years in ASHFORD and 15 years in ALSPAC); †Sex-, age-, and height-adjusted standard deviation units; FEV1 = forced 
expiratory volume in 1 second; FVC = forced vital capacity.

Associations with asthma in adolescence*       

 Current** asthma Asthma ever Current** asthma medication Asthma medication ever 

No wheeze Reference Reference Reference Reference

Early transient 2.44 [1.84,3.24] 4.00 [3.45,4.63] 1.96 [1.48,2.58] 3.31 [2.92,3.75]

P value <.0001 <.0001 <.0001 <.0001

Intermittent 27.06 [20.44,35.84] 22.77 [18.23,28.44] 17.34 [13.17,22.84] 18.47 [15.21,22.43]

P value <.0001 <.0001 <.0001 <.0001

Persistent 37.72 [29.13,48.85] 48.34 [38.47,60.74] 26.78 [20.90,34.32] 38.97 [32.15,47.24]

P value <.0001 <.0001 <.0001 <.0001

Late onset 35.44 [27.30,46.00] 17.8 [14.58,21.73] 16.78 [12.96,21.72] 22.32 [18.26,27.27]

P value <.0001 <.0001 <.0001 <.0001

Associations with lung function in adolescence*

 Z Scores for FEV1† Z Scores for FVC† Z Scores for FEV1/FVC†

No wheeze Reference Reference Reference

Early transient -0.103 [-0.19,-0.02] -0.014 [-0.10,0.07] -0.151 [-0.24,-0.07]
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P value 0.021 0.748 <0.0001

Intermittent -0.168 [-0.29,-0.05] 0.054 [-0.06,0.17] -0.379 [-0.49,-0.27]

P value 0.005 0.37 <0.0001

Persistent -0.326 [-0.45,-0.20] 0.079 [-0.05,0.21] -0.707 [-0.83,-0.59]

P value <0.0001 0.221 <0.0001

Late onset -0.003 [-0.13,0.13] 0.159 [0.03,0.29] -0.302 [-0.43,-0.18]

P value 0.959 0.015 <0.0001   
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Figure 1. Trajectories of 5 wheeze classes obtained with Partition-Around-Medoids (PAM) algorithm: 
percentage of participants with reported wheezing in each time interval in the 5 cohorts

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)
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Figure 2. Comparison of internal homogeneity of wheezing phenotypes derived using the spells 
Partition-Around-Medoids (PAM) (panels a and b) and binary LCA approaches (panels c and d) 
among 7719 subjects with complete data on wheezing from infancy to adolescence

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)

*For Intermittent, 0=No wheeze, 1=single spell, 2=intermittent spells

Plots b) and d) are multi-dimensional heatmaps, which show the density of the distribution of each of the six 
derived variables, each of which are represented as a row. The scale of the variables (quantitative and 
categorical) is shown at the bottom on the plot. The segments in the top bar represent each cluster and their 
relative sizes. The distribution of each indicator within each cluster is shown vertically. In Figure 2b, for example, 
intermittent spells (as represented by category 2 for the Intermittent variable) is only present in the pink INT 
cluster; in the LCA model (2d), intermittent wheeze is present in all classes. 

a) PAM: Intra-class individual wheezing patterns       b) PAM: Distribution of multi-dimensional 
                                                                                              variables by phenotype*

c) LCA: Intra-class individual wheezing patterns       d) LCA: Distribution of multi-dimensional 
                                                                                            variables by phenotype*

Page 30 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



5.7%
6.1%

23.8%

26.9%

37.5%

NWZ ETW
INT LOW
PEW

Figure 3. The proportion of study participants with asthma diagnosis in adolescence in each 
Partition-Around-Medoids (PAM) wheeze phenotype (panel a) and the proportion of subjects with 
asthma diagnosis in adolescence belonging to each PAM phenotype (panel b).  

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)
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Figure 4. Proportion of children with allergic sensitization in each Partition-Around-Medoids (PAM)  

wheeze cluster (Manchester Asthma and Allergy Study)

Never wheeze (NWZ); Early transient (ETW); (3) Late onset (LOW); (4) Persistent (PEW); Intermittent (Int)
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Figure 5. Lung function trajectories from early school age to early adulthood in MAAS (a) and ALSPAC (b)

Never wheeze (NWZ); Early transient (ETW); (3) Late onset (LOW); (4) Persistent (PEW); Intermittent (INT)

a) MAAS b) ALSPAC
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Figure 6. Forest plots of associations of 17q12-21 SNPs (a-c) and CDHR3 (d) with Partition-Around-Medoids (PAM) wheeze clusters 

a) rs7216389         b) rs4795408 c) rs3894194
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         d) rs697330 (CDHR3)
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SUPPLEMENTARY INTRODUCTION

Motivation for the approach

We took an inter-disciplinary view by looking at how research in other fields (primarily, the social 

sciences on poverty dynamics (1-7)) could be applied and develop our knowledge of the longitudinal 

development of wheeze. 

Since the early 1990s, the availability of longitudinal income studies has led to an important shift in 

the conceptualisation of poverty from a static understanding, in which the cross-sectional 

prevalence of poverty was compared with non-poverty, to a dynamic one concerned with the 

duration of spells, the temporal sequencing of poverty, and the extent of persistence and 

recurrence. Such studies have elucidated that individuals with long or recurrent poverty spells in the 

past were less likely to escape from poverty, and if they did, they were more vulnerable to 

experiencing poverty again compared with those with infrequent and short spells. Furthermore, the 

timing of spells was important, with childhood poverty increasing the risk of detrimental health and 

social outcomes across the life-course compared with poverty experienced later in life. Studies on 

mechanisms associated with entries to, exits from and recurrent poverty have informed policies with 

the aim of safeguarding against re-entry and, therefore, reduce the risk of recurrent poverty (1-7). 

Inspired by this literature and based on observed patterns of individual trajectories assigned to LCA 

classes, we developed a set of multi-dimensional variables to describe more holistically the temporal 

variation of wheeze. 
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SUPPLEMENTARY METHODS

DATA SOURCES: DESCRIPTION OF COHORTS 

ASHFORD

The Ashford study is an unselected birth cohort study established in 1991 in Ashford, UK (8). It included 

642 children born between 1992 and 1993. Participants were recruited prenatally and followed to age 

14 years. Detailed standardised questionnaires were administered at each follow-up to collect 

information on the natural history of asthma and other allergic diseases. Lung function measurements 

and SPT was carried out at 8 years of age. 

The Avon Longitudinal Study of Parents and Children (ALSPAC)

ALSPAC is a birth cohort study established in 1991 in Avon, UK (9, 10). Pregnant women with expected 

dates of delivery 1st April 1991 to 31st December 1992 were invited to take part in the study. The initial 

number of pregnancies enrolled is 14,541. Of these initial pregnancies, there was a total of 14,676 

foetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age.

