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TeVeS uses a dynamical vector field with timelike unit-norm constraint to specify a preferred local

frame. When matter moves slowly in this frame—the so-called quasistatic regime—modified Newtonian

dynamics results. Theories with such vectors (such as Einstein-Aether) are prone to the vector dynamics

forming singularities that render their classical evolution problematic. Here, we analyze the dynamics of

the vector in TeVeS in various situations. We begin by analytically showing that the vacuum solution of

TeVeS forms caustic singularities under a large class of physically reasonably initial perturbations. This

shows the classical evolution of TeVeS appears problematic in the absence of matter. We then consider

matter by investigating black hole solutions. We find large classes of new black hole solutions with static

geometries, where the curves generated by the vector field are attracted to the black hole and may form

caustics. We go on to consider the full dynamics with matter by numerically simulating, assuming

spherical symmetry, the gravitational collapse of a scalar, and the evolution of an initially nearly static

boson star. We find that in both cases our initial data evolves so that the vector field develops caustic

singularities on a time scale of order the gravitational in-fall time. Having shown singularity formation is

generic with or without matter, Bekenstein’s original formulation of TeVeS appears dynamically

problematic. We argue that by modifying the vector field kinetic terms to the more general form used

by Einstein-Aether, this problem may be avoided.
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I. INTRODUCTION

For many years the existence of dark matter has been
postulated to reconcile a number of astrophysical and
cosmological observations with our understanding of the
laws of gravitation. Dark matter was originally introduced
decades ago to explain the discrepancy between the rota-
tion velocities of stars in the outskirts of galaxies and that
predicted by the mass inferred from the amount of visible
mass in the Galaxy.

The success of the dark matter paradigm extends beyond
galactic scales to cluster and indeed cosmological scales.
Today, we know that best fit models of structure formation
apparently require a dark matter fraction much larger than
the known baryon content of the Universe to drive the
growth of structure from kpc through to Gpc scales. The
potential wells provided by a cold, dark matter (CDM)
component also reconcile the amplitude of the acoustic
peaks observed in the cosmic microwave background an-
gular power spectrum [1–4] with the known baryon
content.

Dark matter also provides a simple explanation for the
observed lensing of background galaxies by clusters along
the line of sight. Recently, the combination of optical, x-
ray, and lensing observations of the bullet cluster have
yielded the most direct evidence to date in support of the
picture, where the gravitational mass of clusters is domi-
nated by a dark matter component [5].

Taken as a whole, the growing wealth of observations
points clearly to a concordance �CDM cosmological
model with a significant fraction of the critical energy
density made up of CDM. The dark matter paradigm has
stood the test of time remarkably well, but significant
questions remain. Many candidates for a dark matter par-
ticle exist ranging from massive neutrinos to more exotic
weakly interacting extensions to the standard model.
However, dark matter has yet to be detected directly in
the laboratory or indirectly possibly through the �-ray
signature of its decay in the center of galaxies (this is
required to avoid the concentration of dark matter observed
in numerical simulations).
For these reasons, an alternative approach to adding a

dark matter component has been to consider whether the
discrepancies between observations and general relativity
in the low acceleration regime are an indication of the
failure of the theory itself. This was the approach taken
by Milgrom [6] who proposed a phenomenological modi-
fication to the acceleration equation that seems to fit well
galactic rotation curves without the addition of any dark
matter

�ðjaj=a0Þa ¼ �r�; (1)

where � is the Newtonian potential, �ðxÞ is an arbitrary
function with limits such that �ðxÞ ! 1 in the strong
acceleration regime (x � 1). The constant a0 �
10�10 m s�2 determines the acceleration scale below
which the modified Newtonian dynamics or MoND be-
comes relevant, and the above acceleration law receives
nonlinear corrections. While� is potentially a free (mono-
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tonic) function, only the limits where its argument goes to
zero or infinity affect the astrophysical phenomenology.

MoND has been successful in fitting the anomalous
accelerations observed in galaxies and clusters (see e.g.
[7] for a recent review). It also successfully predicts the
Tully-Fisher relation correlating the luminosity of galaxies
to the fourth power of the rotation velocity. However, it
remains a phenomenological modification of gravity with
no underlying relativistic theory. In addition, the simplest
theory based on a modified action that reproduces Eq. (1)
depends explicitly on coordinates and breaks conservation
laws. The fact that MoND has no underlying covariant
theory has restricted its application for the purpose of
comparison with other astrophysical and cosmological
observations. For example, lensing predictions in both
the strong and weak regimes cannot be formulated in
MoND, and this has left it unable to answer the criticism
stemming from lensing mass reconstructions of galactic
and cluster profiles, which seem to suggest the existence of
dark matter halos.

