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Abstract

The Basel II and III Accords propose estimating the Credit Conversion Factor (CCF) to model Exposure
At Default (EAD) for credit cards and other forms of revolving credit. Alternatively, recent work has
suggested it may be beneficial to predict the EAD directly, i.e. modelling the balance as a function of a series
of risk drivers. In this paper, we propose a novel approach combining two ideas proposed in the literature and
test its effectiveness using a large dataset of credit card defaults not previously used in the EAD literature.
We predict EAD by fitting a regression model using the Generalized Additive Models for Location, Scale and
Shape (GAMLSS) framework. We conjecture that EAD level and the risk drivers of its mean and dispersion
parameters could substantially differ between the debtors who hit the credit limit (i.e. “maxed out” their
cards) prior to default and those who did not, and thus implement a mixture model conditioning on these
two respective scenarios. In addition to identifying the most significant explanatory variables for each model
component, our analysis suggests that predictive accuracy is improved, both by using GAMLSS (and its
ability to incorporate non-linear effects) as well as by introducing the mixture component.
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1. Introduction

The Basel regulatory accords have set out risk-sensitive regulatory capital requirements stipulating the
minimum level of capital that banks must hold as a function of various types of risk. Under the Advanced
Internal Rating Based (A-IRB) approach, authorised banks are permitted to use their own methods to
calculate three parameters that are central to one such source of risk — credit risk. These are: Probability
of Default (PD), Loss Given Default (LGD) and Exposure At Default (EAD). In retail credit risk, PD and
LGD have thus far received the bulk of attention by credit risk researchers, whilst EAD has been studied
far less extensively. This paper is motivated by this fact and aims to close such gap by focusing on EAD
modelling.

EAD is defined as the outstanding debt at the time of default and measures the potential loss the bank
would face in the absence of any further repayments. The A-IRB approach requires producing suitable EAD
estimates for all loans that are not yet in default. For some types of loans, those estimates can be relatively
straightforward; for example, the EAD for term loans, such as residential mortgages and personal loans, could
be inferred simply from the current exposure amount plus potential subsequent interest and fees (Witzany,
2011). In contrast, for revolving retail exposures, such as credit cards and overdrafts, the estimation is more
complex as customers are allowed to draw up to a specified limit and can repay any amount at any time (as
long as the minimum level is met). As a result, each borrower’s account balance may change substantially
in the run-up to default and using the current balance may severely underestimate the true exposure risk.
For these types of credit, the Basel Accords have suggested estimating a Credit Conversion Factor (CCF),
which is usually defined as the proportion of the undrawn amount (i.e. credit limit minus drawn amount)
that will be drawn by the time of default. This CCF should reflect the likelihood of additional drawings
between estimation and default time. From the predicted CCF, the estimated EAD then follows as:

EAD = Current drawn amount + (CCF× Current undrawn amount).

Even though statistical methods to estimate the CCF have been proposed, several drawbacks were soon
identified. For example, the CCF distribution is highly bimodal, estimates must be restricted to the [0,1]
range, and models may struggle to cope with the contracting denominator when the current drawn amount
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is already close to the limit. Therefore, in the literature, alternative methods have been suggested to avoid
the undesired properties of CCF models, which include predicting EAD directly (Tong et al., 2016).

In this paper, we focus on EAD modelling for credit cards, which has received limited attention in the
literature. Most of the studies on EAD modelling have thus far focused on corporate credit, whilst fewer
address retail customers (Gürtler et al., 2018). This is partly explained by the greater availability of public
data on the corporate sector and by the fact that the financial status and health of corporate customers
could be inspected from share and market-traded products (Leow and Mues, 2012), enabling easier access to
data. Nonetheless, credit cards make up the largest share of revolving retail credit for most A-IRB banks and
contribute the largest number of defaults compared to other revolving line products (Qi, 2009). This should
contribute sufficiently large information about the characteristics of defaulted accounts to enable statistical
modelling.

To avoid the problems associated with CCF estimation, we choose the EAD amount itself as the response
variable. This choice, however, poses other challenges. For example, the observed value range of realised
EAD levels could be very wide and thus difficult to capture statistically (Yang and Tkachenko, 2012). To cope
with its right-skewness, Tong et al. (2016) therefore proposed a gamma distribution for (non-zero) EAD and
built a direct EAD model under the Generalized Additive Models for Location, Scale and Shape (GAMLSS)
framework (Stasinopoulos et al., 2017), which was shown to outperform several benchmark models (including
for CCF) on a dataset from a UK lender. In this paper, we take a similar approach but we further extend it
by distinguishing between two subgroups of credit card borrowers — those whose balance hit the limit at least
once in the run-up to default, versus those who never maxed out their card over that same outcome period
—, introducing two mixture components to our models. The rationale for doing so is that we hypothesise
that not just the EAD but also its risk drivers (and that of its dispersion) could differ substantially between
the two groups. A similar mixture element was previously proposed by Leow and Crook (2016), along with
their panel models for card balance (and limit), but besides us using a different modelling framework applied
to (cross-sectional) default cohort data, our approach differs from theirs in that we allow for non-parametric
terms, and nor do we assume that the balance of maxed-out accounts has to match the limit value exactly.

To empirically validate the effectiveness of the GAMLSS model (versus OLS), the proposed mixture
approach, and its combined application, we construct a set of benchmark models against which we compare
the predictive performance of our newly proposed model. All models are fitted using a large dataset of credit
card defaults from a large Asian lender, which has not been previously used in the EAD literature.

To summarise, the contributions of our new model and analysis are that we: (1) estimate EAD directly,
instead of using the conventional CCF approach; (2) analyse EAD in the hitherto underresearched area of
retail credit cards; (3) apply the idea of EAD mixture models under the GAMLSS framework and compare
its performance to a series of benchmark models; (4) identify the factors that significantly impact the mean
and dispersion of EAD, giving further insights into the risk drivers of EAD; (5) inspect any differences in
the risk drivers depending on whether the account hit the limit prior to default.

The paper is structured as follows. In Section 2, the existing literature on EAD modelling is reviewed.
Section 3 explains the data and variables used and Section 4 illustrates how statistical models are constructed.
The results are presented and discussed in Section 5. Section 6 concludes.