When the oldest children were approximately 7 years of age, an attempt was made to bolster the 

study with eligible cases who had failed to join originally. As a result, when considering variables 

collected from the age of seven onwards (and potentially abstracted from obstetric notes) there are 

data available for more than the 14,541 pregnancies mentioned above. The number of new 

pregnancies not in the initial sample (known as Phase I enrolment) that are currently represented on 

the built files and reflecting enrolment status at the age of 24 is 913 (456, 262 and 195 recruited during 

Phases II, III and IV respectively), resulting in an additional 913 children being enrolled. The total 

sample size for analyses using any data collected after the age of seven is therefore 15,454 

pregnancies, resulting in 15,589 foetuses. Of these 14,901 were alive at 1 year of age.
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Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. Informed consent for the use of data collected via questionnaires and 

clinics was obtained from participants following the recommendations of the ALSPAC Ethics and Law 

Committee at the time. The study website contains details of available data through a fully searchable 

data dictionary and variable search tool: http://www.bristol.ac.uk/alspac/researchers/our-data/

The Manchester Asthma and Allergy Study (MAAS)

MAAS is an unselected birth cohort study established in 1995 in Manchester, UK (11).  It consists of a 

mixed urban-rural population within 50 square miles of South Manchester and Cheshire, located 

within the maternity catchment area of Wythenshawe and Stepping Hill Hospitals.  All pregnant 

women were screened for eligibility at antenatal visits (8-10th week of pregnancy). Of the 1499 couples 

who met the inclusion criteria (≤10 weeks of pregnancy, maternal age ≥18 years, and questionnaire 

and skin prick data test available for both parents), 288 declined to take part in the study and 27 were 

lost to follow-up between recruitment and the birth of a child. A total of 1184 children were born into 

the study between February 1996 and April 1998. They were followed prospectively for 20 years to 

date and attended follow-up clinics for assessments, which included lung function measurements, skin 

prick testing, biological samples (serum, plasma and urine), and questionnaire data collection. The 

study was approved by the North West – Greater Manchester East Research Ethics Committee.

The Study of Eczema and Asthma to Observe the influence of Nutrition (SEATON) 

SEATON is an unselected birth cohort study established in 1997 in Aberdeen, UK, which was designed 

to explore the relationship between antenatal dietary exposures and asthma outcomes in childhood 

(12). 2000 healthy pregnant women attending an antenatal clinic, at median 12 weeks gestation, were 

recruited. An interviewer administered a questionnaire to the women and atopic status was 

ascertained by skin prick test (SPT). The cohort included 1924 children born between April 1998 and 

December 1999. Participants were recruited prenatally and followed up by self−completion 
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questionnaire to 15 years of age using postal questionnaires to record the presence of asthma and 

allergic diseases. The study was approved by the North of Scotland Research Ethics Committee. 

The Isle of Wight (IOW) cohort

IOW is an unselected birth cohort study established in 1989 on the Isle of Wight, UK (13-15). After the 

exclusion of adoptions, perinatal deaths, and refusal for follow-up, written informed consent was 

obtained from parents to enrol 1,456 newborns (of 1536 born between 1st January 1989 and 28th 

February 1990).  Follow-up-up assessments were conducted to 26 years of age to prospectively study 

the development of asthma and allergic diseases. At each follow-up, validated questionnaires were 

completed by the parents.  At 10 years, spirometry was performed as described below. Ethics 

approvals were obtained from the Isle of Wight Local Research Ethics Committee (now named the 

National Research Ethics Service, NRES Committee South Central – Southampton B) at recruitment 

and for the subsequent follow-ups. 

DEFINITIONS OF VARIABLES (OUTCOMES, DEMOGRAPHIC AND EXPOSURES)

Current wheeze: Defined as a positive response to the question “Has your child had wheezing or 

whistling in the chest in the last 12 months?” at each follow-up.  

Asthma: Current asthma in adolescence was defined as a positive answer to a questions “Has your 

child had asthma during the past 12 months” at the harmonized point during adolescence.

Information on asthma through childhood was obtained from the responses given to the question 

“Has your child ever suffered from asthma”. Based on the responses, children were divided into two 

groups: children who had asthma in past (responded “yes” to at least one asthma question) and 

children who never had asthma (responded “no” to all asthma questions available). 

Information about the use of asthma medication during adolescence was obtained from parental 

reports of whether their child had used any medication and/or received any treatment for asthma in 

the past 12 months. 
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Allergic sensitization: Defined as a wheal diameter of 3mm greater than the negative control to one 

or more allergens.

Parental history of asthma, eczema and hay fever: Defined based on the responses given to the 

question “have you (and/or your partner) ever had asthma/eczema/hay fever”. 

Maternal and paternal smoking: Defined based on the response given to the question “do you (or 

does your partner) smoke”, administered during pregnancy. 

Low birth weight: Defined as birth weight less than 2500 g based on NHS birth records. 

Early−life risk factors were divided into four groups according to timing of exposure; maternal and 

child characteristics (gender, maternal smoking during pregnancy and maternal history of asthma at 

recruitment), perinatal (low birth weight adjusted for gestational age), and environmental (pet 

ownership, smoke exposure after birth). 

SPIROMETRY

MAAS: Performed at ages 8, 11, 16 and 20 years according to American Thoracic Society/European 

Respiratory Society guidelines (16, 17) using a Lilly pneumotachograph system with animated 

incentive software (Jaeger, Germany). For home visits, we used a flow turbine spirometer (Micro 

Medical, UK). Subjects were asked to inhale to total lung capacity (TLC), then instructed to perform a 

forced expiration, through a mouthpiece, to residual volume (RV). The test was repeated at intervals 

of 30 seconds until 3 technically acceptable traces were obtained.  Forced expiratory volume in one 

second (FEV1) and Forced vital capacity (FVC) were recorded and the data expressed as FEV1 % 

predicted and FEV1/FVC ratio. Short-acting β2-agonists were withheld for at least four, and long-acting 

for at least 24 hours prior to testing. Participants were symptom-free at the time of assessment.

ALSPAC: Performed according to American Thoracic Society/European Respiratory Society guidelines 

(16, 17) using a Vitalograph pneumotachograph system with animated incentive software (Spirotrac, 

Vitaograph, UK) in a dedicated research clinic by trained technicians. Calibration checks were 
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performed with a standard 3L calibration syringe according to the manufacturer’s instructions at the 

start of each half-day clinic session. Subjects were seated with a nose clip in place and were asked to 

inhale to TLC, then instructed to perform a forced expiration, through a mouthpiece, to residual 

volume (RV). The test was repeated at intervals of 30 seconds until 3 technically acceptable traces 

were obtained from a maximum of eight attempts.  FEV1 and FVC were recorded. 

IOW, SEATON and Ashford: Pre-bronchodilator lung function tests were conducted at the follow-ups 

in adolescence. FVC and FEV1 were measured using a Koko Spirometer and software with a portable 

desktop device (both PDS Instrumentation, Louisville, KY, USA). Performed according to American 

Thoracic Society/European Respiratory Society guidelines (16, 17). 

Study participants were required to be free of respiratory infection for 2 weeks and not to be taking 

any oral steroids and were advised to abstain from any β-agonist medication for 6 h.

GENOTYPING AND IMPUTATION 

ALSPAC: Participants were genotyped using the Illumina HumanHap550 quad genome-wide SNP 

genotyping platform (Illumina Inc., San Diego, CA, USA) by the Wellcome Trust Sanger Institute (WTSI; 

Cambridge, UK) and the Laboratory Corporation of America (LCA, Burlington, NC, USA), using support 

from 23andMe. Haplotypes were estimated using ShapeIT (v2.r644) which uses relationship 

information to improve phasing accuracy. The phased haplotypes were then imputed to the Haplotype 

Reference Consortium (HRCr1.1, 2016) panel (18) of approximately 31,000 phased whole genomes. 

The HRC panel was phased using ShapeIt v2, and the imputation was performed using the Michigan 

imputation server. 

MAAS: Participants were genotyped using the Illumina 610 quad genome-wide SNP genotyping 

platform (Illumina Inc., San Diego, CA, USA). Prior to imputation samples were excluded on the basis 

of gender mismatches; minimal or excessive heterozygosity, genotyping call rates of <97%.  SNPS were 

excluded if they had call rates of <95%, minor allele frequencies of <0.5% and HWE p<3x10-8. Prior to 
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imputation each chromosome was pre-phased using EAGLE2 (v2.0.5) (18) as recommended by the 

Sanger imputation server (19). We then imputed with PBWT (20) with the Haplotype Reference 

Consortium (release 1.1) of 32,470 reference genomes (19) using the Sanger Imputation Server.

