, Structure-Activity Studies of 3,9-Diazaspiro[5.5]undecane-Based ${ }_{2} \gamma$-Aminobutyric Acid Type A Receptor Antagonists with ${ }_{3}$ Immunomodulatory Effect

${ }_{4}$ Francesco Bavo, Heleen de-Jong, Jonas Petersen, Christina Birkedahl Falk-Petersen, Rebekka Löffler, ${ }_{5}$ Emma Sparrow, Frederik Rostrup, Jannik Nicklas Eliasen, Kristine S. Wilhelmsen, Kasper Barslund, ${ }_{6}$ Christoffer Bundgaard, Birgitte Nielsen, Uffe Kristiansen, Petrine Wellendorph, Yury Bogdanov, 7 and Bente Frølund*

Cite This: https://doi.org/10.1021/acs.jmedchem. 1 c00290

Read Online

ACCESS	Lull Metrics \& More	国 Article Recommendations	(s) Supporting Information

Abstract

8 ABSTRACT: The 3,9-diazaspiro[5.5] undecane-based compounds 2027 and 018 have previously been reported to be potent 9 competitive γ-aminobutyric acid type A receptor $\left(\mathrm{GABA}_{A} \mathrm{R}\right)$ antagonists showing low cellular membrane permeability. Given the emerging peripheral application of $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ ligands, we hypothesize 2027 analogs as promising lead structures for peripheral $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ inhibition. We herein report a study on the structural determinants of $\mathbf{2 0 2 7}$ in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional 3 acidic moiety for $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ ligands. The structurally simplified m-methylphenyl analog 1 e displayed binding affinity in the high14 nanomolar range ($K_{\mathrm{i}}=180 \mathrm{nM}$) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic $\alpha_{4} \beta \delta$ subtype versus ${ }_{15}$ the α_{1} - and α_{2} - containing subtypes. Importantly, le was shown to efficiently rescue inhibition of T cell proliferation, providing a 16 platform to explore the immunomodulatory potential for this class of compounds.

 GABAergic signaling in the immune system. Indeed, GABA itself is produced by macrophages ${ }^{6}$ and dendritic cells. ${ }^{7}$ 1 Various subunits of $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ have been identified in T 32 cells, ${ }^{8,9}$ monocytes, ${ }^{8}$ macrophages, ${ }^{6}$ and dendritic cells. ${ }^{10}$These data suggest that cells of the immune system possess 33 a functional GABAergic system.

The function of GABA and the $G A B A_{A} R$ s involved in the 35 immune system is not well studied. However, it is currently 36 accepted that GABAergic activation leads to immunosuppres- 37 sion. Indeed, administration of GABA to peritoneal macro- 38 phages leads to decreased proinflammatory cytokine produc- 39 tion, while an increment was observed upon treatment with the 40 $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonist picrotoxin (PTX). ${ }^{11}$ In addition, both 41

[^0]

Gabazine

DPP-4-PIOL

BCC

2027

018

Figure 1. Chemical structures of gabazine, DPP-4-PIOL, BCC, and the 3,9-diazospiro[5.5] undecane analogs 2027 and 018.
membranes, thus making them less attractive for studying 105 central GABA A_{A} R effects. ${ }^{28}$ In contrast, 2027 and $\mathbf{0 1 8}$ are in fact 106 more attractive as tools to investigate peripheral $G A B A_{A} R-107$ mediated effects of GABA. Furthermore, $s p^{3}$-rich scaffolds and 108 particularly spirocycles, such as diazaspiro[5.5] undecane, have 109 recently attracted a lot of interest as unique platforms for 110 modern drug design due to a general superiority of globular/ 111 spherical shaped molecules in binding to a defined target, 112 selectivity and pharmacokinetic properties when compared 113 with $s p^{2}$-rich flat molecules. ${ }^{27,28}$ Owing to the inherent three- 114 dimensionality and conformationally fixed structure, the 115 spirocyclic scaffold is very well suited for probing the chemical 116 space for $G A B A_{A} R$-mediated effects. ${ }^{29}$

Inspired by the emerging peripheral applications of $\mathrm{GABA}_{\mathrm{A}} \mathrm{R} 118$ antagonists and by the attractive physicochemical properties of 119 the spirocyclic compounds in drug development, we have 120 explored the spirocyclic 2027 as a lead structure for delineating 121 the structural determinants for activity in order to suggest a 122 potential binding mode as a basis for rational design and 123 development with the overall aim of developing a $\alpha_{4^{-}}$and/or δ - 124 selective $\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs}$ antagonist with low brain exposure as a 125 potential peripheral immunomodulator. We here report on the 126 synthesis, pharmacological characterization and molecular 127 modeling at the $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ of a series of compounds containing 128 the spirocyclic scaffold as novel $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonists. Finally, 129 the potential for this class of compounds as effectors of T cell 130 proliferation is evaluated.

RESULTS AND DISCUSSION

Design Strategy. Most conventional $\mathrm{GABA}_{A} \mathrm{R}$ ligands 133 require an acidic group distanced approximately $5 \AA$ from a 134 basic center in order to interact with the conserved residue on 135 the α subunit $\operatorname{Arg} 67$ (α_{1} subunit numbering) of the 136 orthosteric binding pocket. ${ }^{22,30,31}$ Both lead compounds 137 considered in this study, 018 and 2027, are lacking this 138 feature but still maintain nanomolar binding affinity and 139 nanomolar to submicromolar antagonist activity at the 140 $\alpha_{3 / 4 / 5} \beta_{1 / 2} \delta / \gamma \quad \mathrm{GABA}_{\mathrm{A}} \mathrm{R}$, respectively. Given the structural 141 diversity of the novel chemical scaffold in the $G_{A B A}^{A} R$ area, 142 we designed a SAR investigation aimed at unraveling structural 143 components essential for binding at the $G_{A B A}^{A} R$ and 144 feature(s) compensating for the absence of such a renowned 145 pharmacophoric element, like acidic functionality.

Figure 2. (A, B) Preliminary binding mode of 018 (dark gray) at the β_{3} / α_{1} interface (PDB ID: 6 HUK). The receptor backbone is shown in gray cartoons, while the carbons of relevant β_{3} and α_{1} residues are represented in light blue and orange, respectively. The inner surface of the receptor is shown in faded gray. Black dotted lines indicate H -bonds, magenta dotted lines represent electrostatic interactions, and green and cyan dotted lines respectively represent π-cation and $\pi-\pi$ interactions. (C) Schematic overview of the design strategy: green dashed lines represent the disconnection points exploited for the progressive deconstruction of $\mathbf{0 1 8}$, while moieties subjected to other modifications are highlighted in yellow.

Scheme 1. Synthesis of Amidated 3,9-Diazaspiro[5,5]undecane Analogs 1a-r ${ }^{a}$

[^1]Preliminary molecular docking of 2027 and 018 at the orthosteric binding site of the $G_{A B A}^{A} R$, adapted from the recently reported cryo-EM structure of the $\alpha_{1} \beta_{3} \gamma_{2 L} \mathrm{GABA}_{A}$, ${ }^{32}$ predicted the following interactions: (1) the positively charged spirocyclic secondary amine establishes an electrostatic interaction with β_{3}-Glu155, two H -bonds with the backbone carbonyls of β_{3}-Tyr 157 and β_{3}-Ser 156, and π-cation interactions with β_{3}-Tyr 205 and β_{3}-Tyr 97; (2) chargeassisted H -bond between the benzamidic carbonyl and α_{1} - Arg 67; (3) $\pi-\pi$ interactions between the phenyl ring of 2027 or 018 and β_{3}-Phe $200 \alpha_{1}$-Phe 46; (4) charge-assisted H-bond between the acetamide of 2027 or the thienyl carboxamide of 018 and β_{3} - Arg 207; (5) Van der Waals interactions between the thienyl ring and β_{3}-Leu 99 and α_{1}-Thr 48 (Figure 2).

Due to the high degree of chemical modularity of $\mathbf{0 1 8}$ and 2027, we envisioned that a progressive deconstruction approach would allow to test the preliminary binding mode and provide useful information about the role of each moiety, which could ultimately lead to a proposed binding mode. Based on extensive exploration of the spirocylic moiety of 2027, a previous report ${ }^{26}$ concluded that any modification to 6 be detrimental for activity; hence, we focused on the N 169 substituent in the present study.

Assisted by molecular docking, we designed three series of 170 analogs of 2027 and 018 (Figure 2). First, the extremely 171 simplified analogs $\mathbf{1 a}, \mathbf{b}$ (Scheme 1) were designed to probe 172 sl whether the spirocyclic tertiary amide alone could compensate 173 the missing electrostatic interaction between α_{1} - $\operatorname{Arg} 67$ and the 174 acidic moiety, known pharmacophoric elements for the 175 majority of $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ ligands, but not for 2027 and 018. 176 Second, the unsubstituted version of 2027 1c and its 177 functionalized analogs $\mathbf{1 d - r}$ (Scheme 1) were designed. 178 Upon identification of two compounds with submicromolar 179 affinity ($\mathbf{1 e}$ and $\mathbf{1 i}$), their two amine analogs $\mathbf{1 s - t}$ (Scheme 2) 180 s 2 were developed to address the joint effects of $\pi-\pi$ stacking of 181 the phenyl ring together with the H bonding of the spirocyclic 182 amide. Last, compound $\mathbf{1 u}$ was designed and developed as an 183 amide-deficient methanolether analog of $\mathbf{0 1 8}$ (Scheme 3) to 184 s 3 unravel the importance of the predicted H-bonding between 185 the carboxamide of $\mathbf{0 1 8}$ and Arg 207.

Synthesis of Target Compounds. Compounds 1a-r 187 were synthesized according to Scheme 1. The commercially 188 available building block N-Boc-3,9-diazaspiro[5,5]undecane 189 (2) was acylated with acyl chlorides or anhydrides under basic 190 conditions to obtain $\mathbf{3 a - c}, \mathbf{3 n}-\mathbf{o}$, and $\mathbf{3 r}$ or with carboxylic 191 acids via a HBTU-mediated condensation reaction under basic 192

Scheme 2. Synthesis of Carbonyl-Deficient 3,9Diazaspiro[5,5]undecane Analogs 1 s and $\mathbf{1 t}^{a}$

1s $p-\mathrm{Br}$
1t m-Me
${ }^{a}$ Reagents and conditions. (a) $\mathrm{RBnBr}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (b) TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt (1s) or 4 N HCl in 1,4 dioxane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt ($\mathbf{1 t}$).
conditions to afford $\mathbf{3 d} \mathbf{- k}$. Then, $\mathbf{3 j} \mathbf{- k}$ and $\mathbf{3 n} \mathbf{- o}$ were converted by catalytic Pd / C hydrogenolysis and hydrogenation to $3 \mathbf{l}-\mathbf{m}$ and to $3 \mathbf{p}-\mathbf{q}$, respectively. The final compounds $\mathbf{1 a - r}$ were achieved by deprotection of the Boc group under acidic conditions.
To further explore the SAR, two compounds lacking the carbonyl group, $\mathbf{1 s}$ and $\mathbf{1 t}$, were prepared as illustrated in Scheme 2. The compounds were synthesized by the N alkylation of 2 with the commercially available substituted benzyl bromides, yielding $\mathbf{4 a}$ and $\mathbf{4 b}$. Deprotection of the Boc group under acidic conditions afforded $\mathbf{1 s}$ and $\mathbf{1 t}$.
To further characterize the binding mode, a 018 analog deficient of thienyl amide was obtained via the convergent synthetic route depicted in Scheme 3. Intermediate 6 was synthesized by treating 5 with SOCl_{2} to afford the alkyl chloride, followed by alkylation of methyl 3-hydroxybenzoate under basic conditions and subsequent deprotection of the methyl ester. A protecting group swap afforded intermediate 10 by treating 2 with trifluoroacetic anhydride under basic conditions and subsequent deprotection of the Boc group under acidic conditions. Intermediates 6 and 7 were coupled via HBTU-mediated condensation under basic conditions followed by deprotection of trifluoro acetamide to afford the final compound $\mathbf{1 u}$.
Structure-Affinity Relationship of the Target Compounds at the $G A B A_{A} R$. The binding affinities of
compounds $\mathbf{1 a}-\mathbf{u}$ at native $\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs}$ were measured by 219 $\left[{ }^{3} \mathrm{H}\right]$ muscimol competition binding experiments to rat brain 220 membrane preparations (Table 1). This binding assay utilizes a 221 tl low concentration (5 nM) of $\left[{ }^{3} \mathrm{H}\right]$-muscimol and thus 222 preferentially picks up binding to high-affinity extrasynaptic 223 GABA $_{A}$ Rs. 33

The chemical modularity of the lead structure of 2027225 prompted us to investigate the SAR by its progressive 226 deconstruction into three different series of simplified analogs: 227 $\mathbf{1 a} \mathbf{- b}, \mathbf{1} \mathbf{c}-\mathbf{r}, \mathbf{u}$ and $\mathbf{1 s , t}$. The extremely simplified N-acetyl 3,9-228 diazaspiro[5,5]undecane 1a and its closely related analog 1b 229 displayed binding affinities in the mid-high micromolar range 230 (37 and $100 \mu \mathrm{M}$, respectively), suggesting that the acetamide 231 function alone is unable to compensate the absence of a 232 carboxylic group. Compound 1a was selected for further 233 modification, gradually building the structure of 2027: 234 replacement of acetamide to benzamide provided compound 235 1c, which exhibited more than 70 times improvement of 236 binding affinity $\left(K_{\mathrm{i}}=1.4 \mu \mathrm{M}\right)$ compared to 1a. The increase 237 may be ascribed to additional lipophilic interactions with the 238 receptor established by the aromatic ring, which is seemingly a 239 pharmacophoric element of this scaffold. Then, electron- 240 withdrawing or electron-donating substituents were introduced 241 at the $o-, m$-, and p-positions of $1 \mathbf{c}$, providing the analogs $\mathbf{1 d}-242$ r. Whereas introduction of a methyl or a bromine at the $o-243$ position did not improve binding affinity ($4.2 \mu \mathrm{M}$ and $2.7 \mu \mathrm{M}, 244$ respectively, for $\mathbf{1 d}$ and $\mathbf{1 g}$), the same substituents at the $m-245$ and p - positions afforded compounds with high nanomolar 246 affinity, ranging from $0.180 \mu \mathrm{M}$ of $1 \mathrm{e}(m-\mathrm{Me})$ to $0.52 \mu \mathrm{M}$ of $1 \mathrm{f}{ }^{247}$ ($p-\mathrm{Me}$). Furthermore, the m - and p - positions were probed 248 either with polar substituents acting as hydrogen bond 249 acceptors and/or donors, such as hydroxyl and amino groups, 250 or with more lipophilic substituents, such as benzyloxy, nitro, 251 and trifluoromethyl. The only compounds with slightly 252 improved and submicromolar binding affinity (2 to 4 times) 253 carried a polar and electron-donating substituent in the m - or 254 p - position ($0.34,0.86$, and $0.71 \mu \mathrm{M}$ respectively for $\mathbf{1 1}, \mathbf{1 m}, 255$ and 1q). Conversely, none of the electron-withdrawing groups 256 caused any affinity improvement and only provided similar or 257 diminished binding affinities ($9.4 \mu \mathrm{M}$ for $\mathbf{1 0}$) compared to the 258 unsubstituted parent compound 1c $(1.4 \mu \mathrm{M})$. Although no 259 evident correlation between either the position or the nature of 260 the substituent was detected, these two observations, taken 261 together, could indicate a preference for compounds 262

Scheme 3. Synthesis of Amide-Deficient 018 Analog $1 u^{a}$

${ }^{a}$ Reagents and conditions. (a) SOCl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) methyl 3-hydroxybenzoate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, and DMF, $75^{\circ} \mathrm{C}$; (c) NaOH in THF: H 2 O , rt; (d) TFAA, $\mathrm{Et}_{3} \mathrm{~N}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt; (e) 4 N HCl in 1,4-dioxane in MeOH , rt; (f) $\mathrm{HBTU}, \mathrm{Et}_{3} \mathrm{~N}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$; (g) 10% aq. NaOH in $\mathrm{EtOH}, \mathrm{rt}$.

