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ABSTRACT
Single-nuclei RNA sequencing allows single cell-based analysis in frozen tissue, ameliorating cell recovery biases associated with enzymatic
dissociation methods. The authors present two optimized methods for isolating and sequencing nuclei from esophageal tissue using a com-
mercial EZ and citric acid (CA)-based method. Despite high endogenous RNase activity, these protocols produced libraries of expected fragment
length (average length EZ: 745 bp; CA: 1232 bp) with comparable complexity (median Transcript/Gene number, EZ: 496/254; CA: 483/256). CA
nuclei showed a higher proportion of ribosomal gene reads, potentially reflecting co-isolation of nuclei and adherent ribosomes. The authors
identified 11 cell lineages in the combined datasets, with differences in cell type recovery between the two methods, providing utility dependent
on experimental needs.

METHOD SUMMARY
The authors present a method for isolating intact nuclei from frozen esophageal tissue for high throughput single-nuclei RNA sequencing using
microfluidic-based droplet partitioning. This protocol overcomes high levels of endogenous RNase activity in this barrier epithelium and would
therefore be applicable to other tissue types affected by similar issues.
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Single-nuclei RNA sequencing (snRNA-seq) allows the identification of cell types in heterogeneous tissues that have been frozen before
downstream processing and analysis. Commercial buffers exist to isolate nuclei, as well as traditional salt and detergent-based meth-
ods [1]. These buffers must be gentle enough to lyse cell membranes while preserving nuclear membrane integrity. Nuclei can then be
purified from cellular debris and contaminating cell-free RNA through multiple centrifugation steps, fluorescence-activated cell sorting
(FACS) or density gradients (e.g., sucrose or iodixanol) before proceeding with microfluidic encapsulation and RNA barcoding [1,2].

As a barrier epithelial tissue, the esophagus contains RNases, which may play a role in mediating antiviral defense [3]. From the
authors’ single-cell RNA sequencing datasets, they have identified the cellular source of the expression of these RNases (Figure 1A–C).
The authors identified high levels of endogenous RNases in outer keratinocyte populations, which can contribute to the loss of RNA
integrity. This is in keeping with the role for RNase 7 in antiviral activity in keratinized cells [4,5]. Upon disruption of cell membranes
during freezing and subsequent nuclei extraction, there is significant and rapid degradation of nuclear RNA (Figure 1D), which is likely to
be associated with the release of reactivated RNases [6]. The authors have optimized two nuclei isolation methods to protect nuclear
RNA integrity in frozen esophageal tissue (Figure 2) and demonstrate that both methods can recover a high diversity of cell populations
following snRNA-seq.

To assess these methods, the authors obtained sequencing data from nuclei from a single patient, using one sample of snap-frozen
normal human esophagus obtained by surgical resection (see ethical disclosure statement). Using the Nuclei EZ prep nuclei isolation
kit (Sigma), according to published methods used for isolating nuclei for snRNA-seq by Dronc-seq [7], the authors found that nuclei from
frozen esophagus lacked sufficient quality to generate cDNA libraries (Figure 1D). To overcome the effects of endogenous enzymes,
they initially added an RNase inhibitor to the nuclei isolation buffer (0.2% v/v Lucigen NxGen RNase inhibitor) and transferred the frozen
tissue to an RNA rescue medium (RNALater-ICE) without defrosting and then maintained it in the solution at -20◦C until nuclei extraction.
This enabled stabilization of the frozen tissue, providing protection during immediate removal from cold storage, allowing the inhibitors
in the lysis buffer to take effect. This method successfully yielded cDNA libraries, and with additional optimization (0.2% v/v Lucigen
NxGen RNase inhibitor, 0.2% v/v SUPERase-in, 1x Roche Complete protease inhibitor cocktail, 4 mM DTT) (Figure 1D & Figure 2A) the
final optimized EZ protocol resulted in cDNA libraries of sufficient quality.