IOW, SEATON and ASHFORD: Participants were genotyped using the Illumina Infinium Omni2.5-8 

v1.3 BeadChip genotyping platform (Illumina Inc., San Diego, CA, USA). Genotype QC and imputation 

was carried out as described for MAAS.

Choice of candidate genes for association analyses 

The 17q12-21 and CDHR3 and SNPs used for this study were chosen based on their previous 

associations with childhood-onset asthma, either as lead SNPs or associations found in studies which 

used deep phenotyping. 

The first GWAS of asthma reported in 2007 identified multiple markers on chromosome 17q21 as 

associates of the childhood-onset asthma (21).  A comprehensive review which summarised the 

results of 42 GWASs to date of asthma, different asthma phenotypes and asthma-related traits has 

been published (22), and provides a summary of the many risk alleles and loci which were replicated 

in different populations. The most widely replicated asthma locus in GWASs is 17q12-21, hence, we 

used SNPs from this locus.

A GWAS, which used a specific subtype of early-onset childhood asthma with recurrent, severe 

exacerbations as an outcome identified a novel gene, Cadherin Related Family Member 3 (CDHR3) as 

an associate of this specific subtype, but not of doctor-diagnosed asthma (23). Mechanistic studies 

that followed have suggested that CDHR3 may be a receptor for Rhinovirus C (24). 
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STATISTICAL ANALYSIS 

PAM Clustering 

PAM is a clustering algorithm that partitions the dataset into a predefined number of clusters and has 

the advantage of being robust to noise and the presence of outliers. The algorithm selects k-medoid 

initially and then swaps the medoid object with non-medoid thereby improving the quality of clusters. 

The algorithm is based on an iterative procedure that starts with the selection of a representative 

object for each group. This is called a medoid and represents the most centrally located object within 

the cluster. Once the medoids have been selected, the remaining objects are assigned to each cluster 

by minimizing their distance from medoids. The quality of the partition is then measured by the 

average dissimilarity between an object and the medoid of its cluster. The algorithm selects k-medoids 

and then swaps each medoid object with a non-medoid thereby improving the quality of clusters.

A key distinction between LCA and PAM is that in our study, the latter does not explicitly model 

repeated measures, but indicators derived from repeated measures. An advantage of this approach is 

that excessive variation in the data is “absorbed” whilst retaining important features of change at the 

individual level.  Furthermore, PAM clustering is a simple and flexible algorithm to implement. As it is 

a non-parametric method, it does not rely on any statistical assumptions and can be used with mixed 

data types (for example, binary, ordinal, and continuous). 

We attempted LCA with our mixed data using STATA’s ‘gsem’ suite of commands, however, 

convergence was not achieved. ‘POLCA’ package in R does not allow for the simultaneous modelling 

of categorical and continuous data.   

Selection of the optimal number of clusters

With regards to the selection of the optimal number of clusters, the average silhouette width (ASW) 

has been suggested for finding the number of clusters with PAM (25). It is a simple measurement of 

cluster quality that does not rely on statistical model assumptions, and is widely used and trusted for 
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comparing the quality of clustering produced by various clustering methods over different numbers 

of clusters. Furthermore, the silhouette width achieved robust results in the extensive simulation 

study of Arbelaitz et al. (26). To test the sensitivity of the optimal number of clusters to different 

indices, we also checked Pearson’s Gamma (27), Dunn (27), and Calinski & Harabasz (28) indices. As 

the results were consistent across all indices, and for brevity, we report the ASW in the manuscript. 

Whilst statistical judgements informed the optimal number of classes, we did not rely solely on the 

ASW, but also visualisations of the internal structure to check for within-class homogeneity, intra-class 

separation, and guidance from literature on previously derived wheeze clusters. Importantly, clinical 

judgement was an integral part of the phenotype derivation process.

Sensitivity analysis to determine the stability of the optimal number of phenotypes

We undertook three additional analyses to demonstrate stability of the phenotypes: 

1. We ran the Partition-Around-Medoids (PAM) on each single cohort and compared the optimal 

solution with that of the pooled cohorts. 

2. Excluding ALSPAC from the pooled cohort analysis: We excluded ALSPAC cohort from the 

pooled data and compared the optimal solution for the remaining four cohorts versus 

inclusion of all five.

3. We investigated cluster stability by running the PAM algorithm on random subsets of data of 

varying sample sizes, starting with 100% of the data (7719) and reducing it by decrements of 

10% until half the sample size was reached. The data were first permuted by ID to ensure that 

the data was ordered randomly, and for each sample size, the PAM algorithm was run for 10 

iterations. We then compared the mean ASW for each sample size over 10 iterations.

The impact of missing data on PAM cluster assignment  

We assessed the impact of missing data on cluster assignment in the joint analysis of five cohorts. 

Wheeze observations were assumed to be missing at random. Based on this assumption, we used the 
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framework of Basagaña at al. (29), which integrates multiple imputation (30) (MI) into cluster analysis. 

MI was applied to the wheeze data using the ice suite of commands in Stata 15 (31, 32). Due to the 

computational intensity of clustering the data, we imputed a maximum of 10 completed data sets, 

however, 3 to 10 imputed data sets are recommended to obtain reliable results (33). We applied the 

PAM algorithm to each of the completed data sets and obtained 10 values for the average silhouette 

index to determine the optimal number of clusters (kfin). kfin was chosen as the mode of the optimal 

number of clusters across imputed samples. We also examined the distribution of the silhouette index 

over the data sets by the number of clusters ranging from 2 to 6, and used the median silhouette index 

over the samples as an additional guide for selecting kfin.  We refit the cluster analysis with k= kfin   and 

calculated the membership probability of belonging to each cluster for each child. Children were 

assigned to the cluster with the largest probability. Finally, we compared individual cluster 

assignments from the analyses using data from complete cases compared with the imputed datasets 

using the Adjusted Rand Index.

Comparison of wheezing phenotypes derived using binary LCA and spells PAM approaches

To ascertain the ability of the multi-dimensional indicators to better describe the temporal variation 

of wheeze developments compared to adopting only presence/absence of symptoms, we compared 

the clusters obtained with PAM with the phenotypes derived by applying LCA (34) to the binary 

wheeze data.  Detailed description of the joint LCA for the five STELAR cohorts is provided in the 

manuscript by Oksel et al (35), and is briefly outline below. To facilitate comparison with PAM-derived 

clusters, in the current analysis participants were assigned to each phenotype according to the 

maximum posterior probability.

To check for phenotypic homogeneity across cohorts, we stratified class allocation to each cohort by 

individual wheeze patterns across five time points. We also calculated the ARI for classifications of 

individual cohort allocations versus the joint cohort allocations.
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Latent Class Analysis 

To control for cohort−specific variation, Cohort ID was included in the LCA model as an additional 

predictor by transforming the 5−category variable into a set of four dummy variables and including 

them as covariates. The largest cohort, ALSPAC, was treated as the non−coded category to which all 

other cohorts were compared. The expectation maximization algorithm was used to estimate relevant 

parameters, with 100,000 iterations and 500 replications. 

Model Selection: To assess model fit, we used (1) the Bayesian information criterion (BIC), (2) the 

Akaike information criterion (AIC), (3) Lo−Mendel−Rubin likelihood ratio test (LMR), (4) Bootstrapped 

likelihood ratio and, (4) quality of classification certainty (model entropy). The BIC is an index used in 

Bayesian statistics to choose among a set of competing models; the model with the lowest BIC is 

preferred. Using the lowest BIC as a selection criterion, the best fitting model was chosen as the five-

class solution with a nominal covariate (BIC:31340). 

LCA vs. PAM 

We then compared the within-class homogeneity of both models.  We checked the stability of cluster 

allocations in both models using the ARI, and plotted transitions between classes using alluvial plots. 