Table 1. Pharmacological Data for 2027, 018, and the Synthesized Compounds $1 a-t^{a}$

1a-r, u

compound
bicuculline c
gabazine d
$\mathbf{2 0 2 7}^{e}$

R
m-acetamid
m-(2-thieny
$\left[{ }^{3} \mathrm{H}\right]$-muscimol-binding ${ }_{\left(\mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM}\right)^{6}} K_{\mathrm{i}}(\mu \mathrm{M})$
bicuculline ${ }^{c}$
gabazine d

$\mathbf{2 0 2 7}^{e}$	m-acetamide
$\mathbf{0 1 8}$	-
	carboxamide)

4.57
018^{e}
-
MeO
Ph
$o-\mathrm{Me}-\mathrm{Ph}$
m-Me-Ph
$p-\mathrm{Me}-\mathrm{Ph}$
$o-\mathrm{Br}-\mathrm{Ph}$
$m-\mathrm{Br}-\mathrm{Ph}$
$p-\mathrm{Br}-\mathrm{Ph}$
$m-\mathrm{BnO}-\mathrm{Ph}$
$p-\mathrm{BnO}-\mathrm{Ph}$
$m-\mathrm{OH}-\mathrm{Ph}$
$p-\mathrm{OH}-\mathrm{Ph}$
$m-\mathrm{NO}_{2}-\mathrm{Ph}$
$p-\mathrm{NO}_{2}-\mathrm{Ph}$
$m-\mathrm{NH}_{2}-\mathrm{Ph}$
$p-\mathrm{NH}_{2}-\mathrm{Ph}$
$p-\mathrm{CF}_{3}-\mathrm{Ph}$
m-(2-thienyl methanol
ether)
$p-\mathrm{Br}$
$m-\mathrm{Me}$
classical $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonist gabazine $\left(K_{\mathrm{i}}=0.074 \mu \mathrm{M}\right), 282$ respectively. ${ }^{35,36}$

Structural Rationalization of Major SAR Observations 284 at $\mathrm{GABA}_{\mathbf{A}}$ Rs. The most pronounced SAR effects are (1) a 285 more than $70 \times$ increase in affinity by introducing a phenyl ring 286 from 1a into 1c, (2) a more than $100 \times$ loss of affinity by 287 replacing the spirocyclic tertiary amide of $\mathbf{1 i}$ and $\mathbf{1 e}$ to amine in 288 $\mathbf{1 s}$ and $\mathbf{1 t}$, and (3) a $67 \times$ increase in affinity by amidation of $\mathbf{1 p} 289$ into the 2-thienyl carboxamide moiety of $\mathbf{0 1 8}$ compared to a 290 modest $2 \times$ increase by acetylation, in opposition with a 55×291 decrease in affinity by replacing the primary amide of $\mathbf{0 1 8}$ with 292 the hydroxymethyl of $\mathbf{1 u}$. To elucidate the molecular 293 determinants underlying the SARs of these new unorthodox 294 $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonists, we applied computational methods and 295 performed a docking study of compounds 1a-u, 2027, and 296 018 at the orthosteric binding site of the extracellular $\beta / \alpha 297$ interface of $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$. Most of the 3D structures of $\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs} 298$ available are complexed with small agonist GABA (i.e., 6D6T), 299 and are therefore more suitable for docking studies of agonists 300 or small partial agonists. ${ }^{30}$ Since antagonism is correlated with 301 a more pronounced opening of the flexible loop C of the 302 binding site, leading to more room for accommodating bulkier 303 ligands, ${ }^{32,37,38}$ we chose to use the β_{3} / α_{1} interface from the 304 recently reported cryo-EM of the human full-length $\alpha_{1} \beta_{3} \gamma_{2 \mathrm{~L}} 305$ $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ in complex with BCC $(6 \mathrm{HUK})^{32}$ The BCC-bound 306 orthosteric binding site represents a more realistic 3D model 307 for docking of our novel spirocyclic antagonists, which share 308 pharmacological activity (antagonists), size, and the lack of a 309 carboxylic acid moiety with bicuculline (Figure S1). Since 310 conventional $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ ligands are based on the GABA 311 scaffold, they contain a positively charged ammonium head 312 appropriately distanced from a carboxylate, two renowned and 313 essential pharmacophoric elements for $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ recognition. 314 Both at the β_{2} / α_{1} and at the β_{3} / α_{1} interfaces (PDB codes 315 6 D 6 T and 6 HUO , respectively) $)^{30,32}$ the ammonium group of 316 GABA (or its bioisosters) establishes an electrostatic 317 interaction with β-Glu155 as well as $\pi-\pi$ interactions with 318 the aromatic box formed by β-Y205 and β-Y200, while the 319 carboxylate (or its bioisosters) forms electrostatic interactions 320 with α_{1}-Arg 67 (Figure S2A). ${ }^{39-41}$ Due to the high degree of 321 similarity among subunits within the orthosteric binding 322 pocket, the corresponding residues at the other subunits are 323 conserved (β_{1} compared to β_{2} and β_{3} and $\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$, and $\alpha_{6} 324$ compared to α_{1}). ${ }^{30,42}$ Although all the hereby reported 325 compounds do not have any carboxylic function and therefore 326 miss an interaction believed to be essential for high affinity 327 $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ binding, some of them reach nM affinities, meaning 328 that one or more of the other chemical features compensate for 329 the lack of the carboxylic group.

Aromatic Ring of 1a Enables Access to a Lipophilic 331 Subpocket. Comparing the binding poses of 1a and 1c (Figure 332 f 3 3) provides a qualitative explanation of the 70 -fold difference 333 fz in affinity. Both ammonium groups establish electrostatic 334 interactions with β_{3}-Glu 155, H-bonds with the carbonyl 335 backbones of β_{3}-Ser 156 and β_{3}-Tyr 157, and π-cation 336 interactions with β_{3}-Tyr 205 and β_{3}-Tyr 157 of the aromatic 337 cage. Whereas both amidic carbonyls of 1a and 1c are 338 predicted to H -bond Arg 67, the phenyl ring of 1 c is 339 sandwiched between β_{3}-Phe 200 (located on loop C) and $\alpha_{1^{-}} 340$ Phe 46, with which it establishes face-to-edge and face-to-face 341 $\pi-\pi$ stacking, respectively. A similar interaction pattern can be 342 observed in the original cryo-EM complex 6HUK, where the 343 benzodioxole moiety of bicuculline interacts with β_{3}-Phe 200344

Figure 3. Binding mode of $\mathbf{1 a}$ (green) and $\mathbf{1 c}$ (cyan) as representative of carboxylic-deficient $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ ligands by docking at the β_{3} / α_{1} interface (PDB ID: 6HUK). Receptor backbone is shown in gray cartoons, while the carbons of relevant β_{3} and α_{1} residues are represented in light blue and orange, respectively. Black dotted lines indicate H -bonds, magenta dotted lines represent electrostatic interactions, and green and cyan dotted lines respectively represent π-cation and $\pi-\pi$ interactions. The more potent 1c establishes additional $\pi-\pi$ interactions with Phe 200 and Phe 46 as compared to 1a. 374 synthesized $\mathbf{1 s}$ and $\mathbf{1 t}$ as amine analogs of $\mathbf{1 i}$ and $\mathbf{1 e}$, 375 respectively. They both turned out to be devoid of affinity, 376 suggesting that the carbonyl might interact with α_{1}-Arg 67. In 377 addition, $\mathbf{1 s}$ and $1 \mathbf{t}$ are predicted to exist in their dicationic 378 protonation state at physiological pH . According to the 379 docking, the resulting tertiary ammonium group should be 380 unconventionally placed between two positively charged
arginines, α_{1} - $\operatorname{Arg} 67$ and β_{3} - Arg 207, and would therefore be 381 subjected to repulsive forces that impair binding (Figure 4).

Figure 4. Comparison between the binding modes of $1 \mathbf{e}$ (pink) and 1 \mathbf{t} (yellow), predicted by docking at the β_{3} / α_{1} interface (PDB ID: $6 \mathrm{HUK})$. The red dashed lines represent unfavorable ligand-residue distances due to electrostatic repulsions between the positively charged tertiary amine of $\mathbf{1 t}$ and the positively charged Arg 207 and Arg 67. For sake of clarity, the H-bond between the amidic carbonyl of 1 e and $\operatorname{Arg} 67$ is not shown.

High Affinity of 018 Can Be Related to Additional 383 Interactions in the Lipophilic Pocket. The binding poses of 384 2027 and 018 provide an explanation for their improved 385 binding affinities when compared to their common precursor 386 $\mathbf{1 p}$. In both cases, the newly introduced secondary amide 387 interacts through a bidentate H -bond with β_{3} - Arg 207. 388 Moreover, the lipophilic 2-thienyl group of $\mathbf{0 1 8}$ is placed in 389 the abovementioned lipophilic subpocket and makes extensive 390 Van der Waals contact with β_{3}-Leu 99. To further investigate 391 the role of the amide $/ \beta_{3}$ - $\operatorname{Arg} 207$ interaction, we designed the 392 thienylmethanol ether analog $\mathbf{1 t}$ and its benzyloxy derivatives 393 $\mathbf{1 j}$ and $\mathbf{1 k}$. Their 55 -fold lower affinities suggest that the 394 secondary amide is crucial for high affinity, either by H- 395 bonding β_{3} - $\operatorname{Arg} 207$ or by keeping the structure planar and 396 rigid, so that the thiophene faces the side chain of β_{3}-Leu 99397 (Figure 5).

Antagonistic Potency and Subtype Profiling of 1e 399 and $1 \mathbf{f}$. To assess the effect on subtype selectivity of the 400 structural modifications performed, the functional profile at 401 selected $G_{A B A}^{A} R$ subtype combinations of the compound 402 with highest binding affinity of the series $\mathbf{1 e}$ and its closely 403 related analog lf were explored using a fluorescence-based 404 FLIPR membrane potential (FMP) assay (Table 2). Reflecting 405 t2 the measured binding affinities, $\mathbf{1 e}$ displayed higher antagonist 406 potency than $\mathbf{1 f}$ at all tested receptor subtypes. As reported for 407 2027 and 018, ${ }^{26}$ the potencies of $\mathbf{1 e}$ and 1f were highly 408 dependent on the specific α subunit. As depicted in Table 2, 409 both 1 e and 1 f showed preference for the α_{3-5}-containing 410 receptors with potencies in the high nanomolar range (195-411 560 nM), whereas the potency at $\alpha_{1,2,6}$-containing receptors 412 were in the low micromolar range ($1.95-7.56 \mu \mathrm{M}$), confirming 413 the trend observed for 2027 and 018. Overall, a similar trend 414 for potency ranking based on α-subunit, $\alpha_{4}>\alpha_{5}=\alpha_{3}>\alpha_{6}>\alpha_{1} 415$ $>\alpha_{2}$, was seen for $\mathbf{1 e}$ and $\mathbf{1 f}$ as reported for 2027 and $018,{ }^{26}{ }_{416}$ indicating a preference for the extrasynaptic $\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs}$, often 417

Figure 5. Binding mode of $\mathbf{1 t}$ (purple), 2027 (yellow), and 018 (black) by docking at the β_{3} / α_{1} interface (PDB ID: 6HUK). Black dashed lines represent bidentate H -bonds, while the inner surface receptor is depicted in faded gray.
containing α_{4} but not limited hereto, in contrast to the classical nonselective antagonist gabazine $\left(\mathrm{IC}_{50 \mathrm{~s}}=0.11,0.24\right.$, and 0.24 $\mu \mathrm{M}$ at $\alpha_{4} \beta_{1} \gamma_{2}, \alpha_{4} \beta_{1} \delta$, and $\alpha_{1} \beta_{2} \gamma_{2}$ respectively). ${ }^{26,35,36}$

Of utmost importance, $\mathbf{l e}$ was not only five times more potent than 2027 but also markedly more selective than both 2027 and 018 for the $\alpha_{4} \beta_{1} \delta$ subtype versus the α_{1} - (67 times) and α_{2} - containing (129 times) subtypes (vs $2-10$ times for the lead compounds).

Functional Selectivity and Dissociation Kinetics of $\mathbf{1 e}$. In order to confirm the selectivity of 1 e for $\alpha_{4} \beta_{1} \delta$ receptors over $\alpha_{1} \beta_{2} \delta$ receptors observed in the FMP assay and to obtain kinetic information about the interaction of $\mathbf{1 e}$ with these receptors, we performed whole-cell patch-clamp experiments with the same kind of transfected cells as used in the FMP assay. The results of this are summarized in Figure 6 and detailed in Figure S4.

Application of GABA at a concentration eliciting a near maximal response $\left(\mathrm{EC}_{90-100}\right)$ gave rise to a fast-activating outward current with a time constant for activation of $\tau=43$ ms [35; 52] and $\tau=38 \mathrm{~ms}$ [33;52] (median and interquartile interval) for the $\alpha_{4} \beta_{1} \delta(100 \mu \mathrm{M} \mathrm{GABA})$ and $\alpha_{1} \beta_{2} \delta$ receptors (1 mM GABA), respectively. With $\alpha_{4} \beta_{1} \delta$ receptors, preapplication of the antagonist $\mathbf{l e}$ in increasing concentrations gave rise to a gradual replacement of this fast component of activation with a slow component (Figure 6A and Figure S4A) and, thus, a decrease of the fractional amplitude of the fast

B)

Figure 6. (A) Activation time constants, τ, for currents induced by GABA (EC_{90-100}) with preapplication of varying concentrations of $\mathbf{1 e}$ on $\alpha_{1} \beta_{2} \delta$ and $\alpha_{4} \beta_{1} \delta$ receptors measured by whole-cell patch-clamp recording. τ values were determined by monoexponential curve fitting except for 0.03 and $0.1 \mu \mathrm{M} \mathbf{1 e}$ on $\alpha_{4} \beta_{1} \delta$ receptors, where a slow and fast phase of receptor activation could be resolved by biexponential curve fitting resulting in $\tau_{\text {fast }}$ and $\tau_{\text {slow }}$, respectively (open symbols). For the $\alpha_{4} \beta_{1} \delta$ receptor, a weighted τ value $\left(\tau_{\mathrm{w}}\right)$ is shown. This is a weighted average of the $\tau_{\text {fast }}$ and $\tau_{\text {slow }}$ values, weighted by their fractional contribution to the total current amplitude. For the concentrations where monoexponential fitting was used, τ_{w} is just the single τ values obtained. Data are shown as median \pm interquartile range for $4-12$ cells. (B) The fractional contribution of the fast components of receptor activation to the total current amplitude (\% $\left.A_{\text {fast }}\right)$ decreases as a function of the concentration of 1e on $\alpha_{4} \beta_{1} \delta$ receptors. $\% A_{\text {fast }}$ represents the fraction of receptors not occupied by 1e at the end of the 20 s preapplication just before GABA is applied. Data are shown as mean \pm SEM or $4-12$ cells. The concentration of 1e corresponding to $50 \% A_{\text {fast }}$ was estimated by curve fitting to 71 nM $\left(\mathrm{pIC}_{50} \pm \mathrm{SEM}=7.152 \pm 0.029\right)$.
component $\left(\% A_{\text {fast }}\right)$ from 100 to 0% (Figure 6B and Figure 444 S4B), as observed previously for the slowly dissociating 445 $\mathrm{GABA}_{\mathrm{A}}$ antagonist 018 on these receptors. ${ }^{26}$ In line with 446 (and as detailed in) that study, we interpret the fast and slow 447

Table 2. Antagonist Activity of 1e, 1f, 2027, and 018 at Selected Subtypes ${ }^{a}$

	$\mathrm{IC}_{50}(\mathrm{uM})\left(\mathrm{pIC}_{50} \pm \text { SEM; } n=3\right)^{b}$			
	1e	1f	$2027{ }^{\text {c }}$	018 ${ }^{\text {c }}$
$\alpha_{1} \beta_{2} \delta$	$4.95(5.31 \pm 0.037)$	$13.2(4.88 \pm 0.019)$	6.68 (5.17 $\pm 0.10)$	$0.24(6.61 \pm 0.050)$
$\alpha_{4} \beta_{1} \delta$	$0.195(6.74 \pm 0.11)$	$1.28(5.90 \pm 0.052)$	$1.03(5.99 \pm 0.028)$	$0.088(5.99 \pm 0.028)$
$\alpha_{4} \beta_{2} \delta$	$0.250(6.60 \pm 0.023)$	$2.15(5.67 \pm 0.031)$	0.36 (6.44 $\pm 0.12)$	$0.068(7.17 \pm 0.080)$
$\alpha_{6} \beta_{2} \delta$	$1.95(5.72 \pm 0.058)$	$8.87(5.06 \pm 0.092)$	$4.13(5.38 \pm 0.05)$	$0.33(6.48 \pm 0.082)$
$\alpha_{1} \beta_{2} \gamma_{2}$	$2.18(5.66 \pm 0.026)$	$10.0(5.00 \pm 0.018)$	4.96 (5.30 $\pm 0.17)$	$0.79(6.10 \pm 0.11)$
$\alpha_{2} \beta_{2} \gamma_{2}$	7.56 (5.13 $\pm 0.047)$	$25.3(4.60 \pm 0.052)$	2.96 (5.53 $\pm 0.19)$	$0.32(6.49 \pm 0.13)$
$\alpha_{3} \beta_{2} \gamma_{2}$	0.56 (6.30 $\pm 0.13)$	$3.57(5.49 \pm 0.12)$	$0.29(6.54 \pm 0.17)$	$0.079(7.10 \pm 0.18)$
$\alpha_{5} \beta_{2} \gamma_{2}$	$0.54(6.27 \pm 0.052)$	$1.50(5.84 \pm 0.074)$	$0.59(6.23 \pm 0.19)$	$0.051(7.29 \pm 0.19)$

[^2]