2. Literature Review

In order to model the EAD of revolving exposures, the Basel II and III Accords have implicitly suggested
estimating a Credit Conversion Factor (CCF), which is the proportion of the undrawn amount at the time
of estimation (i.e. credit limit minus current balance) that will be drawn by the time of default, i.e.:

CCFt,τ =
EADt,τ − Balancet
Limitt − Balancet

.

Balancet denotes the amount of money owed by credit card borrowers at the present time (t). Limitt is the
credit limit or maximum amount that the borrowers could draw at t. EADt,τ is simply the balance at the
future default time (τ) estimated at the present time (t). Hence,

EADt,τ = Balancet + CCFt,τ × (Limitt − Balancet).
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Analysing CCFs (or other EAD proxies that incorporate current balance and limit) is deemed important
because current exposure alone does not give a reliable indication of the final balance at default. The reason is
that, as obligors are approaching default, they may draw additional money (or, in some cases, pay back part
of the balance). Gürtler et al. (2018) found that the most relevant factors affecting CCF are time to default
and borrower risk (credit quality). Moreover, CCF values heavily depend on the type of product (corporate
or retail), data, and empirical methodology used. In the corporate setting, Gibilaro and Mattarocci (2018)
also considered the impact of firms having multiple banking relationships, finding that by considering the
exposures as a group rather than individually, one could enhance statistical model fit (in terms of R2) and
reduce the risk of underestimation.

CCF distributions tend to be highly bimodal with a probability mass at zero (when there is no change
in balance) and another at one (when borrowers end up drawing the entire limit), while showing a flat
distribution in between. This causes difficulties in modelling and predictions produced by a conventional
Ordinary Least Squares (OLS) regression model could be poor. Therefore, various techniques and models
have been put forward as better alternatives for modelling CCF, e.g., Binary logit and Cumulative logit
regression models (Brown, 2011), Beta link generalized linear models (Jacobs, 2010), and Naive Bayesian
models and single layer neural networks (Yang and Tkachenko, 2012). Empirical evidence suggests most of
these produce better performance than OLS regression.

Even though indirect EAD models based on the CCF are commonly used, several other drawbacks have
been identified. For example, when the current drawn balance is already close to the limit to begin with,
CCF values can become very large and unstable due to the contracting denominator (or even undefined when
balance equals limit). This is not uncommon for accounts that will eventually default. Hence, restrictions
must be imposed on CCF models (via truncation or censoring), causing loss of potentially useful information.
More well-behaved values could be equally problematic, however. For example, Leow and Crook (2016)
pointed out that a positive value of CCF can be observed under two different circumstances: (1) when
the current balance is less than both balance at default and current limit (which is a common occurrence
for accounts going into default); or (2) when the current balance is greater than both balance at default
and current limit. Although these two cases may result in the same positive range of CCF values, their
characteristics and implications for EAD risk are totally different. This makes the CCF estimate more
difficult to interpret. Furthermore, Taplin et al. (2007) illustrated how predicted values greater than one
also create undesirable outcomes. Firstly, they would imply that as the balance increases, EAD (and thus the
risk) will decrease, which is counter-intuitive because larger balance should intuitively mean larger exposure.
Secondly, when the predicted CCF is greater than one and balance is greater than limit, the estimated
EAD would be smaller than both balance and limit, which is unlikely to occur. For regulatory capital
requirement purposes, the Basel Accords therefore impose calculated CCF values to be strictly in the [0,1]
range. However, in real-life datasets, one can often see a large number of CCF observations that are either
negative or exceed one. They could be negative when EAD is less than current balance (i.e. the debtor pays
back part of the debt before defaulting), providing that balance is below limit. This more often happens
when time to default is large and current credit utilisation is close to one (Moral, 2006). Alternatively, in the
empirical dataset analysed by Taplin et al. (2007), 38 percent of all accounts exhibited negative CCF values
because they started off with a balance that exceeded the limit (which is contrary to the CCF’s core idea of
the balance increasing by a fraction of the undrawn amount). Conversely, a sizable proportion of observed
CCFs may be greater than one because, in practice, the balance at default time commonly goes beyond the
current credit limit, e.g. due to interest and other charges or credit limit increases between t and τ (Tong
et al., 2016). Imposing a ceiling on CCF would mean that no EAD estimates could ever exceed the current
limit level, which may not reflect reality.

With these obstacles in mind, Luo and Murphy (2020) avoided CCF by implementing other EAD factors,
namely EADF (EADt,τ/Limitt) and AUF ((EADt,τ−Balancet)/Limitt), when estimating EAD in the context
of U.S. construction loans. However, these measures might not offer a better alternative. For example, EADF
does not incorporate information on the outstanding balance, which the literature consistently finds to be a
strongly significant covariate for EAD. Also, Leow and Crook (2016) indicated that, as an account approaches
default and balance increases, lenders act differently; some increase the limit level, some reduce it. This leads
to a heterogeneity problem in a cross-sectional model. Finally, being ratios as well, these EAD factors share
the same weakness as CCF — they become unstable in the case of a small denominator value. Hence, similar
restrictions must be imposed for these models (via truncation or censoring).
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In light of these drawbacks, alternative approaches have been proposed that involve modelling EAD
directly, as a monetary amount (as opposed to ratio). For example, Thackham and Ma (2018) suggested that,
for large corporate revolving facilities, banks often actively manage the borrower’s limit amount as default
time approaches, and that these changes in limit (up or down) have a large impact on EAD. Therefore,
they proposed a mixture (two-stage) model, conditioning their EAD target variable on whether the limit
is decreased or not. Hon and Bellotti (2016) did not forecast drawn balance at default time (EAD) as
such, but instead proposed models to estimate drawn credit card balance at every time step, unconditional
on a default event. They argued that, apart from having risk management applications, the prediction of
this unconditional balance on revolving credit lines is beneficial because it provides banks an expected profit
estimate. Different models were considered, including OLS, two-stage, mixture regression and random effects
panel models. The direct EAD model proposed by Tong et al. (2016) uses a zero-adjusted gamma (ZAGA)
distribution to capture the EAD distribution observed in a dataset of credit card defaults, grouped per default
cohort. They constructed a model in the GAMLSS framework, the predictive performance of which they
compared against that of three common CCF models and a utilisation change model. The results confirmed
that the direct EAD model is a competitive alternative to these benchmark models. Lastly, another mixture
model is proposed by Leow and Crook (2016). Using a portfolio of defaulted credit card accounts and their
monthly observations, they analysed outstanding balance. Similarly to Hon and Bellotti (2016), they did so
not only at the time of default, but at any time over the entire period up to the default time. In addition,
they proposed modelling the probability that account borrowing reaches (or exceeds) the limit level at any
time period; under that scenario, they proposed modelling the limit rather than the balance. A discrete-time
repeated events survival model and panel models with random effects were applied to estimate the former
probability and the conditional balance or limit, respectively, which were shown to provide competitive model
fit and predictive accuracy compared to conventional models. As with other such panel models, suitable lags
would have to be introduced to make the approach suitable to EAD prediction under Basel, which generally
assumes a one-year horizon.

