

1 **HPV-associated Oropharyngeal Cancer**

2 *Matt Lechner<sup>1,2</sup>, Jacklyn Liu<sup>1</sup>, Liam Masterson<sup>3</sup>, Tim Fenton<sup>4,5</sup>*

3

4 <sup>1</sup> UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, United  
5 Kingdom.

6 <sup>2</sup> Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine,  
7 Palo Alto, CA, USA.

8 <sup>3</sup> Department of ENT, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom

9 <sup>4</sup> School of Biosciences, Stacey Building, University of Kent, Canterbury, CT2 7NJ, United  
10 Kingdom.

11 <sup>5</sup> School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16  
12 6YD, United Kingdom.

13

14

15 Correspondence to [m.lechner@ucl.ac.uk](mailto:m.lechner@ucl.ac.uk) or [t.fenton@soton.ac.uk](mailto:t.fenton@soton.ac.uk)

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 *Abstract (200 max.)*

33 Human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has  
34 one of the most rapidly increasing incidences of any cancer in high-income countries. The most  
35 recent edition of the UICC/AJCC staging system separates the HPV-associated entity from its HPV-  
36 negative counterpart to account for the improved prognosis seen in the former. Indeed, with its  
37 improved prognosis and predilection for younger individuals, recent and ongoing clinical trials  
38 emphasize the potential for treatment deintensification as a means to improve patient quality of life  
39 while maintaining high survival outcome. In addition, due to its distinct biology, targeted and  
40 immunotherapies have become an area of particular interest. Importantly, OPSCC is often detected  
41 at an advanced stage due to the lack of symptoms in early stage disease; therefore, there is also a  
42 need for the identification and validation of diagnostic biomarkers to aid in the earlier detection of  
43 disease. Here, we present a summary of the epidemiology, molecular biology and clinical  
44 management of HPV-associated OPSCC in an effort to highlight important advances in the field.  
45 Ultimately, there is a need for an improved understanding of its molecular basis and clinical course  
46 to guide efforts toward early detection, precision care and improved outcomes.

47

48

49

50

51

52

53

54

55

56

57

58

59

60 *Introduction*

61 Oropharyngeal squamous cell cancer (OPSCC) comprises cancers of the tonsils, base of  
62 tongue, soft palate and uvula (Figure 1b). Like other head and neck squamous cell carcinomas  
63 (HNSCC), OPSCC has historically been linked to alcohol and tobacco use. However, while smoking  
64 cessation in high-income countries has led to a decline in HNSCC over the past twenty years,  
65 carcinogenic human papillomavirus (HPV) infection has emerged as an important risk factor that has  
66 driven an increase in OPSCC. More specifically, HPV now accounts for 71% and 51.8% of OPSCC  
67 cases in the USA and UK respectively.<sup>1-4</sup> Of these, 85 - 96% are caused by HPV16 and are therefore  
68 expected to be preventable by prophylactic HPV vaccines known to be effective in preventing HPV-  
69 associated cervical neoplasia and now being administered to both boys and girls in several  
70 countries.<sup>4,5</sup> The most recent edition of the American Joint Committee on Cancer (AJCC) staging  
71 system defined HPV-associated and non-HPV-associated OPSCC as separate entities, with distinct  
72 molecular profiles, tumour characteristics and outcome.<sup>6</sup> Importantly, the former is associated with  
73 a more favourable prognosis.<sup>7</sup>

74

75 *Epidemiology: rising incidence, particularly in men*

76 OPSCC has one of the most rapidly rising cancer incidences in high-income countries.<sup>8,9</sup>  
77 Increasing rates of disease have been observed in the UK, US, across Europe, New Zealand and in  
78 parts of Asia.<sup>9-19</sup> In both the UK and the US, male rates of oropharyngeal cancer have overtaken  
79 those of cervical cancer (Figure 1A; adapted from Lechner *et al.*).<sup>8</sup> Globally, the pooled prevalence  
80 of HPV in OPSCC was recently reported to be 33%; however, prevalence varies considerably  
81 depending on the geographic region, with estimates ranging from 0% in South India to 85% in  
82 Lebanon.<sup>20</sup>

83 HPV-positive OPSCC is more prevalent in non-smokers and non-drinkers, compared to  
84 HPV-negative OPSCC, however a substantial history of smoking and drinking use remains  
85 prominent and the former is significantly associated with worse outcome.<sup>21,22</sup> Furthermore, sexual  
86 behavior is an established risk factor for HPV-positive OPSCC with a strong association between  
87 lifetime oral sex partners and incidence of disease.<sup>2,23</sup> As mentioned above, this may partially

88 account for the observed gender disparity as men are more likely than women to report increased  
89 numbers of sexual partners.<sup>24</sup> A significantly increased risk of oral HPV infection is associated with  
90 an increased number of recent oral and vaginal sex partners.<sup>24</sup>

91 While rates of both HPV-positive and -negative OPSCC have increased over the past two  
92 decades, there is evidence to suggest that the former is increasing at a faster rate. In Denmark, a  
93 three-fold increase for HPV-associated OPSCC between 2000 and 2017 was observed, compared  
94 to a two-fold increase for HPV-negative disease<sup>13</sup>. Comparatively, a more rapid increase in HPV-  
95 positive HNSCC, particularly tonsillar SCC, was observed in Taiwan, compared to HPV-negative  
96 HNSCC.<sup>11</sup> In Italy, the incidence of HPV-associated OPSCC increased from 16.7% between 2000-  
97 2006 to 46.1% between 2013-2018.<sup>14</sup> While lower-middle income countries of South Asia and Sub-  
98 Saharan Africa bear the vast majority of the global HPV-associated cervical cancer burden,  
99 epidemiological reports on HPV-positive OPSCC are scarce and it remains unclear whether similar  
100 rising trends are absent or thus far undetected in these regions.<sup>25</sup>

101 From the handful of reports available, it appears that the prevalence of HPV in OPSCC in  
102 Sub-Saharan Africa at least is low, with very few cases of HPV-positive OPSCC reported to date  
103 despite high rates of HPV-associated cervical cancer.<sup>26-30</sup> In their investigation of HPV-associated  
104 OPSCC in Mozambique, Blumberg *et al* propose that one potential contributing factor to the low  
105 prevalence of HPV-positive OPSCC in their cohort (14.5%) is the limited practice of oral sex in the  
106 region.<sup>26</sup> This has been reiterated by Rettig *et al*, who observed low rates of oral HPV infection  
107 among HIV-infected individuals in Northwest Cameroon and attribute this, at least in part, to relatively  
108 low rates of oral sexual behaviours.<sup>27</sup>

109 Historically, the majority of HPV-associated OPSCC occur in men, which may be due to  
110 differences in immune susceptibility and infection transmissibility through sexual activities, although  
111 this has yet to be fully elucidated.<sup>4,31-33</sup> However, an increase in incidence has been observed in  
112 Caucasian women in the US.<sup>32</sup> In their recent meta-analysis of twelve studies, Mariz *et al* observed  
113 similar prevalence of HPV-driven OPSCC in both males and females, despite the majority of the  
114 assessed OPSCC patients being male.

115 The prevalence of HPV-associated OPSCC was previously reported to decrease with  
116 increasing age, however, the burden of disease has begun to shift toward older men as a result of  
117 the birth cohort effect.<sup>33,34</sup> In one study, the median age has increased from 53 to 58 years between  
118 1998 and 2013 while another study reported a similar increase, from 52 to 59 years between 2002  
119 and 2017.<sup>35,36</sup> A rapidly increasing incidence in white men above 65 years of age has been observed  
120 and nearly 10% of cases have been reported in those above 70 years of age.<sup>32,36</sup> Nevertheless,  
121 increased rates of disease continue to be evident in both younger and older adults and, while the  
122 burden is shifting toward older adults, the majority of cases remain in those under 65 years of  
123 age.<sup>31,37,38</sup>

124 In the US, a higher prevalence of HPV-associated OPSCC has been observed in Caucasians  
125 when compared to racial minorities.<sup>39</sup> In an analysis of the National Cancer Database, a higher  
126 proportion of Caucasian OPSCC patients were HPV-positive.<sup>40</sup> In a recent analysis of the SEER  
127 database, there was a significant increase in rates of oropharyngeal cancer in Caucasian and  
128 Hispanic men, and men of other ethnicities, but a decrease in Black men. However, Faraji *et al* has  
129 reported a significantly more rapid increase in the prevalence of HPV-positive tumours in Black and  
130 Hispanic Americans compared to White Americans.<sup>9,32</sup> It may be postulated that Black men have  
131 experienced a greater decrease in HPV-negative disease compared to Caucasian and Hispanic men  
132 resulting in the observed relative increase in HPV-positive disease, however, this has yet to be  
133 confirmed. In parallel with the increased incidence in Caucasian men in the US, higher  
134 socioeconomic status is also associated with increased rates of HPV-positive disease.<sup>40</sup>

135 Importantly, the majority of epidemiological studies on HPV-associated OPSCC have been  
136 conducted in the US and are not necessarily generalizable to other parts of the world, where  
137 differences in culture and custom may influence the various lifestyle factors that play a role in HPV-  
138 associated OPSCC aetiology. As such, further studies in diverse and particularly non-Western  
139 regions are needed in order to inform region-specific guidelines particularly with regard to clinical  
140 management and targeted public health measures.

141

142 *Epidemiology: prophylactic HPV vaccination and HPV-associated OPSCC*

143        There remains a need for improved cancer prevention in parallel to ever-changing societal  
144    norms. At present, there are no screening methods for earlier detection of OPSCC so prevention  
145    can only be robustly achieved through large-scale vaccination. HPV vaccination has been offered to  
146    girls for nearly two decades and has led to decreased rates of cervical cancer. One might argue that  
147    the herd immunity established through this may preclude the need for further vaccination in boys,  
148    considering the cost associated with such a mass vaccination program. However, the universal  
149    vaccination of girls will likely not completely mitigate the risk to boys and consequent development  
150    of HPV-related cancers.<sup>41</sup> Indeed, such policy must take into account the population of men who  
151    have sex with men, as well as those who have sexual partners from regions where a comprehensive  
152    vaccination program, even in girls, does not exist. Furthermore, variability in vaccination uptake due  
153    to practical, societal and cultural barriers to vaccination will likely continue to hinder the ability for  
154    populations to achieve the necessary levels of immunity to prevent future malignancy.

155        Therefore, several countries have now extended nationwide vaccination programmes to  
156    boys, including Australia, Austria, Germany, Italy, New Zealand, the UK and the US. Australia was  
157    one of the first countries to implement a gender-neutral programme and has demonstrated  
158    significantly high vaccination uptake with 75.9% and 80.2% of boys and girls, respectively,  
159    completing a 3-dose regimen.<sup>42</sup> In comparison, half of US adolescents in 2018 had completed the  
160    recommended three-dose regimen and nearly one-third were unvaccinated.<sup>43</sup> In the UK, school-  
161    based vaccination was extended to include boys in September 2019. In the subsequent academic  
162    year, the first of a 2-dose vaccination regimen was given to 59.2% and 54.4% of girls and boys.<sup>44</sup>  
163    Importantly, due to school closures as a result of the ongoing Covid-19 pandemic, the programme's  
164    roll-out was interrupted. Therefore, the true uptake from this first year of a gender-neutral vaccination  
165    programme in the UK has yet to be determined.

166        Barriers to vaccination persist, including parental concerns over vaccine safety,  
167    socioeconomic factors and an overall lack of awareness.<sup>8,45-47</sup> In a survey of 725 US adults between  
168    27 and 45 years of age, only 36% of responders were aware that HPV causes non-cervical cancers.<sup>48</sup>  
169    In a separate survey of roughly one thousand UK parents with children in school Years 5 to 7 (aged  
170    9 to 12), prior to the extension of vaccination to boys in 2019, only half had heard of HPV and under

171 25% knew that the HPV vaccination would be offered to boys.<sup>49</sup> From this study, it was shown that  
172 proper education of parents led to roughly two-thirds of parents indicating they would vaccinate their  
173 child while only 10% would not. This implies that the provision of due information to parents by  
174 healthcare providers and Public Health administrators can lead to a high level of vaccine acceptance.  
175 Further education can help to assuage additional concerns for those who are undecided and  
176 demonstrate so-called 'flexible hesitancy'.<sup>49</sup> Importantly, improved knowledge on the part of  
177 healthcare providers is needed in order to effectively implement large-scale vaccination  
178 programmes. In a recent survey of healthcare professionals in the UK, over a third of participants  
179 indicated the need for improved training with 76% reporting that they felt adequately informed.<sup>50</sup> In  
180 a survey of GPs in the UK, while 74% recognized HPV as a risk factor of OPSCC, less than half  
181 were aware that being male was a risk factor for HPV-associated OPSCC.<sup>51</sup>

182 With regard to the efficacy of vaccination in preventing OPSCC, a recent report has  
183 demonstrated a substantial increased risk of developing malignancy in those who are not vaccinated  
184 compared to those who are.<sup>52</sup> Importantly, such conclusions may be premature as the effects of herd  
185 immunity as a result of female vaccinations is a significant confounder and the true effects of gender-  
186 neutral vaccination are still emerging. Nevertheless, this result is encouraging and reflects the  
187 efficacy of vaccination against oral HPV infection, which has been demonstrated in several reports.  
188 In their study of over 7,000 young women in Costa Rica, Herrero *et al* demonstrated a 93.3%  
189 decrease in oral HPV 16/18 infection due to vaccination.<sup>53</sup> A subsequent study of 2,627 US adults,  
190 the prevalence of oral HPV16/18/11 infection was significantly lower in vaccinated men compared to  
191 unvaccinated men.<sup>54</sup> This was similarly demonstrated in an analysis of the National Health and  
192 Nutrition Examination Survey (NHANES) data between 2009 and 2014, where vaccinated adults had  
193 a significantly lower prevalence of oral HPV 6/16/18/11 infection.<sup>55</sup>

194 Despite the recent introduction of HPV vaccination programmes for boys in several countries  
195 and a demonstrable efficacy against oral HPV infection, HPV-associated OPSCC rates are likely to  
196 rise further over the next 20-30 years before the full benefits of a vaccination programme can  
197 manifest. Indeed, Zhang *et al* recently forecasted that based on current vaccination rates in the USA,  
198 HPV-associated OPSCC incidence will continue to climb significantly among older individuals

199 between now and 2045, with a meaningful reduction confined to those below the age of 56, who are  
200 already at a lower risk of diagnosis and among whom the protective effects of vaccination will begin  
201 to manifest.<sup>56</sup> Consequently, significant human and broader societal costs are to be expected. In the  
202 UK, it has been estimated that roughly £2 billion will be spent on treatment for OPSCC in men,  
203 between 2019-38. Taking into account loss of workplace productivity due to illness, the cost  
204 increases to more than £18 billion.<sup>57</sup> Therefore, until the benefits of vaccination emerge, it is  
205 paramount that resources are put into improving public awareness of HPV-associated OPSCC and  
206 supporting public health initiatives in order to curb the substantial costs on human life and the wider  
207 society. This may also involve support for the development of novel early detection strategies, such  
208 as the use of peripheral blood for the detection of HPV16-E6 antibodies.<sup>58</sup>

209

210 *HPV-driven carcinogenesis and the hrHPV oncogenes*

211 Human papillomaviruses are non-enveloped viruses with circular double-stranded DNA  
212 genomes of approximately 8 kilobase pairs. Over 200 HPV types have been identified, all of which  
213 infect and complete their productive life-cycle in either cutaneous or mucosal epithelia. Of these, the  
214 World Health Organisation currently classifies 14 mucosal HPV types (HPV16, 18, 31, 33, 35, 39,  
215 45, 51, 52, 56, 59, 66 and 68) as 'high-risk', due to clear experimental and epidemiological evidence  
216 implicating them in cancer causation, with HPV16 accounting for at least 85% of HPV-associated  
217 OPSCC.<sup>59</sup> The productive HPV16 life-cycle is intimately linked to the terminal differentiation of  
218 keratinocytes in stratified mucosal epithelia, while carcinogenesis occurs in the context of persistent  
219 infection (postulated to be favoured in the immune privileged microenvironment of the tonsillar  
220 crypts<sup>60</sup>) and represents an exit from productive viral replication.<sup>61,62</sup> The stepwise changes to viral  
221 and host gene expression and alterations to the host genome that are associated with  
222 carcinogenesis in the cervix have been studied extensively and are summarized in Figure 2A. HPV-  
223 associated carcinogenesis is largely driven by two viral early genes (E6 and E7, often referred to as  
224 HPV oncogenes), whose normal function is to trigger cell cycle entry in the basal layer of the  
225 epithelium and therefore to permit viral genome replication. Increased expression of E6 and E7 is  
226 often associated with integration of hrHPV DNA into the host genome, although carcinogenesis can

227 occur in the absence of integration (whole genome sequencing of 103 HPV-positive OPSCCs  
228 reported evidence of viral integration in 74% of cases, with the remaining tumours harbouring  
229 episomal HPV<sup>63</sup>; a similar frequency of integration to that seen in HPV16+ cervical cancers).<sup>64</sup>  
230 Similar to cervical cancer, disruption of another viral gene, E2, which acts to repress expression of  
231 E6 and E7 during productive infection, is frequently observed in OPSCCs harbouring integrated HPV  
232 and has been linked to unfavourable prognosis in OPSCC.<sup>65</sup> Consistent with these findings is the  
233 observation that the physical state of the HPV genome is of clinical significance in HPV-positive  
234 OPSCC, with a recent study of 84 cases reporting shorter overall survival and evidence of decreased  
235 anti-tumour immune responses in patients displaying HPV gene expression from integrated copies  
236 (i.e. those in which chimeric viral/host mRNA sequences could be detected), compared with those  
237 displaying no evidence of integration.<sup>66</sup>

238 Much research has gone into understanding the molecular mechanisms by which E6 and E7  
239 exert their effects to induce cell cycle entry and DNA replication in host cells; effects which in the  
240 case of the hrHPV types can, in combination with alterations to the host genome, result in malignant  
241 transformation of the host cell through enabling many of the hallmarks of cancer defined by Hanahan  
242 and Weinberg (Figure 2B).<sup>67,68</sup> The two best characterized oncogenic activities of hrHPV E6 and  
243 E7 are the induction of p53 and pRb degradation respectively. The removal of these critical tumour  
244 suppressor proteins results in loss of cell cycle checkpoints triggered by DNA damage and  
245 uncontrolled licensing of DNA replication, which together result in genomic instability and resistance  
246 to programmed cell death (apoptosis).<sup>69-74</sup>

247

248 *Epigenetic reprogramming establishes oncogene addictions in HPV-transformed cells.*

249 While inhibition of pRb function has long been recognized a key oncogenic property of  
250 epigenetic reprogramming of the host cell via the pRb-independent induction of two lysine  
251 demethylases, KDM6A and KDM6B. These chromatin-modifying enzymes exert broad effects on  
252 gene expression, including the derepression of Homeobox (HOX) genes: master regulators of  
253 development normally silenced by Polycomb group (PcG) proteins.. In addition to these effects on  
254 chromatin state and derepression of PcG targets, further examples of epigenetic reprogramming by

255 HPV include E6-dependent modulation of micro-RNAs and other non-coding RNAs<sup>75-77</sup> which act as  
256 regulators of gene expression, and the modulation of DNA methylation, which has been linked both  
257 to upregulation of DNA methyltransferases DNMT1 and DNMT3A in HPV+OPSCC<sup>78</sup> and to the direct  
258 interaction of HPV16 E7 with DNMT1<sup>79-82</sup>. It has been proposed that suppression of pRb function  
259 by E7 is necessary to prevent induction of an oncogene-induced senescence (OIS)-like response  
260 triggered by this reprogramming, rendering HPV-transformed cells dependent on the ongoing  
261 expression of the HPV oncogenes, as demonstrated by genetic loss-of-function experiments in  
262 primary cultures from cervical cancer.<sup>83,84</sup> This oncogene addiction has stimulated efforts to inhibit  
263 E6 and/or E7 as a therapeutic strategy, although this has proven challenging due to their lack of  
264 intrinsic enzymatic activity.<sup>85</sup> Encouraging progress has been made in exploiting the HPV  
265 oncoproteins as targets for therapeutic vaccines however (see '*Emergence of immunotherapies for*  
266 *the treatment of HPV+ OPSCC*').

