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Abstract—Differential frequency hopping (DFH) technique is
widely used in wireless communications by exploiting its capa-
bilities of mitigating tracking interference and confidentiality.
However, electronic attacks in wireless systems become more and
more rigorous, which imposes a lot of challenges on the DFH
sequences designed based on the linear congruence theory, fuzzy
and chaotic theory, etc. In this paper, we investigate the sequence
design in DFH systems by exploiting the equivalence principle
between the G-function algorithm and the encryption algorithm,
in order to achieve high security. In more details, first, the novel
G-function is proposed with the aid of the Government Stan-
dard (GOST) algorithm and the Rivest-Shamir-Adleman (RSA)
algorithm. Then, two sequence design algorithms are proposed,
namely, the G-function assisted sequence generation (GF-SG)
algorithm, which takes the full advantages of the symmetric
and asymmetric encryption algorithms, and the high order G-
function aided sequence generation (HGF-SG) algorithm, which
is capable of enhancing the correlation of the elements in a DFH
sequence. Moreover, the security and ergodicity performance
of the proposed algorithms are analyzed. Our studies and
results show that the DFH sequences generated by the proposed
algorithms significantly outperform the sequences generated by
the reversible hash algorithm and affine transformation in terms
of the uniformity, randomness, complexity and the security.

Index Terms—Differential frequency hopping, G-function, en-
cryption algorithm, hybrid encryption, security, complexity.

I. INTRODUCTION

With the rapid development of information technology,
wireless communication has brought great convenience to
people’s lives. However, due to the openness of wireless
channels, data transmission is facing more and more security
risks. There are possibly various attacks, such as information
disclosure of mobile users, eavesdropping and network crimi-
nals, etc., which impose serious threats to the future wireless
communications. Therefore, it is imperative and vital to study
the data and information security in wireless systems.

It is well known that the conventional encryption technology
is only for data encryption and mainly used for data protection
in the network layer and layers above, and it is in general
independent of the physical layer. What’s more, the existing
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studies mainly assume that the channel between encryption
and decryption is perfect for error-free transmission. On the
other side, based on the wiretap channel model and con-
sidering the wide applications of wireless communications,
there are a lot of references having investigated the security
issues from the perspective of the physical layer, where the
uniqueness and reciprocity of physical channels are exploited
to implement information encryption and identification of
legitimate users. Furthermore, physical layer security has been
exploited as a supplement to the upper level security, so as
to enhance the security performance of the whole wireless
systems.

In literature, various physical layer security techniques, have
been proposed and investigated [1], [2], including spread spec-
trum communication [3], channel coding assisted the encryp-
tion technology [4], modulation based encryption technology
[5], etc. Among this, spread spectrum and frequency hopping
(FH) techniques have been widely used in the various kinds of
communication systems owing to their good anti-interference
ability [6], [7]. However, conventional FH techniques are
prone to the tracking jamming, which becomes severer nowa-
days due to the fact that the eavesdropper’s ability to capture
signals becomes stronger and stronger. In order to mitigate
this problem, the Sanders company developed a correlated
hopping enhanced spread spectrum (CHESS) radio in 1996
[8], [9], which is capable of improving data rate and solving
the problems of tracking jamming and multipath interference
[10]–[14]. A core technique in CHESS is the differential
frequency hopping (DFH), which significantly enhances the
security [15], owing to the so-called G-function algorithm is
employed for data modulation and demodulation. With the
employment of the G-function, even if an eavesdropper can
capture a large number of DFH signals, it is still difficult
to demodulate the transmitted information, when without the
knowledge about the correlation between the previous and
current frequency. Hence, the design of a powerful G-function
algorithm is crucial to the security performance of DFH
systems.

So far, a range of methods have been considered for
the constructions of the G-function. Chen et al. [16] have
developed a G-function based on the linear congruence theory
[17], which has a simple structure and is also easy to control,
but the continuity and randomness of generated sequences
are generally poor. Zhou et al. [18] have presented a G-
function designed based on the fuzzy and chaotic theory,
which has a large linear complexity, but its continuity is
not desirable. Zhu et al. [19] have proposed a time domain
and frequency domain perturbation G-function. It is able to
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Fig. 1: A possible communication network supported by FH
techniques.

improve the performance against partial-band noise jamming
over additive white Gaussian channels. However, this method
requires synchronization between transmitter and receiver. In
[20], a G-function designed based on the cryptography theory
have been proposed. The generated sequences have good
uniformity and randomness. However, the security analysis of
the algorithm has not been given. Furthermore, all the above
mentioned algorithms for G-function are symmetric encryption
algorithms. They may not be suitable for operations in the wide
area networks. Moreover, as shown in Fig. 1, which depicts
a FH supported communication system with multiple users as
well as some jammers. The security of this system is relied
on the keys of a symmetric cryptographic algorithm. It can be
shown that for the number of users Sn, the number of keys
needing to be managed is n(n − 1)/2. Hence, the secret key
management in this kind of system has become a problem and
there is a big risk of key.

Due to the above mentioned issues and by taking the advan-
tages of asymmetric encryption algorithm [21], in this paper,
we propose a novel G-function assisted sequence generation
(GF-SG) algorithm. The basic idea behind our method is
to encrypt plaintext with the Government Standard (GOST)
algorithm, while the encrypt keys are protected with the
Rivest-Shamir-Adleman (RSA) algorithm [22]. Furthermore,
in order to solve the problem of poor correlation among
the sequences generated by the G-function and improve the
decoding reliability at receiver, we propose a high order
G-function aided sequence generation (HGF-SG) algorithm
designed on the basis of the GF-SG algorithm. It can be shown
that our proposed methods can not only make full use of the
advantages of the different types of cryptographic algorithms,
but also employ the excellent performance of the G-function.