Figure 7. 1e rescues inhibition of proliferation induced by alprazolam in both human PBMC (A, B) and mouse splenocytes (C, D) populations with minimal cell toxicity (E, F). Cells were stained with CFSE $(5 \mu \mathrm{M})$ and stimulated with soluble α-CD3 antibody ($33 \mathrm{ng} / \mathrm{mL}$ for splenocytes and $100 \mathrm{pg} / \mathrm{mL}$ for PBMC) in order to induce T cell proliferation (PBS control). Alprazolam ($33 \mu \mathrm{M}$ for PBMC and $100 \mu \mathrm{M}$ for splenocytes) inhibits α-CD3-induced proliferation, while BMI $(100 \mu \mathrm{M})$ and $\mathbf{1 e}(50 \mu \mathrm{M})$ recover inhibition of proliferation induced by alprazolam. As methanol is used to reconstitute alprazolam and DMSO used to reconstitute 1e, these were included as controls. Data shown is a combination of at least six independent experiments, and error bars show standard error of the mean (SEM). Statistical significance was determined by one-way ANOVA with Tukey's multiple comparison test. $* * P<0.01$. $* * * P<0.001$. $* * * * P<0.0001$.
components as GABA interacting with two "populations" of receptors: those that are initially vacant (and therefore immediately available for GABA to bind to and activate) and those that are initially occupied with antagonist, where GABA 2 activation has to await $\mathbf{l e}$ to dissociate from the receptor,
which is the rate-limiting step. Accordingly, the time constant of the slow component of activation, $\tau_{\text {slow, }}$ is interpreted as 45 reflecting the antagonist dissociation rate, and $\% A_{\text {fast }}$ as the ${ }_{455}$ proportion of receptors not occupied by antagonist at the 456 onset of GABA application. Provided that the antagonist 457
binding has reached equilibrium at the end of the preapplication, the concentration dependence of $\% A_{\text {fast }}$ allows us to estimate the antagonist concentration resulting in 50% $A_{\text {fast, }}$ corresponding to 50% equilibrium receptor occupation by 1e, i.e., a "functional" K_{B}. This was found to be $71 \mathrm{nM}(7.152$ ± 0.029), which is approximatey 10 -fold higher than the K_{B} as previously obtained for 018 in a similar way $(6.9 \mathrm{nM}) .{ }^{26}$
The τ obtained with $0.3 \mu \mathrm{M} 1 \mathrm{e}$ on $\alpha_{4} \beta_{1} \delta$ receptors (where $\%$ $A_{\text {fast }}=0$) represents the situation where all receptors are occupied by 1 e at the time where GABA is applied, and thus, the corresponding τ value ($1.12 \mathrm{~s}[0.81 ; 1.18]$) reflects the dissociation rate of 1 e from the receptors. This value is appoximately 3 -fold faster than the corresponding τ previously obtained for $018(3.7 \mathrm{~s}[2.7 ; 4.3])^{26}$ and suggests that the decrease in potency from 018 to 1 e is partly due to the increased dissociation rate constant $(=1 / \tau)$.
With $\alpha_{1} \beta_{2} \delta$, receptors the results were less clear-cut. It was not possible to resolve the fast and slow components of receptor activation at any concentration. This is likely due to the τ value for dissociation of 1 e from the $\alpha_{1} \beta_{2} \delta$ receptor being faster and therefore closer to the $\tau_{\text {fast }}$ for GABA activation of the vacant receptor. The τ values for $\mathbf{1 e}$ from the $\alpha_{1} \beta_{2} \delta$ receptor obtained from monoexponantial curve fitting are thus hybrids of the underlying $\tau_{\text {fast }}$ and $\tau_{\text {slow }}$, where the contribution of $\tau_{\text {fast }}$ decreases with increasing concentration of $\mathbf{1 e}$ and the hybrid τ value increases accordingly with higher concentrations of $1 \mathbf{e}$ (in a similar way as the weighted time constant τ_{w} for $\alpha_{4} \beta_{1} \delta$ receptors). It is apparent from Figure 6A and Figure S4A that at the $\alpha_{1} \beta_{2} \delta$ receptor, considerably higher concentrations of 1 e are required to associate to the receptor and increase the τ value over the value from GABA activation of the vacant receptor, confirming the lower potency of 1 e on $\alpha_{1} \beta_{2} \delta$ receptors that was observed in the FMP assay. Furthermore, the τ value obtained with highest concentration of $1 \mathbf{e}(189 \mathrm{~ms}$ $[176 ; 235]$) is (approximately 6 -fold) faster than for the $\alpha_{4} \beta_{1} \delta$ receptor. Thus, the lower potency observed on $\alpha_{1} \beta_{2} \delta$ receptors , which correlates well with the results from the FMP assay, is partly due to a faster dissociation rate constant from the receptor.

Membrane Transport Characteristics of 1e. The membrane transport characteristics of 1 e were examined in vitro across cell monolayers of MDCK-MDR1 cells. The bidirectional transport was measured following addition of the test compound $(0.5 \mu \mathrm{M})$ to the apical or basal side of the cell layer. 1e was found to have low apparent apical to basal permeability $\left(1.3 \pm 0.19 \times 10^{-6} \mathrm{~cm} / \mathrm{s}\right)$, whereas the basal to apical transport rate was substantially higher $\left(15 \pm 1.0 \times 10^{-6}\right.$ cm / s). The resultant efflux ratio of 11.5 indicates that $\mathbf{1 e}$ is a strong P-gp substrate and thus has a low likelihood of being distributed to the central nervous system following systemic dosing in vivo.
The pharmacological profile, combined with a simplified structure compared to 018 and the low likelihood of reaching the CNS, prompted us to further investigate $\mathbf{1 e}$ as a potential immunomodulatory agent.

Rescue of T Cell Proliferation. As discussed above, it has been shown that stimulation of $\mathrm{GABA}_{\mathrm{A}}$ Rs leads to inhibition of many T cell functions, including proliferation. ${ }^{14}$ With this in mind, we investigated the ability of $1 \mathbf{e}(50 \mu \mathrm{M})$ to rescue proliferation inhibited by GABAergic signaling and compared this with the rescue seen on treatment with the classical $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonist bicuculline methiode (BMI). We tested

1e on both human PBMC and mouse splenocytes in a 520 proliferation assay format.

Cells were stimulated with anti-CD3 antibody in order to 522 induce T cell proliferation used as a positive control. 523 Benzodiazepine alprazolam was used as a positive allosteric 524 modulator of $\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs}$, inducing decrease of proliferation, 525 and $\mathbf{1 e}$ or BMI was added to alprazolam-treated cells in order 526 to observe rescue of proliferation. Flow cytometry was used to 527 determine the percentage of CD^{+}and $\mathrm{CD} 4^{+} \mathrm{T}$ cells 528 proliferating under each experimental condition (Figure S5). 529

Treatment of human CD8 ${ }^{+} \mathrm{T}$ cells with anti-CD3 antibody 530 resulted in an average of $78.9 \pm 13.5 \%$ proliferation after 96 h 531 of culturing (Figure 7A). CD4 ${ }^{+}$T cell populations proliferated $532 \mathrm{f7}$ slightly less efficiently, with an average proliferation of 59.8 ± 533 19.6\% (Figure 7B). However, in both cell populations, the 534 addition of alprazolam led to a statistically significant decrease 535 in proliferation, which was similar in both cell populations 536 tested (34.8 and 35.7% for CD^{+}and $\mathrm{CD} 4^{+} \mathrm{T}$ cells, 537 respectively). Addition of BMI was able to partially rescue 538 proliferation by approximately 20% in both cell populations. 539 The addition of $\mathbf{1 e}$ to cells treated with alprazolam also led to a 540 20% significant recovery of proliferation in both CD^{+}and 541 $\mathrm{CD} 4^{+} \mathrm{T}$ cell populations. Interestingly, however, this amount 542 of rescue was achieved at a lower concentration of $50 \mu \mathrm{M} 1 \mathrm{e}$ as 543 compared to $100 \mu \mathrm{M}$ BMI, suggesting that $\mathbf{1 e}$ is able to inhibit 544 $\mathrm{GABA}_{\mathrm{A}}$ Rs more efficiently.

We also determined the ability of $\mathbf{1 e}$ to rescue proliferation 546 in mouse CD^{+}and $\mathrm{CD} 4^{+} \mathrm{T}$ cell populations (Figure 7C,D). 547 We observed a similar trend to that seen in human T cell 548 populations. In both cell populations, there was a substantial 549 reduction in proliferation in response to alprazolam treatment, 550 which was determined to be statistically significant. As with 551 human T cell populations, we were able to observe a marked 552 increase in proliferation when alprazolam-treated cells were 553 additionally treated with either BMI or 1e. Again, 1e appeared 554 to be the more efficient $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonist and was in fact 555 able to rescue proliferation in slightly more cells in both 556 populations with minimal cell toxicity (Figure 7E,F) despite 55 the lower concentration used compared to BMI.

To exploit potential off-target mediated effects in the T cell 559 proliferation assay, $\mathbf{1 e}(50 \mu \mathrm{M})$ was subjected to a screening 560 campaign against a selection of targets, including enzymes and 561 transporters involved in the catabolism and reuptake of GABA, 562 ion channels belonging to the class of Cys-loop receptors, and 563 GPCRs expressed in T-cells.
le was shown to be inactive at human GABA transporters 565 (GAT1, GAT2, BGT1, GAT3) at the GABA transaminase, and 566 no significant binding to $5 \mathrm{HT}_{1} \mathrm{~B}, 5 \mathrm{HT}_{2} \mathrm{~B}$ and $5 \mathrm{HT}_{7}$ receptors 567 was detected (Figure S6). Although at the high concentration 568 tested, 1e moderately binds to the $\alpha 7 \mathrm{nACh}$ and to the 5 -HT3 569 receptors, these are only faintly expressed in T cells according 570 to various databases (https://immgen.org, http://biogps.org, 571 http://proteinatlas.org). ${ }^{51}$ This information, combined with 572 the high expression levels of $\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs}$ in T cells, ${ }^{52}$ the high 573 $G_{A B A}^{A} R$ potency of $\mathbf{1 e}$, and a very specific antiproliferative 574 effect induced by benzodiazepine alprazolam reverted by two 575 chemically diverse $\mathrm{GABA}_{\mathrm{A}}$ Rs antagonists $\mathbf{1 e}$ and BMI, strongly 576 suggests a GABA A_{A}-mediated effect of $\mathbf{1 e}$.

- CONCLUSIONS

In summary, we have expanded the pool of $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ ligands 579 based on the unconventional $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonists 2027 and 580 018, all characterized by the spirocyclic scaffold and the lack of 581

582 an acidic moiety. The combination of the analysis of the 583 structure affinity relationships, together with molecular 584 docking, allowed us to propose a binding mode for 2027 585 and analogs that well interprets the affinity data, offering a 586 platform to exploit the spirocyclic scaffold for exploring the 587 chemical space. Micromolar affinity can only be achieved by 588 benzamidation of the spirocyclic scaffold, probably to provide 589 an appropriate H-bonding partner for $\operatorname{Arg} 67$ and productive $590 \pi-\pi$ interactions with Phe 200 and Phe 46 . Further increases 591 in affinity by m-amidation of the phenyl ring can be ascribed to 592 H-bonding to Arg 207 accompanied by additional lipophilic 593 contact with a rather inaccessible lipophilic cavity. The 594 compound with highest binding affinity (1e) displayed 595 antagonist functional activity in the FMP assay and patch596 clamp electrophysiology, with preference for α_{3-5} containing 597 receptors and reaching the highest potency at the $\alpha_{4^{-}}$ 598 containing receptors. Functional activity of $\mathbf{1 e}$ as an 599 immunomodulatory agent was evaluated, and it was found to 600 be superior to the known commercial $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonist 601 BMI in rescuing proliferation of T cells pretreated with 602 alprazolam, a $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$-positive allosteric modulator that 603 inhibits T cell proliferation.
604 All in all, these results, together with the low apparent 605 membrane permeability, high potency, and overall selectivity of 606 1e and preference for α_{3-5}-containing $\mathrm{GABA}_{\mathrm{A}} \mathrm{Rs}$, provide the 607 tools for rational design and development of further peripheral 608 unconventional $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ antagonists with immunomodulatory 609 activity.

610 EXPERIMENTAL SECTION

611 Chemistry. General Procedures. All reagents and materials were 612 purchased from commercial suppliers and used without further 613 purification. The solvents used were of standard HPLC-grade quality. 614 Anhydrous THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and DMF were obtained from a Glass 615 Contour Solvent System (SG Water USA).
616 Anhydrous MeOH was obtained by storage over activated $3 \AA$ 617 molecular sieves for a minimum of 24 h (according to standard 618 protocols). $\mathrm{Et}_{3} \mathrm{~N}$ and pyridine were kept dry by storage over KOH 619 pellets. For thin-layer chromatography (TLC), Merck aluminum 620 sheets covered with silica gel C-60 F_{254} were used and visualized using 621 UV light (254 nm) or KMnO_{4}. Flash chromatography was performed 622 using glass columns packed with Merck Geduran Si 60 ($0.040-0.063$ 623 mm) as a stationary phase. Eluent systems are specified for each R_{f} 624 value and reported as volume ratios. The eluent systems for flash 625 chromatography is specified under each protocol.
626 1D and 2D NMR spectra were acquired using a Bruker Avance II 627 equipped with a 5 mm broad band probe (BBFO) operating at 400 628 MHz for ${ }^{1} \mathrm{H}$ NMR and 101 MHz for ${ }^{13} \mathrm{C}$ NMR or a Bruker Avance III 629 HD equipped with a cryogenically cooled 5 mm dual probe optimized 630 for ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR operating at 600 MHz for ${ }^{1} \mathrm{H}$ NMR and 151 631 MHz for ${ }^{13} \mathrm{C}$ NMR. HSQC, HMBC, H2BC, NOESY, and HSQC632 TOCSY experiments were used to support analyses when ${ }^{1} \mathrm{H}$ NMR, $633{ }^{13} \mathrm{C}$ NMR, and COSY were inadequate. Chemical shifts (δ) are 634 reported in ppm downfield from TMS $(\delta=0)$ using solvent 635 resonance as the internal standard (chloroform-d, ${ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$: 63677.16 ppm ; dimethylsulfoxide- $d_{6},{ }^{1} \mathrm{H}: 2.50 \mathrm{ppm},{ }^{13} \mathrm{C}: 39.52 \mathrm{ppm}$; 637 methanol- $\left.d_{1},{ }^{1} \mathrm{H}: 3.31 \mathrm{ppm},{ }^{13} \mathrm{C}: 49.00 \mathrm{ppm} ; \mathrm{D}_{2} \mathrm{O},{ }^{1} \mathrm{H}: 4.79 \mathrm{ppm}\right)$. 638 Coupling constants (J) are reported in Hz , and the field is reported in 639 each case. Multiplicities are reported as singlet (s), broad singlet (br. 640 s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), 641 doublet of doublet of doublets (ddd), doublet of doublet of triplets $642(\mathrm{ddt})$, triplet (t), triplet of doublets (td), quartet (q), pentet (p), 643 septet (sep), and multiplet (m).
644 Mass spectrometric data was recorded using either a LC-MS system 645 built from an Agilent 1200 series solvent delivery system equipped 646 with an autoinjector coupled to a DAD and an Agilent 6130A series
quadrupole electrospray ionization detector or a Waters Aquity 647 UPLC-MS equipped with a dual-wavelength PDA (214 and 254 nm) 648 combined with electrospray ionization. Gradients of $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN} / 649$ HCOOH (95:5:0.1) (solvent A) and $\mathrm{MeCN} / \mathrm{HCOOH}$ (100:0.1) 650 (solvent B) were employed.

Purity was assessed by analytical HPLC on an UltiMate HPLC 652 system (Thermo Scientific) consisting of an LPG-3400A pump (1 653 $\mathrm{mL} / \mathrm{min}$), a WPS-3000SL autosampler, and a DAD-3000D diode 654 array detector using a Gemini-NX C18 column $(4.6 \times 250 \mathrm{~mm}, 3 \mu \mathrm{~m}, 655$ $110 \AA$); gradient elution was 0 to $100 \% \mathrm{~B}(\mathrm{MeCN} / \mathrm{H} 2 \mathrm{O} / \mathrm{TFA}, 656$ 90:10:0.1) in solvent A (H2O/TFA, 100:0.1) over 15-20 min. Data 657 were acquired and processed using Chromeleon Software v. 6.80. 658 Analytical purity is $\geq 95 \%$ unless stated otherwise; retention times $\left(t_{\mathrm{R}}\right) 659$ are indicated.

660
Preparative HPLC purification was carried out on a Dionex 661 Ultimate 3000 HLPC system consisting of an LPG-3200BX pump (20 662 $\mathrm{mL} / \mathrm{min}$), a Rheodyne 9725i injector, a 10 mL loop, an MWD- 663 3000 SD detector ($200,210,254$, and 281 nm), and an AFC-3000SD 664 automated fraction collector using a Gemini-NX C18 column $(21.2 \times 665$ $250 \mathrm{~mm}, 5 \mu \mathrm{~m}, 110 \AA$); gradient elution was 0 to 80% B (MeCN/ 666 $\mathrm{H} 2 \mathrm{O} / \mathrm{TFA}, 90: 10: 0.1$) in solvent A (H2O/TFA, 100:0.1) over 12667 min. Data were acquired and processed using Chromeleon Software v. 668 6.80 .