Regardless of the method used to model EAD, common major drivers of EAD according to the lit-
erature are commitment limit level, current balance, credit utilisation, credit quality, time to default, and
undrawn percentage (1−(Balance/Limit)). In this paper, we use the same variables, supplemented by further
behavioural variables derived from monthly account data, as well as a selection of macroeconomic covariates.

Similarly to Tong et al. (2016), our newly proposed direct EAD model is built under the General-
ized Additive Models for Location, Scale and Shape (GAMLSS) framework (Stasinopoulos et al., 2017).
This framework allows selecting a distribution for the response variable, the parameters of which (location,
scale, and shape) can be modelled as a function of explanatory variables, either parametrically or non-
parametrically. GAMLSS is much more flexible than the Generalized Linear Model (GLM) or Generalized
Additive Model (GAM) frameworks, which are restricted to the exponential family. It potentially allows
the fitted distribution to (1) be highly skewed and kurtotic, (2) be discrete, continuous, or mixed discrete-
continuous, (3) exhibit heteroscedasticity, whereby the value of scale and shape parameters varies across
covariate levels. This is important for observed EAD data as it typically exhibits several of these features.
Moreover, the ability to model the dispersion of EAD as a function of explanatory variables can be useful
from a risk management perspective; where the estimated EAD dispersion is large, we could thus make the
point estimate more conservative in order to deal with the greater uncertainty. Motivated by the empirical
results reported by Leow and Crook (2016), we further extend the approach by considering that, as accounts
move towards default, the balance could either hit the limit or not. This breaks the EAD model into two
mixture components, which could have different EAD levels and risk drivers. Although considering similar
scenarios, our approach differs from that taken by Leow and Crook (2016) in a number of ways. First, rather
than treating balance as panel data, we apply the default cohort approach in EAD modelling and group
defaults according to 12-month calendar periods, as this facilitates producing estimates that are conditional
on default and matches the prediction horizon used for Basel. Second, using the GAMLSS framework for all
model parts offers a wider range of distributions and, importantly, allows introducing non-linearity. Third,
considering that the balance can further vary over time and may exceed the (prior) credit limit, we do not fix
the EAD to the credit limit value conditional on a max-out event, but allow its distribution to be explicitly
modelled in this mixture component as well, thus giving further insights into specific risk drivers of EAD for
this subgroup.

Note that our proposed model is an account-level one; in other words, it is the result of taking a bottom-
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up approach. More generally, the underlying parameters in credit risk modelling can be estimated in two
different ways: top-down or bottom-up (BCBS, 1999). The former approach aggregates data with similar
risk profiles, e.g. with regard to credit rating and tenure, and groups them into homogeneous pools, for
which well-calibrated credit risk parameter estimates are then provided. This method is typically applied to
consumer, credit card or other retail portfolios, due to their volume. For example, Witzany (2011) showed
how EAD could be estimated at the aggregated pool level by the top-down approach. On the other hand, the
bottom-up approach measures credit risk at an individual (loan or account) level, considering information on
the entire set of (inhomogeneous) loans. This approach is often adopted for corporate exposures and capital
market instruments. In the consumer credit risk literature, both of these approaches are well known and
have each been employed; however, one does not rule out the other. For example, the bottom-up approach
could aid the design of top-down models as it allows loans to be classified into pools using individual loan
data, whilst the pool-level risk parameter could eventually be estimated from the aggregated data. Since all
of the individual card defaults are used to construct the EAD models in this paper, our method would be
primarily classified under the bottom-up approaches. Examples of other studies that, similarly to us, utilise
a bottom-up method for retail credit card modelling are Tong et al. (2016), Hon and Bellotti (2016) and
Leow and Crook (2016).

The use of regression models, in line with a bottom-up approach, offers a number of benefits. First, they
provide insight into any account-level or economic risk drivers of EAD. Second, they are able to produce
forward-looking estimates, and can thus capture the effects of any changes in the underlying risk drivers;
from this, one can project how total portfolio risk changes if the portfolio composition (due to changing
customer characteristics or account behaviour) and/or the economy changes. Third, when building account-
level models, positive correlation between default risk and EAD can be taken into account in the respective
models through a subset of shared covariates such as credit utilisation and economic variables. If, instead,
this risk dependence were to be neglected, portfolio risk could be underestimated since it is the underlying
force that significantly increases tail losses (see, for example, Kaposty et al. (2017) and Kupiec (2008)).

3. Data and variables

The original dataset provides monthly account-level data on the consumer credit cards of a large Asian
bank from January 2002 to May 2007. We define EAD as the outstanding balance at default time, taking
the amount owed by the borrower excluding any subsequent interests and additional fees; any debt incurred
after default will not be included in the EAD calculation. We say that an account goes into the default state
when a borrower either: (1) misses or could not make the minimum repayment amount required by banks
for three months or more; (2) is declared bankrupt; or (3) is declared charged-off, i.e. expected to be unable
to return the owed money back to the bank. In keeping with the standard practice in EAD modelling, we
extract data from the defaulted accounts only, as the estimation is conditional on default and the balances
of defaulted and non-defaulted accounts are expected to behave differently.

