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Abstract

Background: The National COVID-19 Chest Imaging Database (NCCID) is a centralized database containing mainly chest
X-rays and computed tomography scans from patients across the UK. The objective of the initiative is to support a better
understanding of the coronavirus SARS-CoV-2 disease (COVID-19) and the development of machine learning technologies
that will improve care for patients hospitalized with a severe COVID-19 infection. This article introduces the training
dataset, including a snapshot analysis covering the completeness of clinical data, and availability of image data for the
various use-cases (diagnosis, prognosis, longitudinal risk). An additional cohort analysis measures how well the NCCID
represents the wider COVID-19–affected UK population in terms of geographic, demographic, and temporal coverage.
Findings: The NCCID offers high-quality DICOM images acquired across a variety of imaging machinery; multiple time
points including historical images are available for a subset of patients. This volume and variety make the database well
suited to development of diagnostic/prognostic models for COVID-associated respiratory conditions. Historical images and
clinical data may aid long-term risk stratification, particularly as availability of comorbidity data increases through linkage
to other resources. The cohort analysis revealed good alignment to general UK COVID-19 statistics for some categories, e.g.,
sex, whilst identifying areas for improvements to data collection methods, particularly geographic coverage. Conclusion:
The NCCID is a growing resource that provides researchers with a large, high-quality database that can be leveraged both to
support the response to the COVID-19 pandemic and as a test bed for building clinically viable medical imaging models.
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Background

Radiology has played a significant and shifting role during the
pandemic [1], informing our understanding of COVID-19 [2–6]
and guiding decision making along care pathways. Clinicians
have identified characteristic features of COVID-related pneu-
monia; such features can be used to differentiate patients with
COVID-associated respiratory syndrome from those with other
respiratory conditions [4, 7, 8]. However, these differences in dis-
ease manifestation are often subtle [9] and may be more quan-
titatively delineated using computational methods.

One corollary of the widespread adoption of radiology dur-
ing the pandemic is the accumulation of large volumes of clini-
cal imaging data spread across hospital sites throughout the UK.
The National COVID-19 Chest Imaging Database (NCCID) was es-
tablished to collate this mass of X-ray, computed tomography
(CT), and MRI scans into an accessible imaging database, in a
similar vein to other data sharing initiatives motivated by the
pandemic [10–12]. The end goal of the NCCID is to facilitate re-
searchers and technology developers in the creation of fair, ef-
fective, and generalizable machine learning (ML) technologies
that ultimately aid clinicians to improve patient outcomes. Such
technologies may include diagnostic models that differentiate
COVID from non-COVID respiratory conditions [13, 14] or prog-
nostic models that leverage longitudinal data to stratify risk of
mortality, inform treatment pathways, and predict length of stay
[15–18].

A broader aim of the initiative is to provide a blueprint for fu-
ture national imaging initiatives within centralized healthcare
systems, positing secure, automated tooling for curating large
volumes of imaging data from the point of care. The resulting
high-quality, well-maintained databases may be the key to un-
locking effective and robust application of ML models in the
clinical setting. Such resources are guaranteed to represent the
types of imaging machinery and cohorts expected for the clini-
cal use case whilst also mitigating many of the common pitfalls
hindering the efficacy of ML models in this domain, such as in-
formation leaks between training and validation data caused by
combining disparate data sources [19].

The initiative was formed as part of the National Health Ser-
vice (NHS) AI laboratory’s mission of enabling the safe adop-
tion of AI technologies in the NHS [20] and was successfully set
up through partnerships with the Royal Surrey NHS Foundation
Trust (RSNFT), the British Society of Thoracic Imaging (BSTI), and
Faculty, an AI technology company. This combination of data
processing and clinical expertise has been leveraged to create
a data warehouse comprising pseudonymized thoracic imaging
and relevant clinical data points for thousands of patients across
the UK. Further information on the NCCID’s remit and rationale
are described in an article in the European Respiratory Journal [21].

A portion of the incoming data is transferred to the training
set, which contained 24,465 imaging studies from 7,685 patients
at time of writing (latest figures can be found on the NCCID in-
formation page). The remaining portion of data is allocated to
the validation set, which is protected as a hold-out set for NHSX
to conduct future performance assessments of COVID-19 chest-
imaging AI technologies, ensuring that they are safe and effec-
tive before procuring for real-world deployment. Findings pre-
sented in this article are solely focused on the training data, in
order to maintain the integrity of the validation data as a hold-
out benchmarking tool.

This article is targeted to technical users who wish to ac-
cess the database for purposes of developing and validating soft-
ware; as such, the core aim is to describe key characteristics of
the data and highlight technical considerations such as model
confounders and potential sources of bias. As the data are sub-
mitted in 2 parts—the images themselves, and the clinical data
separately—the analysis has naturally been structured in this
manner with an additional investigation of how the geographic,
demographic, and temporal coverage of the dataset compares
with publicly available data for UK COVID-19 hospital admis-
sions and mortality rates. The implications of these findings for
developing algorithms related to COVID-19 are discussed, along-
side a list of future aims that have been identified to improve the
database.

The work was conducted on pseudonymized data within the
existing NHSE Amazon Web Services (AWS) cloud infrastructure
for the NCCID. To preserve the privacy of individuals, suppres-
sion of small numbers has been implemented throughout the
article. Suppressed data is indicated within plots and tables by
the presence of an asterisk for categories containing <7 individ-
uals. All data shared through the NCCID have received ethical
approval by the UK Health Research Authority and havej been
reviewed by NHS Information Governance.

Methods
Database Set-up

Figure 1 provides an overview of the data collection pipeline for
the NCCID warehouse, which can be broadly broken down into
the following stages:

i. NCCID participating collection sites (hospitals) are re-
quested to contribute imaging data for patients who have
undergone a real-time reverse transcription PCR (RT-PCR)
test for COVID-19. In addition to the images, 2 spreadsheets
with different fields for the positive and negative cases are
populated to capture accompanying clinical data (see clin-
ical data and supplementary resources for more informa-
tion).

ii. The Scientific Computing Team at RSNFT have established
a dedicated node on Sectra’s Image Exchange Portal (IEP) for
receiving the images. IEP is a widely used network for shar-
ing images between hospitals. The images are received by a
SMART box (Secure Medical-Image Anonymiser Receiver for
Trials) in random access memory (RAM) and de-identified
before writing to disk, ensuring that no patient identifiable
information leaves the sites. The clinical data spreadsheet
is also de-identified by means of a common pseudonym,
generated via a 1-way hashing algorithm combined with a
complex salt and uploaded to a web portal. Upon receiving
images and clinical information, RSNFT links the 2 sources
using the pseudonym. Patients’ unique digital identifiers
(NHS number or equivalent for devolved nations) are also
encrypted using an Advanced Encryption Standard (AES)
algorithm and a complex salt to allow linkage with other
national-level datasets.

iii. The data are transferred to a central NCCID data ware-
house hosted inside NHS England’s (NHSE) AWS infrastruc-
ture, designed and implemented by Faculty and NHXS. The
warehouse is backed by a single Simple Storage Service (S3)
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Figure 1: Diagram of the data collection pipeline for the NCCID warehouse.

bucket within a separate sub-account under NHSE’s AWS or-
ganization. All data within the S3 bucket are encrypted at
rest using AES-256 encryption. Data are regularly split into
training and validation sets based on a randomization of pa-
tients: once a patient has entered the training or validation
set, any new images for that patient are automatically added
to the same set. The codebase for warehouse infrastructure
is open-source (see section Availability of Source Code ).

iv. Data users who have been approved through the Data Ac-
cess Request (DAR) process can access the training set. Im-
age files are available in DICOM format, and clinical data are
stored in JSON format. AWS credentials for the S3 bucket are
provided to an organization via an encrypted communica-
tion. Further support, including guidelines and code for ac-
cessing the data, are provided through the information site.