Method A: Preparation of Compounds 3a-c, 3n-o, and 3r. In a 670 Schlenk dry round-bottomed flask equipped with a magnetic stirring 671 bar, tert-butyl 3,9-diazaspiro[5.5]undecane-3-carboxylate 2 (1.2 672 mmol, 1 eq) and dry $\mathrm{Et}_{3} \mathrm{~N}$ (2 or 3 eq) were dissolved in dry 673 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the solution was cooled at $0{ }^{\circ} \mathrm{C}$ before 674 dropwise addition of the appropriate acyl anhydride or acyl chloride 675 (from 1.2 to 1.5 eq). The reaction was stirred at rt for 2 h , quenched 676 by addition of aqueous $\mathrm{HCl}(1 \mathrm{~N}, 30 \mathrm{~mL})$ and transferred to a 677 separatory funnel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The organic layer was 678 separated and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL}) 679$ and brine (20 mL), dried over MgSO_{4}, filtered, concentrated in vacuo, 680 and purified by flash chromatography (when specified) to afford the 681 desired compound in excellent yield (85-95\%).

682
Method B: Preparation of Compounds 3d-k. tert-Butyl 3,9-683 diazaspiro[5.5]undecane-3-carboxylate $2(0.34 \mathrm{mmol}, 1 \mathrm{eq})$ and the 684 appropriate carboxylic acid (1.2 eq) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5685$ $\mathrm{mL}) . \mathrm{HBTU}(1.2 \mathrm{eq})$, and dry $\mathrm{Et}_{3} \mathrm{~N}$ (3 eq) were added, and the 686 mixture was stirred at rt overnight. Upon completion, the mixture was 687 diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with saturated aqueous 688 $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}, 689$ filtered, and concentrated in vacuo. Purification by silica gel flash 690 column chromatography provided $3 \mathbf{d}-\mathbf{k}$ in very good yields (72-691 94\%).

692
Method C: Preparation of Compounds 3I-m and 3p-q. 693 Intermediates $3 \mathbf{j}-\mathbf{k}$ and $3 \mathbf{n}-\mathbf{o}(0.32 \mathrm{mmol}, 1.0 \mathrm{eq})$ were dissolved 694 in dry $\mathrm{EtOH}(10 \mathrm{~mL})$, and $10 \% \mathrm{Pd} / \mathrm{C}(0.1$ or 0.6 eq$)$ was added. The 695 reaction mixture was stirred at rt overnight under an H 2 atmosphere. 696 After completion, the mixture was filtered through celite, concen- 697 trated in vacuo, and purified by flash silica gel chromatography (when 698 specified) to provide $\mathbf{3 1 - m}$ and $\mathbf{3 p - q}$ in varying yields ($30-100 \%$). 699

Method D: Preparation of Compounds $\mathbf{1 a - f}$ and $\mathbf{1 j - r}$. In a 700 round-bottomed flask equipped with a magnetic stirring bar, 701 compound $3 \mathbf{a}-\mathbf{f}$ or $\mathbf{3 j}-\mathbf{r}(1.18 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in dry 702 $\mathrm{MeOH}(12 \mathrm{~mL})$ unless stated otherwise, and a solution of HCl in 703 dioxane $(4 \mathrm{~N}, 2 \mathrm{~mL})$ was added in a dropwise manner. The reaction 704 was stirred for 3 h and then concentrated in vacuo to afford 1a-f and 705 $\mathbf{1 j}-\mathbf{r}$ as hydrochloride salt in very good yields (82-100\%). 706

Method E: Preparation of Compounds $\mathbf{1 g - i}$. Intermediates $\mathbf{3 g - i} 707$ ($0.24 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in a TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture ($1: 10,11708$ mL) and stirred at rt for 3 h . Upon completion, the mixture was 709 cooled to $0{ }^{\circ} \mathrm{C}$ and washed with saturated aqueous NaHCO 3 (10 710 mL). The organic layer was dried over MgSO 4 , filtered, and 711 concentrated in vacuo to afford $\mathbf{1 g} \mathbf{- i}$ as white solids in very good 712 yields (80-85\%).

Method F: Preparation of Compounds $\mathbf{4 a}$ and 4b. tert-Butyl 3,9- 714 diazaspiro[5.5]undecane-3-carboxylate ($0.39 \mathrm{mmol}, 1.0 \mathrm{eq}$) and the 715 appropriately substituted benzylbromide (2.0 eq) were dissolved in 716
dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Dry Et 3 N (2 eq) was added, and the reaction mixture was allowed to stir at rt overnight. Upon completion, the mixture was washed with saturated aqueous $\mathrm{NaHCO} 3(3 \times 20)$. The organic phase was dried over Na 2 SO 4 , filtered, and concentrated in vacuo. Purification by silica gel flash column chromatography (EtOAc: n-heptane, 1:1) afforded the desired compounds $\mathbf{4 a}$ or $\mathbf{4 b}$ in good yields ($75-98 \%$).
tert-Butyl 9-Acetyl-3,9-diazaspiro[5.5]undecane-3-carboxylate (3a). Obtained from 305 mg of tert-butyl 3,9-diazaspiro[5.5]-undecane-3-carboxylate 2 with acetic anhydride (1.5 eq) and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 eq) according to method A. The desired product 3a was isolated as a transparent oil in 95% yield. $\mathrm{R}_{t}(\mathrm{HPLC})=11.86 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.62-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.30(\mathrm{~m}, 6 \mathrm{H}), 2.07$ ($\mathrm{s}, 3 \mathrm{H}$), $1.51-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 169.0,155.1,79.6,42.3,39.4,37.3,36.2,35.3,34.7,30.3$, 28.6, 21.6.

3-(tert-Butyl) 9-Methyl 3,9-Diazaspiro[5.5]undecane-3,9-dicarboxylate (3b). Obtained from 305 mg of tert-butyl $3,9-$ diazaspiro[5.5]undecane-3-carboxylate 2 with methyl chloroformate (1.5 eq) and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 eq) according to method A . The desired product $3 \mathbf{b}$ was isolated as a transparent oil in 95% yield. R_{t} (HPLC) $=13.24 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.38$ $(\mathrm{m}, 4 \mathrm{H}), 3.38-3.33(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 17 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,155.0,79.5,52.6,39.6,35.2,30.1,28.6$.
tert-Butyl 9-Benzoyl-3,9-diazaspiro[5.5]undecane-3-carboxylate (3c). Obtained from 305 mg of tert-butyl 3,9 -diazaspiro[5.5]-undecane-3-carboxylate 2 with benzoyl chloride (1.5 eq) and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 eq) according to method A . The desired product 3 c was obtained as a white solid in 92% yield after purification by silica gel flash chromatography. $\mathrm{R}_{f}\left(\right.$ EtOAc: n-heptane 1:1) $=0.35 ; \mathrm{R}_{t}($ HPLC $)=$ $13.58 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.35(\mathrm{~m}, 5 \mathrm{H})$, $3.80-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.28(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 17 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.52,155.05,136.32,129.66,128.58$, 126.96, 79.62, 30.55, 28.58, 21.16.
tert-Butyl 9-(2-Methylbenzoyl)-3,9-diazaspiro[5.5]undecane-3carboxylate (3d). Obtained from 100 mg of tert-butyl 3,9diazaspiro[5.5] undecane-3-carboxylate 2 with 2 -methylbenzoic acid according to method B . The desired product 3 d was obtained as a white solid in 94% yield after purification by silica gel flash chromatography. R_{f} (EtOAc: n-heptane, $1: 1$) $=0.18 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12$ $(\mathrm{m}, 1 \mathrm{H}), 3.95-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.29(\mathrm{~m}, 4 \mathrm{H}), 3.28-3.10(\mathrm{~m}$, $2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 13 \mathrm{H}), 1.41-$ $1.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,154.9,136.5$, 134.1, 130.4, 128.7, 125.9, 125.6, 79.5, 42.6, 39.2, 37.1, 36.1, 35.5, 35.0, 34.8, 30.4, 28.5, 19.0.
tert-Butyl 9-(3-Methylbenzoyl)-3,9-diazaspiro[5.5]undecane-3carboxylate (3e). Obtained from 100 mg of tert-butyl 3,9diazaspiro[5.5] undecane-3-carboxylate 2 with 3-methylbenzoic acid according to method B . The desired product 3 e was obtained as a colorless oil in 79% yield after purification by silica gel flash chromatography. Rf (EtOAc: n-heptane, $1: 1$) $=0.18 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 1.58(\mathrm{~s}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,155.1$, 138.5, 136.3, 130.4, 128.4, 127.6, 123.9, 79.6, 35.4, 30.6, 28.6, 21.5.
tert-Butyl 9-(4-Methylbenzoyl)-3,9-diazaspiro[5.5]undecane-3carboxylate (3f). Obtained from 100 mg of tert-butyl 3,9diazaspiro[5.5] undecane-3-carboxylate 2 with 4 -methylbenzoic acid according to method B. The desired product 3 f was obtained as a colorless oil in 72% yield after purification by silica gel flash chromatography. Rf (EtOAc: n-heptane, 1:1) $=0.18$; LC/MS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=373.2$, found 373.1; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76-3.42(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, $17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,154.9,139.6,133.2$, 129.0, 127.0, 79.5 39.3, 35.2, 30.4, 28.5, 21.4.
tert-Butyl 9-(2-Bromobenzoyl)-3,9-diazaspiro[5.5]undecane-3carboxylate (3 g). Obtained from 100 mg of tert-butyl 3,9 -diazaspiro[5.5]undecane-3-carboxylate 2 with 2 -bromobenzoic acid
according to method B . The desired product 3 g was obtained as a 787 colorless oil in 77% yield after purification by silica gel flash 788 chromatography. Rf (EtOAc: n-heptane, 1:1) $=0.29$; LC/MS (ESI): 789 m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=437.1,439.1$ found 437.0; 790 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34791$ (ddd, $J=8.3,7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25-7.19 (m, 2H), 3.88-3.62 (m, 792 2H), 3.49-3.29 (m, 4H), 3.24 (ddd, $J=13.8,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14793$ (ddd, $J=13.8,7.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.31(\mathrm{~m}, 17 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR (101 794 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,155.0,138.5,132.9,130.3,127.8,127.7,119.3,795$ 79.6, 42.8, 39.4, 37.4, 35.8, 35.4, 35.0, 34.9, 30.6, 28.6.
tert-Butyl 9-(3-Bromobenzoyl)-3,9-diazaspiro[5.5]undecane-3-797 carboxylate (3h). Obtained from 100 mg of tert-butyl 3,9-798 diazaspiro[5.5]undecane-3-carboxylate 2 with 3-bromobenzoic acid 799 according to method B . The desired product 3 h was obtained as a 800 white solid in 82% yield after purification by silica gel flash 801 chromatography. R_{f} (EtOAc: n-heptane, 1:1) $=0.32$; LC/MS (ESI): 802 m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=437.1,439.1$ found 437.0; 803 $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=\delta 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), \delta 7.34-7.24804$ $(\mathrm{m}, 2 \mathrm{H}), \delta 3.82-3.61(\mathrm{~m}, 2 \mathrm{H}), \delta 3.46-3.30(\mathrm{~m}, 6 \mathrm{H}), \delta 1.73-1.37805$ $(\mathrm{m}, 8 \mathrm{H}), \delta 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.6, 806 154.8, 138.1, 132.6, 130.1, 129.3, 125.4, 122.6, 79.5, 39.3, 35.2, 30.4, 807 28.5 .

tert-Butyl 9-(4-bromobenzoyl)-3,9-diazaspiro[5.5]undecane-3-809

 carboxylate (3i). Obtained from 100 mg of tert-butyl 3,9-810 diazaspiro[5.5]undecane-3-carboxylate 2 with 4-bromobenzoic acid 811 according to method B . The desired product 3 i was obtained as a 812 white solid in 84% yield after purification by silica gel flash 813 chromatography. R_{f} (EtOAc: n-heptane, $1: 1$) $=0.29$; LC/MS (ESI): 814 m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=437.1,439.1$ found 437.0; 815 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=816$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.28(\mathrm{~m}, 6 \mathrm{H}), 1.73-1.31(\mathrm{~m}, 817$ 17 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,154.9,135.0,131.7,818$ 128.6, 123.8, 79.5, 39.3, 35.1, 30.4, 28.4.tert-Butyl 9-(3-(Benzyloxy)benzoyl)-3,9-diazaspiro[5.5]- 820 undecane-3-carboxylate (3j). Obtained from 200 mg of tert-butyl 821 3,9-diazaspiro[5.5]undecane-3-carboxylate 2 with 3-(benzyloxy)- 822 benzoic acid according to method B . The desired product $3 \mathbf{j}$ was 823 obtained as a white solid in 86% yield after purification by silica gel 824 flash chromatography. Rf (EtOAc: n-heptane, 1:1) = 0.29 ; LC/MS 825 (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=465.3$ found $465.3 ;{ }^{1} \mathrm{H} 826$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 827$ $3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 2 \mathrm{H}), 828$ $5.14(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.32(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 17 \mathrm{H}) .829$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 172.0,160.2,156.6,138.5,138.4,830$ 131.0, 129.58, 129.0, 128.5, 120.1, 117.7, 114.1, 81.0, 71.1, 44.7, 39.1, 831 36.7, 36.1, 31.6, 28.7.
tert-Butyl 9-(4-(Benzyloxy)benzoyl)-3,9-diazaspiro[5.5]- 833 undecane-3-carboxylate (3k). Obtained from 200 mg of tert-butyl 834 3,9-diazaspiro[5.5]undecane-3-carboxylate 2 with 4-(benzyloxy)- 835 benzoic acid according to method B. The desired product $3 \mathbf{k}$ was 836 obtained as a white solid in 86% yield after purification by silica gel 837 flash chromatography. Rf (EtOAc:n-heptane, 6:4) $=0.30$; LC/MS 838 (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=465.3$ found $465.2 ;{ }^{1} \mathrm{H} 839$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.30(\mathrm{~m}, 7 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 840$ 2 H), $5.09(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.42(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 4 \mathrm{H}), 1.58-841$ $1.42(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,160.0,155.1,842$ 136.7, 129.1, 128.8, 128.6, 128.2, 127.6, 114.8, 79.6, 70.2, 39.4, 35.4, 843 35.4, 30.6, 28.6, 22.8, 14.3.
tert-Butyl 9-(3-Hydroxybenzoyl)-3,9-diazaspiro[5.5]undecane-3- 845 carboxylate (31). Obtained from 150 mg of 3 j using $10 \% \mathrm{Pd} / \mathrm{C}$ (0.6846 eq) in EtOH , according to method C. The desired product 31 was 847 obtained as a white solid in 76% yield. R_{f} (EtOAc: n-heptane, $1: 1$) $=848$ 0.10; LC/MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=375.5849$ found 375.5 ; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 850$ $6.90-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.51-851$ $3.36(\mathrm{~m}, 6 \mathrm{H}), 1.72-1.36(\mathrm{~m}, 17 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 852$ 172.5, 130.9, 118.2, 118.0, 114.6, 81.0, 49.6, 49.4, 49.2, 49.0, 48.8, 853 48.6, 48.4, 44.8, 39.0, 36.2, 31.6, 28.7.
tert-Butyl 9-(4-Hydroxybenzoyl)-3,9-diazaspiro[5.5]undecane-3- 855 carboxylate (3m). Obtained from 150 mg of 3 k using $10 \% \mathrm{Pd} / \mathrm{C}$ (0.1856

857 eq) in EtOH according to method C. The desired product 3 m was 858 obtained as a white solid in 95% yield. $\mathrm{Rf}(\mathrm{EtOAc}: n$-heptane, $1: 1)=$ 859 0.18; LC/MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=375.5$ 860 found 375.5 ; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 b 879 880 881 p 882 p 8836 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 H 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 . Obtained as a white solid from 349 mg of 3 a according to 924 method D in quantitative yield (100\%); $\mathrm{R}_{t}($ HPLC $)=5.70$ min; ${ }_{225}$ UPLC/MS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=197.2$, 926 found 197.2; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.02$ (bs, 2H), 3.44-
$3.31(\mathrm{~m}, 4 \mathrm{H}), 3.06-2.94(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 4 \mathrm{H}), 927$ $1.45(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101928 MHz , DMSO- d_{6}) $\delta 168.0,41.4,38.8,36.4,35.0,34.1,31.2,29.2,21.3 .929$
Methyl 3,9-diazaspiro[5.5]undecane-3-carboxylate Hydrochlor- 930 ide (1b). Obtained as a white solid from 435 mg of $\mathbf{3 b}$ according to 931 method D in quantitative yield $(100 \%) . \mathrm{R}_{t}($ HPLC $)=6.29 \mathrm{~min} ; 932$ UPLC/MS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=213.2$, 933 found 213.1; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.85(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 934$ $3 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 4 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{t}, J=5.9 \mathrm{~Hz}, 935$ $4 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 155.0$, 936 52.2, 39.0, 38.9, 34.2, 31.2, 28.9. 937
Phenyl(3,9-diazaspiro[5.5]undecan-3-yl)methanone Hydro- 938 chloride (1c). Obtained as a white solid from 394 mg of 3 c according 939 to method D in quantitative yield (100%). $\mathrm{R}_{\mathrm{t}}(\mathrm{HPLC})=7.15 \mathrm{~min} ; 940$ UPLC/MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=259.2$, 941 found 259.1; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.01(\mathrm{~s}, 2 \mathrm{H}), 7.47-942$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.21943$ $(\mathrm{m}, 2 \mathrm{H}), 3.08-2.94(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.34(\mathrm{~m}, 944$ $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 168.9,136.4,129.3,128.4,945$ 126.6, 40.0, 38.8, 34.1, 31.2, 29.4.
(2-Methylphenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 947 Hydrochloride (1d). Obtained as a white solid from 111 mg of 3d 948 according to method D in 97% yield. LC/MS (ESI): m / z calcd for 949 $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=273.19$, found 273.1; ${ }^{1} \mathrm{H}$ NMR (400 MHz , 950 MeOD) $\delta 7.37-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19$ (dd, $J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-951$ $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{q}, J 952$ $=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 953$ $1.57-1.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 172.2,136.9$, 954 135.4, 131.6, 130.4, 127.2, 126.7, 43.9, 41.00, 38.4, 36.4, 35.6, 33.3, 955 32.3, 30.8, 19.0.