We investigated changes in within-class homogeneity and assessed immutability/mobility of class 

allocation by cross-classification of phenotypes from both clustering methods. To check for phenotypic 

homogeneity across cohorts, we stratified class allocation to each cohort by individual wheeze 

patterns across five time points. We also calculated the ARI for classifications of individual cohort 

allocations versus the joint cohort allocations. Specifically, we applied PAM and LCA for each cohort 

separately and compared the final partitions to ascertain whether wheeze patterns assignments were 

stable in the different cohorts. Furthermore, the adjusted Rand index (ARI) was used to evaluate the 

agreement between individual assignments using both algorithms, and the stability of assignments 

when the five cohorts were pooled compared with being modelled singly.
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Association of PAM clusters with early−life risk factors and clinical outcomes in adolescence 

We used multinomial logistic regression models to ascertain early−life risk factors associated with 

each PAM-phenotype and examine their relationship with doctor−diagnosed asthma and asthma 

medication use in adolescence; results are reported as relative risk ratios (RRR), also known as 

multinomial odds ratios (OR) with 95% confidence intervals (CIs). We tested the validity of derived 

phenotypes by examining their relationships with asthma and asthma medication use at the last 

follow-up using logistic regression models. We also investigated associations with lung function 

outcomes in adolescence (ALSPAC at age 15, IOW at age 18, MAAS at age 16, and SEATON at age 15) 

using height−, age− and sex−adjusted Z−scores for FEV1, FVC and FEV1/FVC. In MAAS and ALSPAC we 

derived longitudinal trajectories of lung function for each wheeze cluster. Models were adjusted for 

potential confounders, including maternal history of asthma, maternal smoking and low birth weight. 

Before running multivariable regression analyses, we tested for multicollinearity in a number of ways. 

Firstly, we ran cross-tabulations for all pairs of categorical independent variables to ensure that there 

was not a high association between them. We checked collinearity diagnostics, for example, Variance 

Inflation Factor (VIF) (ensuring that values did not exceed 10), and the stability of estimates and their 

standard errors by adding variables one at a time. 

One-way ANOVA tests were undertaken to ascertain overall statistical differences in FEV1/FVC means 

by wheeze phenotypes at each time point in addition to post-hoc pairwise tests corrected for multiple 

comparisons using Tukey’s HSD test. 

Association between PAM clusters and genetic variants in 17q12-21 and CDHR3: Meta-analysis 

We performed clumping (with significance thresholds of 0.05 for index and clumped SNPs) to keep 

only one representative SNP per linkage disequilibrium block, leaving rs7216389, rs4795408, and 

rs3894194 in the final analysis. Multinomial logistic regression analysis was used with 
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Never/infrequent wheeze as the reference. For SNP’s, the additive (dosage) model was used, where 

the number of risk alleles was treated as a continuous variable in the regression analysis. 

The analysis was performed independently in ALSPAC, MAAS and the combined IOW-SEATON-

ASHFORD (these 3 cohorts were combined as they were genotyped on the same platform, at the same 

time, and quality controlled and imputed together), which enabled replication across different studies.  

For each wheezing phenotype, we obtained the pooled multinomial odds ratio, 95% confidence 

interval and p-value for the association between each SNP and the phenotype. We used ‘metan’ 

command in Stata to derive the pooled effect estimates assuming a random-effect model stratified by 

wheezing phenotype. We assessed heterogeneity between sub-groups in terms of I-squared statistic.

All statistical analyses were carried out using Stata 14 and R.  

Acknowledgements

The Ashford research team are grateful to all the participants and their families for their support over 

the years and to the many fellow researchers who have contributed to the cohort’s follow up.  

The ALSPAC research team are extremely grateful to all the families who took part in this study, the 

midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, 

computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, 

receptionists and nurses.

The MAAS research team thanks study participants and their parents for their continued support and 

enthusiasm, and greatly appreciate the commitment they have given to the project. We also 

acknowledge the hard work and dedication of the study teams (post-doctoral scientists, physiologists, 

research fellows, nurses, technicians, and clerical staff).

The SEATON research team are grateful to all the participants and their families for their support over 

the years and also to the many fellow researchers who have contributed to the cohort’s follow up.  

Page 49 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



The IOW research team are grateful to all the participants and their families for their support over the 

years and also to the many fellow researchers who have contributed to the cohort’s follow up.  

Page 50 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



Table S1.  The time period and size of data included in the analyses

Birth Cohort: IOW MAAS SEATON ASHFORD ALSPAC Total 

Year of birth 1989  1995 1997 1992  1991

Questionnaire Interviewer-
administered

Interviewer-
administered Postal Interviewer-

administered Postal

Data collection age (years) 1, 2, 4, 10, 18 1, 3, 5, 8, 16 1, 2, 5, 10, 15 1, 2, 5, 8, 14 ½, 21/2, 43/4, 81/2, 14
 

N (%) of children with complete 
data on wheezing at five 

selected time points
912/1496 (60.1%) 667/1184 

(56.3%)
499/1734 
(28.8%)

492/642 
(76.6%)

5149/12290 
(41.9%)

7719/17346 
(44.5%)

N (%) of children with >=2 
observations on wheezing at 

five selected time points

1455/1496 
(97.3%)

1150/1184 
(97.1%)

1489/1734 
(85.9%)

620/642 
(96.6%)

11134/1290 
(87.9%)

15848/17346 
(91.4%)

N (%) of children with >=2 
observations on wheezing at 
five selected time points & 

genetic data

1234/1455
(84.8%)

980/1150
(85.2%)

577/1489
(38.8%)

439/620
(70.8%)

6817/11134
(61.2%)

10047/15848
(63.4%)

Page 51 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



Table S2. Derivation of indicators

A spell is defined as beginning when wheeze is first observed and ending when non-wheeze is subsequently observed. In the example below, 
spell lengths can range from one to six consecutive time periods, and individuals can experience multiple spells over the observation period.

For each child, all 6 variables were derived, of which length of the longest spell was one variable.  If a child was observed to wheeze at a single time-point 
(either once only over the observation period or intermittently), the observation for a child with a single spell lasting one time-period was included. We 
remained agnostic once the variables had been derived, and allowed the PAM algorithm to classify, regardless of duration length or number of spells.

 
Wheeze presence/absence Derived indicators

ID TP1 TP2 TP3 TP4 TP5 TP6

Length of 
longest 

spell

Number of 
separate 

spells 

Number of 
wheeze 

observations Spell type 

Time of 
wheeze 
onset 

Time-point 
of last 

wheeze 
observation 

             

1 1 1 1 1 1 1 6 1 6 Single 1 6

2 1 0 1 1 1 1 4 2 5 Intermittent 1 6

3 0 1 1 1 1 1 5 1 5 Single 2 6

4 1 0 1 0 1 1 2 3 4 Intermittent 1 6

5 0 0 1 1 1 1 4 1 4 Single 3 6

6 1 0 0 0 1 1 2 2 3 Intermittent 1 6

7 0 0 1 1 0 0 2 1 2 Single 3 4
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Figure S1. Summary of analysis steps
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Table S3. The list of SNPs used for this study

*In high linkage disequilibrium with rs4795400

**In high linkage disequilibrium with rs4795406

***From online database SNP Function Prediction (FuncPred): https://snpinfo.niehs.nih.gov/cgi-
bin/snpinfo/snpfunc.cgi

SNP Chromosome Position Allele
Risk 
allele

Nearby 
Gene***

rs3859192 17 35382174 C/T T GSDM1

rs3894194 17 35375519 G/A A GSDM1

rs7216389 17* 35323475 C/T T GSDML

rs11557467 17 35282160 G/T G ZPBP2

rs9303277 17 35229995 C/T C IKZF3

rs2290400 17 35319766 T/C T GSDML

rs4795405 17 35341943 C/T T ORMDL3

rs4795408 17** 35361153 A/G A GSDM1

rs8079416 17 35346239 C/T C ORMDL3

rs6967330 7 105445687 A/G A CDHR3
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SUPPLEMENTARY RESULTS