Recently, however, Bekenstein [8], has put forward
TeVeS, a relativistic theory of gravity that reduces to
MoND in the weak acceleration limit. In TeVeS, the matter
sector lives on a matter frame (MF) metric, which maps
‘‘disformally’’ to a second, Einstein or gravitational, frame
(EF) metric via a dynamical scalar field� and a dynamical
vector field A. The addition of a scalar and vector degree of
freedom are behind the name ‘‘tensor, vector, and scalar,’’
or TeVeS theory. TeVeS builds on previous attempts to
obtain a relativistic version of MoND, which suffered
from a number of inconsistencies involving the acausal
propagation of physical degrees of freedom [9,10].
TeVeS, however, was shown to be a fully causal theory
for positive values of the additional scalar field.

The original motivation behind TeVeS was to build a
theory with a fully consistent action that recovers the
MoND behavior in the weak acceleration limit. However,
given it is a relativistic, metric theory of gravity and matter,
it can do much more. In TeVeS, it is possible to calculate
geodesics in the presence of a matter sources, which leads
to lensing predictions [11]. It is also possible to show that it
is compatible with the basic background cosmological
observations such as age and distance measure observa-
tions [8]. The full framework of relativistic perturbation
theory can be developed in TeVeS, which makes compari-
son to the perturbed universe possible. Already the first
calculations in this area have shown that the theory may be
reconciled with cosmic microwave background and large-
scale structure observations [12–15], albeit with some fine-
tuning of the model ingredients. Attempts have also been
made to explain the bullet cluster results within the TeVeS
framework [16].

For TeVeS to be a successful theory it must also be
shown to be consistent, and agree with observations, in
the strong gravity regime. In exploring this end of the

theory the potential is that it could be compared with
astrophysical observations of compact objects such as
neutron stars and black holes or at the solar system level
with post Newtonian corrections to planetary orbits
[8,17,18].
In order to have a modification of gravity dependent on

acceleration, one must have a reference frame in which to
measure that acceleration. The vector in TeVeS dynami-
cally selects that reference frame, spontaneously breaking
Lorentz invariance, since it is constrained to have unit
timelike norm. All types of matter see the same distorted
metric so adding a preferred frame is not in conflict with
weak equivalence principle tests. Only tests of gravita-
tional dynamics can constrain the theory. MoND is recov-
ered from TeVeS when matter moves nonrelativistically in
the frame defined by the TeVeS vector, which has been
termed the ‘‘quasistatic’’ regime. The purpose of our work
is to argue that this quasistatic regime will typically only
exist for a short period of time, of order the gravitational in-
fall time, after which the vector field develops a singularity,
and the theory cannot be classically evolved any further.
Hence, TeVeS even classically is dynamically sick in prac-
tice and recovery of MoND or even general relativity (GR)
is impossible. Indeed here for simplicity we will focus on
the large acceleration regime relevant on small scales (e.g.
within the solar system) where the in-fall time scales are
shortest.
This singular vector field behavior is analogous to that in

other modified gravity theories such as Einstein-Æther
theory [19,20] and ghost condensation [21,22]. Einstein-
Æther theory is much simpler than TeVeS, being simply
Einstein gravity modified by adding a vector field, again
with timelike unit-norm constraint. The vector action is
taken to be more general than that in TeVeS, where it is
simply that of a Maxwell field, but one may choose them to
be the same. In this case (actually a theory written down
earlier [23]), it is easy to show that the vector field generi-
cally develops singularities; classes of solutions exist
where the integral curves of the vector are timelike geo-
desics moving in the spacetime geometry created by the
matter. These geodesics fall into gravity potential wells and
meet, and when they do so, the flow they define develops
caustic singularities [19]. The vector field at these points
becomes singular. It is for this reason that the Einstein-
Æther literature focuses on other choices of the vector
action than Maxwell type. Indeed, while the ghost con-
densation theory has no vector, it is the integral curves of
the gradient of the ghost scalar that form caustics. Since
TeVeS is a considerably more complicated theory than
Einstein-Æther, with complicated coupling of its vector
and scalar to the matter, the vector behavior and, in par-
ticular, whether it forms singularities could be very differ-
ent. Our key result is that while in detail the dynamics of
the vector is clearly different, it is still subject to the same
singularity development as the Maxwell case of Einstein-
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Æther. However, we can play the same game as in Einstein-
Æther theory, and by taking more general vector kinetic
terms, we may avoid this behavior, and as we show later,
we still recover MoND for quasistatic systems.

