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g r a p h i c a l a b s t r a c t
� A microbial fuel cell design is

optimized by making simple

modifications.

� The design performs better when

its internal diameter is decreased

from 30 mm to 18 mm.

� Activated carbon on the anode

drastically increases the

maximum power output.

� The increase of the cathodic sur-

face area boosts the power output.

� Stainless steel mesh on the carbon

cathode electrode enhances the

power output.
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a b s t r a c t

The aim of the present study is to enhance the performance of a microbial fuel cell (MFC)

design by making simple interventions. Specifically, terracotta “t” and mullite “m” ce-

ramics are tested as membranes while carbon veil and carbon cloth are used as electrodes.

In the case of “m” cylinders different dimensions are examined (m: ID 30 mm x height

11.5 mm; sm: ID 18 mm x height 18 mm). The units operated continuously with urine as the

feedstock. The best performing is the sm type (60e100 mW), followed by the t type (40

e80 mW) and the m type (20e40 mW). Polarisation experiments indicated that activated

carbon on the anode enhances the power output (t: 423 mW, sm: 288 mW). Similarly, the

increase of the surface area and the addition of stainless steel mesh on the cathode im-

proves the power performance for the “sm” and the “t” units. Furthermore, it is shown that

the design with the smaller internal diameter, performs better and is more stable through

time.
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Introduction

During the last twenty years, many microbial fuels cell (MFC)

systems have been developed at different research labora-

tories. The unique feature of the technology to directly

convert the chemical energy of organic compounds to elec-

tricity using bacteria as catalyst is attractive for many re-

searchers [1,2]. Several designs have been reported, using

different construction materials when fed with various types

of biodegradable substrates, under the scope of optimizing the

system performance for different applications [3e5].

The MFC design is a crucial factor that affects the tech-

nology performance. Single chamber configurations produce

higher power densities in comparison with the dual chamber

MFCs [6,7].Thus, in order to minimise the high internal resis-

tance which drastically contributes to the low power output

values, many designs and electrode materials have been

proposed [8e12]. Further to the reactors design, the configu-

ration of the electrodes and the electrode materials influence

to a great extent the performance of an MFC. In particular, the

electrodes should combine several characteristics, for boost-

ing the power density of the system. Specifically, the desired

traits of the electrodes are the high effective surface area, the

high electrical conductivity, their stability and durability, their

biocompatible properties (for biotic electrodes), the low pore

clogging as well as their low cost [13]. In this direction, carbon

electrodes and metal electrodes have been extensively tested

both as anode and cathode electrodes [14e17]. In an effort to

enhance electrodes efficiency, researchers have also tried to

modify the above materials or build new 3D structures with

improved characteristics (e.g. 3D carbonaceous electrodes)

[18e22]. For example Lai et al. [21] studied the zinc- (FZ) and

nickel-coated (FN) 3D anodes on the performance of a dual

chamber MFC. A power density of 142.4 mW/m2 and

138.6 mW/m2, was achieved for the FZ electrodes and the FN

electrodes, respectively. Moreover, Singh and Verma [22]

fabricated nickel (Ni) nanoparticles- (NPs) dispersed web of

carbon micro-nanofibers (ACFs/CNFs) and used them as the

electrodes in a dual chamber MFC achieving power density

1145 ± 20 mW/m2. The above approaches could replace

expensive electrodes used in MFCs.

Moreover, the selection of the proper separator is another

challenge to overcome for implementing the technology.

Typical separators (e.g ion exchange membranes), hinder the

real application of theMFCs because of their high cost and their

high contribution to the internal resistance of the cells [23]. In

order to overcome this issue, alternative separator materials

(e.g. porous fabrics, ceramic membranes, glass fibers, J-cloth,

zirfon) have been suggested [24e27]. For example, Das et al. [28]

Reported that the Nafion-alternative membrane using poly

(vinyl alcohol) (PVA) crosslinked with glutaraldehyde (GA)

produced higher power density (158.28 mW/m2) than those

typically reported for domestic wastewater fed MFCs. More-

over, the utilization of the ceramic material is a promising

option since clay is abundant in the environment and thus it is

low cost. Additionally, due to its robustness it can be simul-

taneously used as a membrane and as a structural element,

thus reducing the overall construction cost of the system

[23,29,30]. In this view, Raychaudhury and Behera [31],
Fabricated ceramic membranes by blending rice husk ash

(RHA) with soil. They observed that the addition of RHA

improved the maximum volumetric power of the MFC by

approximately 61% (2.14 W/m3).