Table S4. Demographic characteristics of the study population

 Children with complete 
data on wheezing

Children with data on 
wheezing at 2-4 points

Parental characteristics   
Maternal age at delivery 

(mean/SD) 29.1 (4.6) 27.6 (5.1)

Maternal asthma ever 
(recruitment) 12.0% (923/7666) 12.9% (973/7544)

Paternal asthma ever 
(recruitment) 13.0% (845/6497) 12.4% (700/5639)

Perinatal characteristics   
Male gender 50.4% (3888/7719) 53.0% (4300/8115)
Low birth weight (≤2500 gr) 4.1% (314/7604) 5.6% (433/7750)

Environmental characteristics   
Breastfeeding ever 79.2% (6007/7586) 69.1% (4789/6942)
Maternal smoking 

(recruitment) 19.2% (1294/6768) 28.7% (1877/6537)

Paternal smoking 
(recruitment) 27.9% (2123/7618) 36.0% (2742/7642)

Presence of cat 
(recruitment) 30.4% (2301/7563) 28.6% (2143/7504)

Presence of dog 
(recruitment) 21.4% (1476/6895) 24.9% (1730/6940)

Outcomes in adolescence (age 
14-18)   

Asthma medication ever 29.6% (2116/7153) 34.5% (1579/4580)
Asthma ever 26.5% (1737/6562) 29.2% (828/2837)
Current asthma medication 11.4% (674/5890) 11.4% (256/2245)
Current asthma 12.9% (754/5860) 14.1% (306/2170)
Eczema ever 42.7% (2805/6565) 39.6% (1235/3118)

Cohort   
ALSPAC 46.3% (5149/11134) 53.7% (5985/11134)
MAAS 58.0% (667/1150) 42.0% (483/1150)
SEATON 33.5% (499/1489) 66.5% (990/1489)
 IOW 62.7% (912/1455) 37.3% (543/1455)
ASHFORD 79.4% (492/620) 20.6% (128/620)
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Table S5. Prevalence of wheeze in each cohort and the joint analysis 

 
Infancy Early 

childhood
Pre/early-

school 
Middle 

childhood 
Adolescence

 

 
0.5-1 years 

(N/%)
2-3 years 

(N/%)
4-5 years 

(N/%)
8-10 years 

(N/%)
14-18 years 

(N/%)

ALSPAC 1181 1014 895 660 566

 22.9% 19.7% 17.4% 12.8% 11.0%

ASHFORD 195 124 84 68 71

 39.6% 25.2% 17.1% 13.8% 14.4%

IOW 100 138 188 174 237

 11.0% 15.1% 20.6% 19.1% 26.0%

MAAS 164 141 134 118 107

 24.6% 21.1% 20.1% 17.7% 16.0%

SEATON 122 78 61 66 75

 24.5% 15.6% 12.2% 13.2% 15.0%

JOINT 1762 1495 1362 1086 1056

 22.8% 19.4% 17.6% 14.1% 13.7%

Figure S2. Silhouette plot used to determine the optimal number of clusters in Partition-Around-
Medoids (PAM) model

    Number of clusters
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Table S6. Percentage of participants assigned to Partition-Around-Medoids (PAM)  clusters in single 
and pooled cohorts’ analysis, and adjusted Rand index (ARI) to compare similarity of partitions 
between each single cohort with the pooled cohorts for PAM & LCA modes.

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)

 ALSPAC ASHFORD IOW MAAS SEATON JOINT 

NWZ 55.4 44.3 52.1 52.8 56.3 54.1

ETW 24 33.9 17.8 25.2 21 23.7

LOW 7.3 3.9 8.9 2.7 8.4 6.9

INT 6.3 8.1 5.8 9.6 8 6.9

PEW 7 9.8 15.5 9.7 6.2 8.4

 ARI: Single v pooled cohorts 

PAM 0.981 0.953 0.911 0.951 0.995  

LCA 0.827 0.845 0.821 0.846 0.612  

Table S7. Comparison of the average silhouette width across randomly selected subsets of data of 
different sample sizes; complete pooled cohort data

We investigated cluster stability by running the Partition-Around-Medoids (PAM) algorithm on random 
subsets of data of varying sample sizes, starting with 100% of the data (7719) and reducing it by 
decrements of 10% until half the sample size was reached. The algorithm was run for 10 iterations for 
each sample size.  The results demonstrate that the clustering solution is stable with respect to changes 
in sample size, and five phenotypes were consistently obtained as the optimal solution.

Number of clusters

Sample size 2 3 4 5 6 7

50% 0.6465 0.6893 0.7614 0.7909 0.7874 0.7867

60% 0.6479 0.6893 0.7620 0.7916 0.7881 0.7892

70% 0.6479 0.6893 0.7620 0.7923 0.7882 0.7889

80% 0.6483 0.6897 0.7617 0.7920 0.7880 0.7891

90% 0.6491 0.6899 0.7616 0.7915 0.7875 0.7883

100% 0.6463 0.6874 0.7599 0.7903 0.7867 0.7882
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THE IMPACT OF MISSING DATA ON CLUSTER DERIVATION

Multiple imputation (30) was applied to data from participants with at least two observations of 

wheeze. We derived 10 completed data sets, and applied PAM clustering to each of these. Table S8 

shows the silhouette index for models with 2 to 6 clusters across the imputation samples. The optimal 

result was 5 clusters in seven data sets and 6 in the remaining three. The highest median silhouette 

index was for 5 clusters, and this optimal solution was very similar to that derived from a complete 

data set. Cluster allocation, size, and prevalence of wheeze among 7719 children with complete data 

in the model using 15,848 individuals with at least two observations are shown in Table S9.  Children 

were assigned with a high degree of certainty, with membership probabilities ranging from 0.80-0.93. 

Cluster membership certainty was lowest in PEW cluster (0.80).

Figure S3 shows the changes in the allocation of 7719 individuals with complete data from the model 

using only children with data on wheezing at all five time periods to their most probable class in the 

model using 15,848 individuals with at least two observations. There was very high agreement 

between individual cluster assignments from data using complete cases (n=7719) and imputed data 

(n=15,848), ARI=0.944. This is exemplified in Table S9, which shows cluster allocation and size among 

7719 children with complete data in the model using 15,848 individuals with at least 2 observations. 
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Table S8. Average silhouette index across 10 multiple imputation samples (joint cohort data)

K=number of clusters

Sample K2 K3 K4 K5 K6 kfin
S1 0.634 0.678 0.748 0.779 0.769 5
S2 0.636 0.691 0.748 0.713 0.769 6
S3 0.637 0.682 0.750 0.779 0.769 5
S4 0.637 0.681 0.748 0.779 0.769 5
S5 0.639 0.682 0.751 0.781 0.771 5
S6 0.637 0.679 0.749 0.712 0.769 6
S7 0.636 0.680 0.749 0.713 0.769 6
S8 0.635 0.681 0.750 0.780 0.770 5
S9 0.638 0.692 0.748 0.779 0.770 5

S10 0.636 0.679 0.748 0.780 0.770 5

Table S9. Probability of cluster assignment across 10 multiple imputation samples

Never wheeze (NWZ); Early transient (ETW); (3) Late onset (LOW); (4) Persistent (PEW); Intermittent (Int)

   Probability of cluster assignment 
 N/% ETW NWZ INT PEW LOW

ETW 3925 (24.8%) 0.817 0.003 0.154 0.025 0.000
NWZ 8821 (55.7%) 0.028 0.931 0.006 0.002 0.033
INT 872 (5.5%) 0.039 0.000 0.825 0.127 0.008

PEW 1463 (9.2%) 0.046 0.000 0.150 0.795 0.009
LOW 767 (4.8%) 0.008 0.002 0.048 0.020 0.922

Cl
us

te
r m

em
be

rs
hi

p

 15,848 (100%) 0.225 0.519 0.103 0.089 0.064
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Figure S3. Stability of individual allocation to Partition-Around-Medoids (PAM) phenotypes: Alluvial 
plot shows the transition of phenotype membership for individual participants between models 
using complete data (n=7719) and the imputed data set from 15,848 individuals with >2 
observations.