Inclusion criteria

The inclusion criteria for individuals within the NCCID database
are as follows:

� The person has undergone a COVID-19 swab test (RT-PCR);
this serves as a proxy for “suspected of COVID-19,” providing
a relevant population. The outcome of the test may have been
positive or negative. Some individuals may have undergone
multiple swab tests;

� The person has undergone chest imaging in the 3 weeks be-
fore or after the swab. This time frame was chosen to exclude
people who underwent imaging a substantial amount of time
before or after their COVID-19 infection, limiting data capture
to imaging that is contextual to the problem.

The positive cohort consists of the individuals who returned
≥1 positive swab test result. All imaging data associated with
a positive patient’s COVID-19 hospital episode have been re-
quested. To provide insight on longitudinal risk factors, histori-
cal images up to January 2017 were also requested.

The negative cohort consists of individuals for whom all ac-
quired swab tests return negative results. This may differ from
some clinical databases where the control cohort represents
healthy individuals but was deemed the correct method for cu-
rating a dataset that could train the most useful models that
differentiate COVID-19 characteristic features from other respi-
ratory conditions. Thoracic images acquired within the 6-week
window surrounding the negative test result were requested.

Although the status of a patient’s RT-PCR swab test serves as
a proxy for ground truth, users should be aware of the limita-
tions of these labels. In particular, this method of testing has a
relatively low sensitivity score, where estimates range from 0.71
to 0.98 [22]; this causes the false omission rate to be quite high. In
addition, the probability of having a COVID-19 infection is higher
in those attending hospital with respiratory symptoms than for
the general public. Given these factors, data users should expect
the negative cohort to contain a non-negligible portion of mis-
labelled positive patients. Additional clinical assessment of the
images may be required to improve the accuracy of labels.

Imaging data

The NCCID is a continually growing asset; as such, all subse-
quent figures and analyses reported in this article refer to the
training data as of 29 October 2020 (unless otherwise stated).
On this date, the NCCID training dataset contained data for
7,500 patients; Table 1 details how this cohort is split by con-
trol/disease and data availability. There were 1,307 patients with
clinical data only owing to the fact that the accompanying im-
ages had not yet been uploaded by the picture archiving and
communication systems (PACS) teams.

Table 2 details the image modality breakdown for the pa-
tients whose imaging data have been uploaded to the training
dataset. The majority of the image studies (see glossary in Ap-
pendix A for definition) in the NCCID are X-rays, followed by CTs.
Only a small number of MRIs (17) have been submitted; therefore
MRI data are excluded from further analysis. A single patient
may have multiple studies within the NCCID, e.g., if multiple di-
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Table 1. Breakdown of patient cohorts

PCR-RT swab status
Patients with images

and clinical data
Patients with clinical

data only Total

Positive 2,881 287 3,168
Negative 3,312 1,020 4,332
Total 6,193 1,307 7,500

Table 2. Modality breakdown of image studies by patient cohort

PCR-RT swab status No. of X-ray studies No. of CT studies Total

Positive 11,725 1,565 13,294
Negative 5,532 1,112 6,651
Total 17,257 2,677 19,945

agnostic scans were taken during their treatment pathway or
historic scans were provided (see Image characteristics section
for more details).

Clinical data

The NCCID sites have been asked to provide additional clinical
information alongside imaging data for any patients who have
tested positive for COVID-19 via the RT-PCR swab test. The in-
tended purpose of this additional information is to provide re-
searchers with insight into potential causal risk factors, such as
comorbidities, as well as potential variables that indicate sever-
ity of disease. The clinical data can be broken down into 5 broad
categories:

i. Demographic information—age, sex, ethnicity. These data are
discussed in detail in the Demographic coverage section.

ii. Important dates, such as swab dates, image dates, and date
of admission.

iii. Patient medical history, specifying any pre-existing condi-
tions, and the current use of some drugs such as blood pres-
sure medications.

iv. Admission metrics, detailing the condition of the patient
on admission to hospital, e.g., blood pressure, lymphocyte
count, partial pressure of oxygen.

v. COVID information, pertaining to how the patient was treated
(intubation, admitted to Intensive Therapy Unit [ITU]), the
results of their RT-PCR tests, the severity associated with
their chest X-ray [23], and their ultimate COVID and mor-
tality status.

For patients in the control cohort, only a subset of this infor-
mation was requested: patient pseudonym, submitting centre,
date of RT-PCR test, and result of RT-PCR test. This decision was
made to reduce the burden on busy ward staff during the pan-
demic. Schemas for both spreadsheets are available through the
supplementary resources section https://medphys.royalsurrey.
nhs.uk/nccid/guidance.php.

Initial investigation of the clinical data revealed several data
quality issues, as can be expected during a pandemic when re-
sources and time are understandably limited. Issues included
non-numeric values, such as blank spaces reported for numeric
fields; inconsistency of date/time formats with some entries in
US (month-day-year) versus UK (day-month-year) format; mis-
match in format for reporting categorical data (e.g., M, F for male,
female vs 0, 1); and different sites using different unit scales to
report clinical metrics, e.g., mg/L versu ng/L. To address many

of these issues a data cleaning pipeline was created and made
publicly available to data users, alongside additional details on
the data quality issues, and guidance on the expected format of
the clinical data fields (see supplementary resources section).

Missing values in the demographic data were backfilled us-
ing a segmentation dataset provided by NHS England and Im-
provement (NHSEI) for ethnicity data (private communication)),
and DICOM header information for sex and age. Making these
sensitive attributes available to users is vital for measuring and
facilitating equality of care, particularly through bias mitigation
of ML models. As such, the additional source of ethnicity data
has also been made available to data users.

The results that are reported in this article are based on the
cleaned data from which known errors, such as non-numerical
entries, have been removed. Text input has been parsed to ex-
tract embedded numeric values, and categorical values have
been mapped to standard schemas. Issues arising from ambigu-
ous dates (e.g., 03/04 vs 04/03) and mixed measurement units
have not been fully rectified by the cleaning pipeline and may
persist.

Data Validation

The following analyses are provided to aid data users in under-
standing the suitability of the NCCID training dataset for devel-
oping diagnostic and prognostic algorithms based on COVID-19
chest imaging:

i. Clinical data completeness: assess the completeness and qual-
ity of the clinical data, particularly in relation to pertinent
information (e.g., comorbidities, disease severity, outcomes)
that can provide additional training variables or labels for
ML models.

ii. Imaging characteristics: considers the availability of historical
data for longitudinal studies, the implications of the tim-
ing of image acquisition along care pathways, and potential
model confounders such as the scanner type.

iii. Cohort analysis: to inform NCCID users of any potential bi-
ases in the training dataset that could impede their abil-
ity to develop fair, effective, and generalizable AI models.
To achieve this, we compared the geographic, demographic,
and temporal distributions of patients in the NCCID with
publicly available datasets, measuring how far the data are
representative of the wider population that has been af-
fected by COVID-19.
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The subsequent sections follow the structure of the above 3
categories, each containing a description of the methodology (if
applicable) alongside the key results. The implications of these
findings for building ML models are elaborated in the Re-use Po-
tential.