267 The epigenetic reprogramming of HPV-transformed cells by the E7-KDM6B axis also results  
268 in dependence on the p16<sup>INK4A</sup> tumour suppressor protein (hereafter 'p16', one of two cell cycle  
269 inhibitory proteins encoded by the Pcg-regulated *CDKN2A* gene), due to its ability to suppress  
270 cyclin-dependent kinase (CDK4 and CDK6) activity, which in uninfected cells is required to relieve  
271 pRb-mediated inhibition of cell cycle progression.<sup>86,87</sup> The dependence on p16 to limit CDK4/6  
272 activity in HPV-transformed cells is in striking contrast with many other tumour types, including ER<sup>+</sup>  
273 breast cancer for example, in which CDK4/6 inhibition has proven to be a highly successful  
274 therapeutic strategy.<sup>88</sup> This oncogenic role for the p16 tumour suppressor highlights the cellular re-  
275 wiring induced by HPV and the importance of understanding this for the rational design of targeted  
276 therapeutic strategies in HPV-positive disease. The functional requirement for p16 in HPV-  
277 transformed cells is also likely key to its utility as a clinical biomarker for diagnosis of HPV-positive  
278 OPSCC (see '*Clinical presentation and diagnosis*'), as it is much less likely to be lost or  
279 downregulated than a protein with deleterious or neutral effects on tumour cell fitness. Dependency  
280 on a second tumour suppressor protein (p21<sup>CIP1</sup>) is also established downstream of E7-directed  
281 epigenetic reprogramming, in this case the induction of p21<sup>CIP1</sup> expression from the *CDKN1A* gene  
282 by KDM6A is needed to limit the rate of DNA replication driven by the Proliferating Cell Nuclear

283 Antigen (PCNA) and therefore to avoid lethal replication stress.<sup>89</sup> The rewiring of cell cycle control  
284 caused by E6 and E7 is represented in Figure 2C, which also highlights the fact that in this updated  
285 model of HPV oncogene function, the upregulation of p16 seen in HPV-positive cancers is due to  
286 induction of KDM6B by E7 not (as is often assumed) to the inhibition of pRb.<sup>86</sup>

287 Many other cellular proteins are targeted by the HPV oncoproteins, a comprehensive  
288 discussion of which is beyond the scope of this review. We have summarised some of these  
289 additional activities in Figure 2B and the reader is referred to numerous detailed reviews for further  
290 information, including.<sup>68,90-93</sup>

291

292 *Somatic alterations and mutational processes in HPV-positive OPSCC reflect disease aetiology*

293 Despite the ability of sustained E6 and E7 expression to initiate tumorigenesis, progression  
294 to carcinoma requires acquisition of somatic alterations in the host genome. HPV-negative HNSCCs  
295 harbour more copy number alterations than HPV-positive HNSCCs, suggesting a lower degree of  
296 genomic instability in HPV-positive disease, while single nucleotide variant (SNV) burdens appear  
297 similar between HPV-positive and HPV-negative HNSCC, at a median of approximately 2-3  
298 mutations per megabase across the genome.<sup>94-97</sup> *TP53* (the gene encoding p53) is the most  
299 frequently mutated gene in HPV-negative OPSCC, occurring in at least 75% of cases but *TP53*  
300 mutations are rarely observed in HPV-positive disease, almost certainly due to the aforementioned  
301 inhibition of p53 function by E6 and thus an ability of the virus to phenocopy this genetic hit<sup>94,97-100</sup>.  
302 It is important to note however, that p53 loss is not entirely equivalent to *TP53* mutation, which can  
303 bestow gain-of-oncogenic function on the protein. Indeed, *TP53* mutations are seen in a subset of  
304 heavy smokers with HPV-positive OPSCC and have been associated with poor prognosis in these  
305 patients.<sup>97</sup> Smoking-associated *KRAS* mutations typical of those seen in lung squamous carcinoma  
306 have also been reported in HPV-positive OPSCCs from patients with >10 pack years smoking  
307 history.<sup>94,97,101</sup>

308 While somatic mutations attributable to tobacco-smoking and ageing predominate in HPV-  
309 negative OPSCC, a high proportion of mutations in HPV-positive disease (at least in the majority of  
310 HPV+ OPSCC patients who are not heavy smokers) are now thought to be caused by the off-target

311 DNA editing activity of one or more apolipoprotein-B mRNA editing catalytic polypeptide-like  
312 (APOBEC3) enzymes, whose physiological function is to suppress viral replication by deaminating  
313 cytosine bases in the context of single-stranded DNA or RNA.<sup>95,96,102</sup> Two of the seven human  
314 APOBEC3 enzymes (APOBEC3A and APOBEC3B) have been implicated in the cellular response  
315 to HPV infection, with evidence linking APOBEC-mediated editing of the viral genome to clearance  
316 of infection, at least in the cervix.<sup>103</sup> Sequencing of matched host exomes and viral genomes from  
317 HPV-positive OPSCC suggests that in cases where the APOBEC response is induced but fails to  
318 clear the virus however, off-target APOBEC activity against the host cell genome accounts for many  
319 of the somatic mutations seen in the tumour<sup>104</sup> (for detailed reviews see Smith and Fenton 2019,<sup>105</sup>  
320 Fenton 2021,<sup>106</sup> and Warren *et al* 2017<sup>107</sup>).

321

322 *Activation of PI3K signalling in HPV-positive OPSCC: mechanisms and clinical significance*

323 A key consequence of APOBEC activity activity against the host genome in HPV-positive  
324 OPSCC appears to be the generation of oncogenic point mutations in *PIK3CA*, which encodes the  
325 p110 $\alpha$  catalytic subunit of the class 1A phosphoinositide 3'-kinase (PI3K).<sup>95,96,102</sup> Activation of the  
326 phosphoinositide 3'-kinase (PI3K) signaling pathway by somatic mutation and/or copy number  
327 alterations of *PIK3CA* is a key feature of HPV-positive OPSCC and appears to occur early in  
328 carcinogenesis.<sup>96,108,109</sup> Detection of activating mutations in PI3K components (*PIK3CA*, *PIK3C2B*,  
329 *PIK3R1*) and downstream mediators in the PI3K/mTOR pathway (*MTOR*, *RICTOR*) or inactivating  
330 mutations in the negative regulators, *PTEN*, *TSC1* or *TSC2* in metastatic tumours have been  
331 associated with longer OS in HPV-positive OPSCC patients,<sup>110</sup> while *PIK3CA* mutations were  
332 associated with increased risk of tumour recurrence in HPV-positive OPSCC patients receiving first-  
333 line chemoradiation in the setting of deintensification trials.<sup>111</sup> *PIK3CA* (mutation or amplification) has  
334 also been associated with dramatically prolonged disease-specific (HR = 0.23, p = 0.0032) and  
335 overall survival in HNSCC, specifically amongst patients taking regular ( $\geq 2$  days/week for at least 6  
336 months) non-steroidal anti-inflammatory drugs in a retrospective study, including those with HPV-  
337 positive disease; potentially due to increased activity of cyclooxygenase in *PIK3CA*-altered  
338 tumours.<sup>112</sup> While this intriguing observation requires confirmation in larger HNSCC cohorts, *PIK3CA*

339 mutation has also been associated with benefit from NSAIDs in colorectal cancer patients, potentially  
340 due to the induction of cyclooxygenase-2 activity by PI3K signalling.<sup>113,114</sup> Loss-of-function mutations  
341 in *PTEN* (which encodes the PI(3)P<sub>3</sub> phosphatase that reverses the reaction catalysed by class 1  
342 PI3K) are significantly enriched in primary HPV-positive OPSCC, as are loss-of-function mutations  
343 in *CYLD* which encodes a ubiquitin ligase, and gain-of-function mutations in the receptor tyroinse  
344 kinase *FGFR3*, both of which can also result in activation of PI3K signalling.<sup>96</sup>

345

346 *Other significantly mutated genes in HPV-positive OPSCC include those in pathways targeted by*  
347 *HPV oncogenes and those encoding regulators of gene expression*

348 Genes involved in epidermal differentiation, including *ZNF750*, *KMT2D*, *EP300*, *RIPK4* and  
349 *NOTCH1* are significantly mutated in HPV-positive OPSCC, as are various components of the p53  
350 (although as noted above, very rarely *TP53* itself) and pRB pathways targeted by E6 and E7,  
351 including mutation or loss of *RB1* (the gene ecoding pRb) in as many as 40% of HPV-positive  
352 OPSCCs.<sup>94,96</sup> In a recent genomic analysis of 157 OPSCCs, 73 of which were HPV-positive and for  
353 which long-term clinical follow-up data were available, *NOTCH1* mutations were associated with  
354 significantly shorter OS specifically in the HPV-positive cases.<sup>97</sup> This observation, together with data  
355 showing that *Notch1* inactivation generates higher-grade tumours in a mouse model of HPV16  
356 E6/E7-driven HNSCC suggests that even though *NOTCH1* expression is suppressed by E6,  
357 mutational inactivation may lead to a greater effect on the pathway and therefore to the development  
358 of more aggressive tumours.<sup>115,116</sup> The importance of overcoming host immunity to viral infection is  
359 evident also in the frequent appearance of mutations in components of the interferon response,  
360 including *DDX3X*, *TRAF3*, *IFNGR1*, *NFKBIA*, *TGFBR2*, *EP300* and *KMT2D*; again these are  
361 alterations that are selected for despite the suppression of the pathway at multiple levels by HPV  
362 oncoproteins.<sup>117</sup>

363 *EP300* and *KMT2D* both encode chromatin-modifying enzymes, *NFKBIA* encodes a negative  
364 regulator of the Nuclear Factor kappa B (NF $\kappa$ B) transcription factors and *DDX3X* encodes a regulator  
365 of RNA metabolism and the transcription factor genes *ZNF750*, *CASZ1* and *TAF5* are also  
366 significantly mutated in HPV-positive OPSCC.<sup>100</sup> The somatic alteration of these transcriptional

367 regulators, together with the effects of E7 on *KDM6A*, *KDM6B* and *DNMT1* discussed above  
368 emphasizes the importance of host cell re-wiring during HPV-driven carcinogenesis; a phenomenon  
369 evident from the multiple studies that have defined gene expression signatures for HPV+ OPSCC or  
370 pan-tissue expression signatures for HPV-associated malignancies.<sup>96,118,119</sup>

371

372 *Anti-tumour immune responses in HPV-positive OPSCC:*

373 In non-viral malignancies, major histocompatibility complex (MHC)-loaded peptides  
374 generated by nonsynonymous somatic mutations in expressed genes are the primary means by  
375 which anti-tumour T-cell responses are induced, and the success of immunotherapy is associated  
376 with both the overall number (closely linked to tumour mutation burden) and clonality (the fraction of  
377 tumour cells in which a given neoantigen is present) of such neoantigens.<sup>120,121</sup> During tumour  
378 development, cells that express highly immunogenic neoantigens may be eliminated; a process  
379 known as immunoediting.<sup>122</sup> In HPV-associated cancer, all tumour cells are exquisitely dependent  
380 on the expression of the viral oncogenes, E6 and E7, thus these proteins serve as an indispensable  
381 source of tumour-specific antigens to which anti-tumour immune responses can be mounted. Human  
382 papillomaviruses however, have evolved many mechanisms by which to evade host immune  
383 responses, from 'passive' mechanisms, such as limiting infection to outside the basement membrane  
384 of the epithelium and restricting high gene expression and virion production to the upper layers,  
385 where few immune cells are found, to active suppression of host cell interferon responses and  
386 antigen presentation.<sup>123</sup> As discussed earlier, during progression of persistent infection to  
387 malignancy, E2-mediated control of viral gene expression in the basal layer is lost and invasive  
388 tumours also breach the basement membrane, therefore the active suppression of host immune  
389 responses to the virus is critical for HPV-positive tumour cells to avoid immune destruction. Key  
390 mechanisms include the selective retention of certain MHC class 1 components (HLA-A and HLA-  
391 B) in the Golgi apparatus through direct interaction with the Golgi-resident HPV16 E5 protein, which  
392 inhibits recognition of E5-expressing cells by CD8+ (cytotoxic) T-cells<sup>124-126</sup> and the inhibition of MHC  
393 class 1 gene expression by HPV16 E7.<sup>127-129</sup>

394 In spite of these, and numerous other mechanisms by which HPV oncoproteins interfere with  
395 antigen processing and presentation (reviewed in Steinbach and Riemer 2018<sup>123</sup>), the majority of  
396 HPV-positive OPSCCs show evidence of ongoing intratumoural HPV16 E6 and/or E7-specific T-cell  
397 mediated immune responses.<sup>130,131</sup> The presence of such responses appears strongly prognostic,  
398 with Welters et al reporting a 37-fold increased chance of disease-specific survival in those HPV  
399 DNA-positive OPSCC patients from whose tumours they could isolate HPV16-specific T-cells, the  
400 majority of which were CD4+ and produced cytokines (IFN $\gamma$  and TNF $\alpha$ , IL2, IL-17) consistent with  
401 anti-tumour (Th1/Th17) T-cell polarization.<sup>131</sup> In further work, the same group have implicated  
402 subsets of effector memory (CD161+) T-cells with high levels of cytokine production and a recently-  
403 identified CD163+ dendritic cell subtype (DC3) as key mediators of these HPV-specific responses in  
404 HPV-positive OPSCC.<sup>132,133</sup> HPV-specific T-cells have also been identified in blood from patients  
405 with HPV-positive OPSCC, with circulating E7-specific CD8+ T-cells associated with longer disease-  
406 free survival.<sup>134,135</sup>

407 While these studies on HPV-specific immune responses identify clear prognostic information,  
408 such analyses require *ex vivo* culture and functional assays and so pose difficulties for translation  
409 into routine use as clinical biomarkers for predicting therapeutic response.<sup>136</sup> Prognostic information  
410 can also be gained from less refined analyses of the tumour immune microenvironment and  
411 circulation in HPV-positive OPSCC patients. Total (CD3+) T-cell tumour infiltration is an independent  
412 prognostic indicator of improved overall survival, local progression-free survival and distant  
413 metastasis-free survival in HPV-positive OPSCC<sup>137,138</sup>, and in those tumours displaying a mutational  
414 signature attributable to tobacco smoking, immune infiltrates are significantly reduced, offering a  
415 potential explanation for the aforementioned association between smoking and poor prognosis.<sup>22,139</sup>  
416 T-cell infiltration and activation (assessed based on gene expression patterns) is also significantly  
417 higher in HPV+ OPSCC than in other HPV+ HNSCCs in the TCGA cohort, possibly explaining the  
418 greater survival benefit conferred by HPV in the oropharynx than at other HNSCC subsites.<sup>140,141</sup>  
419 Similarly, a comparative analysis of HPV-positive OPSCC and HPV-positive cervical cancer revealed  
420 differences in the tumour immune microenvironment related to anatomical site, with HPV-positive

421 OPSCCs harbouring a higher CD4+:CD8+ ratio (reflecting a higher CD4+:CD8+ ratio in tonsils  
422 versus cervical epithelium) and greater numbers of CD4+CD161+ cells.<sup>132</sup>

423 In addition to the DC3 cells mentioned above, other immune cell types have also been  
424 associated with prognosis in HPV-positive OPSCC. Tumour-infiltrating B-cells are commonly  
425 observed in HPV-positive OPSCC, and a recent study reported CD20+ B-cell infiltration to be a  
426 superior prognostic marker than HPV-positivity or CD8+ T-cell infiltration in OPSCC.<sup>142,143</sup> Tumour-  
427 associated macrophages (TAMs) are associated with poor prognosis in many tumour types including  
428 OPSCC, however macrophage infiltration has been associated with improved progression-free  
429 survival in HPV-positive OPSCC treated with definitive radiotherapy + chemotherapy.<sup>144</sup> It is possible  
430 that skewing of macrophage polarization towards the inflammatory M1 phenotype due to high levels  
431 of IFN $\gamma$ -producing T-cells in HPV-positive OPSCC is responsible for this favourable association  
432 (reviewed in Welters et al 2020<sup>145</sup>).

433 Upregulation of the immune checkpoint protein, Programmed Death Ligand 1 (PD-L1) has  
434 been observed at higher frequencies in HPV-positive versus HPV-negative OPSCC. In some cases  
435 this appears to be due to HPV genome integration close to the PD-L1 (CD274) gene.<sup>146,147</sup> The  
436 increasing use of PD1/PD-L1 checkpoint blockade in HNSCC patients (see below) will shed further  
437 light on the extent to which HPV-positive tumours depend on this mechanism of immune  
438 suppression. Another immune checkpoint protein, natural killer group 2 member A (NKG2A) is  
439 expressed at higher levels in HPV-positive OPSCCs in which an HPV-specific immune response can  
440 be detected and is found on tissue-resident (CD103+) CD8+ T-cells, which have been linked to  
441 favourable prognosis in HPV-positive OPSCC and other cancer types. NKG2A antibodies are at an  
442 earlier stage of clinical development than anti-PD1/PD-L1 but have shown some promising results  
443 (reviewed in Welters et al 2020<sup>145</sup>).

444

445 *Clinical presentation and diagnosis*

446 OPSCC most commonly presents as a neck mass or sore throat, but may also present as  
447 dysphagia, visualized mass, globus sensation, odynophagia or otalgia.<sup>148</sup> The majority of patients  
448 present with early-stage disease (T1 or T2) and nodal metastasis. Clinical presentation of OPSCC

449 can be easily confused with other common benign conditions, however, it is recommended that  
450 asymptomatic neck masses be evaluated with ultrasound and fine needle biopsy to confirm.<sup>149</sup>  
451 OPSCC are comprised of tumours located at the posterior pharyngeal wall, the soft palate, the  
452 tonsillar complex and the base of tongue. The latter two are most common, with up to 96% found in  
453 tonsillar-related areas.<sup>20,150</sup> Of note, there exists a subset of head and neck cancers, which present  
454 with cervical lymphadenopathy only. These carcinoma of unknown primary are rising in incidence,  
455 attributed to the increasing rates of HPV-related OPSCC.<sup>151</sup> With this, the presence of p16 and/ or  
456 HPV DNA in the metastatic lesion has been shown to indicate the oropharynx as the site of origin.<sup>151–</sup>  
457 153

458 In general, clinical examination per the UK's National Multidisciplinary Guidelines involves  
459 flexible direct endoscopy of the upper aerodigestive tract and cross-sectional imaging.<sup>154</sup> Both  
460 PET/CT and MRI are recommended, the former for primary tumour staging and to assess soft tissue  
461 spread, and the latter to determine the extent of nodal disease and bony invasion as well as for the  
462 detection of distant metastases to the lung and liver.<sup>155</sup> Conversely, in the US, F-FDG PET/CT is the  
463 main modality used to assess the extent of the tumour and presence of metastases, although MRI  
464 may be used to assess the extent of local invasion.

465 In order to accurately discriminate between HPV positivity and negativity, use of a robust test  
466 is required. A combination of p16 immunohistochemical staining and high risk HPV *in situ*  
467 hybridization (ISH) has demonstrated acceptable sensitivity (97%) and specificity (94%) and can be  
468 used on formalin-fixed paraffin-embedded tissue.<sup>156</sup> Especially as efforts are being made to de-  
469 escalate treatment in HPV-positive cases, accurate diagnosis is paramount. While the AJCC 8<sup>th</sup>  
470 edition recommends using p16 IHC only as surrogate for HPV status, it has been found that p16-  
471 positivity is not sufficient to detect transcriptionally active HPV in all cases. In a recent study, patients  
472 who were p16-positive/HPV-negative had significantly reduced five-year survival (33%) Cancer  
473 stage was reduced in 95% of p16+/HPV- patients despite having a mortality rate twice (HR 2.66  
474 [95% CI: 1.37–5.15]) that of p16+/HPV+ patients under new TNM8 staging criteria.<sup>6</sup> As such, a  
475 second ISH test has been recommended in the UK as standard practice (UK Royal College of  
476 Pathologists).