The MFC technology can treat many types of wastes orig-

inating from different sources such as industry, livestock

farming, domestic wastewater, neat urine and food waste

[9,32e34]. However, for high strength or heavily polluted ef-

fluents, although the organic removal is satisfying when used

as feedstocks in MFCs, the energy output is very low [35].

Further to the toxic elements that might be present, these

complex substrates cannot be directly consumed from elec-

trogenic bacteria. Consequently, the organic matter is

removed from antagonistic microbes existing in the anode

chamber [36]. Athough some high strength and heavily

polluted waste streams need pretreatment before they are

polished with the MFC technology, neat urine is an ideal

substrate for MFCs. Urine is highly conductive, has buffering

capacity and also has a big portion of biodegradable organic

matter. The above traits along with its abundance, makes it a

suitable feedstock for the technology and the development of

decentralized treatment processes [37,38].

This work is an effort to combine the aforementioned as-

pects that move the MFC technology towards its practical

implementation. In this respect, a urine-fed singleMFC design

was assessed [9]. At the same time, the improvement of

electricity production from relatively simple and low cost

modifications to the anode and the cathode electrodes was

tested. Specifically, the effect of cathode surface area, the

addition of stainless steel in the cathode as well as the addi-

tion of activated carbon on the anode, were demonstrated.

Moreover, it was evaluated the effect of different ceramic

types and dimensions of a newly MFC design.
Materials and methods

Design and operation

Twelve sets of different ceramic MFCs (4 ml volume) in

triplicates were tested. The 36 MFC units were constructed

using the same design concept as previously described [9].

Specifically, ceramic tubes open at both ends were used as

the separator. Two 3D printed acrylo-nitrile butadiene sty-

rene (ABS) lids were used for sealing the tubes and for sup-

porting the inlet and outlet tubes. In order to avoid leakages

during the substate flow, a funnel was incorporated on the

top lid and on the inlet tube. The effluent overflew from the

constantelevel outlet tube placed near the top of the cell so

that the units can operate in continuousmode. Moreover, the

positioning of the tubes ensures that the fuel is gradually

driven from the base of the unit to the top surface of the

anolyte, thus increasing the time of the new inlet within the

reactor. The outlet is placed inside the anode chamber for

gaining space under the view of stacking multiple units

together. (Fig. 1).

The cathode electrodeswere open to air and they consisted

from carbon veil sheet coated by activated carbon (AC) [9].

Stainless steel was wrapped around the cathode electrode

reassuring both a better attachment of the cathode electrode
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Fig. 1 e Schematic diagrams from different views of the a),

b) top lids and c), d) bottom lids.

Table 1 e The twelve MFC types tested in triplicates (CV:
carbon veil, CC: carbon cloth, AC: activated carbon, SS:
stainless steel).

MFC type
abbreviation

Anode Composition
(s.a 64.80 cm2)

Cathode
Composition
(s.a 13.75 cm2)

sm1 CV CV

sm2 CV with AC CV

sm3 CC CV

sm4 CV CV (s.a 22.86 cm2)

m1 CV CV

m2 CV with AC CV

m3 CC CV

m4 CV CV with SS addition

t1 CV CV

t2 CV with AC CV

t3 CC CV

t4 CV CV with SS addition
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on the ceramic tube and a connection point for the crocodile

clips. Fig. 2 shows the experimental set up of the 36MFC units.

Under the scope of enhancing the performance, different

materials were modified and tested. Specifically, plain carbon

veil and plain carbon cloth were investigated as anode elec-

trodes, while the addition of activated carbon (AC) on their

surface was examined [9].The AC anode electrodes were pre-

pared following the same procedure for cathodes, as previ-

ously described. Different surface areas (s.a.) of the cathode

electrodes were examined (s.a.:13.75 cm2 and s.a.: 22.86 cm2);

the effect of the addition of stainless steel mesh (SS) on the

cathode electrode was also tested. Specifically, two types of

ceramics were used, mullite and terracotta. Terracotta or “t”

cylinders (outer diameter or OD 40 mm x ID 34 mm x height

11 mm) andmullite “m” cylinders (m: OD 40mm x ID 30mm x

height 11.5 mm; sm: OD 26 mm x ID 18 mm x height 18 mm)

had an open porosity of approximately 27% (t, sm) and 6% (m).

Table 1 shows the different characteristics of the twelve MFC

types tested in triplicates.

For comparison, the same acclimation procedure and the

same operation mode were followed for all units. The inocu-

lation occurred in during three batch mode cycles (under 2 kU
Fig. 2 e The experimental
external resistance per cell) [9]. For the acclimation of the

biofilm, 50% of activated sewage sludge supplied from the

Wessex Water Scientific Laboratory (Saltford, UK) and 50% of

fresh urine was used as the feedstock. Urine was collected

daily from adult individuals.When the enrichment of the cells

was completed, only urine was added in the anode chamber

and the units operated in continuous mode. Additionally, the

MFCs were fed individually (Fig. 2). Urine was pumped (205U,

Watson Marlow, Falmouth, UK with 36 channels) from a

common tank. The cells were fed under a very low flow rate

(0.55 ml/h) due to the limited urine availability.