Clinical data completeness

To understand the utility and limitations of the clinical data
with respect to developing diagnostic or prognostic AI models,
we assessed the completeness of each field in 4 categories: im-
portant dates, patient medical history, admission metrics, and
COVID information. Completeness was quantified in terms of
the percentage of null and not-null values submitted for each
field across all COVID-positive patients.

Figure 2 shows the completeness of the clinical data af-
ter applying the cleaning pipeline (see the Clinical Data sub-
section in the Methods section). For each field of the clinical
data, the percentage of entries with non-null values are shown
in orange against the percentage of null values in blue. The
data exhibit varying degrees of completeness, with several well-
reported fields present in >80% of patients, but the majority of
fields are between 0% and 50% complete. The subsequent sub-
sections investigate each plot more closely.

Dates
The date of first PCR result, positive COVID swab, latest COVID
swab, admission, and first chest X-ray (CXR) were well re-
ported, with 79–97% coverage, whilst dates of subsequent PCR
tests/results, X-rays, ITU admission, intubation. and death were
present for just 4–50% of patients. Coverage for date of death in-
creased from 15% to 66% when limiting analysis to the subset of
patients for whom the death status had also been reported as
positive.

Medical history
The presence or absence of cardiovascular disease and chronic
kidney disease (CKD) were both reported for ∼90% of patients.
The presence of other pre-existing conditions—hypertension,
type 2 diabetes mellitus, and lung diseases—were reported for
66%, 55%, and 51% of patients, respectively. The use of an-
giotensin receptor blockers, ACE inhibitors (ACEI), and non-
steroidal anti-inflammatory drugs (NSAID) was known for be-
tween 40% and 43% of patients. The patient’s smoking status
(never, previous, current) was known for 25% of patients, with
the packs per year history known for 4.4%, increasing to 25%
when filtering for patients with current or previous smoking sta-
tus. Finally, the stage of CKD (if CKD, stage) was available for 7.5%
of patients overall, increasing to 49% in the subset in which CKD
is reported.

For all of these fields other than pack-year history and CKD
stage, the reporting includes the negative status of not having
the condition. Missing values include that the presence of the
condition was marked as unknown or left blank.

Admission metrics
Of the clinical measurements recorded when a patient is admit-
ted to hospital, blood pressure (systolic and diastolic) was avail-
able for 84% of patients and was by far the most complete field in
this category. The majority of remaining fields were reported for
between 33% and 48% of patients. However, ferritin, fraction of
inspired oxygen (FiO2), Troponin I, fibrinogen, and D-dimer were
reported for 10–19% of patients, and Troponin T, APACHE score,
and oxygen saturation for only 1–3% of patients.

COVID information
The most complete COVID information by far was the result of
the first PCR test and death status, which were present for 97%
and 94% of patients, respectively. Admission to ITU, final COVID
status, and COVID code were reported for 45–49% of patients,
and use of intubation for 36%. Beyond these the completeness
of the fields decreased, with chest X-ray severity data available
for 21% of patients, COVID code 2 for 19%, result of second PCR
test for 16%, and chest X-ray severity 2 for 11%.

Image characteristics

This section is designed to inform users on general charac-
teristics of the image data whilst also highlighting potential
confounders that might hinder the ability to build effective AI
models.

Subsequent sections of the analysis utilize the DICOM header
tags associated with image files; these tags were read using the
open-source package Pydicom [24]. MRI images are excluded
from all analyses owing to low numbers in the database at the
time of analysis.

Historic and acute
Both acute (related to COVID-19 hospital admission) and historic
image studies (up to January 2017) are available for a subset of
the NCCID patients. Historic image studies may be used to infer
longitudinal risk factors or decouple the effects of pre-existing
disease conditions from COVID-related symptoms.

Figure 3 shows the distributions of the number of histori-
cal/acute/total X-ray (A) and CT (B) studies per COVID-positive
patient. This number was calculated on the basis of the date
of admission and the DICOM attribute StudyDate (0008, 0020),
where a study was considered acute if it occurs on or after the
admission date and historic otherwise. Date of admission was
available through the clinical data for n = 2,826 COVID-positive
patients; reported results are based on this sample size.

The total number of CTs per patient was median (iqr) = 1 (1–
2); this was lower than for X-rays (median [iqr] = 3 [1–5]). This
consequently resulted in lower availability of acute CT studies,
median (iqr) = 1 (0–1), max = 6, and even lower availability of his-
toric CT studies, with a median (iqr) = 0 (0–1), but with a handful
of patients having 2–12 studies. For X-rays the median number of
acute studies per patient was 1, similar to CT, but the iqr = 1–2 is
higher, indicating that patients are more likely to have multiple
X-rays taken in the acute setting. There were also more historic
data available for X-rays, with a median (iqr) = 1 (0–2).

Acquisition timing
The timing of imaging acquisition along the patient treat-
ment pathway was investigated to understand whether differ-
ent modalities were used for differing purposes in the clinical
setting. Two time lags were compared across X-ray studies and
CT studies:

D1 = dateimage − datepositiveSwabTaken (1)

D2 = dayimage − (dateadmission − daysdurationOfSymptoms) (2)

Image dates were established from the StudyDate field of the
DICOM headers and lags were calculated on the basis of the
first image after the admission date of each patient. This lim-
ited analysis to the images taken during the patient’s treatment
for COVID-19 in the acute setting. Box plots are used because of
the skewed nature of timing data. The distributions of these lags
are shown for X-ray (orange) and CT (blue) scans in Fig. 4.
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Figure 2: Completeness of clinical data fields related to (A) dates, (B) patient medical history, (C) symptoms on admissions and (D) COVID-related information. bp:
blood presure; crp: C-reactive protein; itu: intensive therapy unit; o2: oxygen; pmh: past medical history; wcc: white blood cell count.

For (A), the median offset between swab date and study
date was −1 day for X-rays and +1 day for CT scans. The
high number of −1 day lags for X-ray shows that the major-
ity of X-rays had been taken before a patient’s COVID-19 sta-
tus was known. The overall distribution across X-rays was far

narrower, with an iqr = −2 to 0 compared to iqr = −1 to 12
for CTs. This suggests that the timing of X-rays is very con-
sistent across patients, whereas the presence of longer tails in
the CT distribution indicates more variance of usage between
patients.
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Figure 3: Number of historical/acute/total image studies per NCCID COVID-positive patient (n = 2,826) for (A) X-rays and (B) CTs. In both sets of box plots, outliers are
indicated by dots outside the limit of the plot whiskers, and whiskers correspond to Q1 or Q3 ±1.5∗iqr (interquartile range).

Both modalities display outliers with large negative offsets.
These negative offsets suggest that some patients had images
taken up to 87 days prior to the positive RT-PCR swab result. In
practice, the majority of these cases are likely driven by data
quality issues surrounding ambiguous dates, such as 03/10 vs
10/03.

The delay between onset of symptoms and image dates tells
a similar story. X-rays had a median offset of 7 days (iqr = 3–
11 days), whilst CTs had a median offset of 15 days and a wider
iqr = 8–34 days. Although calculated on a smaller subset of stud-
ies (936 compared to 2,917) for which duration of symptoms data
were available, this analysis corroborates the hypothesis that X-
rays were consistently used earlier in the care pathway, poten-
tially as diagnostic aids.

Scanner types
To investigate the variety of medical imaging equipment within
the NCCID database, 2 analyses were performed:

� Study counts by machine manufacturer were generated us-
ing the Manufacturer attribute (0008, 0070) from the DICOM
headers.