The paper is organised as follows. In Sec. I Awe review
TeVeS theory and the field equations derived from the
TeVeS action. We review the relation between TeVeS and
the Einstein-Æther theory in Sec. I B where we introduce
the problem of vector field caustic singularity formation. In
Sec. II we begin by showing analytically that in the ab-
sence of matter the TeVeS vacuum forms singularities
under evolution of a class of initial perturbations. These
are physically reasonable perturbations, and we are able to
precisely characterize the condition for the initial data
developing to a singularity. We find that the condition is
generic within the class of perturbations. Already this
analysis indicates a fundamental problem with the TeVeS
dynamics. However, phenomenologically it is the inclusion
of matter in TeVeS that is of key interest, and hence we
proceed to study whether such inclusion ameliorates or
worsens the problem. We begin our study of matter in
TeVeS in Sec. III with an analytic treatment of black holes.
Previous static black hole solutions of Giannios [17] and
Sagi and Bekenstein [24] have a static vector field aligned
with Killing time. However, we find a large class of new
solutions where the geometry is static, but the vector field
is in general dynamic. There exists a family of stationary
solutions where the vector falls into the future horizon, but
also dynamic solutions where caustics may form in the
exterior of the black hole. The black hole provides a focus
for the curves of the vector field and hence indicates that
singularity formation is likely to be enhanced by compact
matter sources. We then proceed in Sec. IV with our study
of matter by performing full numerical simulation of scalar
collapse and the evolution of an initially quasistatic boson
star. In both cases the evolution ends at a caustic, in the
former outside of an apparent horizon, and in the latter near
the surface of the star. Having given evidence that the
dynamics of TeVeS is too pathological to provide a rela-
tivistic setting for the phenomenological theory of MoND,
in Sec. V we outline a modified TeVeS theory that may not
suffer from caustic formation in the vector field. We ex-
plicitly show that MoND is again reproduced in the appro-
priate Newtonian limit. We argue that this modification is
likely to affect many detailed phenomenological studies of
TeVeS should therefore be included. We conclude with a
summary and brief discussion of our main results in
Sec. VI.

A. TeVeS action and field equations

TeVeS is constructed using two metrics, theMFmetric ~g,
and the EF metric g. The two metrics are related through
‘‘disformal relations’’ involving the extra scalar and vector
fields � and A�

~g �� ¼ e�2�g�� � 2A�A� sinh2�; (2)

~g �� ¼ e2�g�� þ 2A�A� sinh2�: (3)

The total action S governing the dynamics in TeVeS can be
split into separate components S ¼ Sgþv þ Ss þ Sm,

where

Sgþv ¼ 1

16�G

Z �
R� K

2
F��F

�� þ �ðA2 þ 1Þ
�

�ð�gÞ1=2d4x; (4)

where g is the determinant of the EF metric, R is the scalar
curvature, G is the gravitational constant, and F�� ¼
A½�;�� ¼ A�;� � A�;�. The Lagrange multiplier � enforces

the timelike, unit-norm constraint on the vector field

g��A�A� ¼ �1: (5)

The scalar field action is given by

Ss ¼ � 1

2

Z �
	2ðg�� � A�A�Þ�;��;�

þ 1

2
G‘�2	4F ð
G	2Þ

�
ð�gÞ1=2d4x; (6)

where 	 is a nondynamical scalar field, and F ð
G	2Þ is a
dimensionless function whose behavior is determined by
requiring GR and MoND to be recovered in the appropriate
dynamical limits. TeVeS introduces three new parameters;
the two dimensionless constants 
 and K and a third
parameter l with units of length.
Finally, the matter action Sm is built using the MF metric

as

Sm ¼
Z

L½~g; �A; @�A�ð�~gÞ1=2d4x; (7)

for a collection of matter fields �A. Thus, all matter fields
are coupled to the same MF metric, and test particles
follow the same geodesics. This ensures that the weak
equivalence principle is satisfied and that the theory is
not in conflict with fifth force measurements.
Varying with respect to g, and recalling ~g ¼ ~gðg; A;�Þ