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)
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COMPARISON OF WHEEZE PHENOTYPES DERIVED USING BINARY LCA AND SPELLS 

PARTITION-AROUND-MEDOIDS (PAM) APPROACHES

Wheeze phenotypes determined using LCA

Based on statistical fit, a five−class solution was selected as the optimal LCA model(35). To enable 

compatibility with PAM cluster assignments, we adopted a hard classification, that is we assigned 

children to their most likely class according to the highest posterior probability of class membership. 

Based on the onset and duration of wheeze, the classes were labelled as: (1) Never/Infrequent wheeze 

(59.9%); (2) Early−onset pre−school remitting wheeze (19.2%); (3) Early−onset mid−childhood 

remitting wheeze (7.7%); (4) Persistent wheeze (6.3%) (5) Late−onset wheeze (6.9%).

Figure S4. Five wheezing phenotypes (latent classes) identified by latent class analysis in 7719 
children (infancy: age ½−1, early childhood: age 2−3, pre−school age / early−school age: age 4−5, 
middle childhood: age 8−10, adolescence: age 14−18). The children were assigned to each 
phenotype according to the maximum posterior probability.

NWZ: Never/infrequent wheezing; ETW: Early transient (Pre−school remitting) wheezing; 

MCRW: Mid−childhood remitting wheezing; PEW: Persistent wheezing; LOW: Late−onset wheezing
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Table S10. Comparison of descriptive statistics for multi-dimensional indicators by Partition-Around-Medoids (PAM) and LCA classes. 

a) Quantitative indicators

No wheeze Transient early Late onset Persistent Intermittent 

Mid-
childhood 
remitting

Kruskal-Wallis p-
value

PAM-
NWZ

LCA-
NWZ

PAM-
ETW 

LCA-
TEW

PAM-
LOW 

LCA-
LOW

PAM-
PEW 

LCA-
PEW PAM-INT LCA-

MCRW PAM LCA

Median 0 0 1 1 1 2 3 4 2 2

IQR [0; 0] [0; 0] [1; 2] [1; 2] [1; 2] [1; 2] [3; 4] [3; 5] [2; 3] [2; 3]

Number 
of 

wheeze 
records Min;Max [0; 0] [0; 1] [1;2] [1;3] [1; 2] [1; 3] [3; 5] [2; 5] [2; 4] [2; 4]

<.0001 <.0001

Median 0 1 1 2 1 2 3 4 1 2
IQR [0; 0] [0; 0] [1; 2] [1; 1] [1; 2] [1; 2] [3; 4] [3; 5] [1; 2] [2; 3]

Longest 
spell 

length Min;Max [0; 0] [0; 1] [1; 2] [1; 2] [1; 2] [1; 3] [3; 5] [1; 5] [1; 3] [1; 4]
<.0001 <.0001

Median 0 1 1 1 1 1 1 1 2 1
IQR [0; 0] [0; 0] [1; 1] [1; 1] [1; 1] [1; 1] [1; 1] [1; 2] [2; 2] [1; 1]Number 

of spells
Min;Max [0; 0] [0; 1] [1; 1] [1; 2] [1; 1] [1; 2] [1; 1] [1; 3] [2; 3] [1; 2]

<.0001 <.0001

Median  NA 1 0.5 10 10 1 1 1 1

IQR NA NA [0.5; 
2.5] [0.5; 1] [8.5; 14] [4.75; 

14]
[0.5; 
2.5]

[0.5; 
2.5] [0.5; 2] [0.5; 2.5]

First 
observed 

age of 
wheeze

Min;Max  [NA; 10] [0.5; 5] [0.5; 14] [8; 18] [1; 18] [0.5; 5] [0.5; 5] [0.5; 5] [0.5; 5]

<.0001 <.0001

Median  NA 2.5 1 14 14 14 14 14 4.75

IQR NA NA [0.5; 4] [0.5; 
2.5] [10; 18] [14; 18] [8; 14] [14; 15] [8.5; 14] [4.75; 

8.5]

Last 
observed 

age of 
wheeze

Min;Max  [NA; 10] [0.5; 10] [0.5; 16] [8; 18] [10; 18] [4; 18] [8; 18] [4; 18] [4; 10]

<.0001 <.0001

Page 62 of 74

 AJRCCM Articles in Press. Published January 20, 2022 as 10.1164/rccm.202108-1821OC 
 Copyright © 2022 by the American Thoracic Society 



B) Categorical indicator

  No wheeze Transient early Late onset Persistent Intermittent
Mid-

childhood 
remitting

Chi-square p-value

  PAM-
NWZ

LCA-
NWZ

PAM-
ETW 

LCA-
TEW

PAM-
LOW 

LCA-
LOW

PAM-
PEW 

LCA-
PEW PAM-INT LCA-

MCRW PAM LCA 

0 0 0 0 0 0 0 0 0 0
No episodes 

N
row % per 

model 100 100 0 0 0 0 0 0 0 0
0 448 1829 1324 533 486 644 303 0 445

<0.0001 <0.0001

Single spell 
N

row % per 
model

0 15 61 44 18 16 21 10 0 15

0 0 0 160 0 48 0 181 535 146

In
te

rm
itt

en
t 

Intermittent 
N

row % per-
model

0 0 0 30 0 9 0 34 100 27
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0.5-1 2-3 4-5 8-10 14-18 ALSPAC Ashford IOW MAAS SEATON N classifications ALSPAC Ashford IOW MAAS SEATON
N 