� Study counts for model types available within each manufac-
turer were generated through the combination of DICOM at-
tributes Manufacturer + Manufacturer’s Model Name (0008,
1090). This combined attribute is hereby referred to as model.
The results for this additional breakdown are provided in Ap-
pendix B.

In both cases, all available DICOM tags were read from each
X-ray image file in a study, but only from the first file of each CT
study, as the DICOM attributes of interest were the same across
all files in a given CT study. Studies for the positive cohort were
filtered to exclude historical data based on DICOM Acquisition
Date (0008, 0022) and date of admission.

Manufacturers The counts of scanner manufacturers across NC-
CID positive (orange) and control (blue) cohorts are displayed in

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/11/giab076/6437679 by U

niversity of Southam
pton user on 15 February 2022



8 National COVID-19 Chest Imaging Database

Figure 4: (A) Number of days between the patient’s RT-PCR swab test and the image acquisition (nXRAY = 2,410, nCT = 507) and (B) Number of days between patient
symptom onset and image acquisition (nXRAY = 803, nCT = 133). In both sets of box plots, outliers are indicated by dots outside the limit of the plot whiskers, and
whiskers correspond to Q1 or Q3 ±1.5∗iqr (interquartile range).

Fig. 5, where ordering of manufacturers is based on the total
counts (positive+negative). The total, non-historic, study counts
across all manufacturers were 11,086 (positive = 5,552, negative
= 5,534) for X-ray and 1,746 (positive = 634, negative = 1,112) for
CT.

The largest suppliers for X-rays were Fujifilm, Siemens, and
Philips Medical Systems, which contributed 2,687, 2,588, and
2,297 studies each. The next largest supplier was Carestream
Health, with 1,261 studies, after which the number of studies
steadily declined for the remaining 8 suppliers. In the case of CT
studies, Siemens far outweighed the other 4 providers, account-
ing for 1,518 studies.

All X-ray and CT manufacturers had studies for both positive
and negative patients. However, some manufacturers, such as
Siemens, had significantly more studies in 1 of the 2 groups.

Portable versus stationary It was suspected that X-ray data in the
NCCID originate from a combination of portable and stationary
machines. This was partly a consequence of operational restric-
tions caused by the pandemic, where portable scanners were

easier to regularly disinfect and could be transported to dedi-
cated COVID-19 wards as part of infection control procedures
[3]. As such, the use of portable machines was expected to be
more prevalent in the COVID-positive cohort of the NCCID.

The percentage of portable scanners was estimated to inves-
tigate the presence of potential model confounders caused by,
e.g., lower image resolution in portable scanners:

� Studies with references to portable, e.g., CHEST PORTABLE in
the Body Part Examined attribute (0018, 0015) were counted.
Different variations were mapped, e.g., PORT CHEST to
CHEST PORTABLE. Studies that did not include any reference
to portable in this attribute were assumed to originate from
stationary scanners.

� Counts were then adjusted by taking the unique set of 8 mod-
els from the above step (highlighted in Table 3.) and extrap-
olating the portable status to all studies acquired on these
models, under the assumption that operators forgot to indi-
cate portability in these cases.
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Figure 5: Number of COVID-positive and negative (A) X-ray studies by manufacturer and (B) CT studies by manufacturer. In both cases the manufacturers are ordered

by highest to lowest total (positive+negative) number of studies.

Table 3. Estimated number of X-ray studies originating from either stationary or portable machines for COVID positive and negative patients

Scanner type
COVID-positive, No. (%) COVID-negative, No. (%)

Original count Adjusted count Original count Adjusted count

Stationary 5,489 (98.6) 4,770 (85.7) 5,490 (99.1) 4,610 (83.3)
Portable 78 (1.4) 795 (14.3) 49 (0.9) 927 (16.7)

Table 3 displays estimated portable machine counts within
the NCCID training data, excluding historic images. For positive
patients, there were 78 studies labelled with some reference to
portable in their Body Part Examined DICOM attribute (original
counts), accounting for 1.4% of X-ray studies. In comparison, the
number of portable machines indicated by this DICOM attribute
accounted for 0.9% of negative patient studies. After extrapolat-
ing the portable status to all studies taken on the models where
portability was indicated at least once, the proportion of X-ray
studies taken on portable devices increased to 14.3% for positive
patients and 16.7% for negatives (adjusted counts).

Cohort analysis

This section explores the geographic, demographic and tem-
poral coverage of the NCCID database. The aim is to mea-

sure whether/how the NCCID differs from the general COVID-
affected population and how any disparities might limit the gen-
eralizability of AI solutions.

Geographic coverage
Figure 6 details the number of patients submitted to the NCCID
from each NHSE region [25] and Wales, split by their confirmed
COVID-19 status, as measured via an RT-PCR swab test (positive
= orange, negative = blue). The regional data were aggregated
from the 19 sites that had submitted data by the analysis cut-off
date.

In addition, Fig. 7 displays 2 choropleth maps showing (A) the
proportion of COVID-19 hospital admissions, within each NHSE
region and Wales, as reported by Public Health England (PHE)
[26] and (B) the proportion of COVID-19–positive patients in the

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/11/giab076/6437679 by U

niversity of Southam
pton user on 15 February 2022
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Figure 6: NCCID positive and negative patients submitted by region, sorted by total contribution.

Figure 7: Comparison of national COVID-19 admissions at a regional level with NCCID positive cases.

NCCID for the same geographic boundaries. Boundary data were
sourced from the Office of National Statistics geoportal [27].

The highest proportion of data originated from the East of
England region, which accounted for 2,134 patients in total.
However, most of these (1,862) were negative patients, submit-
ted by a single site. The second highest reporting region was
the Midlands, with a combined total of 1,769 patients in the
database. In contrast to the East of England, most patients sub-
mitted in the Midlands were positive cases (1,638), and 1,511 of
these originated from a single site.

Other regions submitted less data overall, but regions in the
South of England (including London) and Wales had compara-
tively even contributions of positive and negative cases. Cover-
age of positive cases in the North of England and Yorkshire was
limited, with the Northeast and Yorkshire region having only 33
patients in total.

The NCCID’s geographic coverage of COVID-19 patients was
largely concentrated in the Midlands, accounting for 54.8% of
positive patients in the training data. After the Midlands, the
East of England, London, Southeast and Southwest of England
accounted for 41.6% of positive patients in total (9.2%, 10.2%,
10.5%, and 11.7%, respectively). Data from Wales, the Northwest,
and the Northeast and Yorkshire regions collectively made up
just 3.6% of NCCID positive patients.

This was at odds with COVID-19 hospital admissions (as re-
ported by PHE), which were more evenly spread across England

and Wales. Specifically, London, the Midlands, Northeast and
Yorkshire, and the Northwest accounted for ∼15–18% of admis-
sions each. Wales, the Southeast, East of England, and South-
west accounted for smaller proportions of 10.3%, 9.8%, 7.0%, and
5.1% of admissions, respectively.

Demographic coverage
The purpose of this section is to establish how generally repre-
sentative the NCCID cohort is of the population hospitalized due
to COVID-19 and whether good representation carries through to
the most severe outcomes (through the mortality variable). Un-
derstanding the underlying causes of any demographic differ-
ences in COVID-19 prevalence or outcomes is beyond the scope
of this article.