477 There are several variants of squamous cell carcinoma, the majority of which can be  
478 categorized into keratinizing and nonkeratinizing, with or without maturation (Figure 1C). The  
479 majority of non-keratinising SCCs are associated with transcriptionally active high risk HPV.<sup>157</sup> This  
480 HPV exposure increases risk, regardless of tobacco and alcohol habits. On the other hand, while  
481 keratinizing SCC is the most common OPSCC subtype, only 15-25% of keratinizing SCCs are HPV-  
482 positive. These tumours resemble stratified squamous epithelium with varying degrees of  
483 architectural and cytological abnormalities, such as the formation of keratin pearls. The invasion  
484 pattern at the advancing front has been shown to be a significant and independent predictor of local  
485 recurrence and overall survival. Importantly, clinical and histological appearance, as well as  
486 management and prognosis vary between the different subtypes of OPSCC. Other less common  
487 subtypes include basoloid SCC, papillary SCC, lymphoepithelial carcinoma, adenosquamous  
488 carcinoma, spindle cell carcinoma and verrucous SCC. Basoloid and papillary SCC as well as  
489 lymphoepithelial carcinoma are generally associated with transcriptionally active, high-risk HPV  
490 infection in the oropharynx.<sup>158-163</sup>

491 In general, clinical prognostication is based upon tumour size and nodal status, positive  
492 margins, and grade (well, moderate and poorly differentiated), including invasion front grade, which  
493 involves the degree of keratinization, pleomorphism, mitotic rate, invasion pattern and host  
494 response.<sup>164</sup> There is a significant positive relationship with proliferative index. Other independent  
495 prognostic factors for local recurrence and overall survival include invasion pattern (cohesive or non-  
496 cohesive) as well as perineural and lymphatic invasion.<sup>165</sup> With regard to depth of invasion compared  
497 to tumor thickness in determining the AJCC's T-category, a retrospective study conducted by Dirven  
498 and coworkers demonstrated no significant difference.<sup>166</sup> Lymph node involvement and  
499 extracapsular/extranodal extension may also serve as prognostic factors, although the evidence  
500 here is less clear.<sup>167-170</sup> While Bauer *et al* and Freitag *et al* have reported reduced survival with  
501 extracapsular extension, Tian *et al* did not observe a significant association with overall, locoregional  
502 recurrence-free nor distant metastasis-free survival.<sup>171-173</sup> In a cohort of patients treated with  
503 transoral surgery and neck dissection, Sinha *et al* found that metastatic node number was an  
504 independent predictor of outcome, while extracapsular spread was not.<sup>170</sup> Elicin *et al* suggest that

505 extracapsular extension may serve as a surrogate of nodal volume, which itself appears to serve a  
506 greater prognostic role.<sup>168</sup> Lymph node ratio has also been investigated and, while significantly  
507 associated with survival in HPV-negative OPSCC, appears to be a weaker prognosticator in HPV-  
508 positive disease.<sup>174</sup> The authors, here, propose that the prognosis of HPV-positive disease may  
509 depend more on the extent of the primary tumour than nodal spread. While the determination of  
510 extracapsular spread has generally relied on post-operative histopathology, the use of CT imaging  
511 has been recommended for use in the initial prognostic work-up. However, its predictive capacity is  
512 controversial, with previous studies reporting only moderate specificity and low sensitivity, as well as  
513 poor positive and negative predictive values.<sup>175-177</sup> Nevertheless, Carlton *et al* have found that the  
514 identification of three or more imaging criteria improves specificity and positive predictive value, while  
515 Aiken *et al* have found that the presence of necrosis independently and significantly correlates with  
516 pathologically-proven extracapsular spread.<sup>176,177</sup> More recently, a study of thirty-one patients  
517 assessed with contrast-enhanced CT demonstrated good sensitivity between 81-85% and excellent  
518 interobserver agreement.<sup>178</sup> Altogether, whether or not extracapsular spread remains a useful clinical  
519 prognostic factor, considering the challenges associated with the radiologic prediction of extranodal  
520 pathology, is unclear. The heterogeneity of data presented thus far and the contradicting results  
521 warrant further large-scale and multi-centre studies in order to guide clinical management.

522 The most recent edition of the AJCC staging guidelines, based on the International  
523 Collaboration on Oropharyngeal Cancer Network for Staging (ICON-S) cohort study, differentiated  
524 OPSCC based on HPV-status, as determined by p16 overexpression (Table 2).<sup>179</sup> With changes  
525 made to N staging in particular, many patients with HPV-positive disease were assigned to a lower  
526 stage as a result. Furthermore, this update reserves stage IV for metastatic disease only. These  
527 changes, amongst others, enabled improved survival discrimination, which is especially important in  
528 the era of treatment de-intensification.<sup>180,181</sup> However, while the updated system overall has been  
529 shown to be prognostically superior to the previous edition, its ability to discriminate between stage  
530 groups, particularly II and III and between III and IV, is controversial. Therefore, implementation of  
531 the staging system in clinical practice requires further adaptation, taking into consideration other

532 prognostic factors including the aforementioned as well as those mentioned in the following  
533 discussion.<sup>182,183</sup>

534 It is important to reiterate that there exists a subgroup of patients who are p16-positive but  
535 HPV DNA-negative, with significantly worse prognosis compared to HPV DNA-positive.<sup>6,184</sup>  
536 Therefore, as mentioned above, determination of HPV status should make use of both p16  
537 expression and ISH-mediated detection of high risk HPV DNA. In addition, other tumour and patient  
538 factors may be necessary considerations to improved prognostication. A recent study, which  
539 conducted recursive partitioning of the Radiotherapy Oncology Group (RTOG)-0129, established  
540 low, intermediate and high risk groups based on HPV status, tobacco exposure and extent of lymph  
541 node disease.<sup>22</sup> Low risk patients are HPV-positive with low tobacco exposure or a history of smoking  
542  $\leq 10$  pack-years in addition to 1 ipsilateral lymph node less than 6cm; intermediate risk are patients,  
543 who are HPV-positive with a history of smoking  $> 10$  pack-years and advanced lymph node disease  
544 or HPV-negative with low tobacco exposure and  $< T4$ ; high risk patients are HPV-negative with a  
545 history of smoking  $> 10$  pack-years or T4 disease. A recent retrospective analysis of this cohort  
546 assessing 5-year survival demonstrated robustness of this stratification, with persistent differences  
547 in OS and PFS.<sup>185</sup> Taking into account a second, independent cohort (RTOG-0522), combined OS  
548 for low, intermediate and high risk was 88.1, 69.9 and 45.1%, respectively and PFS was 72.9, 56.1  
549 and 42.2%, respectively. The authors, here, recommend therapeutic deintensification for the low risk  
550 group.

551 Crucially, a recent analysis of the National Cancer Database found anatomic subsite to be  
552 an independent prognostic factor.<sup>150</sup> However, the current AJCC guidelines, whilst stratifying for HPV  
553 status, do not consider subsite. This is important as tonsillar and base of tongue SCC are more  
554 frequently HPV-positive, compared to other sites. Indeed, the prevalence of HPV in these sites  
555 appears to be less with roughly 19-22% of tumours positive for HPV, compared to 56-70% for  
556 tonsillar and base of tongue OPSCC.<sup>186,187</sup> Furthermore, the prognostic value of HPV at other sites  
557 appears to be less robust, calling into question the appropriateness of the present AJCC staging  
558 system at these sites.<sup>187</sup> A more comprehensive, and potentially more accurate, prognosticator,

559 which takes into account subsite, as well as patient history with particular regard for smoking history  
560 as discussed above, on top of current AJCC staging, warrants continued investigation.

561

562 *Treatment and follow-up of HPV-positive OPSCC*

563 Treatment of OPSCC typically involves surgical excision, primary radiotherapy or  
564 chemoradiotherapy (see Table 3 for UK Recommendations).<sup>154</sup> Historically, surgical excision has  
565 been achieved by open surgery, however due to associated cosmetic and functional morbidities, this  
566 has largely been replaced by less invasive techniques for early stage disease, such as transoral  
567 laser microsurgery (TLMS) and transoral robotic surgery (TORS). Primary radiotherapy and  
568 chemoradiotherapy are also widely used, where standard of care consists of 66-70 Gy radiotherapy  
569 with concurrent platinum-based chemotherapy, typically cisplatin-based.

570 Despite the favourable prognosis for HPV-positive OPSCC, 10-25% of patients will develop  
571 recurrence, the majority of whom will recur within the two years and some up to five years. Thus, the  
572 need for a robust and effective monitoring protocol is crucial. Typical follow-up involves regular  
573 clinical examinations. The National Comprehensive Cancer Network recommends examinations  
574 every one to three months in the first year, then every two to six months in the second year, every  
575 four to eight months up to year five then subsequently once per year.<sup>188</sup> However, even with regular  
576 clinical examinations, the ability to detect disease recurrence is limited.

577 HPV DNA has been shown to be a useful biomarker for the monitoring of post-treatment  
578 disease. In a recent prospective study, continued detection of tumour type HPV DNA in oral rinses  
579 following completion of treatment was predictive of locoregional recurrence and lower 2-year overall  
580 survival. Although prediction of distant metastasis was weaker, the authors suggest that oral and  
581 plasma HPV DNA detection could potentially be combined to provide an effective biomarker for  
582 treatment response and risk of progression.<sup>189</sup> In plasma samples, circulating HPV DNA (ctHPVDNA)  
583 has proven to be an extremely sensitive means of detecting recurrence.<sup>190</sup> In a recent study of 115  
584 patients, two consecutive positive tests had a positive predictive value of 94% and negative  
585 predictive value of 100%. Therefore, this approach may allow for earlier detection of recurrence and,  
586 as a result, may improve the efficacy of salvage treatment thereafter.

588 *Outcomes with primary TORS/TLMS +/- adjuvant radiotherapy or adjuvant chemotherapy in recent*  
589 *clinical trials*

590 Until recently, OPSCC was generally treated with primary radiotherapy due to the significant  
591 morbidity associated with open surgery. However, with substantial advances in surgical technology,  
592 minimally invasive approaches (i.e. TORS or TLMS) have become the mainstay of OPSCC  
593 treatment.<sup>191</sup> A recent study by Sinha *et al.*, assessing the efficacy of TORS demonstrated high 5-  
594 year survival with DFS, DSS and OS rates of 85%, 93% and 90%, respectively. The recurrence rate  
595 was 20% and mainly due to distant metastasis; in addition, 90% of recurrences occurred within the  
596 first two years. Minimal post-treatment morbidity was observed; in the absence of indications for  
597 gastrostomy, only 4% of patients had a gastrostomy tube.<sup>192</sup>

598 Importantly, most cases of OPSCC treated with TORS or TLMS include adjuvant  
599 radiotherapy and, in a minority, additional chemotherapy.<sup>193</sup> As such, appropriate risk stratification is  
600 needed to safely de-escalate and thus capitalize on the reduced post-treatment morbidity offered by  
601 minimally invasive surgical techniques. As demonstrated by both Jackson *et al* and Carey *et al*,  
602 adjuvant therapy lowers the risk of local and regional recurrence, however, no significant differences  
603 in overall survival have been observed due to high salvage rates.<sup>194,195</sup> Indeed, while patients, who  
604 do receive upfront adjuvant therapy may relapse, salvage treatments are generally successfully,  
605 resulting in excellent survival rates. This is of especial importance due to the various toxicities  
606 associated with adjuvant radio/chemoradiotherapy. Jackson *et al* observed a greater risk of  
607 gastrostomy in patients who received adjuvant therapy. In their study on quality of life in patients  
608 who received TORS alone, Sethia *et al* demonstrated higher quality of life and superior functional  
609 outcome at 6 months as the side effects of adjuvant therapy, including xerostomia, odynophagia and  
610 oral thrush likely contribute to worse patient-reported outcomes.<sup>196</sup>

611 In cases where adjuvant radiotherapy is indicated, reducing radiation dose in patients with  
612 favourable risk factors (i.e. negative margins, early stage) can help to improve treatment-associated  
613 morbidity while maintaining efficacy. In patients with negative margins and minimal smoking history,  
614 Ma *et al* demonstrated that reducing adjuvant radiation dose from 60-66 Gy to 30-36 Gy leads to

615 improved swallowing and overall quality of life outcome while maintaining excellent 2-year  
616 locoregional control, progression free and overall survival rates (96.2%, 91.1% and 98.7%,  
617 respectively).<sup>197</sup> Alternatively, the AVOID study demonstrated that avoiding the resected primary  
618 tumor site and only targeting at-risk neck areas at reduced radiation dose in early-stage patients  
619 may be safe and can also result in high 2-year local control and survival rates (98.3%, 100%,  
620 respectively).

621 The safety and efficacy of de-intensified adjuvant therapy following TORS is currently  
622 evaluated further through ongoing trials, such as PATHOS and ECOG3311.<sup>198</sup> ECOG3311  
623 presented updated reports both at ASCO2020 and ASCO2021, respectively, showing that primary  
624 TORS and reduced PORT without chemotherapy appears sufficient re the oncologic outcome at 35  
625 months follow up, with favorable QOL and functional outcomes, in intermediate risk HPV-positive  
626 OPSCC.<sup>199,200</sup> As well, both the SIRS and MINT trials (NCT02072148, NCT03621696, respectively),  
627 will further help to confirm the accuracy of using pathological characteristics (i.e. extracapsular  
628 spread, lymphovascular invasion, perineural invasion, surgical margins and tumour stage) for the  
629 allocation of treatment, with particular regard for the omission of adjuvant therapy in low-risk patients.  
630 Reduced dose adjuvant radiation in high-risk patients will also be further investigated in both DART-  
631 HPV (NCT02908477) and DELPHI (NCT03396718).

632  
633 *Outcomes for primary radio/chemoradiotherapy in recent clinical trials*

634 While positive results have been seen with minimally invasive surgical approaches, primary  
635 radiotherapy or chemoradiotherapy are still widely used. More recently, efforts to de-escalate  
636 radiation dose have demonstrated excellent outcome and improved morbidity rates. In two studies,  
637 Chera et al demonstrated high pathologic response to a reduced-dose IMRT regimen with concurrent  
638 low-dose cisplatin for early-stage disease.<sup>201,202</sup> Excellent 3-year local and regional control were also  
639 observed with a 3-year overall survival rate of 95%. Importantly, this de-intensified regimen led to  
640 favorable long-term functional outcome and quality of life.<sup>203</sup> For late-stage disease (stage III/IV),  
641 induction chemotherapy followed by reduced-dose chemoradiotherapy has proved to be a promising  
642 approach for improving treatment-associated morbidity while maintaining high survival rates.<sup>204-207</sup>

643 Indeed, prescribing radiation dose based on the extent of pathologic response to induction  
644 chemotherapy takes appropriate advantage of the radiosensitive nature of certain tumours,  
645 improving both survival outcome and long-term functional outcome, including swallowing, nutritional  
646 status and BMI and overall quality of life.

647 With regards to the necessity of concurrent chemotherapy, results from one study show that  
648 radiotherapy alone may be sufficient for HPV-positive disease. Indeed, while radiotherapy alone was  
649 detrimental to p16-negative/HPV DNA-negative patients, there was no significant difference in  
650 survival for p16-positive/HPV DNA-positive patients.<sup>208</sup> However, in addition to HPV status, the  
651 extent of disease may be an additional important factor when considering the exclusion of  
652 chemotherapy. In their retrospective analysis of over six hundred patients, Hall *et al* found that  
653 concurrent chemotherapy reduced the risk of metastases in high risk (i.e. AJCC 7<sup>th</sup> edition T4 and/or  
654 N3) HPV-positive OPSCC but not in low-risk disease.<sup>209</sup> Conversely, in a recent randomized phase  
655 II trial of low-risk HPV-positive OPSCC, the addition of concurrent cisplatin led to improved disease-  
656 free survival, in comparison to those who received radiotherapy alone.<sup>210</sup> With this, a conclusion  
657 cannot be drawn regarding the safety and efficacy of excluding chemotherapy from primary  
658 treatment.

659 Therefore, at present, the pursuit of treatment de-escalation should remain in the confines of  
660 a well-designed clinical trial per a recent American Society for Radiation Oncology (ASTRO)  
661 consensus paper.<sup>211</sup> Ongoing and future studies may further provide the necessary evidence to  
662 update standard-of-care. These include, for early-stage disease, the EVADER trial, which aims to  
663 determine survival outcome with reduced dose radiotherapy with or without concurrent  
664 chemotherapy. The safety of hypofractionated radiation therapy with concurrent chemotherapy as  
665 well as that of SABR boost and de-escalated chemoradiation will be further investigated by HYHOPE  
666 (NCT04580446) and SHORT-OPC (NCT04178174), respectively. The Quarterback trials  
667 (NCT01706939, NCT02945631) aim to determine the survival outcome of reduced dose  
668 radiotherapy in late-stage disease (stage III or IV), in addition to acute and long-term toxicities. The  
669 results from these studies and others will enable a better and more comprehensive understanding

670 of de-escalated primary radio/chemoradiotherapy and provide the necessary evidence to potentially  
671 influence standard-of-care.

672

673 *TORS or primary radio/chemoradiotherapy*

674 A retrospective query of the National Cancer Database did not demonstrate any significant  
675 difference in overall survival in HPV-positive OPSCC patients who received either primary TORS or  
676 primary radiotherapy.<sup>193</sup> However, while survival may be similar between the two methods,  
677 differences in their respective toxicity profiles and consequent morbidities are important  
678 considerations in the clinical decision-making process.

679 Importantly, prior to the ORATOR trial, there had been no prospective studies investigating  
680 differences in outcome between TORS/TLMS alone and primary chemoradiotherapy.<sup>212</sup> The  
681 ORATOR trial was not able to determine definitive differences in survival between these two  
682 treatment modalities due to its modest sample size, and the study did demonstrate similar outcomes  
683 in quality of life between the two approaches and identified a spectrum of treatment-specific  
684 toxicities.<sup>213</sup> However, the trial only reported one-year swallowing and oncologic outcome data.  
685 Importantly, the authors observed a risk of bleeding associated with TORS, but multi-institutional  
686 approaches to TORS with large patient numbers showed low rates of severe bleeding.<sup>214,215</sup> As such,  
687 both treatment options should be presented to the patient at present. A second study, ORATOR2, is  
688 currently underway to further confirm these findings and determine survival outcomes in a larger  
689 cohort.

690

691 *Targeted therapies investigated in recent trials*

692 Recent and ongoing clinical trials are investigating the efficacy of targeted therapy as neoadjuvant,  
693 concurrent or adjuvant therapy in addition to conventional surgery, radiotherapy or  
694 chemoradiotherapy. Two prospective randomized-controlled trials investigated the use of the anti-  
695 epidermal growth factor receptor (EGFR) mAb, cetuximab, as replacement for cisplatin in an effort  
696 to reduce treatment-related toxicities and morbidities. While the side-effect profile remained similar,  
697 there was poorer locoregional control and an increased incidence of distant metastases; furthermore,

698 there was a reduction in overall and progression-free survival.<sup>216,217</sup> While *EGFR* is amplified in a  
699 majority of head and neck cancers, there is likely an important difference in expression pattern for  
700 oropharyngeal cancers, specifically.<sup>218</sup> Genomic studies have not demonstrated clonal selection of  
701 mutated or amplified *EGFR* in HPV-positive tumours, in contrast to HPV-negative tumours. However,  
702 it has been shown to be upregulated through gene fusion.<sup>94,219</sup>

703 Along a different vein, one study has demonstrated the safety of an induction chemotherapy  
704 regimen consisting of de-intensified chemotherapy in combination with the antiviral, ribavirin, and  
705 the *EGFR* (ErbB) family inhibitor, afatinib, in patients with locally advanced HPV-associated  
706 OPSCC.<sup>220</sup> Biologically, the authors postulate that the anti-tumour action of afatinib occurs through  
707 inhibition of ErbB2 (HER2/neu) signaling, which is oncogenically dysregulated through the action of  
708 the E6 protein. While promising, further investigation is needed to better understand the biological  
709 mechanism of this combination as well as its efficacy as an alternative, de-intensified induction  
710 therapy approach.