956
(3,9-Diazaspiro[5.5]undecan-3-yl)(m-tolyl)methanone Hydro- 957 chloride (1e). Obtained as a white solid from 90 mg of 3 e according 958 to method D in 96% yield. $\mathrm{R}_{t}($ HPLC $)=8.10 \mathrm{~min}$ (Figure S7); LC/ 959 MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=273.19$, found 960 273.1; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.47(\mathrm{bs}, 2 \mathrm{H}), 7.39-6.94(\mathrm{~m}, 961$ 4 H), $3.91-3.21(\mathrm{~m}, 4 \mathrm{H}), 3.22-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.15-962$ $1.26(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$ 170.7, 138.5, 135.7, 963 130.6, 128.3, 127.4, 123.8, 39.7, 31.8, 29.8, 21.4.
(4-Methylphenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone Hydrochloride (1f). Obtained as a white solid from 92 mg of 3 f 966 according to method D in quantitative yield. $\mathrm{R}_{t}(\mathrm{HPLC})=8.22 \mathrm{~min} ; 967$ LC/MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=273.19$, found 968 273.1; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.39-7.17$ (m, 4H), 3.84-969 $3.68(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.08(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 970$ $1.87-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , 971 $\left.\mathrm{CDCl}_{3}\right) \delta$ 170.9, 140.2, 132.7, 129.3, 127.1, 39.7, 31.9, 29.9, 21.5. 972
(2-Bromophenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 973 (1g). Obtained as a white solid from 105 mg of 3 g according to 974 method E in 80% yield. $\mathrm{R}_{t}(\mathrm{HPLC})=7.91 \mathrm{~min} ; \mathrm{LC} / \mathrm{MS}(\mathrm{ESI}): m / z 975$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=337.1$, 339.1, found $337.1 ;{ }^{1} \mathrm{H} 976$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 1 \mathrm{H}), 977$ $7.31-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{bs}, 2 \mathrm{H}), 3.76(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-978$ $2.91(\mathrm{~m}, 5 \mathrm{H}), 2.45(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.12(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 979 $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6,138.1,132.9,130.3,127.8,127.5,119.1,980$ 47.4, 42.8, 42.42, 40.2, 37.4, 37.0, 35.8, 35.6, 35.0, 34.5, 33.2, 33.0, 981 30.4, 30.0.
(3-Bromophenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 983 (1h). Obtained as a white solid from 102 mg of 3 i according to 984 method E in 85% yield. $\mathrm{R}_{t}(\mathrm{HPLC})=8.60 \mathrm{~min}$; LC/MS (ESI): $m / z 985$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=337.1$, 339.1, found 337.0; ${ }^{1} \mathrm{H} 986$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.69-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 987$ 7.48-7.30 (m, 2H), 3.85-3.63 (m, 2H), 3.55-3.36 (m, 2H), 3.19 (q, 988 $J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.79(\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} 989$ NMR (101 MHz , MeOD) $\delta 169.9,138.6,133.4,131.0,130.1,125.9,990$ 122.9, 44.0, 40.3, 38.3, 35.6, 34.8, 32.2, 30.1.
(4-Bromophenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 992 (1i). Obtained as a pale yellow solid from 106 mg of 3 i according to 993 method E in 85% yield. $\mathrm{R}_{t}(\mathrm{HPLC})=8.79 \mathrm{~min} ; \mathrm{LC} / \mathrm{MS}(\mathrm{ESI}): m / z 994$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=337.1$, 339.1, found 337.0 ; ${ }^{1} \mathrm{H} 995$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4996$ $\mathrm{Hz}, 2 \mathrm{H}), 3.83-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 997$

9984 H), 2.70 (bs, 2H), $1.85-1.27$ (m, 8H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $999 \mathrm{CDCl}_{3}$) $\delta 169.5,135.0,131.9,128.8,124.1,41.1,34.9,30.4$.
1000 (3-(Benzyloxy)phenyl)(3,9-diazaspiro[5.5]undecan-3-yl)1001 methanone Hydrochloride (1j). Obtained as a white solid from 47 1002 mg of 3 j according to method D using DCM (5 mL) as solvent in 100393% yield. $\mathrm{R}_{t}($ HPLC $)=10.05 \mathrm{~min}$; LC/MS (ESI): m / z calcd for $1004 \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=365.22$, found 365.1 ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $1005 \mathrm{MeOD}) \delta 7.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28$ $1006(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~s}$, 1007 2H), 3.81-3.68 (m, 2H), 3.45-3.33 (m, 2H), $3.19(q, J=5.4 \mathrm{~Hz}$, $10084 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 2 \mathrm{H})$; $1009{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ 172.1, 160.2, 138.4, 138.3, 131.1, 1010 129.6, 129.0, 128.5, 120.1, 117.7, 114.3, 71.11, 44.53, 40.99, 38.84, 1011 36.36, 32.92, 30.77.
1012 (4-(Benzyloxy)phenyl)(3,9-diazaspiro[5.5]undecan-3-yl)1013 methanone Hydrochloride (1k). Obtained as a white solid from 100 1014 mg of $3 \mathbf{k}$ according to method D in quantitative yield. $\mathrm{R}_{t}(\mathrm{HPLC})=$ $10159.95 \mathrm{~min} ; \mathrm{LC} / \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=$ 1016365.22 , found 365.1 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.44$ (d, $J=6.8$ $1017 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 10182 H), $5.14(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.40(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.12(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{t}, J$ $1019=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.72-1.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ 1020 172.5, 161.7, 138.3, 130.0, 129.6, 129.0, 129.0, 128.6, 115.9, 71.1, 1021 41.0, 32.9, 30.8.
1022 (3-Hydroxyphenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 1023 Hydrochloride (11). Obtained as a white solid from 85 mg of 31 1024 according to method D in quantitative yield. $\mathrm{R}_{t}(\mathrm{HPLC})=6.46 \mathrm{~min}$; 1025 LC/MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=275.4$, found 1026275.3 ; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ 1027 (ddd, $J=7.9,2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-$ $10286.68(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.03$ $1029(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.43(\mathrm{~m}$, $10302 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{MeOD}$) δ 171.0, 157.6, 136.8, 129.5, 1031 117.1, 116.5, 113.1, 43.1, 39.6, 37.4, 35.0, 34.0, 31.5, 29.4.
1032 (4-Hydroxyphenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 1033 Hydrochloride (1m). Obtained as a white solid from 50 mg of 3 m 1034 according to method D , in 99% yield. $\mathrm{R}_{t}($ HPLC $)=6.31 \mathrm{~min}$; LC/MS 1035 (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=275.4$, found 275.3; ${ }^{1} \mathrm{H}$ 1036 NMR ($400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6$ $1037 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.47(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.12(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.75(\mathrm{~m}$, 10384 H), 1.75-1.48 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 173.0$, 1039 161.1, 130.3, 126.3, 116.3, 49.6, 49.4, 49.2, 49.0, 48.8, 48.6, 48.4, 41.0, 1040 32.9, 30.7.
1041 (3-Nitrophenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 1042 Hydrochloride (1n). Obtained as a white solid from 50 mg of 3 n 1043 according to method D using DCM $(5 \mathrm{~mL})$ as solvent and stirred at 1044 room temperature overnight in quantitative yield. $\mathrm{R}_{t}(\mathrm{HPLC})=7.43$ 1045 min ; LC/MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+=304.4$, 1046 found 304.3 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.35$ (ddd, $J=8.3,2.4$, $10471.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dt}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $10487.74(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.36(\mathrm{~m}, 2 \mathrm{H})$, $10493.28-3.10(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $10501.53(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) δ 169.8, 149.6, 138.7, 1051 134.0, 131.3, 125.6, 123.0, 49.6, 49.4, 49.2, 49.0, 48.8, 48.6, 48.4, 44.7, 1052 41.0, 39.1, 35.3, 32.9, 30.8.
1053 (4-Nitrophenyl)(3,9-diazaspiro[5.5]undecan-3-YI)methanone 1054 Hydrochloride (10). Obtained as a white solid from 40 mg of 30 1055 according to method D in quantitative yield. $\mathrm{R}_{t}(\mathrm{HPLC})=7.57 \mathrm{~min}$; 1056 LC/MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=304.2$, found 1057 304.3; ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ $1058(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $10593.27-3.14(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{q}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H})$, 1060 1.64-1.49 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 142.6,128.5$, 1061 124.3, 43.9, 40.4, 38.3, 35.7, 35.6, 34.7, 32.3, 30.2.
1062 (3-Aminophenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 1063 Hydrochloride (1p). Obtained as a white solid from 59 mg of 3p 1064 according to method D , using $\mathrm{DCM}(5 \mathrm{~mL})$ as solvent, in quantitative 1065 yield. R_{t} (HPLC) $=5.01 \mathrm{~min} ;$ LC/MS (ESI): m / z calcd for $1066 \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=274.2$, found 274.2; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $1067 \mathrm{MeOD}) \delta 7.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=$
$1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.10(\mathrm{~m}, 1068$ $4 \mathrm{H}), 1.82(\mathrm{q}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.76-1.49(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (1011069 $\mathrm{MHz}, \mathrm{MeOD}) \delta 170.3,139.1,133.0,131.7,128.2,125.4,122.7,49.6,1070$ 49.4, 49.2, 49.0, 48.8, 48.6, 48.4, 44.7, 41.0, 39.0, 35.4, 32.9, 30.8. 1071
(4-Aminophenyl)(3,9-diazaspiro[5.5]undecan-3-yl)methanone 1072 Hydrochloride (1q). Obtained as a white solid from 19 mg of 3 q 1073 according to method D, in 83% yield. $\mathrm{R}_{t}($ HPLC $)=4.92 \mathrm{~min}$; LC/MS 1074 (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=274.2$, found 274.2; ${ }^{1} \mathrm{H} 1075$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.31076$ $\mathrm{Hz}, 2 \mathrm{H}), 3.87-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.13(\mathrm{~m}, 1077$ $4 \mathrm{H}), 1.81(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, 1078$ MeOD) $\delta 169.39,136.38,132.30,128.51,123.12,43.36,39.63,37.64,1079$ 31.47, 29.39. 1080
(3,9-Diazaspiro[5.5]undecan-3-yl)(4-(trifluoromethyl)phenyl)- 1081 methanone Hydrochloride (1r). Obtained as a white solid from 4351082 mg of 3 r according to METHOD D, in 90% yield. $\mathrm{R}_{t}($ HPLC $)=8.851083$ min ; UPLC/MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=1084$ 327.2, found 327.2; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.90(\mathrm{~s}, 2 \mathrm{H}), 1085$ 7.81 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.58$ (m, 1086 $2 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 4 \mathrm{H}), 1087$ $1.58-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , 1088 DMSO) $\delta 167.5,140.4,127.4,125.5,125.5,66.3,31.19,29.34 ;{ }^{19} \mathrm{~F} 1089$ NMR (376 MHz , DMSO) $\delta-61.25$. 1090
tert-Butyl 9-(4-Bromobenzyl)-3,9-diazaspiro[5.5]undecane-3-1091 carboxylate (4a). The compound was obtained from 100 mg of 1092 tert-butyl 3,9-diazaspiro[5.5]undecane-3-carboxylate and 4-bromo- 1093 benzylbromide according to method F. Purification by silica gel 1094 flash column chromatography (EtOAc: n-Heptane, 1:1) yielded 4a as a 1095 light brown solid in 75% yield. Rf (EtOAc: n-Heptane, $1: 1)=0.30 ;{ }^{1} \mathrm{H} 1096$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.31097$ $\mathrm{Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H})$, 1098 $1.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{t}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}{ }_{1099}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.99,139.55,133.25,132.74,122.71,1100$ 81.21, 64.67, 51.00, 41.69, 40.94, 37.38, 31.53, 30.46, 17.26. 1101
tert-Butyl 9-(3-methylbenzyl)-3,9-diazaspiro[5.5]undecane-3-1102 carboxylate (4b). The compound was obtained from 200 mg of 1103 tert-butyl 3,9-diazaspiro[5.5]undecane-3-carboxylate and 3-methyl- 1104 benzylbromide according to method F. Purification by silica gel flash 1105 column chromatography (EtOAc: n-heptane, 1:1) yielded 4b as a 1106 colorless oil in 95\%. $\mathrm{R}_{f}($ EtOAc: n-heptane, 1:1) $=0.28$; LC/MS 1107 (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=359.5$, found 359.3 ; ${ }^{1} \mathrm{H} 1108$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1109$ $1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.41-1110$ $3.28(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 4 \mathrm{H}), 1111$ $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1112$ 157.0, 139.8, 133.8, 132.0, 130.1, 129.8, 128.4, 81.2, 65.4, 51.0, 37.3, 1113 31.5, 30.5, 23.4. 1114
3-(4-Bromobenzyl)-3,9-diazaspiro[5.5]undecane TFA (1s). Ob- 1115 tained as a white solid from 101 mg of 4 a according to method E in 1116 19% yield after purification by preparative HPLC. $\mathrm{R}_{t}(\mathrm{HPLC})=6.891117$ min ; LC/MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrN}_{2}[\mathrm{M}+\mathrm{H}]^{+}=323.1$, 1118 325.1 found $323.0,325.0 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD) $\delta 7.66(\mathrm{~d}, J=1119$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 1120$ $2 \mathrm{H}), 3.25-3.06(\mathrm{~m}, 6 \mathrm{H}), 2.08-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.59(\mathrm{~m}, 4 \mathrm{H}) .1121$ ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 161.6,134.2,133.6,129.8,129.5,1122$ 125.6, 121.2, 74.7, 60.5, 48.0, 40.8, 36.2, 32.9, 29.4, 28.5. 1123

3-(3-Methylbenzyl)-3,9-diazaspiro[5.5]undecane Hydrochloride 1124 (1t). Obtained as a white solid from 222 mg of $\mathbf{4 b}$ according to 1125 method D using dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ as a solvent in 95% yield. $\mathrm{R}_{t} 1126$ $($ HPLC $)=6.13 \mathrm{~min} ;$ LC/MS $(E S I): m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2}[\mathrm{M}+1127$ $\mathrm{H}]^{+}=259.4$ found 259.3 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.43-7.381128$ $(\mathrm{m}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{dt}, J=12.5,2.6 \mathrm{~Hz}, 1129$ $2 \mathrm{H}), 3.28-3.10(\mathrm{~m}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.83-1130$ $1.67(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 140.5,132.9,131.9,1131$ 130.3, 130.2, 129.4, 61.4, 41.0, 40.8, 36.1, 32.9, 29.5, 28.5, 21.3. 1132

2-(Chloromethyl)thiophene (6). In a Schlenk dry round-bottomed 1133 flask equipped with a magnetic stirring bar and under a $\mathrm{N}_{2} 1134$ atmosphere, to a solution of thien-2-ylmethanol $5(5.00 \mathrm{~g}, 43.81135$ mmol, $4.17 \mathrm{~mL}, 1 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2} 1136$ $(10.42 \mathrm{~g}, 87.6 \mathrm{mmol}, 6.36 \mathrm{~mL}, 2 \mathrm{eq})$ in a dropwise manner. The 1137

