The University of Southampton
University of Southampton Institutional Repository

Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells

Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells
Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells
The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analysed. During the early stages of operation (2 weeks), the more porous earthenware lost anolyte quickly and was unstable between feeding compared to terracotta. Three weeks later MFCs of all thicknesses were more stable and could sustain longer periods of power production without maintenance. In all cases, the denser terracotta produced higher open circuit voltage; however, earthenware the more porous and less iron-rich of the two, proved to be the better material for power production, to the extent that the thickest wall (18 mm) MFC produced 15 % higher power than the thinnest wall (4 mm) terracotta. After 6 weeks of operation, the influence of wall thickness was less exaggerated and power output was comparable between the 4 and 8 mm ceramic membranes. Cylindrical earthenware MFCs produced significantly higher current (75 %) and power (33 %) than terracotta MFCs. A continuous dripping mode of cathode hydration produced threefold higher power than when MFCs were submerged in water, perhaps because of a short-circuiting effect through the material. This shows a significant improvement in terms of biosystems engineering, since a previously high-maintenance half-cell, is now shown to be virtually self-sufficient.
Microbial fuel cell, Ceramic, Proton exchange membrane, Terracotta, Earthenware
1615-7591
1913-1921
Winfield, Jonathan
e81f4fad-1433-4c6a-9723-24a14f172896
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Huson, David
187ec6c3-e92b-4d25-9efa-e148fb127a19
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13
Winfield, Jonathan
e81f4fad-1433-4c6a-9723-24a14f172896
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Huson, David
187ec6c3-e92b-4d25-9efa-e148fb127a19
Ieropoulos, Ioannis
6c580270-3e08-430a-9f49-7fbe869daf13

Winfield, Jonathan, Greenman, John, Huson, David and Ieropoulos, Ioannis (2013) Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36 (12), 1913-1921. (doi:10.1007/s00449-013-0967-6).

Record type: Article

Abstract

The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analysed. During the early stages of operation (2 weeks), the more porous earthenware lost anolyte quickly and was unstable between feeding compared to terracotta. Three weeks later MFCs of all thicknesses were more stable and could sustain longer periods of power production without maintenance. In all cases, the denser terracotta produced higher open circuit voltage; however, earthenware the more porous and less iron-rich of the two, proved to be the better material for power production, to the extent that the thickest wall (18 mm) MFC produced 15 % higher power than the thinnest wall (4 mm) terracotta. After 6 weeks of operation, the influence of wall thickness was less exaggerated and power output was comparable between the 4 and 8 mm ceramic membranes. Cylindrical earthenware MFCs produced significantly higher current (75 %) and power (33 %) than terracotta MFCs. A continuous dripping mode of cathode hydration produced threefold higher power than when MFCs were submerged in water, perhaps because of a short-circuiting effect through the material. This shows a significant improvement in terms of biosystems engineering, since a previously high-maintenance half-cell, is now shown to be virtually self-sufficient.

This record has no associated files available for download.

More information

Accepted/In Press date: 2 May 2013
Published date: 1 June 2013
Keywords: Microbial fuel cell, Ceramic, Proton exchange membrane, Terracotta, Earthenware

Identifiers

Local EPrints ID: 454618
URI: http://eprints.soton.ac.uk/id/eprint/454618
ISSN: 1615-7591
PURE UUID: 65640cd9-1f72-4fb6-84d0-117c7a982f5f
ORCID for Ioannis Ieropoulos: ORCID iD orcid.org/0000-0002-9641-5504

Catalogue record

Date deposited: 17 Feb 2022 17:39
Last modified: 17 Mar 2024 04:10

Export record

Altmetrics

Contributors

Author: Jonathan Winfield
Author: John Greenman
Author: David Huson

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×