Subsequent to applying the cleaning and merging pipeline
(see Clinical Data subsection in the Methods section), demo-
graphic data were available for sex = 85%, ethnicity = 69%, and
age = 86% of patients in the NCCID (n = 3,168). Distributions of
these categories within the NCCID were compared against ref-
erence datasets, where available, or COVID-related statistics re-
ported by the International Severe Acute Respiratory and Emerg-
ing Infection Consortium (ISARIC) [28, 29] and the general UK
population reported by the 2011 national census. Equivalent
comparative data were not publicly available for Wales; as such,
data from Welsh health boards are excluded from the subse-
quent demographic results. Comparisons were made for both
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Cushnan, et al. 11

admissions and mortality rates where the total sample size of
patients with recorded deaths was n = 694. In all subsequent
comparison plots the NCCID is indicated using blue and com-
parative datasets are displayed in orange and green.

The NCCID is a subsample of the population that is hospi-
talized due to COVID-19, and a dynamic resource that will con-
tinue to grow over the coming months. It is sensible to assume
that the sample of NCCID data being scrutinized in this article
will deviate from the final population of both the NCCID and
general COVID-affected population. To account for some of this
sampling error in the below comparisons, we applied a bootstrap
method to generate confidence intervals for the NCCID data. The
plotted proportions of a given category, e.g., percentage of pa-
tients aged 18–64 years, represent the median percentage across
1,000 bootstrap samples. Similarly, error bars on the subsequent
plots represent the 95% confidence interval (ci) of measurements
across the bootstrap samples. In each case, the sample size of
the bootstrapped distributions was equal to the size of the rel-
evant original NCCID sample (i.e., if the original NCCID sample
had n = 3,000 patients with sex data available, then the boot-
strapped samples each contained n = 3,000 entries).

Sex Figure 8A compares the split of male (n = 1,797) and female
(n = 1,295) positive cases within the NCCID to that of the general
UK population via the 2011 national census [30] n = 63,182,000,
and the COVID-affected population reported by ISARIC [28], n
= 20,113. At 58% male to 42% female (ci = 56–60% male:40–44%
female), the NCCID was more closely aligned to the 60:40 ratio
reported in COVID-19 admissions than the 51:49 split of the gen-
eral UK population.

Figure 8B compares the male to female mortality rates within
the NCCID cohort (n = 673) against those reported by NHSE (n =
32,483), up to the cut-off date, 29 October 2020 [31]. The NHSE
mortality data exhibited a male to female ratio of 61:39. This fell
within the 95% confidence interval for the NCCID, 60–67%:33–
40%.

Ethnicity Figure 9A compares the ethnicity proportions (Asian,
Black, Other, White) of NCCID patients, n = 2,854, against the
general UK population as reported in the 2011 UK census, n =
63,182,000, [30] and the COVID-affected population reported by
ISARIC, n = 30,693 [29].

The White group accounted for 83% of individuals in both the
census and ISARIC populations. In contrast, only 72% (ci = 70–
73%) of NCCID COVID-positive patients were from White ethnic
backgrounds. This was counterbalanced by higher proportions
of Asian (median [ci] = 14% [13–16%]) and Black (9% [8–10%]) peo-
ple than observed in either the Census (Asian = 9%, Black = 3%)
or ISARIC (Asian = 5%, Black = 4%). In addition, ISARIC reported
higher proportions of patients from Other minority backgrounds
(8%) than in NCCID (median [ci] = 5% [4–6%]), whilst the census
data indicated that ∼4% of the UK population belonged to this
group.

Figure 9B compares the ethnicity proportions within the sub-
set of NCCID patients that have recorded deaths and ethnicity
data (n = 633) to the ethnicity proportions reported by NHSE for
COVID-19 in-hospital deaths in England [31], up to the reporting
cut-off date (n = 29,610).

Similar to the aforementioned admissions above, the NC-
CID mortality data were under-representative of the White eth-
nic group (median [ci] = 78% [74–81%]) and over-representative
of the Asian (median [ci] = 11% [9–13%]) and Black (8% [6–
10%]) groups, compared to mortality rates in the broader COVID-
population (White = 85%, Asian = 8%, Black = 5%).

Age Figure 10 compares the percentage of NCCID patients
within a set of age bands (0–5, 6–17, 1–64, 65–85, >85 years) to the
percentages for COVID-19 hospital admissions across England,
as reported by PHE [26]. The comparisons are shown at both the
national level as well as within each NHSE region.

As reflected in the geographic analysis, regions in the North
of England had insufficient data to make meaningful compar-
isons. Specifically, data availability was below the suppression
threshold in all age groups for the Northeast and Yorkshire and
most age groups for the Northwest. The error bars for the re-
maining age groups in the Northwest, 18–64 and 65–85 years,
spanned 30–34 percentage points, respectively.

Amongst the regions that had enough data to support com-
parisons, most showed no statistically significant differences
between the NCCID and PHE. For London (nPHE= 25,804, nNCCID =
353) and the Southeast (nPHE = 15,690, nNCCID = 335) PHE data fell
within the NCCID confidence intervals for all age-groups. The 2
datasets were closely aligned in the Southwest (nPHE = 26,876,
nNCCID = 463), where only the 18–64 and 65–85 years age bands
fell outside the confidence interval by just 1% each. Similarly, in
the East of England (nPHE = 11,252, nNCCID = 272), the PHE data
for the 18–64 years age group was again just 1% outside the up-
per bound for the NCCID, and all other age bands fell within the
confidence interval.

The single exception was the Midlands, which exhibited a
large difference of 18% (ci = 15–20%) between PHE (n = 26,661)
records and the NCCID (n = 1,638) for the 18–64 years age band.
This was counterbalanced by smaller proportions of over 65s
than observed by PHE. These deviations can be reasonably at-
tributed to the fact that data were collected by a single site, lo-
cated in an urban area. Furthermore, given that the Midlands
contributed a substantial volume of positive patients to the NC-
CID, this overrepresentation of 18–64 year-olds extended to the
national level comparison (medianNCCID = 42%, ci = 40–43%,
nNCCID = 3088, medianPHE = 33.7%, nPHE = 137,757).

The NCCID had low numbers of patients in the 0–5 years
group at a national level, and low numbers for the 6–17 years
group in all geographies.

Figure 11 compares age breakdown of NCCID patients with
recorded deaths to age breakdowns of in-hospital COVID-related
deaths reported by NHSE [31]. A different set of age bands were
used to align to the NHSE data: 0–19, 20–39, 40–59, 60–79, 80+
years.

Although the age bands used by NHSE (n = 32,484) are dif-
ferent to those used in the admissions comparisons above, we
can see a general knock-on effect, where over-representation of
younger people in the dataset resulted in a larger percentage of
40–59 year-olds with recorded deaths in the NCCID (median [ci]
= 10% [8–13%], NHSE = 7%).

Temporal coverage
This section investigates the approximate hospital admission
dates of the NCCID patients to identify how well the NCCID has
captured patients across the course of the pandemic. The total
number of NCCID patients with a positive RT-PCR swab test re-
sult occurring each week since 1 March 2020 was compared to
the total number of confirmed COVID-19 patients admitted to
hospital each week for the same period according to PHE data
[26]. This analysis was performed at a national level, including
data across the whole of England and Wales. Given that there
were (at the time of study) no NCCID sites in Scotland and North-
ern Ireland, data from these nations was omitted from PHE ad-
missions calculations. The 2 time-series are displayed in Fig. 12.
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12 National COVID-19 Chest Imaging Database

Figure 8: Comparison of sex split within (A) the NCCID COVID-19 patients, the general UK population (as reported in the 2011 census), and COVID-19 hospital admissions
(reported by ISARIC); (B) NCCID recorded deaths and NHS England COVID-19 hospital mortality data.