gives the Einstein equations

G�� ¼ 8�G½ ~T�� þ ð1� e�4�ÞA� ~T�ð�A�Þ þ ����
þ���; (8)

where ~T�ð�A;�Þ ¼ ~T��A� þ ~T��A�, G�� is the Einstein

tensor, ~T�� is the energy momentum tensor of the matter

components defined in terms of the MF metric ~g��, and

��� � 	2

�
�;��;� � 1

2
g���;��;�g�� � A��;�

�
Að��;�Þ

� 1

2
A��;�g��

��
� 1

4
G‘�2	4F ð
G	2Þg��; (9)

��� � K

�
F�

�F�� � 1

4
g��F

2

�
� �A�A�: (10)
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Variation with respect to the scalar field 	 yields a relation
between 	 and �;� involving F . The specific choice of F
determines the exact behavior of the theory in the weak
acceleration regime and is relevant for the MoND and
cosmological behavior of TeVeS. The regime of interest
for this work is onewhere the acceleration is much stronger
than the MoND acceleration scale a0. In this case, the
MoND function �ðjaj=a0Þ ! 1, which is equivalent to a
limit on the argument of the free function F ,

	2 ! 1


G
: (11)

For any suitable function choice, F diverges logarithmi-
cally in (�� 1) in this limit. The contribution of F to the
field Eqs. (8), however, is suppressed by a factor (�� 1)
relative to other terms, and so when �� 1 it may be
neglected [8,17,24]. Thus, our results will be insensitive
to any particular choice of F , and we drop the term in the
following. Finally, variation with respect to the scalar gives

½ðg�� � A�A�Þ�;��;� ¼ 
G½g�� þ ð1
þ e�4�ÞA�A�� ~T��; (12)

and for the vector we have

Kr�F
�� þ �A� þ 8�



A��;�g

���;�

¼ 8�Gð1� e�4�Þg��A� ~T��: (13)

As stated here TeVeS is a classical phenomenological
theory. The somewhat Baroque form for the Lagrangian
leads to the obvious concern that the theory is not stable to
quantum corrections. Attempts have been made to study a
UV origin from string theory [25,26], and there are cer-
tainly many interesting questions in these directions, which
we do not consider here.

It is also worth mentioning that the TeVeS theory itself
has been generalized by various authors [15,27–30], and it
would be interesting to consider the formation of caustics,
which we study here in these modified versions of the
theory.

B. Æther theory, its relation to TeVeS, and problems
with its vector field dynamics

Another theory of aether field dynamics is Einstein-
Æther theory [19]—an effective field theory designed to
investigate the effects of Lorentz violation in a fully co-
variant setting. It has the action

1

16�G

Z
½Rþ K��

��r�A
�r�A

� þ �ðA2 þ 1Þ�ð�gÞ1=2

þ
Z

Lmatter½g�; (14)

where K��
�� provides the most general kinetic term for A,

which is diffeomorphism invariant, quadratic in deriva-
tives, and (preemptively) consistent with the A2 ¼ �1

constraint. Specifically,

K��
�� ¼ c1g

��g�� þ c2

�
�


�
� þ c3


�
�


�
�

þ c4A
�A�g��: (15)

This kinetic term is the usual Maxwell case when cþ �
c1 þ c3 ¼ 0, c4 ¼ c2 ¼ 0, c� � c1 � c3 < 0. Einstein-
Æther theory is actually a truncation of TeVeS in the
absence of matter, where we may consistently set the scalar
to zero and then c� ¼ �2K—however, obviously phe-
nomenologically this is not the regime of interest for
TeVeS, where the coupling to matter and the nonzero scalar
are crucial.
Following Jacobson and Mattingly [19] it is easy to see

that the Maxwell case of Einstein-Æther is pathological. To
any solution of Einstein gravity coupled to matter, we may
simply add a vector field obeying the equations

F�� ¼ 0; A2 ¼ �1; (16)

and this will then solve the full Einstein-Æther equations
for that matter, since the vector and constraint contribute
nothing to the stress energy. Note that the vacuum, the
Minkowski geometry and A� ¼ ð@tÞ�, is in this class of
solutions. Generally, the solution is given by

A� ¼ @��; ð@�Þ2 ¼ �1; (17)

where the latter equation is a partial differential equation,
first order in time,

@t� ¼ 1

ð�gttÞ
�
gti@i�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gttÞð1þ @i�@i�Þ þ ðgti@i�Þ2

q �
; (18)

with i ¼ 1; . . . ; 3, which can evolve � in time from an
initial Cauchy surface. We have taken the choice of root
above, since wewish A� to be a future directed vector field.
Hence, the data for the solutions can be characterized by
the function �ðt ¼ 0; xÞ. Now, A�r�A� ¼ A�r�A� ¼ 0

using both relations in (16). Hence, integral curves of the
vector field A are simply timelike geodesics.
Suppose we consider a static star as a matter source.