We also add macroeconomic variables to the dataset because individual customers’ borrowing levels could
further vary under different economic scenarios. Also, this may help our model be more time-stable and
allows us to assess the impact on EAD of downturn scenarios, thus providing a suitable framework for stress
testing required by banks applying the A-IRB approach (Kaposty et al., 2017).

We apply the standard yearly cohort method (Moral, 2006) to prepare the data for analysis and set the
reference month where the estimation takes place on 1st November of every year. The values of behavioural
and macroeconomic covariates are then collected a month prior to the reference month, namely in October,
whereas the response, EAD, is recorded at the occurring default time. Accounts that lack sufficient monthly
records to calculate the explanatory variables are omitted.

Further removing a small number of missing value cases (177 observations), we are left with more than
70,000 defaulted accounts. This dataset is then separated into three groups: training (60%), validation (20%),
and test dataset (20%). Figure 1 shows the empirical EAD distribution, which exhibits right-skewness, is
heavy-tailed, and has a small bump at 200,000 (local currency), which is a likely consequence of the bank
operating a maximum limit.

Table 1 lists the set of candidate explanatory variables extracted from the data, which have previously
shown correlation with EAD according to the literature or can be reasonably expected to significantly impact
EAD. Four macroeconomic variables are considered: unemployment rate, interest rate, GDP, and CPI.
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Figure 1: Histograms (with the scale of the y-axis omitted) of: observed exposure at default (left); observed current limit
(right).

4. Statistical models

The following subsections outline our newly proposed model, GAMLSS.Mix, and three benchmark models,
GAMLSS, OLS.Mix and OLS.

4.1. GAMLSS.Mix

In our new model, we propose to estimate EAD conditionally on two mutually exclusive scenarios that
may occur in the run-up to default. Denote the EAD of account i as EADt,τ (i) = EADi. Note that reference
time t and default time τ are omitted from here on for the sake of simplicity. We define a binary variable,
Si, to denote the occurrence of a “max-out” event as:

Si =

{
1 if the balance hit the limit, at least once, at any point during the outcome window;
0 otherwise,

where the outcome window is the period between reference and default time. Applying the law of conditional
expectation, the expected value of EADi is then given by:

E(EADi) = [P (Si = 1)× E(EADi|Si = 1)] + [P (Si = 0)× E(EADi|Si = 0)] . (1)

Therefore, three model parts must be fitted, all of which conditional on default: first, a model for the
probability that the balance will hit the limit over the observation period, P (Si = 1); second, a model to
estimate EAD conditional on the balance hitting the limit, E(EADi|Si = 1); third, a model to estimate
EAD conditional on no such max-out event occurring, E(EADi|Si = 0).

We will refer to this newly proposed mixture model as “GAMLSS.Mix”, as it will use the GAMLSS
framework to fit each of these model parts. For each such component, we use a separate validation set
(setting aside 20% of the data) to make model selection decisions such as variable selection. Subsequently,
the final model (whose partial effect plots will be shown) is trained after merging training and validation
data.
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Variable Notation Explanation

Age of account age Months since account has been opened.
Limit l Credit limit, i.e. maximum amount that could be drawn

from card.
Balance b Current amount drawn.
Behavioural score bsco Internal score capturing current credit quality of account.
Months in arrears past 9 months no.arr9 The number of months an account has been in arrears

over the nine months prior to the reference time. A bor-
rower is considered in arrears when they pay less than their
monthly minimum payment.

Months in arrears past 3 months no.arr3
Limit increase past 9 months limin9 Dummy variable indicating whether the limit has been in-

creased over the past nine months (Y/N).
Limit increase past 3 months limin3
Absolute balance change past 9 months abs.ch.b9
Absolute balance change past 3 months abs.ch.b3
Average paid percentage past 9 months paid.per9 Paid percentage is the percentage of last month’s balance

paid by the borrower, i.e. Paid Amount/Balance.
Average paid percentage past 3 months paid.per3
In arrears past 9 months arr9 Dummy variable indicating whether the account has been

in arrears at least once over the past nine months (Y/N).
In arrears past 3 months arr3
Credit utilisation cu Percentage of the limit drawn by borrower, i.e. Bal-

ance/Limit.
Full payment percentage full.pay.per Percentage of account’s months on book in which borrower

has paid balance in full, i.e. number of full payments / age
of account.

Behavioural score special code bscocat Dummy variable indicating whether behavioural score
recorded a “special” case.

(Non-)negative balance bcat Dummy variable indicating whether balance was negative
(and thus capped).

Time to default ttd Duration in months from reference time to default time.
Unemployment rate unem Macroeconomic variable measured at reference time.
Interest Rate int The best lending rate benchmarked by the relevant central

bank.
Gross domestic product gdp
Consumer price index cpi

Table 1: List of available explanatory variables. Note that, since the behavioural scores of some accounts do not have a regular
value (such as 680, 720, etc.) but codes representing “special” cases (e.g., “the account is too new to score”), we replace such
special codes by the (training) mean of the regular behavioural scores and flag this up with the help of a dummy indicator
(bscocat). Likewise, negative credit card balances, which may e.g. occur when a borrower uses a credit card to purchase a
product and decides later to return it, are capped at zero, and another dummy variable (bcat) is added to distinguish between
negative and true zero balances.

4.1.1. Probability of max-out event

To estimate P (Si = 1), we model the binary response variable as a non-parametric function of the
explanatory variables. More specifically, letting pi = P (Si = 1), the max-out event probability is modelled
as follows:

log

(
pi

1− pi

)
= α1Yi,t + α2Zt + non-parametric terms, (2)

where α1 and α2 are unknown vectors of parameters to be estimated, and Yi,t and Zt are (account-level)
behavioural and macroeconomic covariate vectors, respectively. The parametric coefficients α1 and α2 and
non-parametric smoothing terms are fitted by performing the Rigby and Stasinopoulos (RS) algorithm based
on penalised (maximum) likelihood (Stasinopoulos et al., 2017), into which the following likelihood function,
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L, is substituted:

L =

n∏
i=1

pyi

i × (1− pi)
1−yi , (3)

where yi = 1 for an observation i whose balance hit the limit, and zero otherwise. Penalised B-splines (Eilers
and Marx, 1996) are chosen to fit the non-parametric terms in Equation 2 because they enable smoothing
parameter selection to be performed automatically by minimising the Akaike Information Criterion, AIC =
−2Lp + 2n, where Lp is the penalised likelihood and n is the number of parameters in the model.