Vol. 72 No. 3 C© 2022 Matthew Rose-Zerilli www.BioTechniques.com1

https://orcid.org/0000-0002-5640-8385
https://orcid.org/0000-0003-2926-1223
https://orcid.org/0000-0003-2101-1318
https://orcid.org/0000-0002-5709-6790
https://orcid.org/0000-0001-9455-2188
https://orcid.org/0000-0002-1064-5350


Benchmark

50
NX

P
ro

te
in

 A
tl

a
s
: 

R
N

a
s
e
 7

Consensus dataseti RNA tissue specificity: Tissue enhanced (esophagus, lymphoid

tissue tongue)

40

tS
N

E
_

2

tSNE_1

Epithelium clusters

Epithelium cell clusters

n = 2347 cells

30

20

10

0

T
o

n
s
il

E
s
o

p
h

a
g

u
s

T
o

n
g

u
e

S
k
in

V
a

g
in

a
G

a
llb

la
d

d
e

r
S

a
liv

a
ry

 g
la

n
d

P
la

c
e

n
ta

T
h

y
m

u
s

C
e

rv
ix

, 
u

te
ri
n

e
B

re
a

s
t

U
ri
n

a
ry

 b
la

d
d

e
r

P
ro

s
ta

te
L

u
n

g
L

iv
e

r
E

p
id

id
y
m

is
R

e
c
tu

m
P

a
n

c
re

a
s

S
e

m
in

a
l 
v
e

s
ic

le
E

n
d

o
m

e
tr

iu
m

S
k
e

le
ta

l 
m

u
s
c
le

D
e

n
d

ri
ti
c
 c

e
lls

H
ip

p
o

c
a

m
p

a
l 
fo

rm
a

ti
o

n
T

h
y
ro

id
 g

la
n

d

E
p
it
h
e
lia

l 
b
a
s
a
l

E
p
it
h
e
lia

l 
d
iv

id
in

g

K
e
ra

ti
n
o
c
y
te

s
 o

u
te

r

G
la

n
d
 d

u
c
ts

pop1 pop2 pop3 pop4

avg.exp.scale

pct.exp

2.5

5.0

7.5

1.0
0.5
0.0
-0.5
-1.0

RNASEL

RNASEK

RNASE6

RNASE4

RNASE1

RNASEH2A

RNASE7

80
43

.0
0

48
.1

2

51
.0

6

70

60

50

40

30

20

10

0

[FU]

-10

35 [bp]100 200 300 400 600

No protocol adaptation

1000 300010,380

11
3.

00

43
.0

0

48
.1

3

51
.1

2

52
.5

0

70

60

50

40

30

20

10

0

[FU]

[bp]300150100

From
[bp]
200

To [bp]

4949

Corr.
area
352.2

% of
total
60

Average size
[bp]
852

Conc.
[pg/µl]
404.62

Molarity
[pmol/l]
1244.7

Co
lor

Size distribution in

CV [%]
74.5

35 500

Initial EZ protocol modification

400 700 2000 10,380

11
3.

00

86
.1

2
93

.5
1

96
.4

4

97
.4

9

10
0.

52

43
.0

0

45
.1

1
48

.2
4
51

.4
2

52
.7

6

120

100

80

60

40

20

0

[FU]

[bp]300200100

From
[bp]
200

To [bp]

3064

Corr.
area

3142.8

% of
total
87

Average size
[bp]
630

Conc.
[pg/µl]
3646.51

Molarity
[pmol/l]
11,539.2

Co
lor

Size distribution in

CV [%]
51.6

35 500

Final optimized EZ protocol

400 700 2000 10,380

11
3.

00

11
6.

18

Organ Expression Alphabetical

Figure 1. Identification of RNA inhibitors in esophageal tissue. (A) RNase 7 expression (NX: normalized expression) across tissue types (consensus
dataset from the Protein Atlas; https://www.proteinatlas.org/). Image credit: Human Protein Atlas. (B) t-Distributed Stochastic Neighbor Embedding of
epithelial cell populations from esophageal tissue analyzed by single-cell RNA sequencing. (C) RNase gene expression in epithelial cell populations
from esophageal tissue analyzed by single-cell RNA sequencing. The size and color of the dot denote the percentage of cells and the average
expression level, respectively. (D) Optimized nuclei isolation protocol for frozen esophageal tissue to mitigate reactivated endogenous RNase activity.
cDNA library electrophoresis traces (high sensitivity DNA chip [Agilent Bioanalyzer] cDNA concentration quantified in fluorescence units) for pooled
nuclei from a sample before, during and after successful protocol optimization.