711

## 712 *Emergence of immunotherapies for the treatment of HPV+ OPSCC*

713 Raising *de novo* or potentiating existing immune responses to viral antigens (particularly E6  
714 and E7) in HPV-associated malignancies is a tantalizing and long-sought prospect for  
715 immunotherapy. The many and varied approaches to immunotherapy for HPV-associated cancer  
716 that have been developed over the past 20 years are covered in detail elsewhere; we will highlight  
717 some recent clinical trials in HPV-positive OPSCC here but it is important to note that thus far, only  
718 inhibition of the PD1/PD-L1 immune checkpoint has been approved for clinical use.<sup>221-223</sup> The anti-  
719 PD1 antibodies, nivolumab and pembrolizumab were first approved by the US Food and Drug  
720 Administration (FDA) for metastatic, platinum-refractory HNSCC (regardless of HPV status) based  
721 on the phase III trials CHECKMATE 141 and KEYNOTE-040, respectively, and pembrolizumab was  
722 recently FDA-approved as a first-line monotherapy in HNSCC patients with metastatic or  
723 unresectable disease and tumour PD-L1 expression, based on the phase III KEYNOTE-048 trial.<sup>224-</sup>  
724 <sup>226</sup> The above trials all included both HPV-positive and HPV-negative patients and several systematic  
725 reviews have recently investigated possible associations between HPV status and outcomes, with

726 three studies suggesting increased ORR and OS in HPV+ patients,<sup>227-229</sup> with one suggesting a  
727 stronger relationship in the context of PD-L1 blockade and another<sup>230</sup> reporting no association  
728 between HPV status and response or survival. All four studies highlight the need for further research  
729 into this important question and point to a current lack of data on the relationship between HPV  
730 status and PFS in patients receiving adjuvant anti-PD1/PD-L1 therapy. Several studies have recently  
731 reported modest response rates in HNSCC patients receiving neoadjuvant anti-PD1/PD-L1  
732 blockade, with higher ORR to neoadjuvant nivolumab observed in patients with HPV-positive  
733 tumours in the CHECKMATE-358 trial.<sup>231</sup> A combination of neoadjuvant nivolumab and radiotherapy  
734 achieved a high rate of complete pathological responses among a cohort of 21 patients with locally  
735 advanced HNSCC, 16 of whom had HPV-positive disease.<sup>232</sup> The authors of this study noted the  
736 high rate of major pathological responses to radiotherapy alone among HPV-positive patients in this  
737 trial, indicating the need to determine the contribution of each single modality to these responses.  
738 They also noted the unsuitability of radiologic response as an indicator of pathological response in  
739 this context, given the relatively short treatment window of six weeks. In addition to the already  
740 approved immune checkpoint inhibitors, the anti-PD-L1 mAb durvalumab is being investigated in  
741 multiple trials as a neoadjuvant therapy, with the CIAO phase 1b trial recently reporting promising  
742 activity in a cohort of 28 OPSCC patients, 24 of whose tumours were p16-positive but with no  
743 increased benefit the addition of anti-CTLA4 blockade.<sup>233</sup> Furthermore, atezolizumab is currently in  
744 phase III clinical trials for HNSCC as adjuvant monotherapy for locally advanced disease.<sup>234</sup> Anti-  
745 PD1 therapeutics are also being investigated in conjunction with the anti-CTLA4 mAb tremelimumab  
746 (NCT03618134, NCT03410615). Given the particularly strong Treg infiltration in HPV+ OPSCC and  
747 the evidence from mouse models that the anti-tumour activity of CTLA4 antibodies is due at least in  
748 part to the induction of antibody-dependent cell-mediated cytotoxicity (ADCC) against Tregs (which  
749 express high levels of CTLA4), it will be interesting to see the efficacy of CTLA4 blockade in this  
750 disease.<sup>139,235</sup>

751 Therapeutic vaccines based on E6 and/or E7 have long been investigated as treatments for  
752 cervical cancer, unfortunately thus far without significant clinical success. A number of therapeutic  
753 vaccines have entered trials for HPV-positive OPSCC however, with numerous studies now including

754 combination with a checkpoint inhibitor or other immune modulator.<sup>223,236</sup> Of the few trials that have  
755 so far reported outcomes, a phase II trial combining nivolumab with an HPV16 E6/E7 peptide vaccine  
756 (ISA 101) reported a response rate of 36% and median survival of 17.5 months among the 22  
757 patients with HPV-positive OPSCC, which compares favourably with trials evaluating nivolumab  
758 monotherapy.<sup>237</sup> MEDI0457 (a DNA vaccine encoding E6 and E7 antigens from HPV16 and HPV18,  
759 administered together with DNA encoding IL-12 to act as an adjuvant in a phase I/IIa trial) induced  
760 durable HPV-specific immune responses in 18 of 21 patients with locally advanced p16<sup>+</sup> HNSCC  
761 and one patient who developed metastatic disease had a complete, rapid and durable response to  
762 subsequent nivolumab treatment.<sup>238</sup> Other ongoing trials include: HARE-40, a phase I/II dose  
763 escalation trial based in the UK which is determining the safety of an E7-targeting mRNA vaccine  
764 delivered in combination with an agonistic CD40 antibody designed to enhance antigen presentation  
765 by dendritic cells (NCT03418480); a phase I open label trial investigating MAGE-A3/HPV-16  
766 targeting peptide vaccines as well as a first-in-man phase I/II trial investigating the novel E6/E7-  
767 targeting vaccine, HB-201 with or without concurrent checkpoint inhibition (NCT04180215,  
768 NCT03669718). The results of the above trials and others will be crucial in shaping the continued  
769 and promising progress of immunotherapy for HPV-positive OPSCC.

770

771 *Future directions for targeted therapy*

772 Ultimately, it seems that with currently-available therapies, the de-escalation research  
773 question in HPV-positive OPSCC is primarily one of chemoradiation dose de-escalation as opposed  
774 to altered chemotherapeutic regimes. It is worth noting however, that the vast majority of molecular  
775 data from HPV-positive OPSCC has thus far been derived from primary tumours, over 80% of which  
776 are typically eliminated with chemoradiation. Key challenges are to identify the 15-20% of primary  
777 tumours that are at high risk of recurrence and to determine effective treatments for recurrent  
778 disease, in which two-year survival remains at 40%.<sup>239</sup> To this end, sequencing of 51 primary HPV-  
779 positive OPSCCs, 16 of which recurred, together with 12 metachronous recurrent HPV-positive  
780 OPSCCs (including seven cases in which matched primary tumours were also sequenced) was  
781 undertaken, with the intriguing observation that recurrent tumours share genomic aberrations such

782 as *TP53* mutations that are almost exclusive to HPV-negative disease amongst primary HNSCC.<sup>240</sup>  
783 Consistent with this finding was the recent discovery of a gene expression profile associated with  
784 poor prognosis in HPV-positive OPSCC that bears similarities to HPV-negative HNSCC.  
785 Interestingly, HPV E6 and E7 expression did not vary between good and poor prognosis HPV-  
786 positive subgroups; instead the viral E1^E4 transcript, which functions during later stages of the  
787 productive HPV replication cycle but which has not previously been implicated in cancer, displayed  
788 significantly increased expression in tumours belonging to the good prognosis subgroup. The  
789 reasons for this remain unclear but might be linked to increased radiosensitivity in cells expressing  
790 E1^E4.<sup>241</sup> Given the findings from these studies, it will be important to determine whether cells  
791 derived from recurrent HPV-positive OPSCCs display the same dependence upon ongoing HPV  
792 oncogene expression as those derived from primary tumours since if not, this may have implications  
793 for the efficacy of HPV-targeted therapies (e.g. therapeutic vaccines) in advanced disease. Finally,  
794 in the largest genomic study of distant metastases in HPV-positive OPSCC to date, targeted cancer  
795 gene sequencing was conducted on samples from 26 metastatic tumours, revealing a potentially  
796 higher frequency of *PRKDC* mutations compared with primary tumours. *PRKDC* encodes the DNA-  
797 Dependent Protein Kinase Catalytic Subunit (DNA-PKcs), which is essential for the repair of DNA  
798 double-strand breaks by non-homologous end joining (NHEJ), thus the authors speculate that these  
799 metastatic tumours may respond to therapies such as PARP inhibitors, which exploit DNA repair  
800 defects.<sup>110</sup> Indeed, the PARP inhibitor Olaparib is currently being assessed as a radiosensitizer with  
801 the aim of improved logoregional control (NCT02229656). However, it will be important to determine  
802 whether these tantalizing observations hold true in larger cohorts of recurrent and metastatic HPV-  
803 positive OPSCC and to develop preclinical models representative of these tumours.

804

805 *Conclusion*

806 The differentiation of HPV-associated OPSCC by the AJCC from its HPV-negative  
807 counterpart cements its distinct biology and improved prognosis. Its preference for younger  
808 individuals emphasizes the need for continued efforts to treat patients such that post-treatment  
809 quality of life is high. Novel targeted therapies, which improve on the associated morbidity and

810 mortality with current standard of care, will eventually include immunotherapies due to the fact that  
811 HNSCC displays particular immune sensitivity. Recent and ongoing clinical trials emphasize the  
812 potential for treatment deintensification as a means to improve patient quality of life while maintaining  
813 high survival outcome. While more trials are needed, it is apparent that such strategies can lead to  
814 excellent morbidity and mortality rates, and as such, patients who are eligible should be considered  
815 for such studies.

816 Importantly, there is still a need for further research into identifying and validating diagnostic,  
817 prognostic and predictive biomarkers in order to improve early detection, stratify patients for potential  
818 treatment deintensification or otherwise better allocate to current standard of care and in future,  
819 targeted therapies and immunotherapies.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

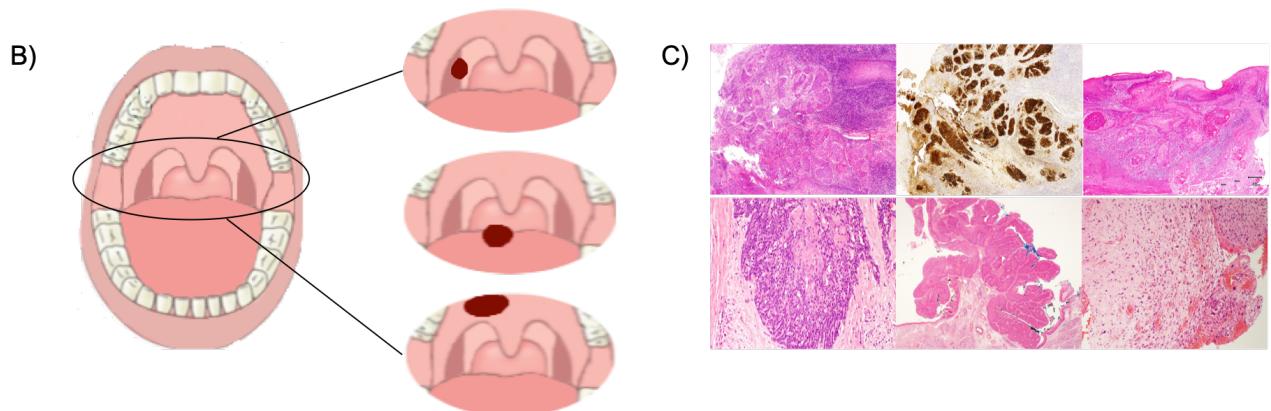
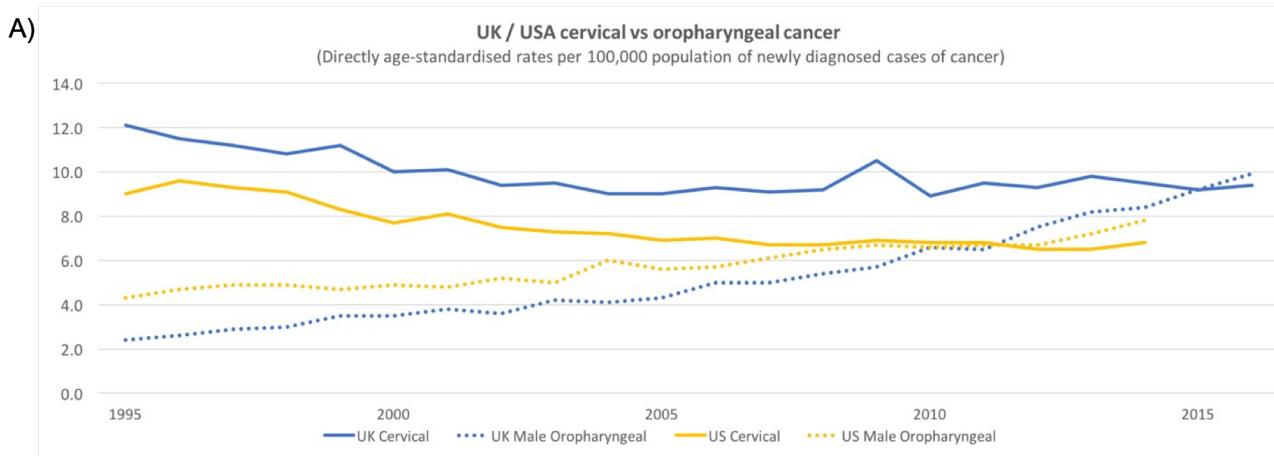
837

838

839

840 **Figure Legends**

841  
842 **Figure 1: a)** Directly age-standardised rates per 100,000 population of newly diagnosed cases of  
843 cervical and oropharyngeal cancer in the UK and the US. UK Office for National Statistics Cancer  
844 Data: Directly age-standardised rates per 100,000 population of newly diagnosed cases of cancer;  
845 for male oropharyngeal cancers (blue dotted line) and cervical cancers (blue solid line) from 1995 to  
846 2016 (2016 data released on 25/5/2018). Male oropharyngeal cancers included base of tongue  
847 (International Classification of Diseases for Oncology, 3rd Edition [ICD-O-3] topography code C01),  
848 uvula (C05), tonsil (C09.0-09.9), oropharynx (C10.0-10.9), stratified for different types of squamous  
849 cell carcinoma (as for the US data). Cervical cancers (C53). US Surveillance, Epidemiology, and  
850 End Results (SEER) data: Observed age-standardised rates per 100,000 population of newly  
851 diagnosed cases of cancer; for oropharyngeal cancers among men (yellow dotted line) and cervical  
852 cancers (yellow solid line) from 1995 to 2014 from registries within the Surveillance, Epidemiology,  
853 and End Results (SEER) program. Oropharyngeal cancers included base of tongue (International  
854 Classification of Diseases for Oncology, 3rd Edition [ICD-O-3] topography code C01.9), lingual tonsil  
855 (C02.4), soft palate not otherwise specified (NOS; C05.1), uvula (C05.2), tonsil (C09.0-09.9),  
856 oropharynx (C10.0-10.9), and Waldeyer's ring (C14.2), stratified for different types of squamous cell  
857 carcinoma (histologic codes: 8052/3; 8053/3; 8070/3; 8071/3; 8072/3; 8073/3; 8074/3; 8075/3;  
858 8076/3; 8077/3; 8078/3; 8083/3; 8084/3; 8094/3; 8051/3). Cervical cancers (C53) included all  
859 histologic subtypes. **b)** Basic anatomy of the oropharynx; HPV-positive OPSCC tropic for base of  
860 tongue (i.e. anterior 2/3rds), soft palate and tonsil. **c)** Clockwise from top-left: Non-keratinising SCC.  
861 Non-keratinising SCC with p16 stain; morphology is monomorphic, ovoid, hyperchromatic with inconspicuous  
862 cytoplasm. Additionally, exhibits increased mitosis, apoptosis and comedo-type necrosis. Keratinizing SCC:  
863 typically with filiform projections, a thickened, normal appearing stratified squamous epithelium,  
864 hyperparakeratosis and keratin plugging. Basaloid SCC: variable foci of squamous differentiation. Papillary  
865 SCC with early invasion, exhibits predominant filiform processes with minimal/absent keratinization,  
866 frequent mitosis and full thickness dysplasia with basaloid cell morphology. Spindle cell carcinoma: biphasic  
867 tumour composed of SCC and malignant spindle cell component, exhibits polypoid growth.



868  
869 **Figure 2. a)** Major events in the development of HPV-driven malignancy based on the well-  
870 established stepwise model of cervical carcinogenesis. **b)** Schematic showing how HPV-driven  
871 oncogenic processes act to enable seven of the eight Hallmarks of Cancer originally defined by  
872 Hanahan and Weinberg and how we are attempting to disable some of these hallmarks using  
873 targeted therapeutics in recent or ongoing clinical trials in HPV-positive OPSCC (based on Hanahan  
874 and Weinberg,<sup>67</sup> Mesri et al,<sup>68</sup> Lechner and Fenton.<sup>242</sup>) **c)** Updated model of cell cycle perturbation  
875 by the HPV oncogenes E6 and E7 as proposed by McLaughlin-Drubin, Munger and colleagues, see  
876 main text for details. Cell cycle inhibitors (p16<sup>INK4A</sup> and p21<sup>CIP1</sup>), upon which HPV-transformed cells  
877 become dependent are starred.

878

879

880

881



882

883 **Figure 1.**

884

885

886

887

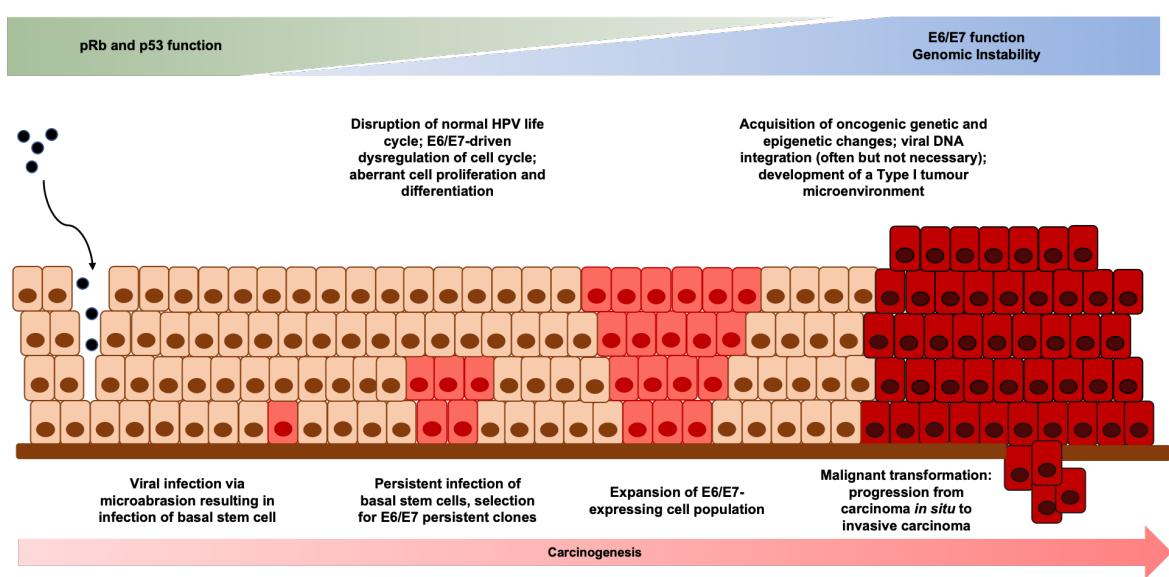
888

889

890

891

892


893

894

895

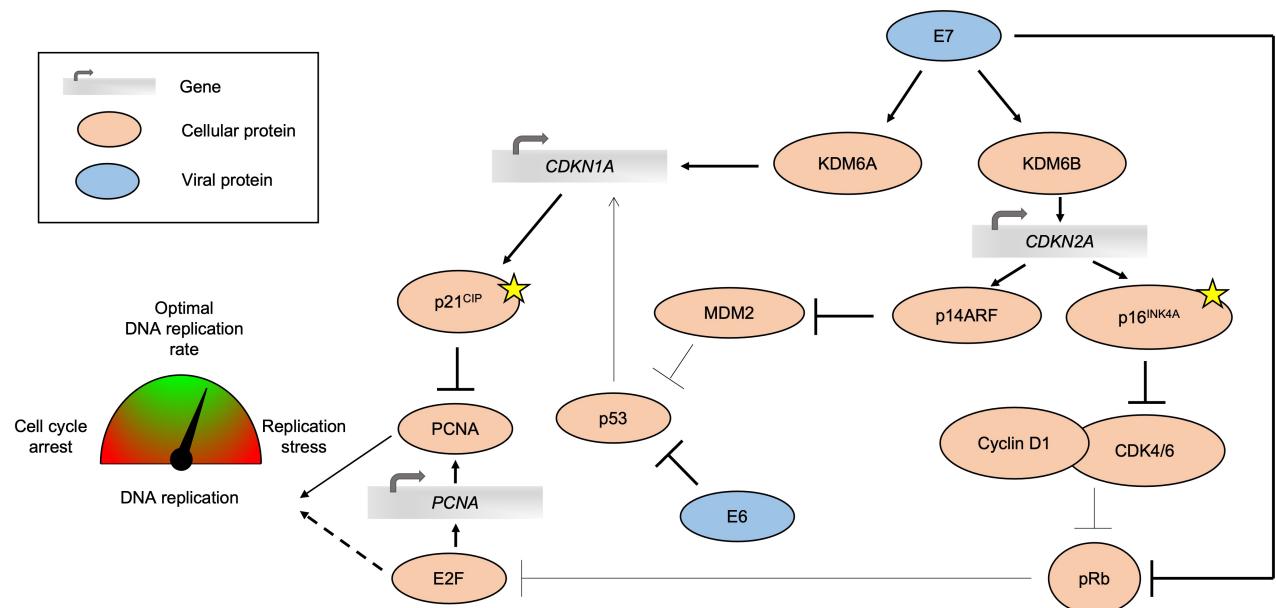
896

A)