To summary, our main contributions can be stated as fol-
lows.

1) The equivalence between cryptosystem and DFH system
is investigated, from which we show the equivalence between
the G-function and the corresponding cryptosystem.

2) Based on the equivalence between cryptosystem and DFH
systems, we propose two sequence generation algorithms,

namely the GF-SG algorithm and the HGF-SG algorithm,
which are designed on the basis of the GOST algorithm and
the RSA algorithm, respectively.

3) As the two most important performance metrics, we
analyze the security and the ergodicity of the proposed GF-SG
and HGF-SG algorithms. In our analysis, we mainly consider
the security of the keys, which are protected by the RSA
algorithm. Then, the exhaustive attack and factorization of
RSA algorithm are considered. Furthermore, the ergodicity is
analyzed on the basis of Markov model.

4) The performance of the proposed algorithm is investi-
gated based on a range of numerical results in terms of the
uniformity, randomness, complexity and security. Our studies
show that the DFH sequences generated by our proposed G-
function algorithms have good performance without having to
assume the synchronization between both sides.

The rest of this paper is organized as follows. Section II
introduces the main assumptions and system model. Section
III discusses the general theory of DFH sequence design.
Section IV proposes the novel GF-SG algorithm and HGF-
SG algorithm. Section V analyzes the security and ergodicity
performance of the proposed algorithms. Section VI presents
the simulation and testing results. Finally, conclusions are
summarized in Section VII.

Notation: The following notations are used. || denotes the
join operation, ϕ(.) denotes the Euler function. Given the
elements a and b in set N , we denote that for any a belonging
to N , there is a b 6= a by ∀a ∈ N ,∃b, a 6= b. Given any two
numbers x and y, we use x ≡ y to denote that x equals y in
any case.

II. SYSTEM MODEL

In this section, we introduce the system model and princi-
ples of DFH systems, as well as the main assumptions. Let us
first address the system model and main assumptions.

A. System Model and Main Assumptions

Due to the invulnerability of the ionosphere, high frequency
(HF) communication techniques have drawn intensive interest
in the development of reliable high-speed data communication
systems [23], [24]. In this paper, we conceive a DFH based
secure wireless system, which has the structure as depicted
in Fig. 2. As shown in the figure, our DFH system consists
of a certification center (CA) and a cluster of users, which
may also experience eavesdropping. Each user may act as
both transmitter and receiver. For a communication link, the
two users are authenticated by the trusted center CA. The
authentication process can be divided into five phases, as
follows:

Phase 1: Each of the two users sends its own identity Ii to
the CA.

Phase 2: CA signs the identity of the receiver with its
private key, and then distributes the public key of the receiver
user to the transmitter.

Phase 3: The transmitter user encrypts its identity as well as
the identity of the receiver with the public key of the receiver,
and sends the encrypted identity to the receiver.
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Fig. 2: DFH secure communication systems.

Phase 4: The receiver sends the identity of itself as well as
that of the transmitter to the CA.

Phase 5: CA signs the identities of both the transmitter and
receiver, as well as the public key of the transmitter. Then it
sends all the signed information to the receiver.

From the above process, it can be seen that the transmitter
obtains information about the legitimate receiver with the aid
of the CA and sends identity to the receiver, who sends the
identity of itself and the transmitter to the CA to verify their
identities. Hence the transmitter and receiver are effectively
authenticated. In order to prevent eavesdroppers from attacking
the authentication process, at phase 3, a randomly generated
number Ri is sent associated with the encrypted identity. Let
Ui denote user i, Ii and Ij are the identities of the transmitter
and receiver, respectively, PKUi

and SKUi
are the public and

private keys of Ui, SKCA is the private key of CA and the
public key PKCA of CA is known to all the users. Then, the
above process can be described using these definitions, the
encryption E and decryption D functions as follows.

Ui → CA : Ii, (1)

CA→ Ui : ESKCA
(PKUj

, Ij), (2)

Ui → Uj : EPKUj
(Ii, Ij , Ri), (3)

Uj → CA : EPKCA
(Ri, Ii, Ij), (4)

CA→ Uj : EPKUj
(ESKCA

(Ii, Ij , Ri))||ESKCA
(PKUi

, Ii).
(5)

After authentication but prior to communication, the trans-
mitter and receiver exchange the session keys and initial
frequency in advance. When DFH systems are considered, let
us assume that the transmitter and receiver are Ui and Uj ,
respectively. The process of key distribution can be divided
into three steps, as follows:

Step 1: The transmitter encrypts its identity, the session
keys as well as the initial frequency with the public key of
CA.
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Fig. 3: Schematic diagram of DFH systems.

Step 2: CA signs the identity of the transmitter with its
private key. In addition, CA encrypts the session keys and the
initial frequency with the public key of the receiver.

Step 3: The receiver decrypts the information with its
private key.

Meanwhile, let the initial frequency be f0. Hence, the above
process is expressed as follows.

C = EPKUj
(f0, key), (6)

(f0, key) = DSKUj
(C). (7)

From above we can be inferred that the secret information
cannot be obtained by an eavesdropper even if it is able
to intercept the DFH signal. This because the eavesdropper
does not know the private key SKUj of Uj . During data
transmission, Ui can transmit information to Uj using the
session key, to ensure that secrecy communication in our DFH
systems can be achieved.

B. Principle of DFH Communications

Fig. 3 shows the schematic diagram of DFH systems.
Specifically, the transmitter of DFH systems has the com-
ponents of a frequency transfer function referred to as the
G-function, and a frequency synthesizer, at the receiver side,
the DFH signal is detected based on the FFT assisted signal
processing, as to be detailed in our forthcoming discourses.