1138 solution was left at room temperature for 4 h , quenched with 1139 saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$, 1140 dried over MgSO_{4}, filtered, and concentrated in vacuo to afford 6 in 1141 quantitative yield $(5.81 \mathrm{~g}, 100 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 11427.33 (dd, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ 1143 (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1144 \delta 140.20$, 127.78, 127.01, 126.99, 40.47.
1145 Methyl 3-(Thiophen-2-ylmethoxy)benzoate (7). In a Schlenk dry 1146 round-bottomed flask equipped with a magnetic stirring bar and 1147 under a N_{2} atmosphere, methyl-3-hydroxy benzoate ($456.6 \mathrm{mg}, 3.00$ $1148 \mathrm{mmol}, 1 \mathrm{eq})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(829.3 \mathrm{mg}, 6.00 \mathrm{mmol}, 2 \mathrm{eq})$ were 1149 suspended in dry DMF $(30 \mathrm{~mL})$ followed by addition of $6(437.6 \mathrm{mg}$, $11503.30 \mathrm{mmol}, 1.1 \mathrm{eq}$). The reaction was heated to $75^{\circ} \mathrm{C}$ and left for 2 h , 1151 quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and transferred to a separatory funnel 1152 and extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organic layer 1153 was washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over $1154 \mathrm{MgSO}_{4}$, filtered, and concentrated in vacuo to afford 7 as a brown 1155 liquid ($750 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.53$ $1156(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (dd, $1157 J=3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.80$ $1158(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.9, 158.3, 138.9, 131.6, 1159 129.6, 127.13, 126.9, 126.5, 122.6, 120.5, 115.3, 65.2, 52.3.
1160 3-(Thiophen-2-ylmethoxy)benzoic Acid (8). Compound 7 (750 $1161 \mathrm{mg}, 3.00 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and THF $1162(1: 2,15 \mathrm{~mL})$ followed by addition of $\mathrm{NaOH}(298.5 \mathrm{mg}, 6.00 \mathrm{mmol}, 2$ 1163 eq) and stirred overnight. The reaction mixture was transferred with 1164 aqueous $\mathrm{HCl}(4 \mathrm{~N}, 20 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. 1165 The combined organic layer was dried over MgSO_{4}, filtered, and 1166 concentrated in vacuo to afford 7 as a white solid ($619.4 \mathrm{mg}, 88.1 \%$). $1167{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $1168(\mathrm{dd}, J=2.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=5.1$, $11691.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (ddd, $J=7.9,2.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, $J=3.5,1.1$ $1170 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.1171 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,158.4,138.8,130.7,129.8,127.3,127.0,126.6$, 1172 123.4, 121.6, 115.7, 65.3.
1173 tert-Butyl 9-(2,2,2-Trifluoroacetyl)-3,9-diazaspiro[5.5]undecane1174 3-carboxylate (9). In a Schlenk flame-dried round-bottomed flask 1175 equipped with a magnetic stirring bar, tert-butyl 3,9-diazaspiro[5.5]1176 undecane-3-carboxylate $2(2.0 \mathrm{~g}, 7.86 \mathrm{mmol}, 1 \mathrm{eq})$ and dry $\mathrm{Et}_{3} \mathrm{~N}$ 1177 ($2.39 \mathrm{~g}, 23.59 \mathrm{mmol}, 3.29 \mathrm{~mL}, 3 \mathrm{eq}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $1178(40 \mathrm{~mL})$ under a N_{2} atmosphere. The reaction mixture was cooled to $11790^{\circ} \mathrm{C}$ in an ice water bath following dropwise addition of 1180 trifluoroacetic anhydride ($2.48 \mathrm{~g}, 11.79 \mathrm{mmol}, 1.64 \mathrm{~mL}, 1.5 . \mathrm{eq}$). 1181 The reaction mixture was left overnight. After quenching with 1182 saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, the aqueous layer was extracted 1183 with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed 1184 with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried 1185 over MgSO_{4}, filtered, and concentrated in vacuo to afford 9 as a white 1186 crystalline solid (2.73 g , $>95 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.63$ $1187(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.56(\mathrm{t}, J=$ $11885.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.49(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.1189 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.4, 155.0, 118.1, 79.7, 46.2, 41.7, 41.6, 39.4, 35.9, 1190 34.7, 30.4, 28.6; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-68.93$.
1191 2,2,2-Trifluoro-1-(3,9-diazaspiro[5.5]undecan-3-yl)ethan-1-one 1192 (10). In a round-bottomed flask equipped with a magnetic stirring bar, 1193 compound 9 ($2.73 \mathrm{~g}, 7.86 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry MeOH $1194(50 \mathrm{~mL})$, and a solution of HCl in dioxane $(4 \mathrm{~N}, 10 \mathrm{~mL})$ was added 1195 dropwise. The reaction was left for 2 h before concentration in vacuo 1196 to afford 10 as a hydrochloride salt in quantitative yield $(2.26 \mathrm{~g}$, $1197>95 \%$); UPLC/MS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=$ 1198 251.3, found 251.1; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 3.72-3.60(\mathrm{~m}$, $11994 \mathrm{H}), 3.26-3.16(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 4 \mathrm{H})$; $1200{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) δ 157.00, 156.65, 156.29, 155.94 1201 (quartet splitting from F), 122.33, 119.48, 116.62, 113.77 (quartet 1202 splitting from F), 47.89, 42.60, 42.57, 40.93, 40.80, 40.23, 36.26, 1203 35.21, 32.70, 32.52, 30.65, 9.22.; ${ }^{19} \mathrm{~F}$ NMR ($\left.776 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ 1204-70.45.
1205 2,2,2-Trifluoro-1-(9-(3-(thiophen-2-ylmethoxy)benzoyl)-3,91206 diazaspiro[5.5]undecan-3-yl)ethan-1-one (3u). In a round-bot1207 tomed flask equipped with a magnetic stirring bar, $8(337.03 \mathrm{mg}$,
$1.44 \mathrm{mmol}, 1.2 \mathrm{eq})$ and compound $10(300 \mathrm{mg}, 1.20 \mathrm{mmol}, 1 \mathrm{eq}) 1208$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, followed by the addition of 1209 HBTU ($545.5 \mathrm{mg}, 1.44 \mathrm{mmol}, 1.2 \mathrm{eq}$) and dry $\mathrm{Et}_{3} \mathrm{~N}(363.9 \mathrm{mg}, 0.501210$ $\mathrm{mL}, 3 \mathrm{eq})$. The reaction was stirred at rt overnight, diluted with 1211 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and washed with saturated $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL}) .1212$ The organic layer was then dried over MgSO_{4}, filtered, and 1213 concentrated in vacuo. The crude brown oil was purified by silica 1214 gel flash column chromatography using a gradient (EtOAc:n-heptane 1215 $1: 1$ to EtOAc) to afford $3 \mathbf{u}$ as a viscous oil ($403.6 \mathrm{mg}, 73 \%$). $\mathrm{R}_{f}=0.151216$ (EtOAc: n-heptane $1: 1$); UPLC/MS (ESI): m / z calcd for 1217 $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}=467.2$, found 467.2; ${ }^{1} \mathrm{H}$ NMR (400 1218 $\mathrm{MHz}, \mathrm{DMSO}) \delta 7.55(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.2,7.51219$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.2,2.7,1.11220$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=2.7,1.3 \mathrm{~Hz}, 1221$ $1 \mathrm{H}), 6.94(\mathrm{dt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.68-3.43(\mathrm{~m}, 6 \mathrm{H}), 1222$ 3.29-3.18 (m, 2H), 1.67-1.38 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, 1223$ DMSO) $\delta 168.41,157.64,138.99,137.79,129.65,127.56,126.83,1224$ 119.08, 115.98, 112.94, 64.33, 38.97, 35.00, 33.98, 30.43, 22.07, 1225 14.05; ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{DMSO}\right) \delta-68.07$.

1226
(3,9-Diazaspiro[5.5]undecan-3-yl)(3-(thiophen-2-ylmethoxy)- 1227 phenyl)methanone (1u). In a round-bottomed flask equipped with a 1228 magnetic stirring bar, compound $3 \mathbf{u}(403.6 \mathrm{mg}, 0.87 \mathrm{mmol}, 1 \mathrm{eq})$ was 1229 dissolved in a solvent mixture consisting of $\mathrm{EtOH}(5 \mathrm{~mL})$ and $10 \% 1230$ aqueous $\mathrm{NaOH}(2.5 \mathrm{~mL})$. The reaction was left for 2 h before being 1231 diluted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL}) .1232$ The combined organic layers were dried over MgSO_{4}, filtered, and 1233 concentrated in vacuo to afford $\mathbf{1 u}$ as a viscous oil ($250.3 \mathrm{mg}, 78.0 \%$); 1234 $\mathrm{R}_{t}(\mathrm{HPLC})=14.22 \mathrm{~min} ;$ UPLC/MS (ESI): m / z calcd for 1235 $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}=371.2$, found 371.2; ${ }^{1} \mathrm{H}$ NMR (400 1236 MHz, DMSO $) \delta 7.55(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1237$ $1 \mathrm{H}), 7.21(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=7.9,2.6,1.2 \mathrm{~Hz}, 1238$ $1 \mathrm{H}), 7.03$ (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=2.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1239$ $6.92(\mathrm{dt}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.49(\mathrm{~m}, 2 \mathrm{H}), 1240$ 3.33-3.12 (m, 4H), 2.68-2.59 (m, 2H), 1.50-1.32 (m, 8H); ${ }^{13} \mathrm{C} 1241$ NMR (101 MHz, DMSO) $\delta 205.99,195.26,176.65,175.53,167.27,1242$ 165.19, 164.47, 164.45, 156.72, 153.57, 150.54, 101.96, 78.74, 75.86, 1243 73.49, 67.88.

1244
[$\left.{ }^{3} \mathrm{H}\right]$-Muscimol Binding Assay. The $\left[{ }^{3} \mathrm{H}\right]$-muscimol binding 1245 assays were performed using cortical synaptic membranes prepared as 1246 previously described. ${ }^{26}$ On the day of the experiment, the membrane 1247 preparation was quickly thawed, homogenized in 40 volumes of 501248 mM Tris- HCl buffer (pH 7.4), and centrifuged at 20,000 rpm for 101249 min at $4^{\circ} \mathrm{C}$. The washing step was repeated four consecutive times. 1250 The final pellet was resuspended in buffer.

1251
Incubation of membranes in 96-well plates ($70-80 \mu \mathrm{~g}$ protein) in 1252 $200 \mu \mathrm{~L}$ of buffer, $25 \mu \mathrm{~L}$ of [$\left.{ }^{3} \mathrm{H}\right]$-muscimol (5 nM final concentration), 1253 and $25 \mu \mathrm{~L}$ of test compounds in various concentrations for at $0^{\circ} \mathrm{C} .1254$ The reaction was terminated by rapid filtration through Whatman 1255 GF/C filters (PerkinElmer Life Sciences) using a 96-well Packard 1256 FilterMate cell-harvester followed by washing with $3 \times 250 \mu \mathrm{~L}$ of ice- 1257 cold buffer. Upon drying the filters overnight at $50{ }^{\circ} \mathrm{C}, 30 \mu \mathrm{~L}$ of 1258 Microscint scintillation fluid (PerkinElmer Life Sciences) was added, 1259 and the amount of filter-bound radioactivity was quantified in cpm. 1260 The experiments were performed in triplicate at least three times per 1261 compound. Nonspecific binding was determined using 1.0 mM GABA 1262 and total binding was determined using buffer solution. The binding 1263 data were analyzed by a nonlinear regression curve-fitting procedure 1264 using GraphPad Prism 7.02 (GraphPad Software Inc., San Diego, CA, 1265 USA).

FLIPR Membrane Potential Assay. Cell line origin has been 1267 previously described in detail. ${ }^{26,53}$ A HEK293 Flp-In cell line stably 1268 expressing the human $\delta-\mathrm{GABA}_{\mathrm{A}}$ receptor subunit (δ-HEK), a 1269 HEK293 Flp-In background cell line stably expressing the G- 1270 protein-coupled receptor NPBWR2, and the HEK293 cell line stably 1271 expressing the human $\alpha_{1} \beta_{2} \gamma_{2}$ receptors were maintained in DMEM 1272 containing GlutaMAX-I supplemented with 10% fetal bovine serum 1273 (FBS) and 1% penicillin-streptomycin and kept in an incubator at 371274 ${ }^{\circ} \mathrm{C}$ with a humidity of $5 \% \mathrm{CO}_{2}$. HEK Flp-In cell lines were positively 1275 selected using $200 \mu \mathrm{~g} / \mathrm{mL}$ hygromycin B. All cell media and additives 1276 were from Life Technologies (Paisley, UK).

1278 Transfection of δ-HEK cells and HEK background cells was 1279 attained using half amounts of Polyfect transfection reagent (Qiagen, 1280 West Sussex, UK) with α and β-subunits in a $1: 1$ ratio or α, β, and γ in 1281 a 1:1:2 ratio to express $\alpha \beta \delta$ or $\alpha \beta \gamma$ receptors, respectively. The cells 1282 were transfected with human $\mathrm{GABA}_{\mathrm{A}}$ receptor subunits $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}$, $1283 \alpha_{6}, \beta_{2}, \gamma_{2}(\mathrm{pcDNA} 3.1 / \mathrm{Zeo}), \alpha_{4}$, and $\beta_{1}(\mathrm{pUNIV})$ to obtain the 1284 respective subtypes.
1285 The FMP assay was performed as described previously. ${ }^{26}$ GABA $1286 \mathrm{EC}_{80}$ concentrations applied to test the antagonist activities of the 1287 compounds were determined from full GABA concentration1288 response curves at the respective receptor subtypes. The obtained 1289 relative changes in fluorescence units (Δ RFU) are the difference 1290 between the baseline fluorescent signal measured before compound 1291 addition and the peak/top plateau in the fluorescent signal obtained 1292 after buffer/compound addition. Signal artifacts due to compound/ 1293 buffer addition was removed from the data based on manual 1294 inspection of the raw data traces. Concentration-inhibition curves 1295 used to determine antagonist potency were fitted using the four1296 parameter concentration-response model:

$$
\text { response }=\text { bottom }+\frac{\text { top }- \text { bottom }}{1+10^{\left[\left(\operatorname{logIC}_{50}-\mathrm{A}\right) \cdot n_{\mathrm{H}}\right]}}
$$

1297 where IC_{50} is the concentration of the compound A resulting in the 1298 half-maxium response (reponse halftway between top and bottom) 1299 and n_{H} is the Hill coefficient. Data analysis was performed using 1300 GraphPad Prism v. 8 (GraphPad Software Inc., San Diego, CA, USA). 1301 Whole-Cell Patch-Clamp Electrophysiology. Whole-cell 1302 patch-clamp experiments were performed essentially as described 1303 previously ${ }^{26}$ with the following modifications.
$1304 \quad \delta$-HEK cells transiently expressing human $\alpha_{4} \beta_{1} \delta$ or $\alpha_{1} \beta_{2} \delta$ receptors 1305 were seeded in 35 mm Petri dishes 1 day after transfection and 1-2 1306 days before the experiments. Initially, in GABA concentration1307 response experiments, for each receptor, a GABA concentration $1308\left(\mathrm{EC}_{90-100}\right)$ eliciting a close to maximum peak response was 1309 established in order to ensure fast activation of the receptors. 1310 GABA concentrations of $100 \mu \mathrm{M}$ and 1 mM for the $\alpha_{4} \beta_{1} \delta$ and $\alpha_{1} \beta_{2} \delta$ 1311 receptors, respectively, were found to be suitable.
1312 For the kinetic studies, various concentrations of $\mathbf{1 e}$ were applied 1313 for 20 s , immediately followed by application of GABA (EC_{90-100}) 1314 alone for 5 s or until a peak or plateau current response was reached. 1315 The cells were allowed to recover so that GABA applications were at 1316 least 1 min apart.
1317 The preapplication of $\mathbf{1 e}$ concentration-dependently protracted the 1318 subsequent receptor activation by GABA. In order to describe this 1319 effect, the activation phase was fitted with two exponential 1320 components (biexponantial fitting), where applicable, or otherwise 1321 with one exponential component using a Simplex optimization 1322 algorithm (PulseFit; HEKA, Germany). ${ }^{26}$ This procedure lead to two $1323\left(\tau_{\text {fast }}, \tau_{\text {slow }}\right)$ or one (τ) time constants, respectively. When 1324 biexponential fitting was applied, the fractional amplitude of the fast 1325 component $\% A_{\text {fast }}=\left(A_{\text {fast }} /\left(A_{\text {slow }}+A_{\text {fast }}\right)\right)$ was also calculated. For 1326 comparison with τ values from monoexponantial fitting, a weighted 1327 time constant $\left(\tau_{\mathrm{w}}\right)$ was calculated.

$$
\tau_{\mathrm{w}}=\frac{\tau_{\text {fast }} \% A_{\text {fast }}+\tau_{\text {slow }} \cdot\left(1-\% A_{\text {fast }}\right)}{100 \%}
$$

1328τ values are reported as medians with interquartile (25-75\%) 1329 intervals and compared using Kruskal-Wallis ANOVA followed by 1330 Dunn's multiple comparison.
1331 In order to estimate the concentration resulting in 50% receptor 1332 occupation by $\mathbf{1 e}$, corresponding to a "functional" K_{B}, the following 1333 concentration-inhibition model was fitted to the concentration-\% $1334 A_{\text {fast }}$ data (GraphPad Prism v.7, GraphPad Software Inc., San Diego, 1335 CA, USA).