B)




897

898

899

900

901 C)



902

903 **Figure 2.**

**Table 1.** Comparison of HPV-positive and negative OPSCC characteristics

| <b>Patient Characteristics</b>    | Age                           | <b>HPV-positive OPSCC</b>                                                                                                                                                                                           | <b>HPV-negative OPSCC</b>                                                                                                                         |
|-----------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                               | 59<br>incidence of HPV-positive OPSCC increasing in older men                                                                                                                                                       | 60 ( $p < 0.001$ ) <sup>243</sup>                                                                                                                 |
|                                   | Sex                           | 86.9% male                                                                                                                                                                                                          | 76.8% male ( $p < 0.001$ ) <sup>243</sup>                                                                                                         |
|                                   | Ethnicity                     | 90% Caucasian                                                                                                                                                                                                       | 75.9% Caucasian ( $p < 0.001$ ) <sup>243</sup>                                                                                                    |
|                                   | Smoking                       | Similar<br>(rising incidence of HPV-positive OPSCC in smokers, as well as non-smokers) <sup>243</sup>                                                                                                               |                                                                                                                                                   |
|                                   | Alcohol                       | HPV-negativity associated with greater alcohol use <sup>7</sup>                                                                                                                                                     |                                                                                                                                                   |
|                                   | Sexual history                | High number of sexual partners a risk factor for HPV-positive OPSCC <sup>7</sup>                                                                                                                                    |                                                                                                                                                   |
| <b>Incidence</b>                  | Per 100,000                   | 4.62                                                                                                                                                                                                                | 1.82 <sup>243</sup>                                                                                                                               |
| <b>Tumour Characteristics</b>     | Site                          | Greater preference for oropharynx (94.2% HNSCC); specifically base of tongue and tonsil <sup>2</sup>                                                                                                                | Less preference for oropharynx (72.8% HNSCC) <sup>243</sup>                                                                                       |
|                                   | Stage (AJCC 7 <sup>th</sup> ) | Early stage (T1-2); frequently with nodal metastasis at presentation <sup>157</sup>                                                                                                                                 | All stages (T1-4) <sup>243</sup>                                                                                                                  |
|                                   | Histopathology                | Immature, basal-like/basaloid, non-keratinizing <sup>157</sup>                                                                                                                                                      | Frequently keratinizing SCC                                                                                                                       |
| <b>Prognosis</b>                  | Cancer-specific mortality     | aHR = 0.40 ( $p < 0.001$ ) <sup>243</sup>                                                                                                                                                                           |                                                                                                                                                   |
| <b>Biological Characteristics</b> | Genetic Mutations             | More frequent aberration of DNA damage response pathways, <i>FGF</i> and <i>JAK/STAT</i> signaling as well as immune-related genes ( <i>HLA-A/B</i> ); <i>PIK3CA</i> mutations more commonly observed <sup>94</sup> | Aberration of <i>TP53</i> and cell cycle pathways (eg. Loss of <i>CDKN2A</i> ); oxidative stress regulation more frequently mutated <sup>94</sup> |
|                                   | Other Aberrations             | p53/Rb1 degradation by E6/7 <sup>242</sup>                                                                                                                                                                          |                                                                                                                                                   |

**Table 2a.** AJCC 8<sup>th</sup> edition TNM Staging for HPV-positive oropharyngeal squamous cell carcinoma

| <b>T Category</b>  | <b>T Criteria</b>                                                                                                                                                                                                                                                                                                 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T0                 | No primary identified                                                                                                                                                                                                                                                                                             |
| T1                 | Tumour 2cm or smaller in greatest dimension                                                                                                                                                                                                                                                                       |
| T2                 | Tumour larger than 2 cm but not larger than 4 cm in greatest dimension                                                                                                                                                                                                                                            |
| T3                 | Tumour larger than 4 cm in greatest dimension or extension to lingual surface of epiglottis                                                                                                                                                                                                                       |
| T4                 | Moderately advanced local disease. Tumour invades the larynx, extrinsic muscle of tongue, medial pterygoid, hard palate or mandible or beyond. <i>*mucosal extension to lingual surface of epiglottis from primary tumours of the base of the tongue and vallecula does not constitute invasion of the larynx</i> |
| <b>T Suffix</b>    | <b>Definition</b>                                                                                                                                                                                                                                                                                                 |
| (m)                | Select if synchronous primary tumours are found in single organ                                                                                                                                                                                                                                                   |
| <b>cN Category</b> | <b>cN Criteria</b>                                                                                                                                                                                                                                                                                                |
| NX                 | Regional lymph nodes cannot be assessed                                                                                                                                                                                                                                                                           |
| N0                 | No regional lymph node metastasis                                                                                                                                                                                                                                                                                 |
| N1                 | One or more ipsilateral lymph nodes, none larger than 6cm                                                                                                                                                                                                                                                         |
| N2                 | Contralateral or bilateral lymph nodes, none larger than 6cm                                                                                                                                                                                                                                                      |
| N3                 | Lymph node(s) larger than 6cm                                                                                                                                                                                                                                                                                     |
| <b>N Suffix</b>    | <b>Definition</b>                                                                                                                                                                                                                                                                                                 |
| (sn)               | select if regional lymph node metastasis identified by SLN biopsy only                                                                                                                                                                                                                                            |
| (f)                | Select if regional lymph node metastasis identified by FNA or core needle biopsy only                                                                                                                                                                                                                             |
| <b>pN Category</b> | <b>pN Criteria</b>                                                                                                                                                                                                                                                                                                |
| NX                 | Regional lymph nodes cannot be assessed                                                                                                                                                                                                                                                                           |
| pN0                | No regional lymph node metastasis                                                                                                                                                                                                                                                                                 |
| pN1                | Metastasis in 4 or fewer lymph nodes                                                                                                                                                                                                                                                                              |
| pN2                | Metastasis in more than 4 lymph nodes                                                                                                                                                                                                                                                                             |
| <b>N Suffix</b>    | <b>Definition</b>                                                                                                                                                                                                                                                                                                 |
| (sn)               | Select if regional lymph node metastasis identified by SLN biopsy only                                                                                                                                                                                                                                            |
| (f)                | Select if regional lymph node metastasis identified by FNA or core needle biopsy only                                                                                                                                                                                                                             |
| <b>M Category</b>  | <b>M Criteria</b>                                                                                                                                                                                                                                                                                                 |
| cM0                | no distant metastasis                                                                                                                                                                                                                                                                                             |
| cM1                | Distant metastasis                                                                                                                                                                                                                                                                                                |
| pM1                | Distant metastasis, microscopically confirmed                                                                                                                                                                                                                                                                     |

**Table 2b.** AJCC 8<sup>th</sup> edition prognostic groups for HPV-positive oropharyngeal squamous cell carcinoma

| <b>cT</b> | <b>cN</b> | <b>cM</b> | <b>Stage</b> |
|-----------|-----------|-----------|--------------|
| T0-2      | N0 or N1  | M0        | I            |
| T0-2      | N2        | M0        | II           |
| T3        | N0-2      | M0        | II           |
| T0-4      | N3        | M0        | III          |
| T4        | N0-3      | M0        | III          |
| Any T     | Any N     | M1        | IV           |
| <b>pT</b> | <b>pN</b> | <b>pM</b> |              |
| T0-2      | N0 or N1  | M0        | I            |
| T0-2      | N2        | M0        | II           |
| T3 or T4  | N0 or N1  | M0        | II           |

|          |       |    |     |
|----------|-------|----|-----|
| T3 or T4 | N2    | M0 | III |
| Any T    | Any N | M1 | IV  |

**Table 2c.** AJCC 8<sup>th</sup> edition lymphovascular invasion coding for HPV-positive oropharyngeal squamous cell carcinoma

| Component of LVI Coding | Description                                                        |
|-------------------------|--------------------------------------------------------------------|
| 0                       | LVI not present (absent)/ not identified                           |
| 1                       | LVI present/ identified, NOS                                       |
| 2                       | Lymphatic and small vessel invasion only (L)                       |
| 3                       | Venous (large vessel) invasion only (V)                            |
| 4                       | Both lymphatic and small vessel and venous (large vessel) invasion |
| 9                       | Presence of LVI unknown/indeterminate                              |

**Table 3.** UK Treatment Recommendations for HPV-positive OPSCC (not yet updated for AJCC 8<sup>th</sup> edition staging guidelines).<sup>154</sup>

|                          |                                       | <b>Early Stage (T1 or T2, N0)*</b>                                                                                                                                                                                                            | <b>Late Stage (T3 or T4, N0; T1-4, N1-3)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Open Surgery</b>      | Paramedian mandibulotomy (PM)         | Not typically recommended; TORS/TLM resection or definitive RT instead                                                                                                                                                                        | <ul style="list-style-type: none"> <li>Usually PM, TCP for tongue base resections, G/LR not frequently used; mandibulectomy for tumours with gross bony involvement</li> <li>Lip-splitting mandibulotomy usually required for adequate visualization</li> <li>Reconstruction by radial artery free or anterolateral thigh free flaps</li> <li>Used in cases of surgical salvage</li> <li>Adjuvant CRT or PORT usually required</li> <li>Modified or selective neck dissection recommended</li> </ul> |
|                          | Mandibulectomy                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | Trans-cervical pharyngotomy (TCP)     |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | Glossotomy (G) /lingual release (LR)  |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Transoral Surgery</b> | Transoral robotic surgery (TORS)      | <ul style="list-style-type: none"> <li>T1/T2, potentially T3*; ipsilateral selective neck dissection recommended, N0 treated electively</li> <li>Adjuvant RT/CRT to reduce risk of recurrence depending on tumour features</li> </ul>         | Limited to early stage disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | Transoral laser microdissection (TLM) |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Radiotherapy</b>      | Radical                               | <ul style="list-style-type: none"> <li>70 Gy/ 35 fractions (hypo-fractionated: 65-66 Gy/30 fractions)</li> <li>prophylactic RT to ipsilateral cervical lymph nodes for lateralised tumours, both sides for non-lateralised tumours</li> </ul> | Only if patient is unfit for CRT (e.g. >70 years of age, poor performance status)                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | Intensity modulated radiotherapy      | In clinical trials for de-escalation in definitive and adjuvant settings                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Chemoradiotherapy</b> |                                       | 70 Gy (2 Gy fractions) with concurrent cisplatin standard of care                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                         |                   |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |
|-------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Adjuvant therapy</b> | Chemoradiotherapy | <ul style="list-style-type: none"> <li>For positive or close resection margins or extra-nodal extension of lymph nodes; or other high-risk features (lymphovascular or perineural invasion)</li> <li>Post-operative RT can be with or without concurrent chemotherapy</li> </ul> | Improved outcome for patients with extra-capsular invasion and/or microscopically involved surgical resection margins around primary tumour; not recommended for those >70 years of age or with poor performance status |
|-------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**Table 4a.** Ongoing and Recently Completed Clinical Trials for the Management of HPV-associated Oropharyngeal Squamous Cell Carcinoma

| Study Cohort                                           | Treatment                                                                                                                                                                   | Outcome Measures                                                                                                                                                            | Toxicity Profile                                                                                      | Reference                                                                                                                                  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Efficacy of Induction Therapy</b>                   |                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                       |                                                                                                                                            |
| OPTIMA                                                 | N = 62; cohort divided into low risk ( $\leq T3$ , $\leq N2b$ , $\leq 10$ pack-year smoking history) or high risk ( $T4$ or $\geq N2c$ or $> 10$ pack-year smoking history) | 3 cycles carboplatin (AUC 6) + nab-paclitaxel (100mg/m <sup>2</sup> ) followed by low dose CRT (45 Gy + paclitaxel, 5-FU and hydroxyurea) or standard CRT (75 Gy)           | 2-year PFS = 95% (low risk group), 94% (high risk group)                                              | Seiwert, 2019                                                                                                                              |
| E1308                                                  | N=80; majority stage T1-3N0-N2b, $\leq 10$ pack-year smoking history                                                                                                        | 3 cycles cisplatin, paclitaxel and cetuximab followed by concurrent cetuximab with RT (54 Gy for complete responders or 69.3 Gy)                                            | 2-year PFS = 80%, 2-year OS = 100% for primary site complete responders to induction therapy          | Fewer patients with low dose RT had difficulty swallowing solids (40 v. 89%, $P = 0.11$ ) or impaired nutrition (10% v. 44%, $P = 0.025$ ) |
|                                                        | N=44, stages III-IV (AJCC 7 <sup>th</sup> ed.)                                                                                                                              | 2 cycles paclitaxel (175 mg/m <sup>2</sup> ) and carboplatin (AUC 6) followed by IMRT (54 Gy for complete/partial responders or 60 Gy) + paclitaxel (30 mg/m <sup>2</sup> ) | 2-year PFS = 92%                                                                                      | Grade 3 adverse events = 39%, gastrostomy tube rate = 2%<br>Chen et al, 2017;<br>NCT02048020,<br>NCT01716195                               |
| <b>De-escalation of Chemoradiotherapy/Radiotherapy</b> |                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                       |                                                                                                                                            |
| HYHOPE                                                 | N=24; T1-3 N0-2, $\leq 10$ pack-year smoking history, not actively smoking, ECOG 0-2                                                                                        | Hypofractionated radiation therapy over 3 weeks with concurrent weekly cisplatin:                                                                                           | Maximally tolerated dose and fractionation (primary outcome); acute and late toxicities, locoregional | NCT04580446                                                                                                                                |

|           |                                                                                                             |                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                |
|-----------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                             | 44.4 Gy in 12 fractions or 46.5 Gy in 15 fractions or 52 Gy in 20 fractions                                                                                            | control, PFS, QOL, feeding tube dependence                                                                       |                                                                                                                                                |
| SHORT-OPC | N=106; stage I-II                                                                                           | SABR boost and de-escalated chemoradiation (40 Gy in 20 fractions, concurrent cisplatin) vs. standard chemoradiation (70 Gy in 33 fractions with concurrent cisplatin) | Locoregional control (primary outcome); subacute/acute/late toxicities, OS, PFS, symptom burden, dysphagia       | NCT04178174                                                                                                                                    |
| MC1273    | N=80, ≤10 pack-year smoking history, negative margins; cohort B included patients with extranodal extension | Cohort A: 30 Gy + docetaxel (15 mg/m <sup>2</sup> )<br><br>Cohort B: extranodal extension to 36 Gy                                                                     | 2-year locoregional tumour control = 96.2%, PFS = 91.1%, OS = 98.7%                                              | Grade 3 or worse toxicity, pre-RT = 2.5%, 1- and 2-year post-RT = 0%<br><br>Ma et al, 2019                                                     |
|           | N=43; T0-3N0-2cM0, minimal smoking history                                                                  | 60 Gy IMRT + concurrent cisplatin (30 mg/m <sup>2</sup> )                                                                                                              | 3-year locoregional control = 100%, distant metastasis-free survival = 100%, OS = 95%                            | Improved preservation of QoL; 39% required feeding tube (none permanent), no ≥ grade 3 later adverse events<br><br>Chera, 2018;<br>NCT01530997 |
|           | N=76; Hypoxia negative; T1-2, N1-2b                                                                         | 30 Gy IMRT with concurrent cisplatin (100mg/m <sup>2</sup> ) or carboplatin (AUC 5) and 5-FU (2400 mg/m <sup>2</sup> )                                                 | Effectiveness of study treatment comparable to standard CRT                                                      | NCT03323463                                                                                                                                    |
| EVADER    | N=100; T1-3, N0-1, M0 (AJCC 8 <sup>th</sup> )                                                               | 70/56 Gy RT with cisplatin (100 mg/m <sup>2</sup> ) or 70/56 Gy RT only                                                                                                | Event-free survival (primary outcome); OS, local/regional/locoregional control, distant metastasis-free survival | NCT03822897                                                                                                                                    |

|                                                                  |                                                                                                                |                                                                                                                                |                                                                                                                 |                                                                                           |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Quarterback                                                      | N=24; stage 3 or 4 without distant metastases (AJCC 7 <sup>th</sup> )                                          | 56 Gy RT with concurrent carboplatin or 70 Gy with concurrent carboplatin                                                      | PFS (primary outcome), locoregional control, OS, acute toxicities, predictive biomarkers                        | NCT01706939                                                                               |
| Quarterback 2b                                                   | N=65; stage 3 or 4 without distant metastases (AJCC 7 <sup>th</sup> )                                          | 56/50.4 Gy IMRT                                                                                                                | 3 and 5-year PFS (primary outcomes); locoregional control, OS, acute/long term toxicities                       | NCT02945631                                                                               |
|                                                                  | N=75; low risk HPV-positive OPSCC (T1-2, N0-1)                                                                 | MRI-guided (individualized up to 70 Gy in 33 fractions) vs. standard-of-care IMRT (individualized up to 70 Gy in 33 fractions) | Locoregional control, composite dysphagia outcome (primary outcomes); PFS, OS, DMFS                             | NCT03224000                                                                               |
|                                                                  | N=60; T1, 2 or 3, any N; ECOG 0-1, no distant metastases                                                       | Radiation dose de-escalation from 70 Gy to 63 Gy and 58.1 Gy to 50.75 Gy in 35 fractions; weekly carboplatin                   | Grade 3+ late toxicity, QOL, adverse events                                                                     | NCT01088802                                                                               |
| <b><sup>18</sup>F FMISO PET Imaging for Treatment Allocation</b> |                                                                                                                |                                                                                                                                |                                                                                                                 |                                                                                           |
|                                                                  | N=33, stage III-IVb; assessment of hypoxia by <sup>18</sup> F FMISO PET imaging                                | No hypoxia/resolution: 10 Gy-dose reduction of IMRT to metastatic lymph nodes, standard dose to primary tumour                 | 30% received dose reduction, 2-year locoregional control = 100%, distant metastasis-free = 97%, OS = 100%       | Acute grade 3 mucositis (11/33), grade 3 dysphagia (0/33), late grade 2 xerostomia (2/33) |
|                                                                  |                                                                                                                | Persistent hypoxia: standard dose to tumour bed and lymph nodes                                                                |                                                                                                                 | Lee, 2016; NCT00606294                                                                    |
| MSKCC Pilot Study                                                | N=19; T1/2/x, N1/2a/2b, M0 (AJCC 7 <sup>th</sup> ); assessment of hypoxia by <sup>18</sup> F FMISO PET imaging | No hypoxia/resolution: 30 Gy IMRT with concurrent high-dose cisplatin or carboplatin/5-FU                                      | 15/19 de-escalated to 30 Gy IMRT based on pre-treatment <sup>18</sup> F FMISO PET; to date disease free = 18/19 | Riaz, 2017                                                                                |

|                                          |                                                                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                              |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                                                                | Persistent hypoxia: 70 Gy IMRT with concurrent high-dose cisplatin or carboplatin/5-FU followed by neck dissection                                                        |                                                                                                                                                                 |                                                                                                                                                                                                              |
| <b>TORS vs. Radiotherapy</b>             |                                                                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                              |
| ORATOR                                   | N=68, ≤18 years old, ECOG 0-2, T1-2, N0-2; stratification by p16 status                                                                                                                        | 70 Gy IMRT (with high dose cisplatin or modified cisplatin, cetuximab or carboplatin, if N1-2) or TORS + neck dissection with 1 cm margins (+/- adjuvant CRT)             | MDADI score (swallowing related QOL at 1 year): 86.9 (radiotherapy group), 80.1 (TORS group)                                                                    | More cases of neutropenia, hearing loss and tinnitus in radiotherapy group, trismus in TORS group; most common AEs were dysphagia, hearing loss and mucositis in radiotherapy group, dysphagia in TORS group |
| ORATOR2                                  | N=140; T1-2, N0-2 (AJCC 8 <sup>th</sup> ed.)                                                                                                                                                   | De-intensified IMRT (60 Gy +/- chemotherapy) vs. TOS and neck dissection (+/- adjuvant 50 Gy IMRT)                                                                        | 2-year OS (primary outcome); PFS, QOL, toxicity profile                                                                                                         | NCT03210103                                                                                                                                                                                                  |
| <b>De-escalation of Adjuvant Therapy</b> |                                                                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                              |
| PATHOS                                   | N~1,100<br>Group A: tumours with no adverse histological features<br>Group B: T3 (or T1-2 with additional risk factors), pN2a or pN2b, PNI or VI, histologically normal tissue margin of 1-5mm | Arm 1 (Group A): No intervention<br>Arm B1 (Group B): post-operative RT (60 Gy)<br>Arm B2 (Group B): post-operative RT (50 Gy)<br>Arm C1 (Group C): post-operative RT (60 | Swallowing function (MDADI), overall survival (primary outcomes); swallowing panel, QoL, DFS, locoregional control, distant metastases, acute and late toxicity | Hargreaves, 2019;<br>NCT02215265                                                                                                                                                                             |