With the aid of the G-function, given the information
symbols X1, X2, ..., the DFH sequence is generated as

fn = G(fn−1, Xn) n = 1, 2, ..., (8)

where fn is referred to as the nth frequency. At the receiver,
the detector has to be designed to achieve the operation of

Xn = G−1(fn−1, fn). (9)

From (8) and (9), we can know that at the transmitter, the
G-function uses the frequency of the previous slot and the
information to be transmitted Xn at the current slot as inputs,
to generate the current frequency. At the receiver, the inverse
G-function is used to recover the information based on the
frequencies received during the previous and current slots.
Moreover, the requirements and characteristics of the G-
function are summarized as [25].

From the properties of the G-function, each individual
frequency can be viewed as a node or state. Correspondingly,
the generation of a DFH pattern can be regarded as a state
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Fig. 4: An example to show the directed graph of a G-function.

transition process. Assume that the number of branches out-
puting each state is f = 2B and the number of bit transmitted
per hop symbol is B. Similarly, if the DFH pattern is regularly
designed to make all the frequencies uniformly activated, each
state will also have the same f = 2B number of branches. As
an example shown in Fig. 4, where B = 2, each state has
four branches, activated respectively by the bit sequences of
(00,01,10,11), yielding a frequency shown at the right hand
side of Fig. 4, which is transmitted during the current slot.

From the above discussion, we can know that the design of
the G-function and the DFH sequence is critical for the DFH
system. It directly affects the performance of the DFH system.
In the next section, we will consider the general theory for the
design of DFH sequences.

III. GENERAL THEORY FOR DESIGN OF DFH SEQUENCES

In the design of the security systems for the networks
supporting a large number of users, hybrid encryption is a
commonly used encryption technique used for, such as, send-
ing secure email, visiting secure sites, secure online document
transmitting, etc. Therefore, we introduce the hybrid technique
in the design of DFH sequences. Below, we first introduce
the principles of hybrid encryption, and then analyze the
equivalence between the design of the hybrid encryption and
that of the DFH sequences.

A. Principle of Hybrid Encryption

It is well-known that encryption algorithms are divided into
symmetric encryption algorithms and asymmetric encryption
algorithms. Symmetric encryption algorithms have the advan-
tages of low cost and fast operation, but they require relatively
higher resources and cost to manage the keys. By contrast, in
asymmetric encryption systems, both public keys and private
keys are used, and users only need to keep their private keys.
Hence, it is easy to manage and distribute the secret keys in
asymmetric cryptograph systems. However, the data rate of
asymmetric cryptograph systems is usually low. Due to the
above-mentioned advantages and disadvantages, in practice,
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Fig. 5: Flow chart of hybrid cryptosystem.

the combination of the symmetric and asymmetric encryption
algorithms is often used to attain a good trade-off between
security and efficiency.

The basic principle of hybrid encryption is that during
a session, the key to be used by a symmetric encryption
algorithm is first conveyed from a transmitter and a receiver
with the aid of an asymmetric encryption algorithm. Then,
the plaintext information is transmitted based on a symmetric
encryption algorithm. Fig. 5 shows the structure of hybrid
encryption and decryption implemented at the transmitter and
receiver, respectively. At the transmitter side, the key used
by the symmetric encryption algorithm is encrypted using the
public key of the receiver. This encrypted key is transmitted
along with the ciphertext, which is obtained by encrypting the
plaintext using the key of the symmetric encryption algorithm.
At the receiver side, after receiving the contents for recovering
the symmetric key, this key is recovered using the private key
of the receiver. Having obtained the key for the symmetric
encryption algorithm, the plaintext can be recovered.

From the above process, we can know that the key can
be transmitted over open communication channels, instead
of having to use secret channels to transmit the key to the
receiver. In this way, keys can be relatively easily distributed
and secrecy data rate may be improved.

B. Equivalence between Design of Encryption Algorithms and
that of G-Function

According to [26], there exists an equivalence between the
design of cryptosystem and that of FH communication system.
To meet the requirement of high security in DFH systems, we
propose an approach for generating DFH sequence. As shown
in our forthcoming discourse, our DFH sequence is generated
in the principles of the hybrid encryption algorithm, which
can be shown to have high security. We should note that,
in contrast to the conventional FH sequence, DFH sequence
is independent of the TOD, as mentioned previously, it is
determined by the G-function. In order to demonstrate the
equivalence between the design of DFH sequence and that
of a cryptograph algorithm, let us first introduce a theorem.
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Theorem 1: Let g1 be a G-function of a DFH system,
which generates a DFH sequence of F = {fi|i = 1, 2.., N},
according to the operation of fi = g1(fi−1, xi), where fi is
the current frequency and xi is the current information symbol
to be transmitted. Let g2 be a cryptograph algorithm, which
generates a ciphertext sequence C = {ci|i = 1, 2..,M} by the
operation of ci = g2(pi, ki), where pi is a plaintext and ki is
a subkey. Then, the design of the G-function g1 is equivalent
to the design of cryptograph algorithm g2.

Proof 1: See Appendix A.

IV. SCHEMES FOR GENERATION OF DFH SEQUENCES

In this section, we propose two algorithms for DFH se-
quence generation, namely the GF-SG and HGF-SG schemes,
which are designed based on the rationales of the symmetric
cryptographic algorithm of GOST and the asymmetric crypto-
graphic algorithm of RSA, respectively. Before introducing the
proposed DFH sequence generation schemes, in the following
two subsection, a brief review of the principles of the GOST
and RSA algorithms is provided.