The peaks of both datasets were aligned, occurring on 5 April,
with a gradual decrease in numbers until the summer period,
July to September 2020. From September onwards the national
COVID-19 admissions began to increase again; however this was
not (up to the analysis cut-off 29 October 20) reflected by an is-
crease in positive patients admitted into the NCCID database.

Reuse potential
Findings of data completeness analysis

Clinical information is an important complement to the chest
images. Gaps in the clinical information can deprive researchers
of contextual data on the patient’s health for inclusion in anal-
yses and ML models. For instance, incompleteness of the FiO2
data may hinder the development of mortality or deterioration
risk scores that take this field into account. Analogously, because
clinical information may be used to control for confounders,
missing entries can reduce a researcher’s ability to draw firm
conclusions from the data.

The overall availability of clinical data varies by each field in
the dataset. Key dates including when the RT-PCR swab sample
was taken and when a patient was admitted to hospital are well

covered and can provide useful insight into the timelines of im-
age acquisition during the patient care pathway (e.g., Fig. 4).

The occurrence of pre-existing conditions is also relatively
well characterized, particularly for cardiovascular and kidney
diseases. This information should allow data users to account
for the effects of comorbidities in their analyses, which have
been shown to play a significant role in disease outcomes for
COVID-19 patients [32–35].

Information relating to the patients’ conditions upon hospi-
tal admission (e.g., blood pressure and white blood cell count)
were the least well reported, with a mean of 65% null values in
this category compared to 49% for dates, 53% for medical his-
tory, and 56% for COVID-19 fields. Data users should also be
aware that the reporting units for these metrics may vary be-
tween sites, making it difficult to disambiguate overlapping val-
ues, and causing artificially high variances for some metrics (Ap-
pendix C). To remedy this, we plan to make site-specific unit
information available to users once collated, even though it is
unlikely that all participating sites will be able to provide such
information. It should also be noted that some of the missing
data originate from the fact that specific hospitals do not com-
monly measure all of the listed metrics. For example, several
sites report that they do not routinely measure Troponin T on
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Figure 9: Comparison of ethnicity proportions within (A) the NCCID COVID-19 patients, the UK population (as reported in the 2011 national census), and COVID-19

hospital admissions (reported by ISARIC); (B) the NCCID recorded deaths and NHS England COVID-19 hospital mortality data.

admission. Furthermore, some fields such as O2 saturation are
obsolete and no longer requested in the data collection spread-
sheet.

Overall, the causes of missing information in the NCCID are
difficult to identify because of their number and diversity. It is
nevertheless known that the following factors have contributed
to incompleteness of clinical data across the different cate-
gories:

� Staff at data collection sites may have been unable to fill in
certain fields owing to time pressure and the emergency sit-
uation.

� Depending on the site, data have been gathered by staff (e.g.,
research nurses, radiologists) with access to different clini-
cal information systems and records. Therefore, the person
collecting and uploading data to the NCCID may have been
unable to get hold of specific clinical information.

� Certain fields could only be present in a relevant subset of
patients and were otherwise left empty. For example, a few
fields referred to secondary RT-PCR swab tests (date of acqui-
sition, date of result, result) and secondary chest X-rays (date,

severity), which were only required and, consequently, filled
in for some patients. Additionally, the reporting of date of
death and stage of chronic kidney disease were much higher
when selecting the subset of patients for whom death or
presence of kidney disease had been reported. Similar effects
are likely to be the underlying cause of the relatively high oc-
currence of missing values in COVID-19 fields such as ITU
admission, intubation, and severity of disease in secondary
images [23].

� Information such as medical history may not have been pro-
vided by the patient, e.g., because they were incapacitated.

� Data may not have been gathered as part of routine clinical
practice, see the above remarks.

Plans are in place to establish a link between the
NCCID and ISARIC-4C [10] that will automatically pop-
ulate clinical information for patients included in both
datasets. This link aims to improve the availability of
clinical data in the NCCID whilst relieving the bur-
den on clinical staff to provide additional information.
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Figure 10: Comparison of age proportions between COVID-19 hospital admissions (reported by PHE) and NCCID positive patients for (A) England, (B) East of England,

(C) London, (D) Midlands, (E) Northeast and Yorkshire, (F) Northwest (G), Southeast, and (H) Southwest.

Findings of image characteristics analysis

Historic and acute
The number of total, acute, or historic image studies varied
across COVID-positive patients. In general, patients were less
likely to have historic CT data available (median = 0 studies),
compared to X-ray (median = 1 study). This is likely driven by
the general disparities in availability between the 2 modalities,
given that X-rays are faster and cheaper to acquire and are there-
fore more frequently used in the UK clinical setting. Investiga-
tors who wish to incorporate historical data as a means of ac-

counting for pre-existing disease conditions or understanding
longitudinal risk factors should possibly focus on X-ray studies.

Both X-ray and CT had a median of 1 study per patient, but
there were many more X-ray studies available overall (∼12,000
compared to 1,500). It is sensible that researchers building di-
agnostic tools should focus on X-ray data because these are also
likely to be most useful in the UK clinical setting. However, given
that CTs are likely to be used in the more severe/difficult cases,
those wishing to analyse disease severity/prognosis can use CT
data. One advantage of the CT data is that they provide much
richer imaging information, encoded into a 3D volume where
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Figure 11: Comparison of age distributions between recorded COVID-19 deaths (as reported by NHSE) and the NCCID (England only).

Figure 12: Comparison of COVID-19 admissions to NCCID positive cases by week.

different view planes and slices through the relevant anatomy
can be probed. In comparison, X-ray image resolution tends to
be higher but only a single projection is possible.

The total number of MRI studies is currently too low (17 stud-
ies) to be useful in the ML setting. This is likely to remain true
even as the database grows because low numbers are caused
by the rarer adoption of MRI in the treatment of patients with
COVID-19, which, in turn, limits the clinical relevance of this
modality.

Acquisition timing
Analysis of image timings with respect to patient PCR-RT swab
sampling dates and onset of symptom dates revealed that X-
rays were predominantly used at the early stages of a patient’s
care pathway. Interestingly we identified that the median offset
between swab date and X-ray was −1 day, which suggests that X-
rays were commonly being used as diagnostic aids. This is likely
a result of limited testing capacity during the earlier stages of
the pandemic. In contrast, CT images were generally used later
in the care pathway, with greater variance between patients on
the specific timing of scans. These findings reflect BSTI clinical
guidelines for the UK, which stipulated that CT should be used

sparingly as a diagnostic tool, to preserve capacity for normal
operation [23].

Concentrating on the response to COVID-19 in the UK and
the NCCID, data users may want to focus on building diagnostic
tools using X-ray images, and could potentially use CT scans to
study disease severity, progression, and prognosis. It remains to
be seen whether improved testing capacity or other factors will
modify the timings for either modality in the later stages of the
pandemic and therefore change the technological needs of the
response to COVID-19 in the UK.