Using a portion of the same sample stored in RNALater-ICE, the authors evaluated a citric acid (CA)-based isolation method, as
described in Tosti et al. [8,9], where nuclei were isolated from pancreatic specimens, a tissue type with high RNase activity similar to
esophageal tissue [10]. CA has historically been used for nuclei isolation and can improve the separation of nuclei from cytoplasmic
contaminants [11] and yield greater quality RNA owing to its acidic pH and activity as an RNase chelator [12,13]. The tissue was removed
from RNALater-ICE and homogenized in 25 mM citric acid and 0.25 M sucrose, following the protocol outlined in Figure 2B. This CA
nuclei isolation was performed separately (+3 months) from the EZ isolation protocol. However, tissue stabilization using RNALater-ICE
is a critical step in stabilizing nuclear RNA, and this step was not varied between methods. Again, the authors found that RNALater-ICE
use yielded larger cDNA libraries with longer fragment lengths, suggesting a higher quality of recovered RNA (Figure 3A & B). Following
sequencing, the resulting libraries from both isolation methods showed similar complexity (EZ median nTranscript/nGene: 496/254;
CA: 483/256) (Figure 3C). The proportion of mitochondrial genes was higher than expected (EZ median: 25.1%; CA: 12.7%), given that
these should be pure nuclei fractions. Previously published nuclei datasets have observed elevated mitochondrial gene expression,
hypothesizing that mitochondria may associate with nuclear membranes [14]. The EZ method displayed approximately the anticipated
proportion of intronic reads (median: 40.9%), given that nuclei contain pre-spliced transcripts. For the CA method, the proportion of
intronic reads was lower than the EZ method (median: 28.6%), suggesting the presence of mature RNA. It has previously been found that
CA-based methods may result in nuclei co-isolated with ribosomes or outer nuclear membrane fragments (Figure 3D) [15]. The CA nuclei
showed a significantly higher percentage of reads originating from ribosomal genes (median: 7.6%) than the EZ method (median: 1.7%;
p < 0.001 Mann–Whitney U test), potentially reflecting co-isolation with adherent ribosomes. This is further supported by stratification
of the CA nuclei by percentage of ribosomal reads (Figure 3E & F), identifying two subpopulations of nuclei: those with a ribosomal
gene proportion >8% showing a lower median intronic proportion (14%) and those with <8% ribosomal genes having a higher intronic
proportion (37%). These two populations could reflect nuclei isolated with adherent ribosomes and pure nuclei, respectively.

For analysis, CA and EZ nuclei datasets from the same patient sample were combined (pre-combined analysis in Supplemental Fig-
ure 1). Following clustering with the Seurat package (v3.2.2) [16] using the first 15 principal components of variable gene expression, cell
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Figure 2. Optimization of nuclei isolation protocols. (A) Flowchart of adaptations to commercial protocol using modified EZ lysis buffer (EZ nuclei lysis
buffer, 0.2% v/v Lucigen NxGen RNase inhibitor, 0.2% v/v SUPERase-in, 1x Complete protease inhibitor cocktail, 4 mM DTT) and modified nuclei
suspension buffer (1xPBS, 0.01% BSA, 0.2% v/v RNase inhibitor, 1 mM DTT). (B) Citric acid protocol workflow. Citric acid buffer (0.25M sucrose, 25 mM
citric acid), resuspension buffer (25 mM KCl, 3 mM MgCl2, 50 mM Tris-buffer, 0.4 U/μl NxGen RNase inhibitor, 1 mM DTT, 0.4 U/μl SUPERasin).

types were identified using lineage marker genes from previous large-scale scRNA-seq esophageal datasets (Figure 4) [17]. Samples were
sequenced separately, and batch effects were controlled for by regression of nCount and mitochondrial percentage. The authors were
able to identify 11 cell clusters and one cluster of unassignable low-informative nuclei captures (Figure 4). Two clusters were uniquely
observed in the CA dataset and marked by high ribosomal gene expression (stratified keratinocyte ribo-high and basal epithelial ribo-high
clusters). The stratified keratinocyte and ribo-high populations clustered closely, with a highly correlated average gene expression profile
between the populations (Pearson’s correlation: 0.89). While there was co-clustering of the EZ- and CA-derived stratified keratinocytes,
the CA-derived basal epithelial cells did not cluster with the primary basal epithelial cluster because of high expression of ribosomal
genes (Figure 4C).