A. Overview of Principles of the GOST and RSA Algorithms

GOST algorithm is a block cipher algorithm processing 64-
bit data blocks using a 256-bit key. Fig. 6 shows the operations
occurred during one iteration of the GOST algorithm. The
details of the iterative process and methodology are provided
in [27], not discussed here. In summary, given the inputs Li−1,
Ri−1 and Ki, the operations during the ith iteration can be
represented as

Li = Ri−1, (10a)
Ri = Li−1 ⊕ f(Ri−1,Ki). (10b)

In cryptograph, RSA algorithm is one of the most popular
public key encryption algorithms. Built on the fact that it is
extremely difficult to derive the private key from the public
key, the RSA algorithm is able to resist the vast majority of
attacks known today. The operational principles of the RSA
algorithm is shown in Fig. 7. It consists of encryption algo-
rithm E, decryption algorithm D and the key pair generator,
which generates a public key for the transmitter and a private
key for the receiver. Similarity, the specific key distribution

Encryption E Decryption D
Ciphertext ( )PKY E M=

Public Key
Key Pair

Generator

Private Key

( , )PK n e=

Plaintext M

( , , )SK p q d=

Plaintext M

Transmitter Receiver

Fig. 7: Illustration of the operation of the RSA algorithm.

process of RSA algorithm is detailed in [28], not discussed
here. As the result, (n, e) is the public key for the transmitter,
and (p, q, d) is the private key kept by the receiver. During data
transmission, the transmitter uses the public key of the receiver
to encrypt plaintexts m, while the receiver uses its own private
key to decrypt the received ciphertexts c. Mathematically, the
encryption and decryption operations can be represented by

Encryption : c = memod(n), (11)

Decryption : cdmod(n) = medmod(n) = m. (12)

B. GF-SG Algorithm

According to the equivalence design stated in Theorem 1,
the GF-SG algorithm can be designed to have the flow chart as
shown in Fig. 8, which shows that the GF-SG algorithm can be
regarded as the encryption phase of a cryptographic algorithm.
As shown in Fig. 8, the frequency fn−1 generated from a
previous iteration acts like the plaintext and is input to the
encryption unit, while the ciphertext is the resultant frequency
fn generated in the current iteration. A dotted rectangle
represents the G-function. Let us explain one iteration of
the GF-SG algorithm in more detail. Specifically, during the
nth iteration, the frequency fn−1 generated by the (n − 1)th
iteration is input to the GOST algorithm. Then, a frequency
fn of the current iteration is generated by the XOR operation
between the output of the GOST algorithm and the information
Xn to be transmitted in the current iteration. Furthermore, the
secret key to be used by the GOST algorithm is provided via
the RSA algorithm. In summary, the GF-SG algorithm can be
described as the following three steps.

Step 1 The initial frequency f0 and the keys of the GOST
algorithm are encrypted by the RSA algorithm with the public
key of the receiver.

Step 2 Taking the frequency generated from the last iteration
and the encrypted keys as the inputs to the GOST algorithm.

Step 3 Finally, a frequency of the current iteration is
generated by the XOR operation between the output of the
GOST algorithm and the information to be transmitted.

At the receiver, the initial frequency f0 and the keys used
by the GOST algorithm are recovered by the RSA decryption
using the receiver’s private key. Then, the receiver utilizes
the keys to recover the information based on the frequency
observed by following the operation as shown in (9).
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The GF-SG algorithm has the following characteristics.
First, a small amount of information, (f0 and secret key) is
encrypted using a RSA algorithm, which ensures the security
of the initial f0 and the keys used by the GOST algorithm.
This allows the receiver to achieve the synchronization with
the transmitter, and the keys to be transmitted in open channel.
In the following transmission, a faster encryption algorithm is
used, which can improve the efficiency of data transmission.
According to the principle of the GOST algorithm, the block
length of plaintext is 64 bit. Hence, the DFH can generate
different up to 264 frequencies, which are enough for many
applications in reality. For the convenience of calculation, we
represent frequency using 8 bit and with 56 zeros prefixing
the front. As a result, a balance between the efficiency and
security of the GF-SG algorithm can be achieved.

C. HGF-SG Algorithm

In the existing literature, such as in [29], [30], the design
of G-function follows the traditional method, which only
establishes a mapping relationship between two adjacent fre-
quencies. This design cannot result in a DFH sequence with
high complexity, which thereby is lack of security. By contrast,
our proposed HGF-SG algorithm exploits the key features
of the RSA algorithm, which generates a frequency that is
depended on all the past frequencies and information symbols.
Hence, it is much more secure.

Considering the equivalence between the GF-SG algorithm
and a cryptographic algorithm, at time n, the frequency
fn−1 and the information symbol Xn can be regarded as
the plaintext, while the new frequency fn can be viewed
as the ciphertext output. In order to enhance the complexity
and security of the DFH sequence, we may let a newly
generated frequency be depended on k past frequencies and k
information symbols, expressed as

fn = G(fn−1, fn−2, ...., fn−k, Xn, Xn−1, ...., Xn−k+1).
(13)

RSAKey
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Fig. 9: G-function generated by the HGF-SG algorithm.

(Xn, Xn−1, ...., Xn−k+1) = G−1(fn−1, fn−2, ...., fn−k, fn).
(14)

In this way, a frequency in a DFH sequence, such as
fn, should be directly related to the consecutive k hops.
Corresponding, The DFH sequences are classified as the high
order DFH (HO-DFH) sequences.

Fig. 9 shows the operations of the HGF-SG algorithm,
which can be described in three steps.