Scanner types
X-ray and CT images present in the NCCID were captured on a
range of systems from multiple manufacturers, providing vari-
ability in the type of images available. This was true for both pos-
itive and negative patients, although the ratio of positive to neg-
ative varied somewhat by manufacturer. Users of NCCID should
take into account the relative frequencies of imaging across the
different manufacturers (and models) to minimize unwanted
bias. For instance, Siemens is the dominant manufacturer for
CT, but large amounts of X-ray data were available for a number
of providers, which could help produce generalizable models.
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Owing to limitations imposed by the pandemic, it was sus-
pected that imaging data in the NCCID would originate from a
combination of portable and stationary X-ray machines. Portable
machines are easier to quickly sanitize between sessions and
could more readily be moved to quarantine wards as part of hos-
pital infection control measures, making it possible that there
would be a higher prevalence of such machines in the patient
cohort [3]. Exploration of the DICOM headers initially identified
a small proportion of positive scans (1.4%) acquired on portable
devices, with just over half of this percentage scans with nega-
tive results (0.9%). This was then extended to all studies taken on
the same scanner models, such that 14.3% of positive X-rays and
16.7% of negative X-rays were estimated to come from portable
machines. These preliminary findings do not suggest a large im-
balance in the ratio of portable and non-portable scanners be-
tween the positive and control cohorts. However, in lieu of a
more definitive method for identifying portable machines from
DICOM information we estimated prevalence based on notes in
the Body Part Examined attribute. It is plausible that this method
underestimates the true number of portable scanners; as such,
further investigation of this issue is recommended. Examining a
sample of images from the various devices may provide a more
robust measure of portability for data users, but the above anal-
ysis serves to highlight this aspect of the NCCID data.

Awareness of potential model confounders is crucial to en-
sure efficacy of ML models, particularly with respect to how per-
formance generalizes beyond the training data. For instance, sig-
nificant disparities in the prevalence of certain equipment types
between the positive and control cohorts could produce an ML
model that successfully differentiates the 2 groups. However, is
it conceivable that the decision boundaries in such a model are
based on attributes of the medical imaging machinery (e.g., res-
olution, projection) rather than disease-related attributes [19].
Data users should take care to balance their training samples,
ensuring a good variety of scanner types within both cohorts, to
build models that generalize well to the variety of clinical imag-
ing equipment used in the UK. Indeed, there are many additional
confounders to be aware of including but not limited to (see Ap-
pendix B):

� Digital radiography (DR) vs computed radiography (CR),
which are different techniques for digitizing the X-ray signal,
either directly from the panel (DR) or by scanning cassette-
based phosphor storage plates into digital format (CR).

� Photometric interpretation, which refers to the image con-
trast such that MONOCHROME1 scans should be inverted to
match MONOCHROME2 scans or vice versa.

� View positions, e.g., anterior-posterior (AP), posterior-
anterior (PA), lateral (LL).

By collecting data from multiple Trusts and Health Boards
across the UK, the NCCID strives to provide a training database
that can cover many of these confounding factors and improve
the efficacy of any resulting ML models in the clinical setting.

Findings of cohort analysis

Geographic coverage
At time of analysis, the NCCID was not evenly sampled across
the participating regions. We observed that COVID-19–positive
patients in the database largely originated from the Midlands,
and very few patients originated from Wales and Northern Eng-
land (Fig. 6).

Several factors may underpin these disparities, including (i)
the number of NCCID sites within each region, (ii) the size and

population coverage at each hospital site, (iii) the number of pos-
itive COVID-19 cases recorded at each site, (iv) the duration of
time the site has been contributing to the NCCID, and (v) the
availability of research coordinators and PACS teams to upload
all cases. Reason iii is unlikely to be the driving factor, as indi-
cated by Fig. 7, in which PHE reported a more equal distribution
of COVID-19 hospital admissions.

Low submissions from the North of England reflect the rel-
atively small number of participating NCCID sites in these re-
gions. The fact that the uptake of the programme has been un-
even across different regions can be attributed to factors such
as the reach of our professional network, constrained availabil-
ity of staff to support our database, and variable responsiveness
of local sites to national initiatives.

Regional disparities in the number of positive and negative
cases submitted are more likely to be driven by factor v, the ca-
pacity of PACS teams. The guidance given to hospital sites was
to submit all positive cases with images taken in the acute set-
ting, and a smaller sample of negative cases with acute imaging
(∼100 per week if available). Due to the request for accompany-
ing clinical data in positive cases, it is much easier for sites to
submit negative cases, for whom only the images and a small
number of clinical data points are required.

Demographic coverage
The NCCID aims to be a UK-wide initiative assembling a
database that is as representative as possible of the entire pop-
ulation. Nevertheless, the present geographical coverage of the
NCCID is partially skewed, which, if additional data curation
is not applied rigorously, may produce biases in ML models
trained on this resource. For example, issues may occur because
of the incorrect representation of specific demographic groups
and clinical risk factors such as pre-existing conditions [28, 36].
Indeed, we observed some of these downstream effects in the
population analysis, particularly in the regional proportions of
age groups within the NCCID, which deviated most significantly
from PHE data in the Midlands and Northern England. These ef-
fects accumulated in a general over-representation of younger
adult patients compared to more elderly patients in the NCCID
for both admissions and mortality.

In addition, the NCCID contains very low numbers of patients
in the 0–5 and 6–17 years age groups, partly because of the active
omission of under-11s due to small counts, where the under-
lying cause is the low prevalence of symptomatic COVID-19 in
children [37, 38]. Reduced availability of data for under-18s lim-
its the use of the NCCID to adult diagnostic/prognostic models
for the time being. This may change as the database grows, par-
ticularly as the exclusion of data from under-11s will be stopped
once sufficiently high numbers are available.

The ethnic composition of the NCCID deviated from the
2011 UK census data. Whilst establishing the causes of this
discrepancy would require additional investigation, the over-
representation of Asian and Black groups for the admission data
may, to some extent, be due to differences in the incidence of
COVID-19. As a matter of fact, several studies have indicated
higher corrected hospitalization odds ratios for minority eth-
nic groups compared to people of white backgrounds [28, 29, 39,
40]. The reliability of the comparison between the NCCID and
the census, however, is diminished by the fact that the latter is
a decade old, so that more recent estimates (including the im-
minent 2021 national census) could exhibit a significant demo-
graphic shift in the benchmark for the UK population as a whole.

The comparison with ISARIC data was crucial for under-
standing how representative the NCCID is of the COVID-19 pa-
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tient population from which it is sampled. Again, the NCCID dis-
played higher percentages of Asian and Black patients and lower
percentages of White patients than the hospital admissions data
from ISARIC. A similar effect was seen in the comparison with
mortality data from NHSE.

The reasons why the NCCID diverges from other datasets in
relation to ethnicity are not fully understood. Nevertheless, we
believe that the most likely issue is the uneven geographical rep-
resentation of the NCCID. This would be consistent with the fact
that the Asian and Black groups are overrepresented, and the
White group is underrepresented in every comparison of the NC-
CID with other nationwide datasets (UK census, NHSE, and IS-
ARIC). It is clear from the literature that the distribution of eth-
nicities in COVID-related hospital admissions varies consider-
ably between different regions [26, 36]. For example, Sapey et al.
[41], who looked specifically at COVID-positive hospital admis-
sions from around Birmingham, saw a much higher proportion
(18.5%) of patients of South Asian ethnicity. Apea et al. [42], who
carried out a similar analysis looking at COVID-positive hospital
admissions from around East London, saw a much higher pro-
portion of patients of both South Asian and Black ethnicity (31%
and 20%, respectively). In an analogous way, the fact that a large
fraction of the data in the NCCID has been collected in an ur-
ban area of the Midlands may have increased the representa-
tion of Asian and Black groups and reduced that of the White
group.