We build three candidate models for pi by considering three different variable selection strategies —
either including all explanatory variables or using two alternative stepwise methods (alternating forward
and backward selection at each step) based on the AIC and BIC criteria (5 percent α-level). The “gamlss”
package (Stasinopoulos et al., 2017) in R (R Core Team, 2020) is used to fit these three models to all training
examples of defaults. Based on their performance on the validation set, one of the three candidate models is
then selected, following assessments of the Pearson goodness-of-fit statistic from the Hosmer-Lemeshow test
(predictive accuracy), Area Under the Receiver Operating Characteristic curve (AUROC) (discrimination
power) and residual plots (model adequacy). Where these metrics suggest different candidate models, one
is chosen at the modeller’s discretion. Note that the residuals used in GAMLSS are normalised quantile
residuals which are expected to follow a standard normal distribution regardless of the distribution of the
response variable, provided that the model is correctly specified.

4.1.2. Conditional EAD models

To produce EAD estimates that are conditional on either of the two credit balance scenarios, we further
partition the training data into two subsets. The first subset consists of the credit card accounts whose
balance hit the limit in any of the months during the outcome window; the second subset consists of the
accounts that did not. We then proceed by fitting two separate models to these subsets.

In either of these scenarios, one can further distinguish between zero and non-zero EAD values. Zero
values may potentially occur because of several special cases or technical default examples, such as charge-
offs connected to other accounts, the observations being rounded or truncated to zero, customers moving
their outstanding balance to other accounts, or payment delays. As they could have different explanatory
drivers, we treat zero values separately from non-zero EAD values by including the probability of zero EAD
into the models.

Figure 2 shows the empirical distribution of non-zero EADs for both subsets of accounts, confirming that
accounts that hit their limit tend to have larger EAD values. Their shape also suggests a positively skewed
distribution such as Gamma, Inverse Gaussian, or Log Normal distribution. For each of these candidate
distributions, we evaluated the AIC/BIC and MAE/RMSE criteria for a full model (i.e. with all explanatory
variables). Based on this, as in Tong et al. (2016), the Gamma distribution was found to give the best
results.

Hence, in order to model E(EADi|Si = 0), we assume that EADi follows a mixed discrete-continuous
Zero-Adjusted Gamma (ZAGA) distribution, shown in Equation 4.

f(EADi|Si = 0) =

 νi if (EADi|Si = 0) = 0,

(1− νi) Gamma(EADi|µi, σi, Si = 0) if (EADi|Si = 0) > 0,
(4)

for 0 ≤ EADi < ∞, where 0 < νi < 1, µi > 0, σi > 0, and

Gamma(y|µ, σ) = 1

(σ2µ)1/σ2

y(
1
σ2 −1)e−y/(σ2µ)

Γ(1/σ2)
.

Note that the mean and variance of Gamma(y|µ, σ) are µ and σ2µ2, respectively. Hence,

E(EADi|Si = 0) = (1− νi)µi,

V ar(EADi|Si = 0) = (1− νi)µ
2
i (σ

2
i + νi).

(5)
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Figure 2: Empirical distribution of non-zero EADs (with the scale of the y-axis omitted); red: histogram for the accounts whose
balance hit the limit, blue: histogram for the accounts that never hit the limit; purple: overlapping area.

There are thus three parameters in the ZAGA distribution: the mean (µ) and dispersion (σ) of non-
zero EAD, and the probability of zero EAD (ν). Allowing the relationship between µ and its explanatory
variables to be non-linear, we again model it through non-parametric smoothing terms. Since the main
focus is on µ, we restrict the relationships of σ and ν with their respective sets of explanatory variables to
be parametrically linear. This makes the model less computationally expensive and easier to implement in
practice. The parameters µ, σ, and ν can thus be estimated through the following link functions:

log(µi) = γµ
1 Y

µ
i,t + γµ

2Z
µ
t + non-parametric terms;

log(σi) = γσ
1 Y

σ
i,t + γσ

2Z
σ
t ; logit(νi) = γν

1Y
ν
i,t + γν

2Z
ν
t ,

where γ1 and γ2 are unknown vectors of parameters to be estimated. We apply a log and logit link function,
respectively, in order to assure that the range of µ and σ parameters are greater than zero and the range of
ν parameter is between zero and one. The likelihood function, L, used in the penalised maximum likelihood
estimation is:

L =

n∏
i=1

f(EADi) =
∏

EADi=0

νi
∏

EADi>0

(1− νi)×Gamma(EADi|µi, σi). (6)

Five variable selection techniques are applied to create five submodels: using all variables; using stepwise
variable selection for µ, σ and ν separately, with either AIC or BIC as the model selection criterion; using
stepwise with AIC/BIC by running the parameters together (cf. stepGAICAll.A() function in Stasinopoulos
et al. (2017)). The criteria used to select one of the five resulting submodels are Pearson correlation (dis-
crimination performance), MAE, Normalised MAE, RMSE, Normalised RMSE (predictive accuracy) and
residual plots (model adequacy), each of which is again evaluated on the validation set. Normalised versions
of the error metrics are produced where MAE and RMSE are calculated for EAD/Current Limit, instead
of EAD, in order to investigate the performance of the model if the percentage of current limit (not EAD
itself) at default time is of interest.
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The procedure of modelling EAD for the second subset of accounts that hit their limit, E(EADi|Si = 1),
is similar to its counterpart scenario. The Gamma distribution is again selected for fitting the non-zero EAD
response. Note that the best model variations for all three model components can be found in Table 2.