Step 1 Initially, k consecutive frequencies (f0, f1, ..., fk−1),
k consecutive information symbols (X1, ..., Xk) as well as
keys of the GOST algorithm are encrypted using the RSA
algorithm with the public key of the receiver.

Step 2 Taking the frequency generated from the last k
iterations and the encrypted keys as input to the GOST
algorithm.

Step 3 Let f
′

n−1, f
′

n−2, ...., f
′

n−k be the generated frequen-
cies by XOR the output of the GOST algorithm with the in-
formation symbols Xn, Xn−1, ...., Xn−k+1. At the same time,
we assume that k is an even number, then f

′

n−1 ⊕ f
′

n−k/2+1,
f

′

n−2 ⊕ f
′

n−k/2+2, ...., f
′

n−k/2 ⊕ f
′

n−k. Next, k/2 frequencies
continue to be divided into two equal parts and repeat the
above XOR, until the XOR of the last two frequencies,
yielding the new frequency fn.

At the receiver, the initial k consecutive frequencies, k con-
secutive information symbols as well as the keys of the GOST
algorithm are recovered by the RSA decryption using the
receiver’s private key. Then, the receiver can utilize the keys
to recover the information based on the frequency observed
by following the operation as shown in (14). In comparison to
the GF-SG algorithm, the HGF-SG algorithm has a higher
complexity and security. Meanwhile, the efficiency of data
transmission in the HGF-SG algorithm is lower than that of
the GF-SG algorithm. The other processes for sending and
receiving are the same as the GF-SG algorithm.

From the above, in order to ensure sufficient security, the
parameter n of RSA is generally chosen to be large. Hence, the
proposed algorithm generates DFH sequence slowly. Mean-
while, the ultimate goal of this paper is to design high security



7

DFH sequences. As a result, we sacrifice efficiency to improve
security and complexity, which makes the practical application
limited. In order to solve the problem of efficiency, we can
choose the appropriate length of the key or short key frequently
replaced method to achieve the balance between efficiency and
security in practice.

V. PERFORMANCE ANALYSIS

The performance of DFH sequences can be measured by
their security and ergodicity. When the number of carriers is
large enough, ergodicity can make each carrier be selected,
thus improving the anti-interference ability. Security deter-
mines the ability of the system to resist various analytical at-
tacks. Hence, in this section, the performance of the proposed
GF-SG and the HGF-SG algorithms is analyzed in terms of
security and ergodicity.

A. Analysis of Security Performance
According to the previous sections, DFH sequences are

designed in the principles of the cryptographic algorithms,
and they are equivalent to each other. Hence, the security
performance of the DFH sequences can be analyzed in the
similar way as that of the corresponding cryptographic al-
gorithms. It can be seen from the principle of Kerckhoffs
that the security of a cryptographic algorithm is depended on
the secrecy of secret key [31]. Conventionally, a dedicated
secret channel is employed to transmit the secret key, which
demands additional overhead bandwidth and computational
burden. With the advent of the public key cryptography, this
problem can be effectively solved by exchanging the secret
keys with the aid of public keys. In these type of systems,
the security of the concerned cryptographic algorithms mainly
depends on the security of the public key algorithm. Therefore,
below we analyze the security of the RSA algorithm embedded
in our proposed algorithm, which directly determines the
security performance of the proposed DFH sequences. As
suggested in [32], the two most important metrics, namely the
exhaustive search and decomposition, are analyzed in order to
analyze the security performance of the DFH sequences.

a) : Exhaustive Search
The values of the parameters p and q used in RSA al-

gorithms are typically in the range of 2511<p<2512 and of
2511<q<2512. Hence, if the exhaustive search approach is used
to test for p, the average number of tries required is about

(2512 − 2511)

2
= 2510. (15)

which is a huge number that is beyond the capability of any
existing computer. As a result, it is safe enough for us to
employ the RSA algorithm with a key of 1024-bit length.

b) : Decomposition of n
In RSA algorithm, n = pq. Hence, when p and q are known

to an attacker, the value of

ϕ(n) = (p− 1)(q − 1), (16)

can be readily computed. Since the pubic key e is known,
the attacker can easily derive the secret key d using the
relationship of

ed ≡ 1 mod(ϕ(n)). (17)

Consequently, the RSA algorithm is broken.
From above we can conceive that deciphering a RSA is

no more difficult than factorizing a large integer. However,
factorizing a large integer has been recognized to be a hard
mathematical problem, as there are no efficient factorization
algorithms available for the time being. Instead, the exhaustive
search has to be used to attack the system. Therefore, the DFH
systems designed based on the RSA algorithm have strong
resistance to the factorization relied attack.

B. Analysis of Ergodicity Performance

It is well known that the frequency generation process in
DFH systems can be regarded as a Markov process. Below,
we analyze the ergodicity of the proposed DFH systems.

1) GF-SG algorithm: From the GF-SG algorithm shown in
Section IV, we can see that the frequency generated at a certain
iteration is only related to the frequency generated at the
previous iteration. Hence, the frequency generation process of
the GF-SG algorithm can be regarded as a first order Markov
process [33]. Then, the DFH sequences generated by the GF-
SG algorithm has the properties summarized by Theorem 2.

Theorem 2: Let the frequency set used by the GF-SG
algorithm be expressed as F={fi|0 ≤ i ≤ N − 1, N = 2m},
where m is an integer. Let the information symbol set be
X={0, 1, 2..., 2B−1}, where B is the number of bit transmit-
ted per hop. Assume that B ≥ m, the frequency generation
process of the GF-SG algorithm is ergodic.