The male to female ratio of NCCID patients was found to
closely align with the 60:40 split reported for COVID patients by
ISARIC. This is a departure from the approximately 50:50 split
expected in the general population, as measured by the 2011
census data (where sex ratios are less likely to significantly vary
over time, making the age of the census less of a limiting fac-
tor), and reflects findings of other COVID-19 studies [35, 43, 44].
A similar increased hazard ratio was observed in the male to fe-
male mortality rates, where the NCCID was well aligned to NHSE
in hospital deaths data. Data users should be aware that there
is a class imbalance (as is common in clinical studies), but it is
unlikely to be severe enough to prevent the training of models
that will generalize.

Overall, data users should keep in mind that, owing to the
variable incidence of COVID-19, the NCCID is expected to have
slightly different demographic composition to the general popu-
lation. Several studies have reported different COVID-19 preva-
lence rates between men and women, ethnic groups, and age
groups [28, 29, 35, 40, 41, 43–45]. As more sites join and the
database grows, we expect the composition of the NCCID to
more closely reflect the populations reported by, e.g., PHE, IS-
ARIC, and NHSE. For the meantime, data users should be aware
of these differences and how underrepresentation of certain
groups might affect model performance for those individuals.
Whilst the risk of model unfairness relating to demographic dis-
parities is less obvious in medical imaging than for other ML
applications (e.g., facial recognition for law enforcement [46]), it
is probable that disease manifestation differs across age groups
and ethnicities, or that the prevalence of comorbidities varies
across ethnicities and between urban and non-urban popula-
tions. Therefore, these characteristics may still have negative ef-
fects on the fairness of ML models. Furthermore, disease-related
class imbalances play a relevant role in quantifying algorithmic
bias, where fairness definitions based on pure demographic par-
ity [47, 48] may provide misleading measures of success and
failure in this problem space, unless corrected to the relevant
ratios.

Temporal coverage
The low numbers of positive cases uploaded to the NCCID train-
ing dataset since September 2020 suggest that the data cap-
ture pipelines were (up to the analysis cut-off in October) still
processing the large backlog of patients from the first wave of
the pandemic. Users should note that ML models built from the
training data will capture the characteristics of the first peak and
may not generalize completely to patients admitted during the
subsequent winter peaks, particularly in view of the emergence
of a new strain of SARS-CoV-2, lineage B.1.1.7 [49]. Failures to
generalize over time could arise from several factors, including:

� potential changes to disease manifestation associated with
the new strain of SARS-CoV-2 that has dominated prevalence
in the UK starting from December 2020 [50, 51], although such
effects are speculative at the time of publishing;

� the prevalence of flu-related comorbidities, expected to be
more common in winter months;

� any changes in the use of imaging for diagnostic/prognostic
purposes between the early stages and later stages of the
pandemic;

� changes to treatment policies over time (such as the intro-
duction of dexamethasone) and how these affect disease
severity;

� the roll-out of the COVID-19 vaccination programme, which
in the UK has begun on 8 December 2020 [52] and has deliv-
ered over 50 million first doses [26] at the time of writing;

� changes to non-pharmaceutical interventions (behavioural
restrictions such as lockdowns) and the downstream effects
these have on which members of the population are exposed
to the virus.

It is noteworthy that COVID-19 admissions for the general
population peaked at ∼20,000 per week (for the period and re-
gions studied in this article), whilst the peak of positive patients
in the NCCID was orders of magnitude lower, at just under 400.
Any statistics or models derived from the NCCID database are
therefore likely to be hindered byerror, which should be consid-
ered when reporting such analyses.

Next steps

The NCCID has made significant progress within the space of a
few months to collect a sizable dataset to support research into
COVID-19. However, there are a number of next steps, summa-
rized below, which the NCCID initiative aims to implement in
the short-to-medium term in order to better support data users:

i. We will re-engage with existing hospital sites to understand
the reasons behind a decline in submission of recent cases
and implement mitigating actions (see point v).

ii. We will engage new sites across the UK, focusing on rural
and other underrepresented geographies, such as the North
of England, Wales, Northern Ireland (point iv), and Scotland
(point iii) to expand the geographic and demographic cover-
age of the NCCID.

iii. We will implement a linkage with the Scottish National
PACS and Safe Haven Network.

iv. In Northern Ireland we will start by establishing a linkage
with the Northern Trust PACS team.

v. We will implement a connection with the ISARIC-4C [10]
dataset to improve the completeness of the clinical data
fields while reducing the burden on hospital staff because
the data are linked across as opposed to collected afresh. It
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is hoped that lighter data-gathering processes will attract
new sites and motivate existing ones to contribute even
more to the database.

vi. We will carry out investigative work beyond clinical vari-
ables and metadata into the quality of the images them-
selves so as to assess their utility for algorithmic develop-
ment.

vii. We will implement automation pilots in a selection of sites
to establish a continuous feed of images for positive and
negative patients. Clinical data for these sites will be pro-
vided through the ISARIC-4C linkage.

Conclusion

This article aimed to provide further detail on the content of the
NCCID’s training dataset, in order to support existing data users
with their research efforts, raise awareness for the NCCID as a
valuable resource that others may want to access, and inform
both existing and potential data users of improvements we aim
to make in future. The decision to publish this article now, rather
than after the improvements have been made, reflects the itera-
tive nature of this particular initiative and the urgency presented
by the pandemic to ensure that information is made available as
quickly, transparently, and securely as possible. The NCCID ini-
tiative has collected a large volume of imaging and clinical data
within a short period of time; this has been achieved through the
expertise of NCCID partners, lean agile delivery methods, and
the prioritization of COVID-19 response work. However, there are
a number of considerations in the NCCID training dataset to be
aware of, namely, (i) the limitations of its geographic and, con-
sequently, demographic representation; and (ii) issues with clin-
ical data quality and completeness. We have identified a num-
ber of improvements to address these considerations and will
continue to expand and refine the quality of the NCCID training
dataset. Despite these limitations the NCCID provides a valuable
resource to the medical imaging community, addressing many
of the common pitfalls highlighted in a recent meta-analysis of
COVID-19 imaging models [19]. In particular, as a centralized re-
source, housing high-quality DICOM imaging data and clinical
attributes for thousands of patients, across a variety of imag-
ing machinery, the NCCID is large enough to mitigate many of
the data quality/bias concerns of smaller fragmented resources,
making it an important tool in supporting the response to the
COVID-19 pandemic.

Data Availability

The NCCID training data are available to any users, including
software vendors, academics, and clinicians, via a rigorous Data
Access Request (DAR) process. Applications are adjudicated by
an independent committee on the basis of several factors in-
cluding but not limited to relevance to COVID-19 and compliance
with information governance regulations. The required paper-
work and additional instructions are detailed on the website.

Additional information on the NCCID, including an overview
of participating sites, existing data processors, live updates on
the size of the training data, and instructions for requesting ac-
cess are all available through the main webpage.

More information on guidelines and data schemas for the
clinical data are available through RSNFT; further detail is also
provided through the HDRUK portal.

Snapshots of the code and copies of the forms for data access
are available from the GigaScience GigaDB repository [53].

Availability of Source Code

The codebase for the data warehouse is open source and avail-
able through the NHSX GitHub:

� Project: covid-chest-imaging-database
� Operating system: Platform independent
� Programming language: Python
� License: MIT

The open-source data ingestion and cleaning pipeline can be
found on NHSX GitHub:

� Project: nccid-cleaning (v.0.3.0)
� Operating system: Platform independent
� Programming language: Python
� License: MIT

Additional Files

Appendix A - Glossary
Appendix B - Scanner and image types
Appendix C - Clinical data summary statistics
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