More keratinocytes were recovered by the CA method, particularly stratified keratinocytes (∼14-fold increase in the percentage re-
covered) (Figure 4B), distinguished by their expression of KRT4 (Figure 4C & D). Interestingly, the single-cell dataset shows that RNase7
expression was highest in outer keratinocytes, suggesting that the CA method may result in improved keratinocyte membrane lysis
and/or RNA integrity from nuclei compared with the EZ method. In contrast, the EZ method yielded a greater recovery of fibroblasts
(sixfold) and immune cells (2.5-fold for combined immune populations), with populations expressing marker genes of natural killer
(PTPRC, KLRD1) and macrophage (CD163) lineages (Figure 4C & D). Both methods identified two clusters of vascular smooth muscle
cells (VSMCs) marked by both ACTA2 and MYH11 and discriminated by A2M expression, potentially suggesting an activated subset in-
volved in an inflammatory VSMC response (Figure 4C & D) [18]. Nuclei doublet estimates by DoubletFinder [19] were generally less than
4.8% across most cell populations, bar the outer keratinocyte cluster, where doublet estimates were 77.8% (Figure 4E). This finding was
corroborated by a lower genes/transcript ratio, clearly identifying them as nuclei doublet captures, and the absence of mixed lineage
marker expression suggests these are homotypic doublets. Alternatively, this could be due to keratinocytes being more resistant to lysis,
or greater levels of adherent cytoplasm. Both methods provided representation of stromal, immune and vascular cell types known to
make up the architecture of the normal esophagus.

In the datasets, the authors have corroborated identification of the cell types they recovered using markers established in large-scale
scRNA-seq studies of the esophagus. In their hands, the EZ method recovered a greater number of immune and fibroblast cells, while
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Figure 3. Comparison of EZ and citric acid (CA)-isolated nuclei preparations and library quality. (A & B) Representative images (4x magnification) of
DAPI-stained nuclei and cDNA electrophoresis fragment traces for recovered nuclei pools for the (A) modified EZ method and (B) CA method,
respectively. In both nuclei images, a 0.2 μl volume region is shown in both, but with different nuclei loading concentrations. (C) Percentage reads
originating from ribosomal genes for single nuclei isolated by the EZ (median: 1.7%) or CA method (median: 7.6%). Dotted line at 8% representing a
potential divide between nuclei isolated with adherent ribosomes and nuclei isolated alone. (D) Intronic read percentage for populations with > or <8%
ribosomal reads. (E) Diagram demonstrating potential retention of endoplasmic reticulum and ribosomes when nuclei are isolated by the CA method
compared with the EZ method. (F) Transcript count and feature count for single nuclei (points) isolated by the EZ (red violin) or CA method (blue violin).
Log scale. EZ (median transcript count: 496; median gene count: 254). CA (median transcript count: 483; median gene count: 256). Percentage of
intronic reads (median EZ: 40.9%; median CA: 28.6%) and mitochondrial genes (median EZ: 25.1%; median CA: 12.7%) for single nuclei isolated by the
EZ or CA method.

the CA method also provided representation of keratinocyte populations, which will be useful for researchers studying these specific cell
types. Further validation studies using additional patient samples to determine the extent of interpatient variability in cell type recoveries
are required, but the results presented here allow direct comparison of cell type recoveries between methods using one patient sample.

The authors’ observation of high mitochondrial genes expression has been observed previously in snRNA-seq datasets [14], support-
ing the assertion that mitochondria, and organelles including ribosomes, may become associated with nuclear membranes. However,
cell viability and sample handling, preservation and differences in storage conditions or time may also be contributing factors, which
the authors were unable to address in full. The localization of organelles may have additional benefits for the CA method. First, nuclei
and attached ribosome sequencing has been shown to facilitate the study of rare cell types that are challenging to analyze by nuclei
sequencing methods alone [20]. Second, the CA method may have utility for studies of RNA transcripts actively undergoing translation.

To facilitate analysis of primary tissues such as the esophagus, it is essential that dissociation methods are validated, so that cellular
heterogeneity captured across studies can be corroborated. Validated methods that can be used with frozen tissue have advantages
for the retrospective study of archived samples and for facilitating work in laboratories without access to fresh samples. The authors’
protocols have immediate utility in studies of esophageal cancer, a disease with significant unmet clinical need that was previously
challenging to study at the single-cell level. The authors have provided detailed laboratory protocols here: www.protocols.io (dx.doi.org
/10.17504/protocols.io.btm6nk9e; dx.doi.org/10.17504/protocols.io.t9wer7e).
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type indicated by bar. (D) Dot plot showing expression of cell type marker genes in nuclei clusters, where color shows average expression and size of
dot indicates percentage of cells expressing the marker gene. (E) Ratio of genes to transcript counts by cell type. Proportions of doublets in each cell
type cluster are listed as determined by DoubletFinder assuming a doublet rate of 7%.
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