Proof 2: See Appendix B.
2) HGF-SG algorithm: In the conventional first order

Markov chain, the future state is only related to the present
state (when it is given) and has nothing to do with the other
past states. However, in some scenarios, a state may be related
to more than one past states. In this case, using the first
order Markov model may be very inaccurate. For this sake,
the concept of high order Markov process was proposed [34],
by generalizing the first order Markov process. Based on the
principles of the generalized Markov process, as seen in (13),
the frequency transfer process in the HGF-SG algorithm can
be regarded as a kth order discrete time Markov process. Fur-
thermore, it can be shown that the frequency transfer process
in the HGF-SG algorithm follows the ergodicity summarized
by Theorem 3.

Theorem 3: Let the frequency set be F={fi|0 ≤ i ≤
N − 1, N = 2m,m = 1, 2, ...} and the information symbol
set be X={0, 1, 2..., 2B − 1}, where B is the number of bit
transmitted per hop. When B ≥ m, the HGF-SG algorithm
guarantees that all the frequencies are activated.

Proof 3: See Appendix C.

VI. NUMERICAL RESULTS

The performance evaluation for the DFH sequences is
carried out from the perspectives of uniformity, randomness,
complexity and security, which can directly reflect the perfor-
mance of the DFH system. Note that, our simulation results
are obtained according to the principle of statistical hypothesis
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(a)
B =
1

(b)
B =
2

(c)
B =
4

Fig. 10: Test results for uniformity.

[35]. Specifically, the level of significance in the simulation
tests is set to α = 0.05. Furthermore, we assume that the
number of frequency set is N = 256 and the length of
sequences is L = 10000. In our simulations, the initial
frequency is set to f0 = 67, and the number of bit per
symbol is B = 1, 2, 4. Moreover, the size of the GOST
and RSA key is 32 bit. Meanwhile, for comparison, four
algorithms are considered, which are the affine transformation,
the reversible hash algorithm, the GF-SG algorithm and the
HGF-SG algorithm.

A. Uniformity

The standard chi-squared test is used to measure the degree
of uniformity for the DFH sequences generated, where the
hypotheses H0 and H1 represent that the sample data is
uniformly distributed or not, respectively. Specifically, we use
P value to determine the results of hypothesis test. If the
probability that the P value is greater than α, we accept H0,
otherwise reject H0.

Fig. 10 shows the test results statistics for the uniformity,
when B = 1 (Fig. 10(a)), B = 2 (Fig. 10(b)) and B = 4
(Fig. 10(c)). Furthermore, in each case, four data streams
are used. As shown in Fig. 10(a) and (b), when B = 1 or
B = 2, the affine transformation operated on the second
data stream gives P ≤ 0.05. For the case of B = 1, the
reversible hash algorithm attains the most stable result with
0.5 ≤ P ≤ 0.8. For the case of B = 2, the GF-SG algorithm
achieves the most stable result with 0.6 ≤ P ≤ 0.9. By
contrast, for the case of B = 4, the HGF-SG algorithm
achieves the most stable result with 0.8 ≤ P ≤ 0.9. From the
above observations, we can draw the conclusion that both our
proposed DFH sequences as well as the sequences generated
by the reversible hash algorithm have uniform distribution,
while the sequences derived from the affine transformation
are not uniformly distributed. Furthermore, the DFH sequences
generated by the HGF-SG algorithm have the best uniformity,
when the number of bit transmitted per hop is relatively big,
such as, B = 4.

B. Randomness

According to [36], the randomness of DFH sequences
can be tested by the Z statistics. Specifically, let the null
hypothesis H0 and the alternative hypothesis H1 be the binary
decisions that infer whether the sample data is random or
not. Then, if the P value is larger than 0.05, we accept H0,
otherwise reject H0.

Fig. 11 shows the test statistics for the randomness, the
case of B = 1 (Fig. 11(a)), B = 2 (Fig. 11(b)) and B = 4
(Fig. 11(c)), respectively. As shown in Fig. 11, for the case
of B = 1, the reversible hash approach achieves the most
stable result with 0.7 ≤ P ≤ 0.9. For the case of B = 2,

(a)
B =
1

(b)
B =
2

(c)
B =
4

Fig. 11: Test results for randomness.

(a)
B =
1

(b)
B =
2

(c)
B =
4

Fig. 12: LZ complexity of the sequences generated by different
approaches.

the HGF-SG algorithm achieves the most stable result with
0.8 ≤ P ≤ 1.0. For the case of B = 4, the GF-SG algorithm
achieves the most stable result with 0.8 ≤ P ≤ 0.85. From
the above observations, we can conclude that the proposed
DFH sequences and the sequences generated by the affine
transformation have relatively high randomness. By contrast,
the sequences derived form the reversible hash algorithm are
not random. Furthermore, the HGF-SG algorithm generates
the DFH sequences with the best randomness, if the number
of bit transmitted per hop is relatively high.

C. Complexity

Lempel-Ziv (LZ) complexity is used to measure the com-
plexity of the DFH sequences. As defined in [37], LZ complex-
ity can characterize the complexity of a sequence by measuring
the rate that a new pattern appears in a single sequence.
Compared with the other complexity metrics, LZ complexity
is computable and the computation speed is very fast.

Let us denote the complexity of a given sequence S =
(s1s2...sn) by c(n). According to the definition, we have

lim
n→0

c(n) = b(n) =
n

log2(n)
, (18)

where b(n) is the progressive behavior of random sequences.
Then, the normalized complexity of S is defined as

CLZN (n) =
c(n)

b(n)
. (19)

With the aid of (18), we can readily know that the complexity
of a random sequence S tends to 1 and the complexity of a
nonrandom sequence tends to 0, where a higher CLZN means
a higher complexity of a sequence.