$$
\% \mathrm{~A}_{\text {fast }}=\frac{100 \%}{1+10^{\left[\left(\operatorname{logIC}_{50}-[\mathbf{1 e}]\right) \cdot \mathrm{n}_{\mathrm{H}}\right]}}
$$

1336 Membrane Permeability. Bidirectional permeability was tested 1337 for $\mathbf{1 e}$ in the Madin-Darby canine kidney (MDCK) cell line
expressing human multidrug resistance protein (MDR1, P-glyco- 1338 protein) (referred to as MDR1-MDCK cells) as described 1339 previously. ${ }^{54}$ To calculate efflux ratio, the permeability in the basal- 1340 to-apical direction was divided by the permeability in the apical-to- 1341 basal direction. The obtained data is from triplicate measurements. 1342

Molecular Modeling. Ligand Preparation. Compounds 2027, 1343 018, and 1a-u were prepared with the 2D sketch editor of Maestro, 1344 and their protonation state was assigned with Ligprep using default 1345 settings. ${ }^{55}$

1346
Receptor Preparation and Docking. The extracellular $\beta_{3} / \alpha_{1} 1347$ interface, complexed with bicuculline (BCC), was extracted from 1348 the cryo-EM of $\alpha_{1} \beta_{3} \gamma_{2 \mathrm{~L}} \mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ (PDB code: 6 HUK) ${ }^{32}$ and prepared 1349 with the Protein Preparation Wizard with default settings. ${ }^{56}$ Then, the 1350 shape and size of the binding pocket was adapted to the shape and 1351 size of our ligands by docking the compound with the highest binding 1352 affinity in the $\left[{ }^{3} \mathrm{H}\right]$-muscimol assay (018) using the Induced Fit 1353 Docking Protocol. ${ }^{57}$ The docking center was defined by the 1354 complexed BCC, a scaling factor of 0.8 was used to avoid excessive 1355 deformation of the binding site, and default settings were used 1356 elsewhere. Compounds 2027, 018, and 1a-u were then docked using 1357 Glide XP Ligand Docking Protocol with default settings on a grid 1358 centered on the present ligand. ${ }^{58}$ The best scoring output pose 1359 according to the XP GScore was selected for each ligand. In all cases, 1360 the selected pose also maintained the conserved electrostatic 1361 interaction between the ammonium group and Glu 155. The inner 1362 surface of the receptor was calculated with SiteMap. ${ }^{59}$

1363
T Cell Proliferation Assay. PBMC Isolation. Anonymized 1364 leukocyte cones were obtained with consent from the National 1365 Blood Service (Southampton, UK) and were used within 4 h for 1366 preparation of peripheral blood mononuclear cells (PBMC) by 1367 density gradient centrifugation (Lymphoprep; Stemcell Technologies, 1368 Cambridge, UK). Residual red blood cells were removed through the 1369 addition of ammonium-chloride-potassium lysing buffer (Thermo- 1370 Fisher Scientific, Massachusetts, USA), and contaminating platelets 1371 were eliminated by three slow-speed centrifugations ($200 \mathrm{~g}, 10 \mathrm{~min}$), 1372 in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma- 1373 Aldrich, Dorset, UK). Finally, PBMCs were resuspended in freezing 1374 medium (composed of $90 \%(\mathrm{v} / \mathrm{v})$ fetal calf serum (FCS) and 10% (v/ 1375 v) DMSO (Sigma-Aldrich)), initially frozen at $-80{ }^{\circ} \mathrm{C}$, and then 1376 subsequently transferred to liquid nitrogen for extended storage. 1377

Splenocyte Isolation. Spleens were harvested from female wild- 1378 type BALB/c mice. Splenocytes were isolated through processing the 1379 spleen into a single-cell suspension using a cell strainer and 1380 subsequent collection of the cells in phosphate buffered saline 1381 (PBS). Residual red blood cells were removed through the addition of 1382 ammonium-chloride-potassium lysing buffer before the remaining 1383 splenocytes were resuspended in RPMI 1640 medium containing 10\% 1384 FCS, l-glutamine, pyruvate, antibiotics penicillin and streptomycin, 1385 and $2 \mu \mathrm{M}$ 2-betamercaptoethanol (Sigma-Aldrich).

1386
Proliferation Assay Experimental Setup. PBMC and spleno- 1387 cytes were isolated as described above and resuspended in PBS at a 1388 density of 1×10^{7} cells $/ \mathrm{ml}$. Cells were then stained with $5 \mu \mathrm{M}$ CFSE 1389 (BioLegend, San Diego, USA) and incubated at room temperature for 1390 10 min protected from light. RPMI medium containing 10\% FCS, L- 1391 glutamine, pyruvate, and antibiotics penicillin and streptomycin was 1392 added to cells to quench the CFSE, and the cells were centrifuged for 1393 5 min at 300 g before being resuspended in RPMI medium containing 1394 10% FCS, L-glutamine, pyruvate, and antibiotics penicillin and 1395 streptomycin. PBMCs were subjected to high-density incubation 1396 overnight (at a concentration of 1×10^{7} cells $/ \mathrm{ml}$) prior to 1397 commencement of the proliferation assay as previously described. ${ }^{60} \quad 1398$

Cells were activated with soluble anti-CD3 antibody (anti-human 1399 CD3: clone OKT3 and anti-mouse CD3: clone 145.2C11, both made 1400 in-house, and $<10 \mathrm{EU} / \mathrm{mg}$ endotoxin) at concentrations indicated in 1401 the individual figure legends. In addition, alprazolam, BMI (both from 1402 Sigma-Aldrich), and 1e were used as activating or inhibitory reagents 1403 within the assay. The concentrations of each reagent used within 1404 individual experiments are indicated in the individual figure legends. 1405

PBMC were incubated for 96 h , while splenocytes were incubated 1406 for 48 h . Cells were then harvested, and the percentage of 1407

408 proliferating cells in each condition were determined through flow 1409 cytometry as described below.
1410 Flow Cytometry. The following antibodies were used for flow 1411 cytometry: mouse anti-human APC-CD8(SK1), mouse anti-human 1412 PE-CD4(OKT4), rat anti-mouse PE-CD4(GK1.5), and rat anti1413 mouse APC-CD8(53-6.7), in addition to the appropriate isotype 1414 controls (all from BioLegend). Cells were harvested and washed in 1415 flow cytometry buffer (PBS supplemented with 1% (w/v) BSA, 0.1% $1416(\mathrm{w} / \mathrm{v})$ sodium azide, and 0.5 mM EDTA (all from Sigma-Aldrich)) 1417 before being stained with fluorochrome-conjugated antibodies 1418 according to the manufacturer's instructions. Following staining, 1419 cells were washed three times in flow cytometry buffer before being 1420 fixed with $1 \%(\mathrm{w} / \mathrm{v})$ paraformaldehyde (BD Biosciences, Oxford, 1421 UK).
1422 Flow cytometry was performed on a FACSCalibur using BD 1423 Cellquest software or on a FACSCanto-II using BD FACSDiva 1424 software. Further analysis and figure preparation were carried out 1425 using FlowJo software.

1426

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c00290.

Molecular formula string (CSV)
Supplementary docking information (PDB)
Supplementary figures (PDF)

- AUTHOR INFORMATION

Corresponding Author

Bente Frolund - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; © orcid.org/0000-0001-5476-6288; Phone: +45 35336495; Email: bfr@sund.ku.dk

Authors

Francesco Bavo - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark Heleen de-Jong - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
Jonas Petersen - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
Christina Birkedahl Falk-Petersen - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
Rebekka Löffler - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
Emma Sparrow - Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton SO16 6YD, United Kingdom
Frederik Rostrup - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark

Jannik Nicklas Eliasen - Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark 1467 1468

Kristine S. Wilhelmsen - Department of Drug Design and 1470 Pharmacology, Faculty of Health and Medical Sciences, 1471 University of Copenhagen, DK-2100 Copenhagen, Denmark 1472
Kasper Barslund - Translational DMPK, 2500 Valby, 1473 Denmark
Christoffer Bundgaard - Translational DMPK, 2500 Valby, 1475 Denmark
Birgitte Nielsen - Department of Drug Design and 1476 Pharmacology, Faculty of Health and Medical Sciences, 1478 University of Copenhagen, DK-2100 Copenhagen, Denmark 1479
Uffe Kristiansen - Department of Drug Design and 1480 Pharmacology, Faculty of Health and Medical Sciences, 1481 University of Copenhagen, DK-2100 Copenhagen, Denmark 1482
Petrine Wellendorph - Department of Drug Design and 1483 Pharmacology, Faculty of Health and Medical Sciences, 1484 University of Copenhagen, DK-2100 Copenhagen, Denmark; 1485 © orcid.org/0000-0002-5455-8013 1486
Yury Bogdanov - Antibody and Vaccine Group, Centre for 1487 Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton SO16 6YD, United Kingdom

1488
1489
1490
Complete contact information is available at:
1491
https://pubs.acs.org/10.1021/acs.jmedchem.1c00290

Author Contributions

1493
The manuscript was written through contributions of all 1494 authors. F.B. performed the modeling studies and wrote the 1495 first draft of the manuscript. H.J. and J.P. synthesized the 1496 compounds. C.F.P., R.L., and P.W. performed FMP assays. 1497 B.N. and H.J. performed radioligand binding assay. J.N.E. and 1498 U.K. performed electrophysiology. E.S. and Y.B. performed T 1499 cell proliferation assays. F.R. performed some preliminary 1500 docking studies. B.F. devised the study, supervised the work, 1501 and revised the manuscript. All authors have given approval to 1502 the final version of the manuscript.

Notes

The authors declare no competing financial interest. 1505

ACKNOWLEDGMENTS

This work was supported by the Lundbeck Foundation (R303- 1507 2018-3346). Y.B. and E.L.S. were supported by the Cancer 1508 Research UK Pioneer Award to Y.B. (C55651/A26704). 1509

- ABBREVIATIONS

ANOVA, analysis of variance; BBFO, broadband fluorine 1511 observation; BCC, bicuculline; BMI, bicuculline methiodide; 1512 CD, cluster of differentiation; CFSE, carboxyfluorescein 1513 succinimidyl ester; cryo-EM, cryogenic electron microscopy; 1514 DAD, diode array detection; FACS, fluorescence-assisted cell 1515 sorting; FCS, fetal calf serum; FMP, FLIPR membrane 1516 potential; H2BC, heteronuclear 2-bond correlation; HBTU, 1517 hexafluorophosphate benzotriazole tetramethyl uronium; 1518 PAM, positive allosteric modulator; PDA, photodiode array; 1519 PMBC, peripheral blood mononuclear cells; RPMI, Roswell 1520 Park Memorial Institute; SEM, standard error of the mean; 1521 TOCSY, total correlation spectroscopy

1522

1523 REFERENCES

1524 (1) Whiting, P. J. GABA-A receptor subtypes in the brain: a 1525 paradigm for CNS drug discovery? Drug Discovery Today 2003, 8, 1526 445-450.
1527 (2) Fritzius, T.; Bettler, B. The organizing principle of $G A B A_{B}$ 1528 receptor complexes: physiological and pharmacological implications. 1529 Basic Clin. Pharmacol. Toxicol. 2020, 126, 25-34.
1530 (3) Olsen, R. W.; Sieghart, W. International union of pharmacology. 1531 LXX. Subtypes of γ-aminobutyric acid receptors: classification on the $^{\text {ren }}$ 1532 basis of subunit composition, pharmacology, and function. Update. 1533 Pharmacol. Rev. 2008, 60, 243-260.
1534 (4) Foster, A. C.; Kemp, J. A. Glutamate- and GABA-based CNS 1535 therapeutics. Curr. Opin. Pharmacol. 2006, 6, 7-17.
1536 (5) Everington, E. A.; Gibbard, A. G.; Swinny, J. D.; Seifi, M. 1537 Molecular characterization of GABA-A receptor subunit diversity 1538 within major peripheral organs and their plasticity in response to early 1539 life psychosocial stress. Front. Mol. Neurosci. 2018, 11, 18.
1540 (6) Januzi, L.; Poirier, J. W.; Maksoud, M. J. E.; Xiang, Y. Y.; 1541 Veldhuizen, R. A. W.; Gill, S. E.; Cregan, S. P.; Zhang, H.; Dekaban, 1542 G. A.; Lu, W. Y. Autocrine GABA signaling distinctively regulates 1543 phenotypic activation of mouse pulmonary macrophages. Cell. 1544 Imтипоl. 2018, 332, 7-23.
1545 (7) Bhat, R.; Axtell, R.; Mitra, A.; Miranda, M.; Lock, C.; Tsien, R. 1546 W.; Steinman, L. Inhibitory role for GABA in autoimmune 1547 inflammation. Proc. Natl. Acad. Sci. 2010, 107, 2580-2585.
1548 (8) Alam, S.; Laughton, D. L.; Walding, A.; Wolstenholme, A. J. 1549 Human peripheral blood mononuclear cells express $\mathrm{GABA}_{\mathrm{A}}$ receptor 1550 subunits. Mol. Immunol. 2006, 43, 1432-1442.
1551 (9) Mendu, S. K.; Bhandage, A.; Jin, Z.; Birnir, B. Different subtypes 1552 of GABA-A receptors are expressed in human, mouse and rat T 1553 lymphocytes. PLoS One 2012, 7, No. e42959.
1554 (10) Kanatani, S.; Fuks, J. M.; Olafsson, E. B.; Westermark, L.; 1555 Chambers, B.; Varas-Godoy, M.; Uhlén, P.; Barragan, A. Voltage1556 dependent calcium channel signaling mediates $G_{A B A}^{A}$ receptor1557 induced migratory activation of dendritic cells infected by 1558 Toxoplasma gondii. PLoS Pathog. 2017, 13, e1006739-e1006768.
1559 (11) Reyes-García, M. G.; Hernández-Hernández, F.; Hernández1560 Téllez, B.; García-Tamayo, F. GABA (A) receptor subunits RNA 1561 expression in mice peritoneal macrophages modulate their IL-6/IL-12 1562 production. J. Neuroimmunol. 2007, 188, 64-68.
1563 (12) Kim, J. K.; Kim, Y. S.; Lee, H.-M.; Jin, H. S.; Neupane, C.; Kim, 1564 S.; Lee, S.-H.; Min, J.-J.; Sasai, M.; Jeong, J.-H.; Choe, S.-K.; Kim, J.1565 M.; Yamamoto, M.; Choy, H. E.; Park, J. B.; Jo, E.-K. GABAergic 1566 signaling linked to autophagy enhances host protection against 1567 intracellular bacterial infections. Nat. Commun. 2018, 9, 4184.
1568 (13) Tian, J.; Dang, H.; Karashchuk, N.; Xu, I.; Kaufman, D. L. A 1569 clinically applicable positive allosteric modulator of GABA receptors 1570 promotes human β-cell replication and survival as well as GABA's 1571 ability to inhibit inflammatory T cells. J. Diabetes Res. 2019, 2019, 15725783545.