|      |                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                          |             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|      | Group C: any T, any N with high risk pathological features (positive (<1mm) margins, negative marginal biopsies and/or cervical lymph node extracapsular spread | Gy) with concurrent cisplatin<br><br>Arm C2 (Group C): post-operative RT (60 Gy) without chemotherapy                                                                                                   |                                                                                                                                                                          |             |
| SIRS | Intermediate stage, stratification based on pathological prognosis (based on ECS, LVI, PNI)                                                                     | Follow up without post-operative radiotherapy for patients with good prognosis, reduced dose adjuvant radiotherapy or CRT based on pathology for patients with poor prognosis                           | 3/5-year DFS, locoregional control (primary outcomes); OS, toxicities, QOL                                                                                               | NCT02072148 |
|      | N=118; T0-3, N0-2b (AJCC 7 <sup>th</sup> ), <5 positive lymph nodes, TORS primary site resection and ipsilateral neck dissection                                | Adjuvant radiotherapy dose reduction according to characteristics of primary site and involved lymph nodes, 50 Gy IMRT for high risk neck; 45 Gy IMRT to low risk neck with reduction of treated volume | 2-year locoregional control (primary outcome), treatment-related toxicity, 2-year PFS, metastasis-free survival, OS, QoL, difference in toxicities between IMRT and IMPT | NCT03729518 |
| MINT | N=40; Stage I-III (AJCC 8 <sup>th</sup> ); standard of care transoral surgery of primary tumour and management of cervical lymph nodes                          | Arm 1 (ECE or positive margin but not pT4 or cN3): 42 Gy IMRT/IMPT and concurrent cisplatin (100mg/m <sup>2</sup> )                                                                                     | Percent weight loss (day 1 compared to last day of radiation therapy) (primary outcome); PEG tube placements in each arm, serum creatinine changes, narcotics            | NCT03621696 |

|          |                                                                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                                               |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                         | Arm 2: 42 Gy<br>IMRT/IMPT                                                                                                                                | administration, QoL,<br>disease recurrence rate<br>(24 post-treatment)                                                                                                                    |                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                         | Arm 3 (cT4/pT4 or<br>cN3): 60 Gy<br>IMRT/IMPT, cisplatin<br>(100 mg/m <sup>2</sup> )                                                                     |                                                                                                                                                                                           |                                                                                                                                                                                                                                               |
| E3311    | N=511, stage<br>III/IVA/IVB (AJCC 7 <sup>th</sup> )                                                                                                                                                                                                                     | TOS or TOS then low-<br>dose IMRT or TOS then<br>standard-dose IMRT or<br>TOS then standard-<br>dose IMRT with<br>concurrent cisplatin or<br>carboplatin | PFS, accrual rate, risk<br>distribution, incidence of<br>grade 3-4 bleeding<br>events during surgery<br>and positive margins<br>(primary outcomes); AEs,<br>OS, swallowing, voice,<br>QoL | NCT01898494                                                                                                                                                                                                                                   |
| AVOID    | N=60, pT1-pT2 N1-3;<br>surgical resection by<br>TORS with favourable<br>features at primary<br>site                                                                                                                                                                     | Adjuvant RT omitting<br>tumour bed                                                                                                                       | Local control                                                                                                                                                                             | SAE in 30%: dysphagia<br>(3.33%), esophageal pain<br>(1.67%), other GI disorder<br>(1.67%), mucositis oral<br>(5.00%), dermatitis<br>radiation (13.33%),<br>aspiration (3.33%),<br>hypoxia (1.67%)<br>Swisher-McClure,<br>2020<br>NCT02159703 |
| DART-HPV | N=227; gross total<br>surgical resection and<br>unilateral neck<br>dissection; ECOG 0 or<br>1; one of: lymph node<br>> 3 cm, 2 or more<br>positive lymph nodes,<br>perineural invasion,<br>lymphovascular space<br>invasion, T3 or T4<br>primary disease,<br>lymph node | Docetaxel (15 mg/m <sup>2</sup> )<br>plus 30 Gy/1.5 Gy<br>fractions twice daily or<br>36 Gy/18Gy fractions<br>twice daily vs. Standard<br>of Care        | Adverse Events Rate,<br>Locoregional control,<br>QOL, DFS, distant failure                                                                                                                | NCT02908477                                                                                                                                                                                                                                   |

|                           |                                                                                                |                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                    |
|---------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | extracapsular extension                                                                        |                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                    |
| DELPHI                    | N=384; intermediate and high risk                                                              | 54/ 59.4 Gy and concurrent chemotherapy (high risk) vs. 48.8/ 55 Gy vs. standard CRT                                                                                                                       | Rate of locoregional recurrences, OS, acute/late toxicities , QOL                                                   | NCT03396718                                                                                                                                        |
|                           | N=111; low to high risk                                                                        | Intermediate risk: reduced-dose adjuvant radiation therapy; High risk: adjuvant radiation therapy without chemotherapy                                                                                     | DFS, OS, toxicities, QOL, symptom burden, dysphagia, shoulder dysfunction                                           | NCT03875716                                                                                                                                        |
| <b>Targeted Therapies</b> |                                                                                                |                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                    |
|                           | N=43, previously untreated stage III-IV (excluded N3 or T4) disease without distant metastasis | Weekly cetuximab (250 mg/m <sup>2</sup> ) with concurrent radiotherapy (70 Gy in 35 fractions over 7 weeks to gross tumour, 50-60 Gy to subclinical target volumes)                                        | Rate of recurrence, Adverse Events                                                                                  | NCT01663259                                                                                                                                        |
|                           | N=70; stage III-IV, detection of KRAS-variant                                                  | Radiation and concurrent cisplatin vs. cetuximab followed by radiation and concurrent cisplatin                                                                                                            | OS, primary tumour control, locoregional recurrence rate, acute and late toxicities                                 | NCT04106362                                                                                                                                        |
|                           | N=987, 849 randomised; T1-2, N2a-N3 or T3-4, any N, no distant metastases                      | IMRT (70 Gy over 35 fractions) with concurrent cisplatin (100 mg/m <sup>2</sup> ) vs. IMRT (as above) with concurrent cetuximab (400 mg/m <sup>2</sup> before IMRT then 250 mg/m <sup>2</sup> for 7 weeks) | OS (primary outcome); PFs, time to locoregional failure/distant metastasis/secondary primary cancer; adverse events | Cetuximab vs. Cisplatin: acute moderate to severe toxicity (77.4% vs. 81.5%); late moderate to severe toxicity (16.5% vs. 20.4%)<br>Gillison, 2019 |

**Table 4b.** Ongoing immunotherapy clinical trials for HPV-positive OPSCC

|            | <b>Study Cohort</b>                                                                                                              | <b>Treatment</b>                                                                                                                                                                          | <b>Outcome Measures</b>                                                                                                                                                                                                           | <b>Reference</b> |
|------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| IMvolve010 | N=400; complete/partial response or stable disease to definitive local therapy                                                   | Atezolimumab or placebo                                                                                                                                                                   | Event-free survival, OS, adverse events                                                                                                                                                                                           | NCT03452137      |
| CITHARE    | N=66; T1, N1-2 or T2-3, N0-2 (AJCC 8 <sup>th</sup> )                                                                             | 70 Gy RT with either cisplatin or durvalumab                                                                                                                                              | Rate of patients alive without progression at 12 months (primary outcome); 2-year PFS, OS, safety (NCI-CTCAE), QoL                                                                                                                | NCT03623646      |
|            | N=180; T1N2a-N2cM0, T2N1-2cM0, T3N0-2cM0 (AJCC 7 <sup>th</sup> ) or stage I/II excluding T1N0-1 and T2N0 (AJCC 8 <sup>th</sup> ) | 50-66 Gy IMRT with nivolumab and ipilimumab                                                                                                                                               | Dose limiting toxicity, CR rate, PFS (primary outcomes); grade 3 AEs, patient tolerability, clinical CR, acute and chronic AEs, acute toxicities, late toxicities, swallowing, pattern of failure, OS                             | NCT03799445      |
|            | N=180; locoregionally advanced, intermediate risk and non-metastatic (AJCC 8 <sup>th</sup> )                                     | 70 Gy RT with cisplatin (100mg/m <sup>2</sup> ) or durvalumab IV (1500 mg) + adjuvant durvalumab (1500 mg) or durvalumab + adjuvant durvalumab/tremelimumab (third arm closed to accrual) | 3-year event-free survival (primary outcome); FACT-HN score, local regional failure, distant metastasis-free survival, OS, cost-effectiveness, toxicities                                                                         | NCT03410615      |
|            | N=40; stage III (AJCC 8 <sup>th</sup> ) or 'matted lymph nodes'                                                                  | Nivolumab (240 mg/m <sup>2</sup> ) before and concurrent with RT (70 Gy)/carboplatin (AUC 1)/paclitaxel (30 mg/m <sup>2</sup> ) and adjuvant nivolumab (480 mg/m <sup>2</sup> )           | PFS (primary outcome); progression, OS, acute/late toxicity incidence                                                                                                                                                             | NCT03829722      |
|            | N=82; Stage I/II/III (AJCC 8 <sup>th</sup> )                                                                                     | Cohort I: SBRT with durvalumab IV followed by TORS and modified radical neck dissection then adjuvant durvalumab IV<br><br>Cohort II: SBRT with tremelimumab IV and durvalumab            | PFS, incidence of AEs (primary outcomes); OS, primary tumour control, distant recurrence rate, locoregional control, contralateral neck failure, subclinical lymph node involvement, objective response, AEs, short/long-term QoL | NCT03618134      |

|         |                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                                               |             |
|---------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |                                                                                                          | IV followed by TORS and modified radical neck dissection then adjuvant durvalumab IV                                                                                                                                     |                                                                                                                                                                                               |             |
|         | N=20; any stage                                                                                          | Durvalumab IV followed by surgical resection within 3-17 days                                                                                                                                                            | Immune effector concentration, immune-regulatory miR responses, systemic immune response, regulatory response (primary outcomes); incidence of AEs, tumour volume, standardized uptake volume | NCT02827838 |
| HARE-40 | N=44; minimum 12 months post-treatment, no clinical evidence of disease or palliative intention-to-treat | HPV vaccine +/- Anti-CD40                                                                                                                                                                                                | Dose Limiting Toxicity                                                                                                                                                                        | NCT03418480 |
|         | N=100; tumour progression or recurrence on standard of care therapy                                      | HB-201 intravenous administration, 3+3 design dose determination                                                                                                                                                         | Recommended phase 2 dose                                                                                                                                                                      | NCT04180215 |
|         | N=194; PD-L1 positivity                                                                                  | ISAS101b 3 times plus cemiplimab every 3 weeks (up to 24 months) or placebo plus cemiplimab                                                                                                                              | Overall response rate, treatment-related adverse events, duration of response                                                                                                                 | NCT03669718 |
|         | N=27; ECOG <= 1; incurable disease                                                                       | Utomilumab plus ISA101b                                                                                                                                                                                                  | Overall response rate, adverse events, PFS                                                                                                                                                    | NCT03258008 |
|         | N=711; early-stage, non-smoking associated disease                                                       | Image-guided RT or IMRT over 6 fractions/week with concurrent cisplatin vs. reduced dose image-guided RT or IMRT over 5 fractions/week with concurrent cisplatin vs. reduced dose image-guided RT or IMRT with nivolumab | PFS, QOL, locoregional failure, distant failure, OS, adverse events                                                                                                                           | NCT03952585 |
|         | N=180; stage II or III                                                                                   | Up to 3x1010 E7 TCR T-cells followed by standard treatment at time of maximum tumour response                                                                                                                            | Fraction who achieve success                                                                                                                                                                  | NCT04015336 |
|         | N=15; stage I-IV                                                                                         | ADX11-001 followed by robot-assisted resection vs. standard of care                                                                                                                                                      | HPV-specific T-cell response rate, any grade 3 or 4 toxicity                                                                                                                                  | NCT02002182 |

|                                                                                                                         |                                                                                                                                                                                 |                           |             |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|
| N=744; $\geq$ 10 pack-year smoking history, stage T1-2N2-N3 or T3-4N0-3 OR $<$ 10 pack-years, stage T4N0-N3 or T1-2N2-3 | Cisplatin and IMRT followed by nivolumab once weekly for 12 months vs. cisplatin and IMRT followed by observation with potential cross-over to receive nivolumab over 12 months | PFS, OS, negative FDG PET | NCT03811015 |
| N=135; intermediate risk factors                                                                                        | 45 or 50 Gy RT in 25 fractions; concurrent biweekly nivolumab (240mg) followed by monthly nivolumab for 6 doses (480 mg)                                                        | PFs, PEG tube dependence  | NCT03715946 |

## References

1. Chaturvedi, A. K. *et al.* Human papillomavirus and rising oropharyngeal cancer incidence in the United States. *J. Clin. Oncol.* **29**, 4294–4301 (2011).
2. Gillison, M. L., Chaturvedi, A. K., Anderson, W. F. & Fakhry, C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. *J. Clin. Oncol.* **33**, 3235–3242 (2015).
3. Senkomago, V. *et al.* Human Papillomavirus—Attributable Cancers — United States, 2012–2016. *MMWR. Morb. Mortal. Wkly. Rep.* **68**, 724–728 (2019).
4. Schache, A. G. *et al.* HPV-related oropharynx cancer in the United Kingdom: An evolution in the understanding of disease etiology. *Cancer Res.* **76**, 6598–6606 (2016).
5. Lei, J. *et al.* HPV Vaccination and the Risk of Invasive Cervical Cancer. *N. Engl. J. Med.* **383**, 1340–1348 (2020).
6. Craig, S. G. *et al.* Recommendations for determining HPV status in patients with oropharyngeal cancers under TNM8 guidelines: a two-tier approach. *Br. J. Cancer* **120**, 827–833 (2019).
7. Gillison, M. L. *et al.* Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. *J. Natl. Cancer Inst.* **100**, 407–420 (2008).
8. Lechner, M., Jones, O. S., Breeze, C. E. & Gilson, R. Gender-neutral HPV vaccination in the UK, rising male oropharyngeal cancer rates, and lack of HPV awareness. *Lancet Infect. Dis.* **19**, 131–132 (2019).
9. Faraji, F. *et al.* The prevalence of human papillomavirus in oropharyngeal cancer is increasing regardless of sex or race, and the influence of sex and race on survival is modified by human papillomavirus tumor status. *Cancer* **125**, 761–769 (2019).
10. Argirion, I. *et al.* Increasing prevalence of HPV in oropharyngeal carcinoma suggests adaptation of p16 screening in Southeast Asia. *J. Clin. Virol.* **132**, 104637 (2020).
11. Hwang, T. Z., Hsiao, J. R., Tsai, C. R. & Chang, J. S. Incidence trends of human papillomavirus-related head and neck cancer in Taiwan, 1995–2009. *Int. J. Cancer* **137**,

395–408 (2015).

12. Wittekindt, C. *et al.* Increasing incidence rates of oropharyngeal squamous cell carcinoma in Germany and significance of disease burden attributed to human papillomavirus. *Cancer Prev. Res.* **12**, 375–382 (2019).
13. Zamani, M. *et al.* The current epidemic of HPV-associated oropharyngeal cancer: An 18-year Danish population-based study with 2,169 patients. *Eur. J. Cancer* **134**, 52–59 (2020).
14. Del Mistro, A. *et al.* Age-independent increasing prevalence of Human Papillomavirus-driven oropharyngeal carcinomas in North-East Italy. *Sci. Rep.* **10**, 1–10 (2020).
15. Morbini, P. *et al.* The evolving landscape of human papillomavirus-related oropharyngeal squamous cell carcinoma at a single institution in northern Italy. *Acta Otorhinolaryngol. Ital.* **39**, 9–17 (2019).
16. Haeggblom, L. *et al.* Changes in incidence and prevalence of human papillomavirus in tonsillar and base of tongue cancer during 2000–2016 in the Stockholm region and Sweden. *Head Neck* **41**, 1583–1590 (2019).
17. Donà, M. G. *et al.* Evolving profile of hpv-driven oropharyngeal squamous cell carcinoma in a national cancer institute in Italy: A 10-year retrospective study. *Microorganisms* **8**, 1–12 (2020).
18. Girardi, F. M., Wagner, V. P., Martins, M. D., Abentroth, A. L. & Hauth, L. A. Prevalence of p16 expression in oropharyngeal squamous cell carcinoma in southern Brazil. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol.* **130**, 681–691 (2020).
19. Rietbergen, M. M. *et al.* Epidemiologic associations of HPV-positive oropharyngeal cancer and (pre)cancerous cervical lesions. *Int. J. Cancer* **143**, 283–288 (2018).
20. Carlander, A. F. *et al.* A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide. *Viruses* **13**, 1326 (2021).
21. Chen, S. Y. *et al.* The association of smoking and outcomes in HPV-positive oropharyngeal cancer: A systematic review. *Am. J. Otolaryngol. - Head Neck Med. Surg.* **41**, 102592 (2020).
22. Ang, K. K. *et al.* Human papillomavirus and survival of patients with oropharyngeal cancer.

*N. Engl. J. Med.* **363**, 24–35 (2010).

23. Gooi, Z., Chan, J. Y. K. & Fakhry, C. The epidemiology of the human papillomavirus related to oropharyngeal head and neck cancer. *Laryngoscope* **126**, 894–900 (2016).
24. D’Souza, G. *et al.* Sex Differences in Risk Factors and Natural History of Oral Human Papillomavirus Infection. *J. Infect. Dis.* **213**, 1893–1896 (2016).
25. de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. *Int. J. Cancer* **141**, 664–670 (2017).
26. Blumberg, J., Monjane, L., Prasad, M., Carrilho, C. & Judson, B. L. Investigation of the presence of HPV related oropharyngeal and oral tongue squamous cell carcinoma in Mozambique. *Cancer Epidemiol.* **39**, 1000–1005 (2015).
27. Rettig, E. M. *et al.* Oral Human Papillomavirus Infection and Head and Neck Squamous Cell Carcinoma in Rural Northwest Cameroon. *OTO Open* **3**, (2019).
28. Ndiaye, C. *et al.* The role of human papillomavirus in head and neck cancer in Senegal. *Infect. Agent. Cancer* **8**, (2013).
29. Kofi, B. *et al.* Infrequent detection of human papillomavirus infection in head and neck cancers in the Central African Republic: a retrospective study. *Infect. Agent. Cancer* **14**, (2019).
30. Oga, E. A. *et al.* Paucity of HPV-related Head and Neck Cancers (HNC) in Nigeria. *PLoS One* **11**, 1–9 (2016).
31. Chaturvedi, A. K. & Zumsteg, Z. S. A snapshot of the evolving epidemiology of oropharynx cancers. *Cancer* **124**, 2893–2896 (2018).
32. Tota, J. E. *et al.* Evolution of the oropharynx cancer epidemic in the United States: Moderation of increasing incidence in younger individuals and shift in the burden to older individuals. *J. Clin. Oncol.* **37**, 1538–1546 (2019).
33. Kreimer, A. R. *et al.* Summary from an international cancer seminar focused on human papillomavirus (HPV)-positive oropharynx cancer, convened by scientists at IARC and NCI. *Oral Oncol.* **108**, 104736 (2020).
34. Schache, A. G. *et al.* HPV-related oropharynx cancer in the United Kingdom: An evolution in

the understanding of disease etiology. *Cancer Res.* **76**, 6598–6606 (2016).