Fig. 12 gives the LZ complexity of the sequences generated
by the four approaches considered. It can be seen that the
sequences obtained by the HGF-SG algorithm have the highest
LZ complexity in all the three cases, especially, when B = 1.
According to the construction of the HGF-SG algorithm, a
frequency that is depended on the previous k consecutive
frequencies. As a result, the bigger the k , the higher the
complexity of the HGF-SG algorithm, this is consistent with
the results in Fig. 12. Therefore, the HGF-SG algorithm results
in the best performance in terms of complexity.
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TABLE I Decryption Time (L=10000)

B
Sequence Affine

Transformation
Reversible Hash

Algorithm
GF-SG

algorithm
HGF-SG
algorithm

B = 1 0.896 s 8.513 s 1345.863 s 43763.224 s
B = 2 0.910 s 7.689 s 1353.352 s 43249.624 s
B = 4 0.925 s 7.767 s 1350.122 s 43173.880 s

TABLE II Decryption Time (L=100000)

B
Sequence Affine

Transformation
Reversible Hash

Algorithm
GF-SG

algorithm
HGF-SG
algorithm

B = 1 8.953 s 77.089 s 13383.647 s 435193.908 s
B = 2 9.011 s 76.939 s 13370.029 s 427271.365 s
B = 4 9.067 s 77.599 s 13276.193 s 424532.823 s

D. Security
The security performance of a sequence can be measured by

the time required to decrypt the information symbols embed-
ded in the sequence [38]. Note that, as transmitted information
in the GOST algorithm is encrypted by the symmetric cipher
algorithm, the decryption time is equal to the time required to
decrypt the secret key plus the time required to decrypt the
transmitted data. Let us assume that each algorithm encrypts
the same length of information symbols using a key of 32 bit.
Furthermore, we consider two cases with the sequence length
of L = 10000 and L = 100000, respectively.

Correspondingly, Table I and Table II show the time re-
quired to decrypt the transmitted data. From the tables, we
can see that the decryption time of both the GF-SG and HGF-
SG algorithm are much higher than that of the other two
algorithms. Furthermore, the HGF-SG algorithm requires the
longest time to decrypt the transmitted data. From the security
results, due to high security of the RSA algorithm, this is
mainly reflected in the difficulty of decomposing the key of
the RSA algorithm. Moreover, because of high complexity of
the HGF-SG algorithm in this paper, hence, it takes more time
to decipher the proposed algorithms than the other algorithms,
which is consistent with the results in Table I and Table II.
Therefore, if the size of the RSA key is relatively large, such
as 1024 bit, the time required to decrypt the transmitted data
becomes negligible in comparison with the time required to
decrypt the secret key. As a result, the proposed algorithm is
able to achieve high security performance.

VII. CONCLUSIONS

In this paper, the G-function algorithm for DFH systems
has been deeply analyzed. Based on the equivalence proof
between the DFH system and the cryptosystem, the advan-
tages of symmetric and asymmetric algorithm have been fully
utilized to design the G-function. Hence the GF-SG and
HGF-SG algorithms have been proposed. Then the security
and ergodicity performance have been deeply analyzed. At
the same time, the statistical test results have shown that
the proposed DFH sequences have better performance than
other two algorithms in terms of the uniformity, randomness,
complexity and security. As a result, it is of great significance
to improve the security of wireless communications.

APPENDIX A
PROOF OF THEOREM 1

Let us show the equivalence introduced in Theorem 1 from
the respective of the operations at both transmitter and receiver.

a) : Operations at Transmitter
Let us assume a DFH system, which is at the initial state

f0. Then, when one symbol xA or xB is transmitted, we have
the DFH sequence of

fA = g1(f0, xA), fB = g1(f0, xB). (20)

Ideally, when N →∞, we should have

xA 6= xB ⇒ fA 6= fB , (21)

Meanwhile, ∀fi ∈ F , ∃fj and xj , such that fi = g1(fj , xj).
Hence, when given xi, g1 can be seen as a one-to-one
mapping.

Corresponding, in cryptosystems, let the plaintext space be
P = {pi|i = 0, 1, 2..,M}. Then, given the plaintext of pA ∈ P
and pB ∈ P , as well as the key k0, we have

cA = g2(pA, k0), cB = g2(pB , k0). (22)

In the design of cryptograph algorithms, when the key is
determined, it is required that

cA = cB ⇒ pA = pB , (23)

At the same time, ∀ci ∈ C, ∃pi and ki such that ci =
g2(pi, ki). In other words, when given ki, g2 can also be
regarded as a one-to-one mapping.

From the above description, we can know that g1 is a
mapping from F to F , while g2 is a mapping from P to
C. According to the theory of finite set [39], if N = M ,
the sets of F , P and C are equivalent. As the result, the
input parameters and output parameters of the two systems
are equivalent, i.e., the design of the G-function is equivalent
to that of the cryptograph algorithm.

b) : Operations at Receiver
First, In a DFH system, the G-function must be invertible

so that the receiver can demodulate the received symbols from
the DFH sequence, which can be formulated as

xi = g−11 (fi−1, fi), (24)

Hence, the operation in G-function and its inverse function
should be invertible. By contrast, in the cryptosystem, the
decryption operation can also be explained by an inverse
operation of the encryption operation, which achieves

p = g−12 (c, k1). (25)

where k1 is the key for decryption, which may be the same as
the transmit key or a private key of the receiver, if asymmetric
cryptograph system is implemented. Therefore, when consid-
ering the operations at both transmitter and receiver, we can
see that the operation rules for the DFH system and that for
a cryptograph system are equivalent.