Model Probability max-out EAD no max-out EAD max-out

GAMLSS.Mix Full variables Stepwise AIC, run separately
for each parameter

Stepwise BIC, run separately
for each parameter

GAMLSS Stepwise, with BIC, run for all model parameters together

OLS.Mix Stepwise with BIC Full variables; LASSO Stepwise with AIC

OLS Full variables; LASSO

Table 2: Best submodels for the newly proposed and benchmark models.

4.2. Benchmark models

In order to evaluate the effectiveness of our proposed model, we build another three benchmark mod-
els against which we compare its predictive performance. Firstly, “GAMLSS” is the EAD model under
the GAMLSS framework applied to all defaulted accounts, without applying the mixture idea. Secondly,
“OLS.Mix” adds the mixture idea to the OLS framework, applying standard OLS regression for the mixture
components and logistic regression for modelling the max-out event probability. Thirdly, “OLS” fits a stan-
dard OLS regression model to all defaulted accounts. To perform variable selection for OLS and OLS.Mix,
we try three methods: the Least Absolute Shrinkage and Selection Operator (LASSO), a stepwise algorithm,
and fitting a model with the full set of variables. As before, we use a validation dataset to find the best
(sub)model candidates for each benchmark approach (see Table 2).

5. Results and discussion

In this section, we present the results of our newly proposed model and the performance comparisons
with the benchmark models. In addition, we will inspect the significant relationships between explanatory
variables and response parameters.

5.1. Discrimination and predictive performance

The performance measurements for all models, evaluated using ten-fold cross validation, are shown in
Table 3. This table contains the following metrics: Pearson correlation (discrimination performance); MAE,
Normalised MAE (see section 4.1.2), RMSE, Normalised RMSE (predictive accuracy); and 0.9 quantile loss
(QL-90). The α quantile loss function is defined as

∑
i;yi<ŷi

(α− 1) · (yi − ŷi) +
∑

i;yi≥ŷi
α · (yi − ŷi), where

yi and ŷi are true and predicted EAD values, respectively. Its basic idea is to give different penalties to a
misestimation based on the selected quantile. The 0.9 quantile loss penalises underestimation more heavily,
and hence, is a good measure for assessing the conservativeness of a risk estimate such as EAD.

As time to default is unknown a priori, Table 3 presents two different sets of results: one using the
actual values of time to default (to enable comparison with other papers that included this variable and as
it is likely to affect dispersion); and one where they were estimated by applying a simplified version of the
PD-weighted approach by Witzany (2011), in which, for each month t (t = 1, . . . , 12) of each default cohort,
we observe the empirical proportion of training set defaults, PD(ti) and, from those, derive the following
point prediction for EAD of each account:

EAD =

12∑
ti=1

[PD(ti)× EAD(ti)] , (7)

where EAD(ti) is the EAD estimate when ti months is substituted instead of the actual time to default. The
latter approach is used to verify to what extent the former performance results remain robust if the model
is applied not for explanatory (using real values of time to default) but for prediction purposes (using the
estimated values).
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Model Correlation RMSE MAE Norm.RMSE Norm.MAE QL-90

GAMLSS.Mix 0.937 (0.004) 16927 (385) 7881 (137) 0.265 (0.005) 0.147 (0.002) 4125 (153)
GAMLSS 0.908 (0.041) 20489 (4903) 8718 (268) 0.292 (0.010) 0.160 (0.002) 4457 (161)
OLS.Mix 0.935 (0.004) 17152 (435) 8751 (161) 0.304 (0.011) 0.187 (0.003) 4365 (159)
OLS 0.930 (0.004) 17810 (397) 9758 (162) 0.335 (0.009) 0.220 (0.004) 4879 (155)

(a) Performance measurements, using actual values of time to default.

Model Correlation RMSE MAE Norm.RMSE Norm.MAE QL-90

GAMLSS.Mix 0.933 (0.004) 17458 (381) 8136 (140) 0.273 (0.006) 0.151 (0.002) 4354 (153)
GAMLSS 0.907 (0.041) 20591 (4882) 8757 (268) 0.293 (0.010) 0.161 (0.002) 4471 (158)
OLS.Mix 0.932 (0.004) 17574 (434) 8845 (159) 0.298 (0.009) 0.183 (0.003) 4532 (154)
OLS 0.929 (0.004) 17945 (394) 9500 (147) 0.315 (0.007) 0.203 (0.003) 4750 (146)

(b) Performance measurements, using PD-weighted approach.

Table 3: Ten-fold cross validation performance measurements with standard errors inside parentheses.

Examining the results, we can see that, when it comes to Pearson correlation, there is little to separate the
different models, indicating that even the simplest model (OLS) can already discriminate well between high
and low EAD risk. However, with regards to all other measures, there are pronounced differences between
the various approaches. Firstly, with the exception of RMSE and QL-90 for GAMLSS, the two approaches
that apply the GAMLSS framework (GAMLSS and GAMLSS.Mix) outperform those using standard OLS
regression (OLS and OLS.Mix), showing that its features are better capable of handling the EAD distribution
and its relation to the risk drivers (e.g. any non-linearity). Secondly, when we introduce the mixture concept
into the OLS framework (OLS.Mix vs. OLS), all of the predictive accuracy measures improve as well. This is
in agreement with the results reported by Leow and Crook (2016), who also found that adding the mixture
component to their linear models improved performance. We suggest, as a partial reason for this performance
gain, that conditioning on the occurrence of a max-out event has the beneficial effect of introducing some
non-linearity into the functional relationships between explanatory variables and EAD. This is illustrated
by the partial effect plots for the behavioural score variable in Figure 3, showing us how OLS.Mix is able
to approximate the non-linear relationship between behavioural score and EAD using a concave function.
Thirdly, and perhaps most importantly, the newly proposed model, GAMLSS.Mix, consistently outperforms
all benchmark models across all predictive performance criteria (cf. RMSE, MAE, Norm.RMSE, Norm.MAE),
whilst being more conservative in terms of the prediction errors it makes (cf. QL-90). This shows that, as
hypothesised, there is indeed added value in combining both modelling elements.