According to the literature and best lab practices, this flow

rate was sub-optimally low for maximum growth rate and

concomitant maximum power output [39] however it was a

practical limitation that could be overcome. Similar to our

previous study [9], due to struvite precipitation which is

probably enhanced under such low flow rates, the anodic

liquid volume gradually reduced to 1 ml. For overcoming the

low performance due to fuel unavailability, the cells were

occasionally fed under maximum flow rate, until the anolyte

volume was fully replaced (see arrows in Fig. 3).

All experiments were performed at room temperature

(22 ± 2 �C). Voltage output for each MFC was individually
set-up of the 36 cells.
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Fig. 3 e Comparison in the power behavior among the MFC

types (a) the sm cells, (b) t cells and (c) the m cells, versus

time (data is mean, n ¼ 3). Black arrows show the times

when feedings occurred under maximum flow rate.
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recorded in volts (V) versus time by using an Agilent data

logger (KEYSIGHT, 34972A LXI data acquisition/Switch) unit.

The polarisation experimentswere performed using a variable

resistor (Centrad Boite A Decades De Resistances DR07). Data

were produced by sweeping resistor values from 1MU to

3.74 U. The time interval between resistance changes was

3 min. All data presented are the mean of 3 triplicate MFCs.
Results and discussion

Power output behavior of the different MFC types

Ascanbeenseen inFig. 3a, for the smgroup type, the increaseof

the cathode surface area (sm4: s.a 22.86 cm2) improved the ab-

solute power output when compared with the MFCs with a

smaller cathode surface area (sm1, sm2, sm3: s.a 13.75 cm2).

Moreover, the CV anode electrode (sm1) performed slightly

better incomparisonwith theCCanodicelectrode (sm3). TheAC

modification on the surface of the CV anode, presented the

lower power performance for the sm group units (sm4>sm1>
sm3>sm2).

As can been in Fig. 3b, the AC modified anode (t3), pre-

sented the best power performance, followed by the CC anode

(t2), the CV anode (t1) and the SSmodified cathode (t4) for the t

units (t3>t2>t1>t4). However, after 27 days of continuous

operation, this behavior was shifted and the higher power

output values originated from the SS cathode cells (t4), fol-

lowed by t3, t1 and t2 group units (t4>t3>t1>t2). This behavior
was consistent throughout the end of work.

Additionally, the results for the m group, revealed that the

CC anode electrode (m3), exhibited very good power perfor-

mance when compared with the AC anode (m2), the CV anode

(m1) and the SS modified cathode (m4) (m3>m2>m1>m4)

(Fig. 3c). Several “bad” data points originated after in-

terventions to the experiment such as polarisation experi-

ments (high values), have been removed fromFig. 3. Moreover,

the power output sharp peaks result from replacing the ano-

lyte with fresh urine bymaximizing the flow rate of the pump.

This intervention enhanced for short time the power of the

units. In spite of this, power decreased during long term

operation. Thiswas attributed to the struvite precipitation due

to low flow rate [8].

Among the different ceramic types, the best performing

was the sm type (in the range of 60e100 mW), followed by the t

type (in the range of 40e80 mW) and them type (in the range of

20e40 mW). The same general trend was observed during long

term operation. Specifically, the sm cells had higher durability

in comparison with the t and the m units. Namely, the power

output of the t cells gradually decreased after approximately

60 days of operation, while the power of them cells decreased

after approximately 20 days of continuous operation (with the

exception of the m3 type). Moreover, the sm type showed a

better performance stability through time (140 days) (Fig. 3).

Polarisation experiments of the different MFC types during
time

Fivesets ofpolarisationexperimentswere conductedduring the

continuousoperationof theunits, at the following times: 1st at 7

days, 2nd at 14 days, 3rd at 21 days, 4th at 59 days and 5th at 96

days. Fig. 4 shows the voltage Ucell and power output versus

current for thebestperformingcells for eachgroup,during time.

Fig. 4c and d, present the results for each unit of group 2.

The polarisation experiments showed that for the sm

group, the higher values of maximum power Pmax, were
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Fig. 4 e Cell voltage Ucell (a,c,e,g,i) and power output

(b,d,f,h,j) versus current for the best performing cells for

each group at days 7, 14, 21, 59 and 96, respectively. Fig. 4c

and d, present the results for each unit of group 2

(sm2.1e2.3; m2.1e2.3; t2.1e2.3).