In other words, the design of the G-function g1 is equivalent
to that of a cryptograph algorithm g2.
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APPENDIX B
PROOF OF THEOREM 2

Let the probability of activating a frequency of the current
slot fi be p(fi) and the information symbol being sent be Xi.
According to the principles of the GF-SG algorithm, as seen
in Section IV, fi is determined jointly by fi−1 and Xi. Hence,
when considering N adjacent slots, the joint probability dis-
tribution of the N frequency slots can be expressed with the
aid of the property of Markov chain as

p(s1, s2, ..., sN ) = p(s1)

N∏
n=2

p(sn|sn−1), (26)

where S = (s1, s2, .., sN ) is a pseudorandom state sequence
determining the N frequency slots.

Let the one-step transition matrix of DFH system be ex-
pressed as

Q =


q00 q01 · · · q0(N−1)
q10 q11 · · · q1(N−1)

...
... · · ·

...
q(N−1)0 q(N−1)1 · · · q(N−1)(N−1)

 . (27)

where qij (0 ≤ i, j ≤ N−1) denotes the transition probability
from the frequency fi to the frequency fj . Since the sum of
the probabilities from one frequency to another is 1. Hence,
we have 0 ≤ qij ≤ 1,

∑N−1
j=0 qij = 1 (i = 0, 1, ..., N − 1).

Considering that the number of bit transmitted per hop is
B, i.e., there are 2B possible information symbols, 2B dif-
ferent frequencies can be activated from a given frequency.
Then, each row and column has 2B non-zero elements, while
the other elements are zero. According to the Chapman-
Kolmogorov (CK) equation, the k-step transition matrix is
given by

Qk =


q00 q01 · · · q0(N−1)
q10 q11 · · · q1(N−1)

...
... · · ·

...
q(N−1)0 q(N−1)1 · · · q(N−1)(N−1)


k

, (28)

According to the properties of Q, we can show that Q can be
expressed as

Q =

[
(E −A) A

B (E −B)

]
, (29)

where

A =


q
′
0(N/2) q

′
0(N/2+1) · · · q

′
0(N−1)

q
′
1(N/2) q

′
1(N/2+1) · · · q

′
1(N−1)

...
... · · ·

...
q
′

(N/2−1)(N/2) q
′

(N/2−1)(N/2+1) · · · q
′

(N/2−1)(N−1)

 ,

(30)

B =


q
′

(N/2)0 q
′

(N/2)1 · · · q
′
(N/2)(N/2−1)

q
′
(N/2+1)0 q

′
(N/2+1)1 · · · q

′
(N/2+1)(N/2−1)

...
... · · ·

...
q
′
(N−1)0 q

′

(N−1)1 · · · q
′

(N−1)(N/2−1)

 , (31)

and E represents an (N/2)× (N/2) identity matrix. Further-
more, it can be shown that when the number of bit transmitted

per hop is B ≥ m, i.e., the number of information bit per
symbol is not less than that of the available frequencies, all
the frequencies can be activated. In this case, Q is full rank,
provide that the probabilities of activating different frequencies
are different. When Q is full rank, A and B are invertible
matrices, and Q can be transformed into a diagonal matrix,
which can be expressed as Q = HDH−1, O represents a
(N/2)× (N/2) zero matrix, where

H =

[
E (−A)
E B

]
, D =

[
E O
O (E −A−B)

]
, (32)

Then, we have
Qn = HDnH−1

=

[
E (−A)
E B

] [
E O
O E −A−B

]n [ B
(A+B)

A
(A+B)

(−E)
(A+B)

E
(A+B)

]

=

[
(B+A(E−A−B)n)

(A+B)
(A−A(E−A−B)n)

(A+B)
(B−B(E−A−B)n)

(A+B)
(A+B(E−A−B)n)

(A+B)

]
.

(33)
It can be shown that when n → ∞, (E − A − B)n →

O(N/2)×(N/2). Applying this result to (38), we obtain

lim
n→∞

Qn =

[
B(A+B)−1 A(A+B)−1

B(A+B)−1 A(A+B)−1

]
= Π. (34)

To this point, we can assign suitable values to the matrix
A and B, then the steady-state probability Π of the DFH
sequence is obtained. Then, accounting to the properties of
the steady-state Markov process, we have

Q×Π = Π, (35)

where Π = (π0, ..., πN−1) is the vector. Besides
∑N−1

i=0 πi =
1. Since Q is full rank, the probabilities of activating the
frequencies from a given one are different. This guarantees
that all the steady-state probabilities non-zero. Hence, πi 6= 0.

Consequently, the GF-SG algorithm is capable of activating
each frequency.

APPENDIX C
PROOF OF THEOREM 3

As can be seen from the definition of the kth order Markov
process model, when N adjacent slots are considered, the joint
probability distribution of the N frequencies can be expressed
as

p(s1, s2, ..., sN ) =p(s1)p(s2|s1)...p(sk|sk−1, sk−2, ..., s1)

×
N∏

n=k+1

p(sn|sn−1, ..., sn−k),

(36)
where S = (s1, s2, .., sN ) is a pseudorandom sequence deter-
mining the frequencies of the N slots.

According to the limit theorem [40], we can know that there
is a steady-state probability vector π = (π0, ..., πN−1), which
satisfies

N−1∑
i=0

πi = 1, Pπ = π. (37)



11

Therefore, when the number of bit transmitted per hop is B ≥
m, P is full rank provide that the probabilities of activating
the frequencies from a given one are different. This guarantees
that all the steady-state probabilities non-zero. Then, we have

lim
t→∞

p[St = mj |Sk = mn, ..., S1 = ms] = πmj
. (38)

It can also be obtained from the ergodicity analysis of the GF-
SG algorithm that each frequency of the HGF-SG algorithm
is also utilized.
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