classifications 

ETW ETW ETW ETW ETW 1 NWZ NWZ NWZ NWZ NWZ 1

ETW ETW ETW ETW ETW 1 MCRW MCRW LOW MCRW LOW 2

ETW ETW ETW ETW ETW 1 ETW ETW NWZ NWZ ETW 2

ETW ETW ETW ETW ETW 1 MCRW MCRW MCRW MCRW MCRW 1

ETW ETW ETW ETW ETW 1 ETW ETW ETW ETW ETW 1

ETW ETW ETW ETW ETW 1 ETW ETW ETW ETW ETW 1

INT INT INT INT INT 1 LOW LOW LOW LOW LOW 1

INT INT INT INT INT 1 ETW ETW LOW ETW ETW 2

INT INT INT INT INT 1 MCRW ETW MCRW PEW ETW 3

INT NA INT INT INT 1 PEW NA PEW PEW PEW 1

INT INT INT INT NA 1 PEW PEW PEW PEW NA 1

INT INT INT INT INT 1 ETW ETW LOW ETW ETW 1

INT INT INT INT INT 1 ETW ETW ETW ETW ETW 1

INT INT INT INT INT 1 PEW PEW LOW PEW PEW 2

INT INT INT INT INT 1 MCRW MCRW MCRW MCRW MCRW 1

INT INT INT INT INT 1 PEW PEW PEW PEW PEW 1

INT INT NA INT INT 1 MCRW MCRW NA MCRW MCRW 1

INT INT INT INT INT 1 PEW PEW PEW PEW PEW 1

INT INT NA INT INT 1 ETW ETW NA ETW ETW 1

INT INT INT INT INT 1 MCRW ETW MCRW PEW ETW 3

INT INT INT INT INT 1 PEW PEW PEW PEW PEW 1

INT INT INT INT INT 1 PEW PEW PEW PEW PEW 1

LOW LOW LOW LOW LOW 1 LOW ETW LOW LOW LOW 2

LOW LOW LOW LOW LOW 1 NWZ NWZ LOW NWZ NWZ 2

LOW LOW LOW LOW LOW 1 LOW LOW LOW LOW LOW 1

NWZ NWZ NWZ NWZ NWZ 1 NWZ NWZ NWZ NWZ NWZ 1

PEW PEW PEW PEW PEW 1 LOW PEW LOW PEW LOW 2

PEW PEW PEW PEW PEW 1 MCRW PEW PEW PEW PEW 2

PEW PEW PEW PEW PEW 1 PEW PEW PEW PEW PEW 1

PEW PEW PEW PEW PEW 1 MCRW MCRW MCRW MCRW MCRW 1

PEW PEW PEW PEW PEW 1 MCRW PEW PEW PEW PEW 2

PEW PEW PEW PEW PEW 1 PEW PEW PEW PEW PEW 1

TOTAL 32 45

Wheeze patterns/Age PAM LCA

Table S11. Comparisons of classification of individual wheeze sequences using PAM and LCA. Green dot=no wheeze; red=wheeze
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Figure S5. Alluvial plot showing the transitions of wheeze phenotype membership for 7719 
individual participants between LCA and Partition-Around-Medoids (PAM)

Never wheeze (NWZ); Early transient (ETW); Late onset (LOW); Persistent (PEW); Intermittent (INT)

Figure S6. Wheeze phenotypes derived using Partition-Around-Medoids (PAM) algorithm on binary 
wheeze variables. Plots based on complete sample (N=7719).
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ASSOCIATION OF SPELL-BASED PHENOTYPES WITH EARLY−LIFE RISK FACTORS AND 
ASTHMA-RELATED OUTCOMES DURING CHILDHOOD

Table S12. Associations of wheezing phenotypes with early−life risk factors and skin test responses 
in mid-school age: results from univariable multinomial logistic regression using children with 2+ 
wheeze observations (reference class: No wheeze). SPT=skin prick test

                         Unadjusted Relative Risk Ratio (95% CI)
                         Early transient Intermittent Persistent Late onset 
Gender (Male) 1.39 [1.29,1.50] 1.49 [1.29,1.71] 1.68 [1.50,1.88] 1.06 [0.92,1.23]

P value <.0001 <.0001 <.0001 0.402
Low birth Weight 1.32 [1.10,1.57] 1.45 [1.06,1.97] 1.81 [1.45,2.28] 1.05 [0.73,1.51]

P value 0.002 0.020 <.0001 0.797
Mother Smoking 1.41 [1.29,1.55] 1.17 [0.97,1.40] 1.44 [1.25,1.65] 1.08 [0.90,1.30]

P value <.0001 0.096 <.0001 0.422
Pet at home 1.11 [1.03,1.20] 0.92 [0.79,1.06] 1.10 [0.98,1.23] 1.00 [0.86,1.16]

P value 0.008 0.234 0.112 0.983
Mother− asthma 1.64 [1.46,1.85] 2.65 [2.20,3.19] 2.96 [2.56,3.42] 1.89 [1.53,2.33]

P value <.0001 <.0001 <.0001 <.0001
Mother− eczema 1.25 [1.13,1.37] 1.51 [1.27,1.78] 1.82 [1.60,2.07] 1.22 [1.02,1.46]

P value <.0001 <.0001 <.0001 0.032
Mother− hay fever 1.23 [1.13,1.34] 1.61 [1.38,1.88] 1.99 [1.77,2.23] 1.23 [1.04,1.44]

P value <.0001 <.0001 <.0001 0.014
Father smoking 1.29 [1.19,1.40] 1.32 [1.13,1.53] 1.32 [1.17,1.49] 1.22 [1.04,1.43]

P value <.0001 <.0001 <.0001 0.013
Father− asthma 1.29 [1.14,1.48] 1.76 [1.42,2.19] 2.07 [1.75,2.44] 1.54 [1.23,1.93]

P value <.0001 <.0001 <.0001 <.0001
Father−asthma     male only 1.49 [1.25,1.78] 2.08 [1.58,2.76] 2.42 [1.95,3.00] 1.66 [1.23,2.24]

P value <.0001 <.0001 <.0001 0.001
Father−asthma     female only 1.08 [0.90,1.30] 1.35 [0.99,1.84] 1.53 [1.21,1.95] 1.35 [0.99,1.84]

P value 0.419 0.060 <.0001 0.056
Father− eczema 1.19 [1.05,1.36] 1.27 [1.00,1.61] 1.29 [1.07,1.56] 1.22 [0.96,1.55]

P value 0.008 0.048 0.007 0.097
Father− hay fever 1.06 [0.97,1.17] 1.20 [1.01,1.44] 1.29 [1.12,1.48] 1.12 [0.94,1.34]

P value 0.208 0.042 <.0001 0.218
Allergic sensitization (SPT)
Cat 1.34 [1.04,1.72] 3.82 [2.83,5.15] 6.71 [5.33,8.45] 4.02 [2.95,5.46]

P value 0.021 <.0001 <.0001 <.0001
House dust mite 1.32 [1.08,1.60] 3.86 [3.04,4.91] 6.11 [5.05,7.40] 4.15 [3.24,5.31]

P value 0.005 <.0001 <.0001 <.0001
Mixed grasses 0.91 [0.76,1.11] 2.34 [1.83,2.99] 3.26 [2.69,3.96] 2.73 [2.14,3.50]

P value 0.357 <.0001 <.0001 <.0001
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Gender (Male) 1.42 [1.37,1.47] 1.48 [1.38,1.59] 1.72 [1.62,1.82] 1.03 [0.96,1.11]
P value

Maternal smoking 1.4 [1.34,1.47] 1.12 [1.03,1.21] 1.41 [1.32,1.50] 1.06 [0.97,1.15]
P value

Maternal history of asthma 1.64 [1.55,1.73] 2.63 [2.41,2.88] 3.20 [2.98,3.43] 1.97 [1.79,2.17]
P value

Low birth weight 1.32 [1.21,1.44] 1.35 [1.16,1.58] 1.77 [1.57,1.98] 1.03 [0.87,1.23]
P value

Cat ownership 0.97 [0.93,1.01] 0.84 [0.78,0.91] 0.89 [0.84,0.95] 1.05 [0.98,1.14]
P value

Dog ownership 1.11 [1.06,1.16] 0.98 [0.89,1.07] 1.13 [1.06,1.21] 1.10 [1.01,1.20]
P value

Father smoking 1.24 [1.19,1.29] 1.37 [1.27,1.48] 1.31 [1.23,1.39] 1.28 [1.18,1.38]
P value

Sensitization (age 5 to 7 years) adjusted by maternal, child, perinatal and env. characteristics 
Any allergen 1.11 [1.03,1.19] 2.91 [2.62,3.24] 4.21 [3.86,4.59] 3.52 [3.18,3.89]

P value
Cat 1.34 [1.18,1.53] 3.39 [2.89,3.97] 5.75 [5.08,6.51] 3.72 [3.19,4.34]

P value
House dust mite 1.32 [1.20,1.46] 3.69 [3.25,4.18] 5.51 [4.97,6.10] 3.74 [3.30,4.23]

P value
Grass 0.89 [0.80,0.98] 2.18 [1.91,2.48] 2.88 [2.59,3.20] 2.45 [2.16,2.78]