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 6 ( 2 0 2 1 ) 3 3 5 9 4e3 3 6 0 033598
achieved from the sm units with the AC modified anode

(162 mW, 288 mW, 224 mW, 162 mW, 119 mW for the 1st, 2nd, 3rd,

4th and 5th polarisation experiment, respectively), followed

by the group with the increased cathode surface area (130 mW,

65 mW, 130 mW, 116 mWfor the 1st, 3rd, 4th and 5th polarisation

experiment, respectively), the CV anode (101 mW, 70 mW,

101 mW, 38 mW for the 1st, 3rd, 4th and 5th polarisation

experiment, respectively) and finally the CC anode (88 mW,

64 mW, 87 mW, 50 mW for the 1st, 3rd, 4th and 5th polarisation

experiment, respectively) (sm2>sm4>sm1>sm3).
Furthermore, the polarisation experiments for the t group

revealed that the higher values of maximum power Pmax,

resulted from the ACmodified anode (423 mW, 148 mW, 283 mW,

30 mW for the 1st, 2nd, 3rd, and 4th polarisation experiment,

respectively), followed by the SS modified cathode (99 mW,

47 mW, 106 mW, 71 mW for the 1st, 3rd, 4th and 5th polarisation

experiment, respectively), the CC anode (94 mW, 14 mW, 5 mW,

5 mW for the 1st, 3rd, 4th and 5th polarisation experiment,

respectively) and the CV anode (78 mW, 65 mW, 22 mW, 9 mW for

the 1st, 3rd, 4th and 5th polarisation experiment, respectively)

(t2>t4�t3>t1).
Additionally, the results for them group, revealed that the

higher values of maximum power Pmax resulted from the CC

anode electrode (94 mW, 77 mW, 8 mW, 8 mW for the 1st, 3rd,

4th and 5th polarisation experiment, respectively) followed

by the AC anode (72 mW, 24 mW, 12 mW, 8 mWand 8 mW for the

1st, 2nd, 3rd, 4th and 5th polarisation experiment, respec-

tively), the CV anode (59 mW, 21 mW, 6 mW, 6 mW for the 1st,

3rd, 4th and 5th polarisation experiment, respectively) and

the SS cathode (19 mW, 51 mW, 12 mW, 12 mW for the 1st, 3rd,

4th and 5th polarisation experiment, respectively)

(m3>m2>m1>m4).

This behavior was consistent throughout the end of work,

for all MFC types. Similarly, to the power behavior versus time

(Fig. 3), the maximum power values decreased during long

term operation with the sm group to exhibit the biggest

durability. However, in contrast to the absolute power values,

the higher values of maximum power output originated from

the AC modified anode cells, followed by the SS modified

cathode and the increased s.a. Cathode, for both the sm and

the t cells. Among all groups the highest maximum power

(423 mW) was achieved from the t2 type. The aforementioned

results are in consistence with the work produced from You

et al. [40], who also observed that the addition of a micro-

porous layer (MPL) on the anodes, boosted the power perfor-

mance. In particular, the maximum power output of the cells

increased by 2.2 (304.3 mW) and 1.8 (253.9 mW) times

compared to the power outputs produced from the plain CV

and CC anodes respectively. Moreover, Gajda et al. [41] indi-

cated that the activated carbon ink on the anode electrode

(carbon veil) increased the power performance of the cell by

77% (37.9 mW). The activated carbon particles which were

added on the carbon veil, boosted the electrocatalytic activity

and increased the surface area of the anode. The same

research group observed that the addition of micro-

nanostructure activated carbon on the carbon veil, resulted

to a 10-fold increase of the power performance (power output

3.7 mW) [42].
Conclusions

The operation of 36 newly designed ceramic MFC units was

assessed and compared using different or modified materials.

The sm cells performed better and had better durability

through time, when compared with the ceramic cylinders

having bigger ID. Moreover, m units showed the lower per-

formance. The results from polarisation experiments revealed

that the increase of the cathodic surface area, themodified AC

anode and the addition of SS to the cathodic electrode,
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enhanced the power performance for both the sm and the t

cells. However, this was not the case for them cells where the

CC anodic electrode had the best performance. The highest

maximum power output obtained was 423 mW and originated

from the t units with the AC modified anode. These findings

indicate that there is a lot of space for boosting power per-

formance per cell, by making simple interventions either to

the design either to the electrodes by improving their char-

acteristics, with the addition of relatively cheap materials

(such as AC and SS). The next question to answer is how the

combination of the above modifications would contribute to

the power performance.
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