When comparing the predictive performance without prior knowledge of time to default (see Table 3b)
against that of the explanatory model application (i.e. with knowledge of time to default, see Table 3a),
we see a small drop in performance, as to be expected, but importantly, the performance ranking for all
models remains almost similar and the proposed GAMLSS.Mix model still has the best predictive power.
This suggests that our findings are robust regardless of the chosen treatment of this explanatory variable.

Since the proposed model is designed using the bottom-up approach, it is interesting to verify how effective
it is in producing predictions in different risk buckets. Hence, for each model, we sort the accounts in the
test set into ten different buckets according to the value of predicted EAD (the first bucket containing those
accounts with the lowest 10% predicted EAD, while the tenth bucket holds the highest 10% ones). Then,
we evaluate each model’s performance in each of these buckets (see Figure 4 when actual time to default is
used and Figure 5 when the simplified PD-weighted approach is used). The results show that, most of the
time, the GAMLSS.Mix model provides the best performance across the different measures. Therefore, the
proposed bottom-up model also performs well when applied to the accounts in different pools. In addition,
we provide calibration plots showing how close the bucket-level EAD estimates produced by each method
are to the actual (mean) EAD in each bucket (see Figure 9 and Figure 10 in appendix). All (bottom-up)
models are shown to be well calibrated at each (top-down) EAD pool.

5.2. Risk Drivers of GAMLSS.Mix model components

Unlike with a linear regression, the non-parametric smooth functions fitted by GAMLSS.Mix cannot be
explained in a simple mathematical form; that is, we cannot gauge the impact of an explanatory variable
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Figure 3: Partial effect plots of behavioural score vs. estimated EAD, for OLS, OLS.Mix and GAMLSS models.
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Figure 4: Performance measurements assessed on different buckets of the test dataset, ordered from lowest (1) to highest (10)
predicted EAD; results using actual values of time to default.

on the response variable by just looking at its estimated coefficient. However, we can display each effect
visually with the help of partial effect plots. These depict how one specific explanatory variable influences
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Figure 5: Performance measurements assessed on different buckets of the test dataset, ordered from lowest (1) to highest (10)
predicted EAD; results using the simplified PD-weighted approach.

the response assuming that the other covariates are fixed.
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Figure 6: Partial effect plots on logit scale for max-out event risk in the GAMLSS.Mix model.
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Figure 6 displays partial effect plots on a logit scale for the max-out event probability, P (Si = 1), of
GAMLSS.Mix. The shaded areas indicate the precision of the estimates using 95% confidence intervals. In
the bottom-right panel, we observe that higher credit utilisation (measured at reference time) makes it more
likely that the customer will max out their card in the run-up to default, especially when utilisation already
exceeds one prior to the outcome period (the latter makes the event almost inevitable). Similarly in line with
expectations, longer time to default (see bottom-left panel) is associated with a higher probability of the
balance hitting the limit. Starting balance (top-left) and credit limit (top-right) tend to have a positive and
negative effect on the probability of a max-out event, respectively, which is again intuitive since customers
with higher balance and lower limit are closer to maxing out their card.

Figure 7 presents the partial effect plots, on a log scale, for the µ parameter (non-zero EAD mean) of
GAMLSS.Mix, for the subset of accounts whose balance never hit the limit (hence, conditional on Si = 0);
Figure 8 does so for the other subgroup (Si = 1). In both figures, we see that higher credit limit level is
strongly linked to larger EAD. This is again perfectly intuitive as customers with a higher limit are allowed
to borrow more. Note that the waviness and widening confidence band near the upper-end of the variable
range suggest some undersmoothing linked to the relatively small number of accounts with a limit above
200,000.
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Figure 7: Partial effect plots on log scale for the mean (µ) parameter of the accounts whose balance never hit the limit in the
GAMLSS.Mix model.

Similarly, EAD is also related to the current level of credit utilisation (Figure 7, top-left plot) or to
balance (Figure 8, left plot), higher values implying larger balance at default. Interestingly, more variables
appear in Figure 7, suggesting that these only help to better predict accounts who stay clear of the limit. In
other words, a more complex model is needed for this mixture component than for the other. For example,
in their higher value range, behavioural score and full payment percentage have a negative effect on the EAD
of those accounts; hence, provided that they did not hit the limit, high credit-quality borrowers who most
of the time pay back their balance in full tend to have a lower balance if they do default. Two novel insights
were encountered as well. Firstly, the partial effect plot for average paid percentage over the past three
months (see top-middle panel of Figure 7) suggests that those borrowers who previously repaid a higher
(partial) proportion of their balance could still end up with a higher EAD. Secondly, customers with a
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Figure 8: Partial effect plots on log scale for the mean (µ) parameter of the accounts whose balance hit the limit in the
GAMLSS.Mix model.

negative current card balance (who are thus owed money by the bank) may have higher EAD risk than those
with zero balance (top-right). One potential explanation may lie in that both could be seen as indicative of
greater card activity. Another may be that, as those values are more often associated with customers who
are less likely to default, there may be hidden risks that drive them to heavily draw down before default
eventually occurs; this would concur with Barakova and Parthasarathy (2013) who reported that higher EAD
can be associated with defaults that are hard to anticipate. Note that, for brevity and as they had a lesser
impact (based on a likelihood ratio test), macroeconomic covariates and the other behavioural variables are
omitted from the figure (results available on request).

To facilitate further comparison between the different models and the effects they captured, Table 4
summarises which explanatory variables are shown to have a strong impact on (non-zero) EAD mean (µ) in
the two GAMLSS.Mix component models and the GAMLSS benchmark model and whether that impact is
(mostly) positive or negative. Likewise, it also contains the same information for the σ (dispersion) and ν
parameters. For brevity, we omit further discussion of the last parameter, ν.