P value
Associations with asthma outcomes in adolescence*

No wheeze

Early transient 2.44 [1.84,3.24] 4.00 [3.45,4.63] 1.96 [1.48,2.58] 3.31 [2.92,3.75]

P value
Intermittent 27.06 [20.44,35.84] 22.77 [18.23,28.44] 17.34 [13.17,22.84] 18.47 [15.21,22.43]

P value
Persistent 37.72 [29.13,48.85] 48.34 [38.47,60.74] 26.78 [20.90,34.32] 38.97 [32.15,47.24]

P value
Late onset 35.44 [27.30,46.00] 17.8 [14.58,21.73] 16.78 [12.96,21.72] 22.32 [18.26,27.27]

P value
Associations with lung function outcomes in adolescence*

No wheeze
Early transient -0.103 [-0.19,-0.02] -0.014 [-0.10,0.07] -0.151 [-0.24,-0.07]

P value
Intermittent -0.168 [-0.29,-0.05] 0.054 [-0.06,0.17] -0.379 [-0.49,-0.27]

P value
Persistent -0.326 [-0.45,-0.20] 0.079 [-0.05,0.21] -0.707 [-0.83,-0.59]

P value
Late onset -0.003 [-0.13,0.13] 0.159 [0.03,0.29] -0.302 [-0.43,-0.18]

P value 0.959 0.015 <0.0001

0.021 0.748 <0.0001

0.005 0.37 <0.0001

<0.0001 0.221 <0.0001

Z Scores for FEV1† Z Scores for FVC† Z Scores for FEV1/FVC†

Reference Reference Reference

<.0001 <.0001 <.0001 <.0001

<.0001 <.0001 <.0001 <.0001

<.0001 <.0001 <.0001 <.0001

Current** asthma Asthma ever Current** asthma med. Asthma med. ever 
Reference Reference Reference Reference

<.0001 <.0001 <.0001 <.0001

<.0001 <.0001 <.0001 <.0001

<.0001 <.0001 <.0001 <.0001

0.019 <.0001 <.0001 <.0001

<.0001 0.618 0.001 0.034

<.0001 <.0001 <.0001 <.0001

0.009 <.0001 <.0001 <.0001

<.0001 <.0001 <.0001 0.713
Environmental characteristics adjusted by maternal, child, perinatal and environmental characteristics  

0.130 <.0001 <.0001 0.187

<.0001 0.007 <.0001 0.192

<.0001 <.0001 <.0001 <.0001
Perinatal characteristics adjusted by maternal and child characteristics 

Early transient Intermittent Persistent Late onset 
Maternal and child characteristics (adjusted by each other)

<.0001 <.0001 <.0001 0.355

Table S13. Associations of wheezing phenotypes with early−life risk factors and allergic sensitisation in early-school age: results from multinomial logistic 
regression in children with 2+ observations on wheeze (reference class: No wheeze) using weighted membership probabilities. Weights derived from 
probabilities of class membership across 10 imputation samples from the Partition-Around-Medoids (PAM) model. Results are reported as adjusted relative 
risk ratios with 95% confidence intervals. 
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Table S14. Comparison of mean FEV1/FVC z-scores by wheeze phenotypes at each time point (MAAS 
& ALSPAC). Tests for pairwise comparisons conducted with Tukey's HSD test to correct for multiple 
comparisons. Bold figures indicate statistically significant differences at p<0.05.

  MAAS ALSPAC
PHENOTYPE 

COMPARISON MEANS MEAN DIFFERENCE MEANS MEAN DIFFERENCE
 AGE 8 (ANOVA p<0.0001) AGE 8 (ANOVA p<0.0001)

ETW INT 0.009 -0.261 0.270 -0.055 -0.236 0.181
ETW LOW 0.009 -0.323 0.331 -0.055 -0.119 0.065
ETW NWZ 0.009 0.188 0.179 -0.055 0.132 0.186
ETW PEW 0.009 -0.468 0.476 -0.055 -0.443 0.388
INT LOW -0.261 -0.323 0.062 -0.236 -0.119 0.117
INT NWZ -0.261 0.188 0.449 -0.236 0.132 -0.368
INT PEW -0.261 -0.468 0.207 -0.236 -0.443 0.207
LOW NWZ -0.323 0.188 0.510 -0.119 0.132 -0.251
LOW PEW -0.323 -0.468 0.145 -0.119 -0.443 0.324
NWZ PEW 0.188 -0.468 0.655 0.132 -0.443 0.574
 AGE 11 (ANOVA p<0.0001)    
ETW INT -0.008 -0.274 0.265    
ETW LOW -0.008 0.017 0.025   
ETW NWZ -0.008 0.172 0.181   
ETW PEW -0.008 -0.551 0.543   
INT LOW -0.274 0.017 0.291   
INT NWZ -0.274 0.172 0.446   
INT PEW -0.274 -0.551 0.278   
LOW NWZ 0.017 0.172 0.155   
LOW PEW 0.017 -0.551 0.568   
NWZ PEW 0.172 -0.551 0.723    
 AGE 16 (ANOVA p<0.0001) AGE 15 (ANOVA p<0.0001)
ETW INT -0.006 -0.312 0.306 -0.021 -0.345 0.324
ETW LOW -0.006 -0.092 0.086 -0.021 -0.107 0.086
ETW NWZ -0.006 0.196 0.202 -0.021 0.112 0.133
ETW PEW -0.006 -0.541 0.535 -0.021 -0.417 0.396
INT LOW -0.312 -0.092 0.220 -0.345 -0.107 0.239
INT NWZ -0.312 0.196 0.508 -0.345 0.112 -0.457
INT PEW -0.312 -0.541 0.229 -0.345 -0.417 0.072
LOW NWZ -0.092 0.196 0.288 -0.107 0.112 -0.218
LOW PEW -0.092 -0.541 0.449 -0.107 -0.417 0.310
NWZ PEW 0.196 -0.541 0.737 0.112 -0.417 0.528
 AGE 20 (ANOVA p<0.0001) AGE 24 (ANOVA p<0.0001)
ETW INT -0.064 -0.325 0.262 -0.056 -0.295 0.239
ETW LOW -0.064 -0.113 0.050 -0.056 -0.078 0.022
ETW NWZ -0.064 0.205 0.269 -0.056 0.104 0.160
ETW PEW -0.064 -0.537 0.474 -0.056 -0.359 0.303
INT LOW -0.325 -0.113 0.212 -0.295 -0.078 -0.216
INT NWZ -0.325 0.205 0.530 -0.295 0.104 0.398
INT PEW -0.325 -0.537 0.212 -0.295 -0.359 0.064
LOW NWZ -0.113 0.205 0.318 -0.078 0.104 0.182
LOW PEW -0.113 -0.537 0.424 -0.078 -0.359 0.280
NWZ PEW 0.205 -0.537 0.743 0.104 -0.359 0.462
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Table S15. Unadjusted and Benjamani-Hochberg (BH) FDR corrected p-values for associations 
between 17q12-21 SNPs and CDHR3 with Partition-Around-Medoids (PAM) wheeze clusters; a 
threshold of 0.05 was used for FDR.

Unadjusted p-values

BH FDR 
corrected p-

values 
Early onset 0.013 0.035
Intermittent 0.000 0.000
Late onset 0.438 0.539

rs7216389

Persistent 0.000 0.000
Early onset 0.255 0.371
Intermittent 0.005 0.016
Late onset 0.609 0.650

rs4795408

Persistent 0.000 0.000
Early onset 0.393 0.524
Intermittent 0.066 0.117
Late onset 0.235 0.371

rs3894194

Persistent 0.000 0.000
Early onset 0.493 0.563
Intermittent 0.028 0.064
Late onset 0.718 0.718

rs6967330

Persistent 0.033 0.066
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