35. Windon, M. J. *et al.* Increasing prevalence of human papillomavirus–positive oropharyngeal cancers among older adults. *Cancer* **124**, 2993–2999 (2018).
36. Rettig, E. M., Fakhry, C., Khararjian, A. & Westra, W. H. Age profile of patients with oropharyngeal squamous cell carcinoma. *JAMA Otolaryngol. - Head Neck Surg.* **144**, 538–539 (2018).
37. Zumsteg, Z. S. *et al.* Incidence of oropharyngeal cancer among elderly patients in the United States. *JAMA Oncol.* **2**, 1617–1623 (2016).
38. Mahal, B. A. *et al.* Incidence and demographic burden of HPV-associated oropharyngeal head and neck cancers in the United States. *Cancer Epidemiol. Biomarkers Prev.* **28**, 1660–1667 (2019).
39. Ramer, I. *et al.* Racial disparities in incidence of human papillomavirus-associated oropharyngeal cancer in an urban population. *Cancer Epidemiol.* **44**, 91–95 (2016).
40. Liederbach, E. *et al.* The national landscape of human papillomavirus-associated oropharynx squamous cell carcinoma. *Int. J. Cancer* **140**, 504–512 (2017).
41. Masterson, L. & Lechner, M. HPV vaccination in boys — will the UK join the fight? *Nat. Rev. Clin. Oncol.* **13**, 721–722 (2016).
42. HPV Vaccination Uptake. *Australia National Control Indicators* (2019). Available at: <https://ncci.canceraustralia.gov.au/prevention/hpv-vaccination-uptake/hpv-vaccination-uptake>. (Accessed: 18th February 2021)
43. Walker, T. Y. *et al.* National, Regional, State, and Selected Local Area Vaccination Coverage Among Adolescents Aged 13–17 Years — United States, 2019. *MMWR. Morb. Mortal. Wkly. Rep.* **69**, 1109–1116 (2020).
44. Public Health England. Human papillomavirus (HPV) vaccination coverage in adolescent females and males in England: academic year 2019 to 2020. *Heal. Prot. Rep.* **14**, 1–15 (2020).
45. Radisic, G., Chapman, J., Flight, I. & Wilson, C. Factors associated with parents' attitudes to the HPV vaccination of their adolescent sons: A systematic review. *Prev. Med. (Baltim).* **95**,

26–37 (2017).

46. Sonawane, K. *et al.* Parental intent to initiate and complete the human papillomavirus vaccine series in the USA: a nationwide, cross-sectional survey. *Lancet Public Heal.* **5**, e484–e492 (2020).
47. Gottvall, M., Stenhammar, C. & Grandahl, M. Parents' views of including young boys in the Swedish national school-based HPV vaccination programme: A qualitative study. *BMJ Open* **7**, 11–13 (2017).
48. Thompson, E. L. *et al.* Awareness and knowledge of HPV and HPV vaccination among adults ages 27–45 years. *Vaccine* **38**, 3143–3148 (2020).
49. Waller, J. *et al.* Decision-making about HPV vaccination in parents of boys and girls: A population-based survey in England and Wales. *Vaccine* **38**, 1040–1047 (2020).
50. Sherman, S. M., Cohen, C. R., Denison, H. J., Bromhead, C. & Patel, H. A survey of knowledge, attitudes and awareness of the human papillomavirus among healthcare professionals across the UK. *Eur. J. Public Health* **30**, 10–16 (2020).
51. Lechner, M. *et al.* A cross-sectional survey of awareness of human papillomavirus-associated oropharyngeal cancers among general practitioners in the UK. *BMJ Open* **8**, 1–6 (2018).
52. Katz, J. The impact of HPV vaccination on the prevalence of oropharyngeal cancer (OPC) in a hospital-based population: A cross-sectional study of patient's registry. *J. Oral Pathol. Med.* **50**, 47–51 (2021).
53. Herrero, R. *et al.* Reduced Prevalence of Oral Human Papillomavirus (HPV) 4 Years after Bivalent HPV Vaccination in a Randomized Clinical Trial in Costa Rica. *PLoS One* **8**, (2013).
54. Chaturvedi, A. K. *et al.* Effect of prophylactic human papillomavirus (HPV) vaccination on oral HPV infections among young adults in the United States. *J. Clin. Oncol.* **36**, 262–267 (2018).
55. Hirth, J. M., Chang, M., Resto, V. A., Guo, F. & Berenson, A. B. Prevalence of oral human papillomavirus by vaccination status among young adults (18–30 years old). *Vaccine* **35**, 3446–3451 (2017).

56. Zhang, Y., Fakhry, C. & D'Souza, G. Projected Association of Human Papillomavirus Vaccination With Oropharynx Cancer Incidence in the US, 2020-2045. *JAMA Oncol.* (2021). doi:10.1001/jamaoncol.2021.2907

57. Lechner, M., Breeze, C. E., O'Mahony, J. F. & Masterson, L. Early detection of HPV-associated oropharyngeal cancer. *Lancet* **393**, 2123 (2019).

58. Kreimer, A. R. *et al.* Timing of HPV16-E6 antibody seroconversion before OPSCC: Findings from the HPVC3 consortium. *Ann. Oncol.* **30**, 1335–1343 (2019).

59. Kreimer, A. R., Clifford, G. M., Boyle, P. & Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: A systemic review. *Cancer Epidemiol. Biomarkers Prev.* **14**, 467–475 (2005).

60. Egawa, N., Egawa, K., Griffin, H. & Doorbar, J. Human papillomaviruses; Epithelial tropisms, and the development of neoplasia. *Viruses* **7**, 3863–3890 (2015).

61. Doorbar, J. *et al.* The biology and life-cycle of human papillomaviruses. *Vaccine* **30**, F55–F70 (2012).

62. Graham, S. V. Keratinocyte differentiation-dependent human papillomavirus gene regulation. *Viruses* **9**, (2017).

63. Parfenov, M. *et al.* Characterization of HPV and host genome interactions in primary head and neck cancers. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 15544–15549 (2014).

64. Vinokurova, S. *et al.* Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. *Cancer Res.* **68**, 307–313 (2008).

65. Ramqvist, T. *et al.* Studies on human papillomavirus (HPV) 16 E2, E5 and E7 mRNA in HPV-positive tonsillar and base of tongue cancer in relation to clinical outcome and immunological parameters. *Oral Oncol.* **51**, 1126–1131 (2015).

66. Koneva, L. A. *et al.* HPV integration in HNSCC correlates with survival outcomes, immune response signatures, and candidate drivers. *Mol. Cancer Res.* **16**, 90–102 (2018).

67. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. *Cell* **144**, 646–674 (2011).

68. Mesri, E. A., Feitelson, M. A. & Munger, K. Human viral oncogenesis: A cancer hallmarks

analysis. *Cell Host Microbe* **15**, 266–282 (2014).

69. Huibregtse, J. M., Scheffner, M. & Howley, P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. *EMBO J.* **10**, 4129–4135 (1991).
70. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. *Cell* **63**, 1129–1136 (1990).
71. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. *Cell* **75**, 495–505 (1993).
72. Huh, K. *et al.* Human Papillomavirus Type 16 E7 Oncoprotein Associates with the Cullin 2 Ubiquitin Ligase Complex, Which Contributes to Degradation of the Retinoblastoma Tumor Suppressor. *J. Virol.* **81**, 9737–9747 (2007).
73. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The Human Papilloma Virus-16 E7 Oncoprotein Is Able to Bind to the Retinoblastoma Gene Product. *Science (80-.)* **243**, 934–938 (1986).
74. Münger, K., Phelps, W. C., Bubb, V., Howley, P. M. & Schlegel, R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. *J. Virol.* **63**, 4417–21 (1989).
75. Božinović, K. *et al.* Genome-wide miRNA profiling reinforces the importance of miR-9 in human papillomavirus associated oral and oropharyngeal head and neck cancer. *Sci. Rep.* **9**, 1–13 (2019).
76. Boscolo-Rizzo, P., Furlan, C., Lupato, V., Polesel, J. & Fratta, E. Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: Role of HPV and lifestyle factors. *Clin. Epigenetics* **9**, 1–19 (2017).
77. Barr, J. A. *et al.* Long non-coding RNA FAM83H-AS1 is regulated by human papillomavirus 16 E6 independently of p53 in cervical cancer cells. *Sci. Rep.* **9**, 1–11 (2019).
78. Lechner, M. *et al.* Identification and functional validation of HPV-mediated hypermethylation

in head and neck squamous cell carcinoma. *Genome Med.* **5**, 1–16 (2013).

79. Burgers, W. A. *et al.* Viral oncoproteins target the DNA methyltransferases. *Oncogene* **26**, 1650–1655 (2007).

80. Chalertpet, K., Pakdeechaidan, W., Patel, V., Mutirangura, A. & Yanatatsaneejit, P. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation. *Cancer Sci.* **106**, 1333–1340 (2015).

81. Cicchini, L. *et al.* Suppression of antitumor immune responses by human papillomavirus through epigenetic downregulation of CXCL14. *MBio* **7**, 1–13 (2016).

82. Cicchini, L. *et al.* High-Risk Human Papillomavirus E7 Alters Host DNA Methylome and Represses HLA-E Expression in Human Keratinocytes. *Sci. Rep.* **7**, 1–13 (2017).

83. Munger, K. & Jones, D. L. Human Papillomavirus Carcinogenesis: an Identity Crisis in the Retinoblastoma Tumor Suppressor Pathway. *J. Virol.* **89**, 4708–4711 (2015).

84. Magaldi, T. G. *et al.* Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation. *Virology* **422**, 114–124 (2012).

85. Weinstein, I. B. Addiction to Oncogenes—the Achilles Heel of Cancer. *Science* (80-). **297**, 63–64 (2002).

86. McLaughlin-Drubin, M. E., Crum, C. P. & Münger, K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 2130–2135 (2011).

87. McLaughlin-Drubin, M. E., Park, D. & Munger, K. Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 16175–16180 (2013).

88. Spring, L. M. *et al.* Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. *Lancet* **395**, 817–827 (2020).

89. Soto, D. R., Barton, C., Munger, K. & McLaughlin-Drubin, M. E. KDM6A addiction of cervical carcinoma cell lines is triggered by E7 and mediated by p21CIP1 suppression of replication stress. *PLoS Pathog.* **13**, 1–25 (2017).

90. Ganti, K. *et al.* The human papillomavirus E6 PDZ binding motif: From life cycle to

malignancy. *Viruses* **7**, 3530–3551 (2015).

91. Mittal, S. & Banks, L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. *Mutat. Res. Mutat. Res.* **772**, 23–35 (2017).
92. Roman, A. & Munger, K. The papillomavirus E7 proteins. *Virology* **445**, 138–168 (2013).
93. Moody, C. A. & Laimins, L. A. Human papillomavirus oncoproteins: Pathways to transformation. *Nat. Rev. Cancer* **10**, 550–560 (2010).
94. Seiwert, T. Y. *et al.* Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. *Clin. Cancer Res.* **21**, 632–641 (2015).
95. The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature* **517**, 576–582 (2015).
96. Gillison, M. L. *et al.* Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. *Genome Res.* **29**, 1–17 (2019).
97. Dogan, S. *et al.* Identification of prognostic molecular biomarkers in 157 HPV-positive and HPV-negative squamous cell carcinomas of the oropharynx. *Int. J. Cancer* **145**, 3152–3162 (2019).
98. Lechner, M. *et al.* Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. *Genome Med.* **5**, (2013).
99. The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature* **517**, 576–582 (2015).
100. Gillison, M. L. *et al.* Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. *Genome Res.* **29**, 1–17 (2019).
101. Hayes, D. N., Van Waes, C. & Seiwert, T. Y. Genetic landscape of human papillomavirus-associated head and neck cancer and comparison to tobacco-related tumors. *J. Clin. Oncol.* **33**, 3227–3234 (2015).
102. Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R. APOBEC-Mediated Cytosine Deamination Links PIK3CA Helical Domain Mutations to Human Papillomavirus-Driven Tumor Development. *Cell Rep.* **7**, 1833–1841 (2014).

103. Zhu, B. *et al.* Mutations in the HPV16 genome induced by APOBEC3 are associated with viral clearance. *Nat. Commun.* **11**, 1–12 (2020).
104. Faden, D. L. *et al.* APOBEC Mutagenesis Is Concordant between Tumor and Viral Genomes in HPV-Positive Head and Neck Squamous Cell Carcinoma. *Viruses* **13**, 1666 (2021).
105. Smith, N. J. & Fenton, T. R. The APOBEC3 genes and their role in cancer: Insights from human papillomavirus. *J. Mol. Endocrinol.* **62**, R269–R287 (2019).
106. Fenton, T. R. Accumulation of host cell genetic errors following high-risk HPV infection. *Curr. Opin. Virol.* **51**, 1–8 (2021).
107. Warren, C. J., Westrich, J. A., Van Doorslaer, K. & Pyeon, D. Roles of APOBEC3A and APOBEC3B in human papillomavirus infection and disease progression. *Viruses* **9**, 1–20 (2017).
108. Lui, V. W. Y. *et al.* Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. *Cancer Discov.* **3**, 761–769 (2013).
109. Nichols, A. C. *et al.* High Frequency of Activating PIK3CA Mutations in Human Papillomavirus - Positive Oropharyngeal Cancer. *JAMA Otolaryngol. - Head Neck Surg.* **139**, 617–622 (2013).
110. Hanna, G. J. *et al.* Improved outcomes in PI3K-pathway-altered metastatic HPV oropharyngeal cancer. *JCI insight* **3**, (2018).
111. Beaty, B. T. *et al.* PIK3CA mutation in HPV-associated OPSCC patients receiving deintensified chemoradiation. *J. Natl. Cancer Inst.* djz224 (2019).
112. Hedberg, M. L. *et al.* Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for PIK3CA-altered head and neck cancer. *J. Exp. Med.* **216**, 419–427 (2019).
113. Cai, Y., Yousef, A., Grandis, J. R. & Johnson, D. E. NSAID therapy for PIK3CA-Altered colorectal, breast, and head and neck cancer. *Adv. Biol. Regul.* **75**, 100653 (2020).
114. Paleari, L. *et al.* PIK3CA Mutation, Aspirin Use after Diagnosis and Survival of Colorectal Cancer. A Systematic Review and Meta-analysis of Epidemiological Studies. *Clin. Oncol.* **28**, 317–326 (2016).

115. Nyman, P. E., Buehler, D. & Lambert, P. F. Loss of function of canonical Notch signaling drives head and neck carcinogenesis. *Clin. Cancer Res.* **24**, 6308–6318 (2018).
116. Kranjec, C. *et al.* Modulation of basal cell fate during productive and transforming HPV-16 infection is mediated by progressive E6-driven depletion of Notch. *J. Pathol.* **242**, 448–462 (2017).
117. Beglin, M., Melar-New, M. & Laimins, L. Human papillomaviruses and the interferon response. *J. Interf. Cytokine Res.* **29**, 629–635 (2009).
118. Dhawan, A. *et al.* Role of gene signatures combined with pathology in classification of oropharynx head and neck cancer. *Sci. Rep.* **10**, 1–10 (2020).
119. She, Y. *et al.* Immune-related gene signature for predicting the prognosis of head and neck squamous cell carcinoma. *Cancer Cell Int.* **20**, 1–10 (2020).
120. Chan, T. A. *et al.* Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. *Ann. Oncol.* **30**, 44–56 (2019).
121. McGranahan, N. *et al.* Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. *Science (80-.)* **351**, 1463–1469 (2016).
122. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. *Science (80-.)* **331**, 1565–1570 (2011).
123. Steinbach, A. & Riemer, A. B. Immune evasion mechanisms of human papillomavirus: An update. *Int. J. Cancer* **142**, 224–229 (2018).
124. Ashrafi, G. H., Haghshenas, M. R., Marchetti, B., O'Brien, P. M. & Campo, M. S. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. *Int. J. Cancer* **113**, 276–283 (2005).
125. Ashrafi, G. H., Haghshenas, M., Marchetti, B. & Campo, M. S. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. *Int. J. Cancer* **119**, 2105–2112 (2006).
126. Campo, M. S. *et al.* HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. *Virology* **407**, 137–142 (2010).
127. Georgopoulos, N. T., Proffitt, J. L. & Blair, G. E. Transcriptional regulation of the major

histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. *Oncogene* **19**, 4930–4935 (2000).

128. Li, H., Ou, X., Xiong, J. & Wang, T. HPV16E7 mediates HADC chromatin repression and downregulation of MHC class I genes in HPV16 tumorigenic cells through interaction with an MHC class I promoter. *Biochem. Biophys. Res. Commun.* **349**, 1315–1321 (2006).
129. Bottley, G. *et al.* High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. *Oncogene* **27**, 1794–1799 (2008).
130. Heusinkveld, M. *et al.* Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer. *Int. J. Cancer* **131**, 74–85 (2012).
131. Welters, M. J. P. *et al.* Intratumoral HPV16-specific T cells constitute a type I-oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. *Clin. Cancer Res.* **24**, 634–647 (2018).
132. Santegoets, S. J. *et al.* The anatomical location shapes the immune infiltrate in tumors of same etiology and affects survival. *Clin. Cancer Res.* **25**, 240–252 (2019).
133. Santegoets, S. J. *et al.* CD163+ cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer. *J. Immunother. cancer* **8**, 1–15 (2020).
134. Hoffmann, T. K. *et al.* T cells specific for HPV16 E7 epitopes in patients with squamous cell carcinoma of the oropharynx. *Int. J. Cancer* **118**, 1984–1991 (2006).
135. Masterson, L. *et al.* CD8+ T cell response to human papillomavirus 16 E7 is able to predict survival outcome in oropharyngeal cancer. *Eur. J. Cancer* **67**, 141–151 (2016).
136. Laban, S. & Hoffmann, T. K. Human papillomavirus immunity in oropharyngeal cancer: Time to change the game? *Clin. Cancer Res.* **24**, 505–507 (2018).
137. Balermpas, P. *et al.* CD8+ tumour-infiltrating lymphocytes in relation to HPV status and clinical outcome in patients with head and neck cancer after postoperative chemoradiotherapy: A multicentre study of the German cancer consortium radiation

oncology group (DKTK-ROG). *Int. J. Cancer* **138**, 171–181 (2016).

- 138. Ward, M. J. *et al.* Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. *Br. J. Cancer* **110**, 489–500 (2014).
- 139. Mandal, R. *et al.* The head and neck cancer immune landscape and its immunotherapeutic implications. *JCI Insight* **1**, (2016).
- 140. Chakravarthy, A. *et al.* Human papillomavirus drives tumor development throughout the head and neck: Improved prognosis is associated with an immune response largely restricted to the Oropharynx. *J. Clin. Oncol.* **34**, 4132–4141 (2016).
- 141. Li, H. *et al.* Association of human papillomavirus status at head and neck carcinoma subsites with overall survival. *JAMA Otolaryngol. - Head Neck Surg.* **144**, 519–525 (2018).
- 142. Hladíková, K. *et al.* Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8+ T cells. *J. Immunother. Cancer* **7**, 1–16 (2019).
- 143. Wood, O. *et al.* Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B-cell signature when compared to HPV independent tumors. *Oncotarget* **7**, 56781–56797 (2016).
- 144. Ou, D. *et al.* Influence of tumor-associated macrophages and HLA class I expression according to HPV status in head and neck cancer patients receiving chemo/bioradiotherapy. *Radiother. Oncol.* **130**, 89–96 (2019).
- 145. Welters, M. J. P., Santegoets, S. J. & van der Burg, S. H. The Tumor Microenvironment and Immunotherapy of Oropharyngeal Squamous Cell Carcinoma. *Front. Oncol.* **10**, 1–18 (2020).
- 146. Hong, A. M. *et al.* Significant association of PD-L1 expression with human papillomavirus positivity and its prognostic impact in oropharyngeal cancer. *Oral Oncol.* **92**, 33–39 (2019).
- 147. Cao, S. *et al.* Dynamic host immune response in virus-associated cancers. *Commun. Biol.* **2**, 1–11 (2019).
- 148. McIlwain, W. R., Sood, A. J., Nguyen, S. A. & Day, T. A. Initial symptoms in patients with HPV-positive and HPV-negative oropharyngeal cancer. *JAMA Otolaryngol. - Head Neck*

*Surg.* **140**, 441–447 (2014).