Turning to the second parameter, dispersion, we can see in Table 4 that the higher is the level of credit
utilisation and/or current balance, the lower is the dispersion — in other words, the more predictable the
EAD. In contrast, the farther away from default time (both scenarios) or the larger the limit (non-max-out
scenario only), the larger the dispersion; i.e. there is more time and scope for the balance to change and thus
become less predictable. These four effects all appear to be intuitive. Interestingly, as for the EAD mean
earlier, the list of important factors is again longer for the first mixture component (i.e. for the accounts
with no recorded max-out event). There, age of account (i.e. time on book), the average of paid percentage
over three months, and number of months in arrears are also among the variables that are shown to affect
dispersion. Specifically, the longer the account has been on the books, the more predictable is EAD, whereas
higher values for the other two variables (which could indicate greater monthly variation in balance) tend
to imply greater variance. Also, special behavioural scores and negative current balances imply special
cases under which the EAD prediction for those accounts becomes more uncertain as well. As they are all
meaningful effects, there appears to be added value in explicitly modelling the dispersion parameter (rather
than assuming homoscedasticity).

6. Conclusions and future research

Exposure At Default (EAD) is one of the key parameters used to calculate the regulatory capital require-
ments under the Advanced Internal Rating Based (A-IRB) approach. To estimate EAD, Credit Conversion

15



Variable Mean Dispersion Prob. of zero-EAD
EAD EADn EADt EAD EADn EADt EAD EADn EADt

age − +
l + + + + + +
b + + − − − −
bsco − − − + +
no.arr9 +
no.arr3 −
limin9
limin3
abs.ch.b9 + − −
abs.ch.b3 +
paid.per9
paid.per3 + + + + +
arr9
arr3
cu + − −
full.pay.per − +
bscocat (special) + +
bcat (negative) + + + +
ttd + + + −
unem
int −
gdp
cpi

Table 4: A set of strongly significant predictors for the EAD parameters of: the GAMLSS benchmark model (EAD);
GAMLSS.Mix no max-out (EADn); and GAMLSS.Mix max-out (EADt).

Factor (CCF) models were implicitly suggested by the Basel Accords and have been studied in the literature,
but several drawbacks of such models can prove problematic. In this paper, we therefore mainly focus on
estimating EAD via a direct model rather than applying CCF or other related factors.

Our newly proposed model combines two ideas formerly put forward in the literature. First, it is built
under the GAMLSS framework which produces a much more flexible fitted distribution than the GLM
and GAM frameworks. Second, as the level of EAD as well as the risk drivers of its mean and dispersion
parameters could significantly differ depending on whether the account hit the credit limit at any point in the
run-up to default, we extend our solution to a mixture model conditioning on these two possible scenarios.
This new model, as well as several benchmark models, are empirically validated using a large dataset of
credit card defaults not previously used in the EAD literature.

By distinguishing between these two scenarios, we indeed found differences in preferred risk drivers
for the EAD model parameters. For example, current balance was picked over several other potential
drivers for (positive) EAD mean when a max-out event occurs, but not in the opposite scenario, whereas
current limit level was identified as being strongly linked to dispersion only under the non-max-out scenario.
Moreover, the number of factors is larger for borrowers who did not max out their cards, suggesting that
this subgroup benefits from a more complex model. Overall, only behavioural variables appear to have a
significant impact in our EAD models; despite the data containing defaults from a recessionary period, the
macroeconomic covariates show little added predictive power over those account-level variables. Current
limit is the strongest variable that affects the mean of non-zero EAD. To manage model uncertainty, one
should focus on the current level of drawn balance amount and (estimated) time to default as their values
greatly impact EAD dispersion.

Our results show a clear performance benefit of applying GAMLSS over the OLS framework, confirming,
consistently with what Tong et al. (2016) reported for another dataset, that there are indeed predictive
accuracy gains in EAD modelling from including non-linear effects and targeting not only the EAD mean
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but also dispersion. Similarly, when the mixture concept is introduced into the OLS framework, all predictive
accuracy measures improve as well. A new explanation we put forward for the latter is that, by implementing
the mixture idea, we allow some non-linear effects to emerge from the combination of different linear models,
thus capturing more complex relationships between EAD and its covariates and producing better predictions.
Most of all though, we find that combining the mixture component and the GAMLSS approach results in
another predictive performance boost, as our newly proposed model, GAMLSS.Mix, outperforms the three
benchmark models on all criteria.

In terms of potential practical benefits, a more accurate EAD model, such as that proposed, can lead to
more accurate loss estimation, which allows banks to adjust the capital they require accordingly. Moreover,
the non-linear predictor effects, shown in the partial effect plots, reveal the impact of each behavioural
variable on different risk aspects. This can provide the bank with useful insights to design an early warning
system. More specifically, the insights from the “max-out” model allow the bank to identify those borrowers
who are most at risk of maxing out their credit card (and thus present the largest exposure risk). It follows
that the bank could decide to lower their credit limit to mitigate such risk.

A potential future avenue of research is to more fully incorporate time to default in the prediction
framework, particularly since our models confirm that max-out risk and EAD variance (dispersion) are
higher the more time elapses before default. As time to default is unknown a priori, one could use survival
analysis to capture its dynamic distribution, from which EAD can then be derived as in section 5.1. A follow-
up study could consider different methods to implement such a PD-weighted approach (Witzany, 2011) and
test their effectiveness when combined with the newly proposed EAD model. In addition, assuming the
availability of a sufficiently large number of defaulted accounts, machine learning techniques, such as random
forests, gradient boosting, or deep learning (depending on the structure of the data), could prove beneficial
in the context of EAD modelling. Such a follow-up study could involve benchmarking a larger selection of
statistical and machine learning techniques, whilst trading off any performance gains against the quality of
model explanations they are able to provide.
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Appendix: calibration plots of bucket-level EAD estimates
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Figure 9: Calibration plots of the average of predicted EAD against that of actual EAD, assessed on different buckets of the
test dataset and ordered from lowest (the leftmost point cluster) to highest (the rightmost point cluster) predicted EAD. The
equal line, where the actual and predicted values are equal, is represented in diagonal. Results using actual values of time to
default.
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Figure 10: Calibration plots of the average of predicted EAD against that of actual EAD, assessed on different buckets of the
test dataset and ordered from lowest (the leftmost point cluster) to highest (the rightmost point cluster) predicted EAD. The
equal line, where the actual and predicted values are equal, is represented in diagonal. Results using the simplified PD-weighted
approach.
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