1573 (14) Tian, J.; Chau, C.; Hales, T. G.; Kaufman, D. L. GABA A 1574 receptors mediate inhibition of T cell responses. J. Neuroimmunol. 1575 1999, 96, 21-28.
1576 (15) Yocum, G. T.; Turner, D. L.; Danielsson, J.; Barajas, M. B.; 1577 Zhang, Y.; Xu, D.; Harrison, N. L.; Homanics, G. E.; Farber, D. L.; 1578 Emala, C. W. GABA A_{A} receptor $\alpha 4$-subunit knockout enhances lung 1579 inflammation and airway reactivity in a murine asthma model. Am. J. 1580 Physiol. Lung Cell Mol. Physiol. 2017, 313, L406-L415.
1581 (16) Neumann, S.; Boothman-Burrell, L.; Gowing, E. K.; Jacobsen, 1582 T. A.; Ahring, P. K.; Young, S. L.; Sandager-Nielsen, K.; Clarkson, A. 1583 N. The delta-subunit selective $G_{A B A}^{A}$ receptor modulator, DS2, 1584 improves stroke recovery via an anti-inflammatory mechanism. Front. 1585 Neurosci. 2019, 13, 1133.
1586 (17) Sieghart, W.; Sperk, G. Subunit composition, distribution and 1587 function of $\mathrm{GABA}_{\mathrm{A}}$ receptor subtypes. Curr. Top. Med. Chem. 2002, 2, 1588 795-816.
1589 (18) Zheleznova, N. N.; Sedelnikova, A.; Weiss, D. S. Function and 1590 modulation of δ-containing $\mathrm{GABA}_{\mathrm{A}}$ receptors. Psychoneuroendocrinol1591 ogy 2009, 34, S67-S73.
(19) Johnston, G. A. R.; Chebib, M.; Hanrahan, J. R.; Mewett, K. N. 1592 $\mathrm{GABA}_{\mathrm{C}}$ receptors as drug targets. Curr. Drug Targets: CNS Neurol. 1593 Disord. 2003, 2, 260-268. 1594
(20) Hinton, T.; Johnston, G. A. R. Antagonists of ionotropic 1595 receptors for the inhibitory neurotransmitter GABA: therapeutic 1596 indications. In GABA and glutamate - new developments in neuro- 1597 transmission research; Samardzic, J., Ed.; IntechOpen: Serbia, 2018; 1598 Vol. 6, pp. 91-105. 1599
(21) Maramai, S.; Benchekroun, M.; Ward, S. E.; Atack, J. R. 1600 Subtype selective γ-aminobutyric acid type A receptor $\left(\mathrm{GABA}_{\mathrm{A}} \mathrm{R}\right) 1601$ modulators acting at the benzodiazepine binding site: an update. J. 1602 Med. Chem. 2020, 63, 3425-3446. 1603
(22) Krall, J.; Balle, T.; Krogsgaard-Larsen, N.; Sørensen, T. E.; 1604 Krogsgaard-Larsen, P.; Kristiansen, U.; Frølund, B. GABA A receptor 1605 partial agonists and antagonists: structure, binding mode, and 1606 pharmacology. Adv. Pharmacol. 2015, 201-227. 1607 (23) Heaulme, M.; Chambon, J.-P.; Leyris, R.; Molimard, J.-C.; 1608 Wermuth, C. G.; Biziere, K. Biochemical characterization of the 1609 interaction of three pyridazinyl-GABA derivatives with the GABA $_{A} 1610$ receptor site. Brain Res. 1986, 384, 224-231. 1611
(24) Krehan, D.; Storustovu, S. I.; Liljefors, T.; Ebert, B.; Nielsen, B.; 1612 Krogsgaard-Larsen, P.; Frølund, B. Potent 4-arylalkyl-substituted 3-1613 isothiazolol $\mathrm{GABA}_{\mathrm{A}}$ competitive/noncompetitive antagonists: syn- 1614 thesis and pharmacology. J. Med. Chem. 2006, 49, 1388-1396. 1615
(25) Johnston, G. A. Advantages of an antagonist: bicuculline and 1616 other GABA antagonists. Br. J. Pharmacol. 2013, 169, 328-336. 1617 (26) Falk-Petersen, C. B.; Tsonkov, T. M.; Nielsen, M. S.; Harpsøe, 1618 K.; Bundgaard, C.; Frølund, B.; Kristiansen, U.; Gloriam, D. E.; 1619 Wellendorph, P. Discovery of a new class of orthosteric antagonists 1620 with nanomolar potency at extrasynaptic GABAA receptors. Sci. Rep. 1621 2020, 10, 10078.

1622
(27) Talele, T. T. Opportunities for tapping into three-dimensional 1623 chemical space through a quaternary carbon. J. Med. Chem. 2020, 63, 1624 13291-13315. 1625
(28) Hiesinger, K.; Dar’in, D.; Proschak, E.; Krasavin, M. Spirocyclic 1626 scaffolds in medicinal chemistry. J. Med. Chem. 2021, 64, 150-183. 1627 (29) Carreira, E. M.; Fessard, T. C. Four-membered ring-containing 1628 spirocycles: synthetic strategies and opportunities. Chem. Rev. 2014, 1629 114, 8257-8322. 1630 (30) Zhu, S.; Noviello, C. M.; Teng, J.; Walsh, R. M., Jr.; Kim, J. J.; 1631 Hibbs, R. E. Structure of a human synaptic GABAA receptor. Nature 1632 2018, 559, 67-72. 1633
(31) Petersen, J. G.; Bergmann, R.; Krogsgaard-Larsen, P.; Balle, T.; 1634 Frølund, B. Probing the orthosteric binding site of $\mathrm{GABA}_{\mathrm{A}}$ receptors 1635 with heterocyclic GABA carboxylic acid bioisosteres. Neurochem. Res. 1636 2014, 39, 1005-1015. 1637
(32) Masiulis, S.; Desai, R.; Uchański, T.; Serna Martin, I.; Laverty, 1638 D.; Karia, D.; Malinauskas, T.; Zivanov, J.; Pardon, E.; Kotecha, A.; 1639 Steyaert, J.; Miller, K. W.; Aricescu, A. R. GABAA receptor signalling 1640 mechanisms revealed by structural pharmacology. Nature 2019, 565, 1641 454-459. 1642
(33) Chandra, D.; Halonen, L. M.; Linden, A.-M.; Procaccini, C.; 1643 Hellsten, K.; Homanics, G. E.; Korpi, E. R. Prototypic GABA 1644 receptor agonist muscimol acts preferentially through forebrain 1645 high-affinity binding sites. Neuropsychopharmacology 2010, 35, 999-1646 1007. 1647
(34) Ebert, B.; Thompson, S. A.; Saounatsou, K.; McKernan, R.; 1648 Krogsgaard-Larsen, P.; Wafford, K. A. Differences in agonist/ 1649 antagonist binding affinity and receptor transduction using recombi- 1650 nant human γ-aminobutyric acid type A receptors. Mol. Pharmacol. 1651 1997, 52, 1150-1156. 1652 (35) Frølund, B.; Jensen, L. S.; Guandalini, L.; Canillo, C.; 1653 Vestergaard, H. T.; Kristiansen, U.; Nielsen, B.; Stensbøl, T. B.; 1654 Madsen, C.; Krogsgaard-Larsen, P.; Liljefors, T. Potent 4-aryl- or 4- 1655 arylalkyl-substituted 3 -isoxazolol $\mathrm{GABA}_{\mathrm{A}}$ antagonists: synthesis, 1656 pharmacology, and molecular modeling. J. Med. Chem. 2005, 48, 1657 427-439.

1658
(36) Krall, J.; Bavo, F.; Falk-Petersen, C. B.; Jensen, C. H.; Nielsen, 1659 J. O.; Tian, Y.; Anglani, V.; Kongstad, K. T.; Piilgaard, L.; Nielsen, B.; 1660

1661 Gloriam, D. E.; Kehler, J.; Jensen, A. A.; Harpsøe, K.; Wellendorph, 1662 P.; Frølund, B. Discovery of 2-(imidazo[1,2-b]pyridazin-2-yl)acetic 1663 acid as a new class of ligands selective for the γ-hydroxybutyric acid 1664 (GHB) high-affinity binding sites. J. Med. Chem. 2019, 62, 279816652813.

1666 (37) Hansen, S. B.; Sulzenbacher, G.; Huxford, T.; Marchot, P.; 1667 Taylor, P.; Bourne, Y. Structures of Aplysia AChBP complexes with 1668 nicotinic agonists and antagonists reveal distinctive binding interfaces 1669 and conformations. EMBO J. 2005, 24, 3635-3646.
1670 (38) Terejko, K.; Kaczor, P. T.; Michałowski, M. A.; Dąbrowska, A.; 1671 Mozrzymas, J. W. The C loop at the orthosteric binding site is 1672 critically involved in GABAA receptor gating. Neuropharmacology 1673 2020, 166, 107903.
1674 (39) Giraudo, A.; Krall, J.; Nielsen, B.; Sørensen, T. E.; Kongstad, K. 1675 T.; Rolando, B.; Boschi, D.; Frølund, B.; Lolli, M. L. 4-Hydroxy-1,2,31676 triazole moiety as bioisostere of the carboxylic acid function: a novel 1677 scaffold to probe the orthosteric γ-aminobutyric acid receptor binding 1678 site. Eur. J. Med. Chem. 2018, 158, 311-321.
1679 (40) Giraudo, A.; Krall, J.; Bavo, F.; Nielsen, B.; Kongstad, K. T.; 1680 Rolando, B.; De Blasio, R.; Gloriam, D. E.; Löffler, R.; Thiesen, L.; 1681 Harpsøe, K.; Frydenvang, K.; Boschi, D.; Wellendorph, P.; Lolli, M. 1682 L.; Jensen, A. A.; Frølund, B. Five-membered N-heterocyclic scaffolds 1683 as novel amino bioisosteres at γ-aminobutyric acid (GABA) type A 1684 receptors and GABA transporters. J. Med. Chem. 2019, 62, 579716855809.

1686 (41) Krall, J.; Jensen, C. H.; Sørensen, T. E.; Nielsen, B.; Jensen, A. 1687 A.; Sander, T.; Balle, T.; Frølund, B. Exploring the orthosteric binding 1688 site of the γ-aminobutyric acid type A receptor using 4-(piperidin-41689 yl)-1-hydroxypyrazoles 3- or 5 -imidazolyl substituted: design, syn1690 thesis, and pharmacological evaluation. J. Med. Chem. 2013, 56, 1691 6536-6540.
1692 (42) Berezhnoy, D.; Gravielle, M. C.; Farb, D. H. Pharmacology of 1693 the GABA $_{\mathrm{A}}$ receptor. In Handbook of Contemporary Neuropharmacol1694 ogy; Sibley, D. R; Hanin, I.; Kuhar, M.; Skolnick, P., Eds., John Wiley 1695 \& Sons, Inc., 2007.
1696 (43) Sander, T.; Frølund, B.; Bruun, A. T.; Ivanov, I.; McCammon, 1697 J. A.; Balle, T. New insights into the GABA $_{A}$ receptor structure and 1698 orthosteric ligand binding: receptor modeling guided by experimental 1699 data. Proteins: Struct., Funct., Bioinf. 2011, 79, 1458-1477.
1700 (44) Møller, H. A.; Sander, T.; Kristensen, J. L.; Nielsen, B.; Krall, J.; 1701 Bergmann, M. L.; Christiansen, B.; Balle, T.; Jensen, A. A.; Frølund, B. 1702 Novel 4-(piperidin-4-yl)-1-hydroxypyrazoles as γ-aminobutyric acid ${ }_{A}$ 1703 receptor ligands: synthesis, pharmacology, and structure-activity 1704 relationships. J. Med. Chem. 2010, 53, 3417-3421.
1705 (45) Frølund, B.; Jørgensen, A. T.; Tagmose, L.; Stensbøl, T. B.; 1706 Vestergaard, H. T.; Engblom, C.; Kristiansen, U.; Sanchez, C.; 1707 Krogsgaard-Larsen, P.; Liljefors, T. Novel class of potent 4-arylalkyl 1708 substituted 3-isoxazolol GABA ${ }_{\mathrm{A}}$ antagonists: synthesis, pharmacology, 1709 and molecular modeling. J. Med. Chem. 2002, 45, 2454-2468.
1710 (46) Frølund, B.; Tagmose, L.; Liljefors, T.; Stensbøl, T. B.; 1711 Engblom, C.; Kristiansen, U.; Krogsgaard-Larsen, P. A novel class of 1712 potent 3 -isoxazolol GABA $_{A}$ antagonists: design, synthesis, and 1713 pharmacology. J. Med. Chem. 2000, 43, 4930-4933.
1714 (47) Frølund, B.; Jensen, L. S.; Storustovu, S. I.; Stensbøl, T. B.; 1715 Ebert, B.; Kehler, J.; Krogsgaard-Larsen, P.; Liljefors, T. 4-Aryl-5-(41716 piperidyl)-3-isoxazolol $\mathrm{GABA}_{\mathrm{A}}$ antagonists: synthesis, pharmacology, 1717 and structure-activity relationships. J. Med. Chem. 2007, 50, 198817181992.

1719 (48) Spurny, R.; Debaveye, S.; Farinha, A.; Veys, K.; Vos, A. M.; 1720 Gossas, T.; Atack, J.; Bertrand, S.; Bertrand, D.; Danielson, U. H.; 1721 Tresadern, G.; Ulens, C. Molecular blueprint of allosteric binding sites 1722 in a homologue of the agonist-binding domain of the $\alpha 7$ nicotinic 1723 acetylcholine receptor. Proc. Natl. Acad. Sci. 2015, 112, E25431724 E2552.
1725 (49) Boileau, A. J.; Newell, J. G.; Czajkowski, C. GABA A $_{\text {a }}$ receptor β_{2} $1726 \mathrm{Tyr}^{97}$ and Leu ${ }^{99}$ line the GABA-binding site. Insights into mechanisms 1727 of agonist and antagonist actions. J. Biol. Chem. 2002, 277, 293117282937.
(50) Wagner, D. A.; Czajkowski, C.; Jones, M. V. An arginine 1729 involved in GABA binding and unbinding but not gating of the 1730 $\mathrm{GABA}_{\mathrm{A}}$ receptor. J. Neurosci. 2004, 24, 2733-2741. 1731
(51) Uhlén, M.; Fagerberg, L.; Hallström, B. M.; Lindskog, C.; 1732 Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; 1733 Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; 1734 Szigyarto, C. A.-K.; Odeberg, J.; Djureinovic, D.; Takanen, J. O.; 1735 Hober, S.; Alm, T.; Edqvist, P.-H.; Berling, H.; Tegel, H.; Mulder, J.; 1736 Rockberg, J.; Nilsson, P.; Schwenk, J. M.; Hamsten, M.; von Feilitzen, 1737 K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, 1738 G.; Nielsen, J.; Pontén, F. Tissue-based map of the human proteome. 1739 Science 2015, 347, 1260419. 1740
(52) Sparrow, E. L.; James, S.; Hussain, K.; Beers, S. A.; Cragg, M. 1741 S.; Bogdanov, Y. D. Activation of GABA(A) receptors inhibits T cell 1742 proliferation. PLoS One 2021, 16, No. e0251632.

1743
(53) Falk-Petersen, C. B.; Søgaard, R.; Madsen, K. L.; Klein, A. B.; 1744 Frølund, B.; Wellendorph, P. Development of a robust mammalian 1745 cell-based assay for studying recombinant $\alpha_{4} \beta_{1 / 3} \delta \mathrm{GABA}_{\mathrm{A}}$ receptor 1746 subtypes. Basic Clin. Pharmacol. Toxicol. 2017, 121, 119-129. 1747 (54) Risgaard, R.; Ettrup, A.; Balle, T.; Dyssegaard, A.; Hansen, H. 1748 D.; Lehel, S.; Madsen, J.; Pedersen, H.; Püschl, A.; Badolo, L.; Bang- 1749 Andersen, B.; Knudsen, G. M.; Kristensen, J. L. Radiolabelling and 1750 PET brain imaging of the $\alpha 1$-adrenoceptor antagonist Lu AE43936. 1751 Nucl. Med. Biol. 2013, 40, 135-140. 1752
(55) Schrödinger Release 2019-4: LigPrep; Schrödinger, LLC: New 1753 York, NY, 2019.

1754
(56) Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; 1755 Sherman, W. Protein and ligand preparation: parameters, protocols, 1756 and influence on virtual screening enrichments. J. Comput.-Aided Mol. 1757 Des. 2013, 27, 221-234.

1758
(57) Sherman, W.; Day, T.; Jacobson, M. P.; Friesner, R. A.; Farid, 1759 R. Novel procedure for modeling ligand/receptor induced fit effects. J. 1760 Med. Chem. 2006, 49, 534-553. 1761
(58) Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; 1762 Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. 1763 Extra precision glide: docking and scoring incorporating a model of 1764 hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 1765 2006, 49, 6177-6196. 1766
(59) Halgren, T. A. Identifying and characterizing binding sites and 1767 assessing druggability. J. Chem. Inf. Model. 2009, 49, 377-389. 1768 (60) Hussain, K.; Hargreaves, C. E.; Roghanian, A.; Oldham, R. J.; 1769 Chan, H. T. C.; Mockridge, C. I.; Chowdhury, F.; Frendéus, B.; 1770 Harper, K. S.; Strefford, J. C.; Cragg, M. S.; Glennie, M. J.; Williams, 1771 A. P.; French, R. R. Upregulation of FcyRIIb on monocytes is 1772 necessary to promote the superagonist activity of TGN1412. Blood 1773 2015, 125, 102-110.

[^0]: Received: February 15, 2021

[^1]: ${ }^{a}$ Reagents and conditions. (a) RCOCl (for $\mathbf{3 b}-\mathbf{c}$ and $\mathbf{3 n - o}$) or (RCO$)_{2} \mathrm{O}$ (for $\mathbf{3 a}$ and $3 \mathbf{r}$), $\mathrm{Et}_{3} \mathrm{~N}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$; (b) RCOOH, $\mathrm{HBTU}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt (for $\mathbf{3 d - k}$); (c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, rt ; (d) $4 \mathrm{~N} \mathrm{HCl} 1,4$-dioxane in MeOH (for $\mathbf{1 a - f}, \mathbf{1} \mathbf{k}-\mathbf{m}, \mathbf{1 o}$, and $\mathbf{1 q - \mathbf { r }}$) or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (for $\mathbf{1} \mathbf{j}, \mathbf{1 n}$, and $\mathbf{1 p}$) or TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (for $\mathbf{1 g - i}$).

[^2]: ${ }^{a}$ Functional characterization at selected human $\mathrm{GABA}_{\mathrm{A}} \mathrm{R}$ receptors transiently expressed in HEK293 cells using the FMP assay. ${ }^{b}$ The mean IC_{50} values are given along with $\mathrm{pIC}_{50} \pm$ SEM values and are based on at least three independent experiments using GABA EC_{80} as agonist concentration. ${ }^{c}$ Data from Falk-Petersen et al. ${ }^{26}$