149. Khalid, M. B. *et al.* Initial presentation of human papillomavirus-related head and neck cancer: A retrospective review. *Laryngoscope* **129**, 877–882 (2019).
150. Tham, T., Ahn, S., Frank, D., Kraus, D. & Costantino, P. Anatomical subsite modifies survival in oropharyngeal squamous cell carcinoma: National Cancer Database study. *Head Neck* **42**, 434–445 (2020).
151. Golusinski, P. *et al.* Evidence for the approach to the diagnostic evaluation of squamous cell carcinoma occult primary tumors of the head and neck. *Oral Oncol.* **88**, 145–152 (2019).
152. Zhang, M. Q., El-Mofty, S. K. & Dávila, R. M. Detection of human papillomavirus-related squamous cell carcinoma cytologically and by *in situ* hybridization in fine-needle aspiration biopsies of cervical metastasis: A tool for identifying the site of an occult head and neck primary. *Cancer* **114**, 118–123 (2008).
153. Begum, S., Gillison, M. L., Nicol, T. L. & Westra, W. H. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. *Clin. Cancer Res.* **13**, 1186–1191 (2007).
154. Mehanna, H. *et al.* Oropharyngeal cancer: United Kingdom National Multidisciplinary Guidelines. *J. Laryngol. Otol.* **130**, S90–S96 (2016).
155. Gage, K. L., Thomas, K., Jeong, D., Stallworth, D. G. & Arrington, J. A. Multimodal imaging of head and neck squamous cell carcinoma. *Cancer Control* **24**, 172–179 (2017).
156. Schache, A. G. *et al.* Evaluation of human papilloma virus diagnostic testing in oropharyngeal squamous cell carcinoma: Sensitivity, specificity, and prognostic discrimination. *Clin. Cancer Res.* **17**, 6262–6271 (2011).
157. Lewis, J. S. Morphologic diversity in human papillomavirus-related oropharyngeal squamous cell carcinoma: Catch Me If You Can! *Mod. Pathol.* **30**, S44–S53 (2017).
158. Chernock, R. D., Lewis, J. S., Zhang, Q. & El-Mofty, S. K. Human papillomavirus-positive basaloid squamous cell carcinomas of the upper aerodigestive tract: a distinct clinicopathologic and molecular subtype of basaloid squamous cell carcinoma. *Hum. Pathol.* **41**, 1016–1023 (2010).

159. Cho, K. J. *et al.* Basaloid squamous cell carcinoma of the head and neck: Subclassification into basal, ductal, and mixed subtypes based on comparison of clinico-pathologic features and expression of p53, cyclin D1, epidermal growth factor receptor, p16, and human papilloma. *J. Pathol. Transl. Med.* **51**, 374–380 (2017).

160. Mehrad, M. *et al.* Papillary Squamous Cell Carcinoma of the Head and Neck: Clinicopathologic and Molecular Features with Special Reference to Human Papillomavirus. *Am. J. Surg. Pathol.* **37**, 1349–1356 (2013).

161. Carpenter, D. H., El-Mofty, S. K. & Lewis, J. S. Undifferentiated carcinoma of the oropharynx: A human papillomavirus- associated tumor with a favorable prognosis. *Mod. Pathol.* **24**, 1306–1312 (2011).

162. Singhi, A. D., Stelow, E. B., Mills, S. E. & Westra, W. H. Lymphoepithelial-like carcinoma of the oropharynx: A morphologic variant of hpv-related head and neck carcinoma. *Am. J. Surg. Pathol.* **34**, 800–805 (2010).

163. Jo, V. Y., Mills, S. E., Stoler, M. H. & Stelow, E. B. Papillary squamous cell carcinoma of the head and neck: Frequent association with human papillomavirus infection and invasive carcinoma. *Am. J. Surg. Pathol.* **33**, 1720–1724 (2009).

164. Bryne, M., Koppang, H. S., Lilleng, R. & Kjærheim, Å. Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. *J. Pathol.* **166**, 375–381 (1992).

165. Albergotti, W. G. *et al.* Defining the prevalence and prognostic value of perineural invasion and angiolympathic invasion in human papillomavirus-positive oropharyngeal carcinoma. *JAMA Otolaryngol. - Head Neck Surg.* **143**, 1236–1243 (2017).

166. Dirven, R. *et al.* Tumor thickness versus depth of invasion – Analysis of the 8th edition American Joint Committee on Cancer Staging for oral cancer. *Oral Oncol.* **74**, 30–33 (2017).

167. Zhan, K. Y. *et al.* Appraisal of the AJCC 8th edition pathologic staging modifications for HPV-positive oropharyngeal cancer, a study of the National Cancer Data Base. *Oral Oncol.* **73**, 152–159 (2017).

168. Elicin, O. *et al.* Comparison of contemporary staging systems for oropharynx cancer in a

surgically treated multi-institutional cohort. *Head Neck* **41**, 1395–1402 (2019).

169. Bhattachari, O., Thompson, L. D. R., Schumacher, A. J. & Iganej, S. Radiographic nodal prognostic factors in stage I HPV-related oropharyngeal squamous cell carcinoma. *Head Neck* **41**, 398–402 (2019).

170. Sinha, P. *et al.* High metastatic node number, not extracapsular spread or N-classification is a node-related prognosticator in transorally-resected, neck-dissected p16-positive oropharynx cancer. *Oral Oncol.* **51**, 514–520 (2015).

171. Bauer, E. *et al.* Extranodal extension is a strong prognosticator in HPV-positive oropharyngeal squamous cell carcinoma. *Laryngoscope* **130**, 939–945 (2020).

172. Freitag, J. *et al.* Extracapsular extension of neck nodes and absence of human papillomavirus 16-DNA are predictors of impaired survival in p16-positive oropharyngeal squamous cell carcinoma. *Cancer* **126**, 1856–1872 (2020).

173. Tian, S. *et al.* Prognostic value of radiographically defined extranodal extension in human papillomavirus-associated locally advanced oropharyngeal carcinoma. *Head Neck* **41**, 3056–3063 (2019).

174. Meyer, M. F. *et al.* The relevance of the lymph node ratio as predictor of prognosis is higher in HPV-negative than in HPV-positive oropharyngeal squamous cell carcinoma. *Clin. Otolaryngol.* **43**, 192–198 (2018).

175. Chai, R. L. *et al.* Accuracy of computed tomography in the prediction of extracapsular spread of lymph node metastases in squamous cell carcinoma of the head and neck. *JAMA Otolaryngol. - Head Neck Surg.* **139**, 1187–1194 (2013).

176. Aiken, A. H. *et al.* Accuracy of preoperative imaging in detecting nodal extracapsular spread in oral cavity squamous cell carcinoma. *Am. J. Neuroradiol.* **36**, 1776–1781 (2015).

177. Carlton, J. A. *et al.* Computed tomography detection of extracapsular spread of squamous cell carcinoma of the head and neck in metastatic cervical lymph nodes. *Neuroradiol. J.* **30**, 222–229 (2017).

178. Douglas, C. *et al.* Accuracy of contrast-enhanced CT and predictive factors for extracapsular spread in unknown primary head and neck squamous cell cancer. *Clin. Radiol.* **75**, 77.e23–

77.e28 (2020).

179. O'Sullivan, B. *et al.* Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. *Lancet Oncol.* **17**, 440–451 (2016).
180. Cramer, J. D., Hicks, K. E., Rademaker, A. W., Patel, U. A. & Samant, S. Validation of the eighth edition American Joint Committee on Cancer staging system for human papillomavirus-associated oropharyngeal cancer. *Head Neck* **40**, 457–466 (2018).
181. Geltzeiler, M. *et al.* Staging HPV-related oropharyngeal cancer: Validation of AJCC-8 in a surgical cohort. *Oral Oncol.* **84**, 82–87 (2018).
182. Van Gysen, K. *et al.* Validation of the 8th edition UICC/AJCC TNM staging system for HPV associated oropharyngeal cancer patients managed with contemporary chemo-radiotherapy. *BMC Cancer* **19**, 1–8 (2019).
183. Würdemann, N. *et al.* Prognostic impact of AJCC/UICC 8th edition new staging rules in oropharyngeal squamous cell carcinoma. *Front. Oncol.* **7**, 1–10 (2017).
184. Nauta, I. H. *et al.* Evaluation of the eighth TNM classification on p16-positive oropharyngeal squamous cell carcinomas in the Netherlands and the importance of additional HPV DNA testing. *Ann. Oncol.* **29**, 1273–1279 (2018).
185. Fakhry, C. *et al.* Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: Implications for risk-based therapeutic intensity trials. *Cancer* **125**, 2027–2038 (2019).
186. Haeggblom, L., Ramqvist, T., Tommasino, M. & Dalianis, T. Time to change perspectives on HPV in oropharyngeal cancer . A systematic review of HPV prevalence per oropharyngeal sub-site the last 3 years. *Papillomavirus Res.* **4**, 1–11 (2017).
187. Wendt, M. *et al.* Long-term survival and recurrence in oropharyngeal squamous cell carcinoma in relation to subsites, hpv, and p16-status. *Cancers (Basel)*. **13**, (2021).
188. Ellis, M. *et al.* Post-Treatment Head and Neck Cancer Care: National Audit and Analysis of Current Practice in the United Kingdom. *Clin. Otolaryngol.* 284–294 (2020).

doi:10.1111/coa.13616

189. Fakhry, C. *et al.* Association of Oral Human Papillomavirus DNA Persistence with Cancer Progression after Primary Treatment for Oral Cavity and Oropharyngeal Squamous Cell Carcinoma. *JAMA Oncol.* **5**, 985–992 (2019).

190. Chera, B. S. *et al.* Plasma circulating tumor HPV DNA for the surveillance of cancer recurrence in HPV-associated oropharyngeal cancer. *J. Clin. Oncol.* **38**, 1050–1058 (2020).

191. Holsinger, F. C. & Ferris, R. L. Transoral Endoscopic Head and Neck Surgery and Its Role Within the Multidisciplinary Treatment Paradigm of Oropharynx Cancer: Robotics, Lasers, and Clinical Trials. *J. Clin. Oncol.* **33**, 3285–3292 (2015).

192. Sinha, P., Haughey, B. H., Kallogjeri, D. & Jackson, R. S. Long-term analysis of transorally resected p16 + Oropharynx cancer: Outcomes and prognostic factors. *Laryngoscope* **129**, 1141–1149 (2019).

193. Mahmoud, O., Sung, K., Civantos, F. J., Thomas, G. R. & Samuels, M. A. Transoral robotic surgery for oropharyngeal squamous cell carcinoma in the era of human papillomavirus. *Head Neck* **40**, 710–721 (2018).

194. Jackson, R. S. *et al.* Transoral Resection of Human Papillomavirus (HPV)-Positive Squamous Cell Carcinoma of the Oropharynx: Outcomes with and Without Adjuvant Therapy. *Ann. Surg. Oncol.* **24**, 3494–3501 (2017).

195. Carey, R. M. *et al.* Increased rate of recurrence and high rate of salvage in patients with human papillomavirus–associated oropharyngeal squamous cell carcinoma with adverse features treated with primary surgery without recommended adjuvant therapy. *Head Neck* 1–14 (2020). doi:10.1002/hed.26578

196. Sethia, R. *et al.* Quality of life outcomes of transoral robotic surgery with or without adjuvant therapy for oropharyngeal cancer. *Laryngoscope* **128**, 403–411 (2018).

197. Ma, D. J. *et al.* Phase II evaluation of aggressive dose de-escalation for adjuvant chemoradiotherapy in human papillomavirus-associated oropharynx squamous cell carcinoma. *J. Clin. Oncol.* **37**, 1909–1918 (2019).

198. Hargreaves, S., Beasley, M., Hurt, C., Jones, T. M. & Evans, M. Deintensification of Adjuvant Treatment After Transoral Surgery in Patients With Human Papillomavirus-Positive

Oropharyngeal Cancer: The Conception of the PATHOS Study and Its Development. *Front. Oncol.* **9**, (2019).

199. Ferris, R. L. *et al.* Updated report of a phase II randomized trial of transoral surgical resection followed by low-dose or standard postoperative therapy in resectable p16+ locally advanced oropharynx cancer: A trial of the ECOG-ACRIN cancer research group (E3311). *J. Clin. Oncol.* **39**, 6010–6010 (2021).
200. Ferris, R. L. *et al.* Transoral robotic surgical resection followed by randomization to low- or standard-dose IMRT in resectable p16+ locally advanced oropharynx cancer: A trial of the ECOG-ACRIN Cancer Research Group (E3311). *J. Clin. Oncol.* **38**, 6500–6500 (2020).
201. Chera, B. S. *et al.* Phase 2 trial of de-intensified chemoradiation therapy for favorable-risk human papillomavirus-associated oropharyngeal squamous cell carcinoma. *Int. J. Radiat. Oncol. Biol. Phys.* **93**, 976–985 (2015).
202. Chera, B. S. *et al.* Mature Results of a Prospective Study of Deintensified Chemoradiotherapy for Low-Risk Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma.pdf. *Cancer* **124**, 2347–2354 (2018).
203. Pearlstein, K. A. *et al.* Quality of Life for Patients With Favorable-Risk HPV-Associated Oropharyngeal Cancer After De-intensified Chemoradiotherapy. *Int. J. Radiat. Oncol. Biol. Phys.* **103**, 646–653 (2019).
204. Seiwert, T. Y. *et al.* Optima: A phase II dose and volume de-escalation trial for human papillomavirus-positive oropharyngeal cancer. *Ann. Oncol.* **30**, 297–302 (2019).
205. Marur, S. *et al.* E1308: Phase II trial of induction chemotherapy followed by reduced-dose radiation and weekly cetuximab in patients with HPV-associated resectable squamous cell carcinoma of the oropharynx- ECOG-ACRIN cancer research group. *J. Clin. Oncol.* **35**, 490–497 (2017).
206. Hegde, J. V. *et al.* Functional Outcomes After De-escalated Chemoradiation Therapy for Human Papillomavirus–Positive Oropharyngeal Cancer: Secondary Analysis of a Phase 2 Trial. *Int. J. Radiat. Oncol. Biol. Phys.* **100**, 647–651 (2018).
207. Chen, A. M. *et al.* Reduced-dose radiotherapy for human papillomavirus-associated

squamous-cell carcinoma of the oropharynx: a single-arm, phase 2 study. *Lancet Oncol.* **18**, 803–811 (2017).

208. Yamamoto, Y. *et al.* Radiotherapy alone as a possible de-intensified treatment for human papillomavirus-related locally advanced oropharyngeal squamous cell carcinoma. *Int. J. Clin. Oncol.* **24**, 640–648 (2019).
209. Hall, S. F., Griffiths, R. J., O'Sullivan, B. & Liu, F. F. The addition of chemotherapy to radiotherapy did not reduce the rate of distant metastases in low-risk HPV-related oropharyngeal cancer in a real-world setting. *Head Neck* **41**, 2271–2276 (2019).
210. Yom, S. S. *et al.* Reduced-Dose Radiation Therapy for HPV-Associated Oropharyngeal Carcinoma (NRG Oncology HN002). *J. Clin. Oncol.* **39**, 956–965 (2021).
211. Sher, D. J. *et al.* Radiation therapy for oropharyngeal squamous cell carcinoma: Executive summary of an ASTRO Evidence-Based Clinical Practice Guideline. *Pract. Radiat. Oncol.* **7**, 246–253 (2017).
212. Howard, J. *et al.* Minimally invasive surgery versus radiotherapy/chemoradiotherapy for small-volume primary oropharyngeal carcinoma. *Cochrane Database Syst. Rev.* CD010963 (2016). doi:10.1002/14651858.CD010963.pub2
213. Nichols, A. C. *et al.* Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial. *Lancet Oncol.* **20**, 1349–1359 (2019).
214. Ferris, R. L. *et al.* A novel surgeon credentialing and quality assurance process using transoral surgery for oropharyngeal cancer in ECOG-ACRIN Cancer Research Group Trial E3311. *Oral Oncol.* **110**, (2020).
215. de Almeida, J. R. *et al.* Oncologic Outcomes After Transoral Robotic Surgery: A Multi-Institutional Study. *JAMA Otolaryngol. - Head Neck Surg.* **141**, 1043–1051 (2015).
216. Mehanna, H. *et al.* Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. *Lancet* **393**, 51–60 (2019).
217. Gillison, M. L. *et al.* Radiotherapy plus cetuximab or cisplatin in human papillomavirus-

positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. *Lancet* **393**, 40–50 (2019).

218. Oosthuizen, J. C. & Doody, J. De-intensified treatment in human papillomavirus-positive oropharyngeal cancer. *Lancet* **393**, 5–7 (2019).
219. Guo, T. *et al.* Characterization of functionally active gene fusions in human papillomavirus related oropharyngeal squamous cell carcinoma. *Int. J. Cancer* **139**, 373–382 (2016).
220. Dunn, L. A. *et al.* Phase I study of induction chemotherapy with afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer. *Head Neck* **40**, 233–241 (2018).
221. Frazer, I. H. & Chandra, J. Immunotherapy for HPV associated cancer. *Papillomavirus Res.* **8**, 100176 (2019).
222. Barra, F. *et al.* Advances in therapeutic vaccines for treating human papillomavirus-related cervical intraepithelial neoplasia. *J. Obstet. Gynaecol. Res.* **46**, 989–1006 (2020).
223. Smalley Rumfield, C., Pellom, S. T., Morillon, Y. M., Schlom, J. & Jochems, C. Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine. *J. Immunother. Cancer* **8**, (2020).
224. Ferris, R. L. *et al.* Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. *N. Engl. J. Med.* **375**, 1856–1867 (2016).
225. Cohen, E. E. W. *et al.* Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. *Lancet* **393**, 156–167 (2019).
226. Burtness, B. *et al.* Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. *Lancet* **394**, 1915–1928 (2019).
227. Xu, Y. *et al.* Programmed Death-1/Programmed Death-Ligand 1-Axis Blockade in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Stratified by Human Papillomavirus Status: A Systematic Review and Meta-Analysis. *Front. Immunol.* **12**, 1–9 (2021).

228. Wang, J. *et al.* HPV-positive status associated with inflamed immune microenvironment and improved response to anti-PD-1 therapy in head and neck squamous cell carcinoma. *Sci. Rep.* **9**, 1–10 (2019).

229. Galvis, M. M. *et al.* Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. *Crit. Rev. Oncol. Hematol.* **150**, 102966 (2020).

230. Patel, J. J., Levy, D. A., Nguyen, S. A., Knochelmann, H. M. & Day, T. A. Impact of PD-L1 expression and human papillomavirus status in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinoma—Systematic review and meta-analysis. *Head Neck* **42**, 774–786 (2019).

231. Ferris, R. L. *et al.* Neoadjuvant nivolumab for patients with resectable HPV-positive and HPV-negative squamous cell carcinomas of the head and neck in the CheckMate 358 trial. *J. Immunother. Cancer* **9**, 1–12 (2021).

232. Leidner, R. *et al.* Neoadjuvant immunoradiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma. *J. Immunother. Cancer* **9**, 1–15 (2021).

233. Ferrarotto, R. *et al.* Impact of neoadjuvant durvalumab with or without tremelimumab on CD8+ tumor lymphocyte density, safety, and efficacy in patients with oropharynx cancer: CIAO trial results. *Clinical Cancer Research* **26**, (2020).

234. Wong, D. J. *et al.* Abstract CT123: IMvive010: Randomized Phase III study of atezolizumab as adjuvant monotherapy after definitive therapy of squamous cell carcinoma of the head and neck. *Cancer Res.* **79**, 13 Supplement (2019).

235. Vargas, F. A. *et al.* Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies. *Cancer Cell* **33**, 649-663.e4 (2018).

236. von Witzleben, A., Wang, C., Laban, S., Savelyeva, N. & Ottensmeier, C. H. HNSCC: Tumour Antigens and Their Targeting by Immunotherapy. *Cells* **9**, 1–30 (2020).

237. Massarelli, E. *et al.* Combining Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients with Incurable Human Papillomavirus 16-Related Cancer: A Phase 2 Clinical

Trial. *JAMA Oncol.* **5**, 67–73 (2019).

238. Aggarwal, C. *et al.* Immunotherapy targeting HPV16/18 generates potent immune responses in HPV-associated head and neck cancer. *Clin. Cancer Res.* **25**, 110–124 (2019).
239. Fakhry, C. *et al.* Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. *J. Clin. Oncol.* **32**, 3365–3373 (2014).
240. Harbison, R. A. *et al.* The mutational landscape of recurrent versus nonrecurrent human papillomavirus-related oropharyngeal cancer. *JCI insight* **3**, (2018).
241. Gleber-netto, F. O. *et al.* Variations in HPV function are associated with survival in squamous cell carcinoma Find the latest version : Variations in HPV function are associated with survival in squamous cell carcinoma. *JCI Insight* **4**, (2019).
242. Lechner, M. & Fenton, T. R. The Genomics, Epigenomics, and Transcriptomics of HPV-Associated Oropharyngeal Cancer-Understanding the Basis of a Rapidly Evolving Disease. *Adv. Genet.* **93**, 1–56 (2016).
243. Mahal, B. A. *et al.* Incidence and demographic burden of HPV-associated oropharyngeal head and neck cancers in the United States. *Cancer Epidemiol. Biomarkers Prev.* **28**, 1660–1667 (2019).