Then the solution above will have families of vector fields
with different initial directions, but all will have integral
curves that fall in toward the gravitational potential well
and will meet each other in a timescale of order the
gravitational in-fall time. Since these are integral curves
of the vector field, when they meet they result in a caustic
singularity, where the value of the vector is ill-defined.
Indeed, even in the absence of matter and with the
Minkowski spacetime geometry it is possible to have sin-
gular behavior. Such a solution is illustrated in Fig. 1.
This simple argument shows for solutions with F�� ¼ 0

that caustic singularities generically occur in the presence
of gravitational potential wells. It seems reasonable that
singularities will also occur in solutions where F�� � 0.
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While there are no general arguments, in specific cases
with F�� � 0 singularity formation has been shown by

Clayton [20].
It is for these reasons that the Einstein-Æther literature

does not consider the Maxwell vector kinetic term [31].
Interestingly, there is little rigorous understanding for what
choices of parameters ci do give well-behaved vector
dynamics. Clearly a caustic singularity is signalled by the
divergence of the vector field becoming infinite. Hence, it
is expected that by adding the term c2 appropriately, which
directly energetically weights this divergence, one can
dynamically suppress singularities. For example, taking
the Maxwell case together with the additional term c2,
we obtain a vector equation of motion

ð
�
� þ A�A�Þ½@�F�� þ c2@

�ð@ � AÞ� ¼ 0: (19)

We note that when c2 ¼ 1 the equation of motion is
essentially the wave equation, and hence in a regular
geometry we would certainly not expect singular behavior.

How large c2 should be to avoid singularities is an inter-
esting open problem.
Ignoring gravity and matter, we simply plot a vector

solution to the above equation in 1þ 1 flat space in Figs. 1
and 2. The left frame is for c2 ¼ 0, the right for c2 ¼ 0:2,
and both have the same initial data, which satisfies F�� ¼
0. Note that the right frame cannot be lifted simply to a
solution of Einstein-Æther since for c2 ¼ 0:2, F�� will not

remain zero, and the vector necessarily contributes to the
gravitational stress tensor. However, clearly by eye we see
a change in behavior, where the small amount of positive
c2 avoids the caustic, leading to an asymptotic vector
solution that is aligned with time.

II. VECTOR FIELD DYNAMICS IN THE ABSENCE
OF MATTER

While in Einstein-Æther we can exhibit the large class of
solutions of the vector field in (17), which lead to caustic
singularities, it is far from obvious that the same occurs in
TeVeS. For these solutions, F�� ¼ 0, and this leads geo-

metrically to the integral curves of the vector simply being
geodesics that fall into the gravitational wells created by
the matter. However, in TeVeS there is direct coupling
between the vector and matter, and hence in the presence
of matter one cannot have F�� ¼ 0. If F�� � 0, then the

curves of the vector do not follow geodesics, and we cannot
argue that they must cross forming caustic singularities,
even if we suspect they might.
However, we can make some analytic progress in the

absence of matter so ~T�� ¼ 0. Then we may consistently

truncate to solutions with constant scalar field. Initial data
with constant scalar and vanishing scalar time derivative,
i.e. @�� ¼ 0 on an initial Cauchy surface, evolves to have

constant scalar.
We stated earlier that we are interested in the strong

acceleration regime, for example, we look at the dynamics
on solar system scales or smaller. We denote this scale of
interest by L. Since the acceleration regime is actually
determined by the scalar gradient, a precisely constant
scalar corresponds to exactly the opposite, the low accel-
eration MOND regime, even if all other dynamical fields
have characteristic scales given by L. However, we are
envisaging a physical situation in which the TeVeS scalar
has long wavelength fluctuations set by surrounding mat-
ter, for example, set by the Galaxy in which the region of
interest is embedded. These fluctuations will be taken to
have gradient large enough to place our region of interest
into the Newtonian regime, which translates to the condi-
tion that the scalar should vary on lengths set by the TeVeS
scale ‘. In Appendix A, we show that given this vast
separation of scales L 	 ‘, a solution to the TeVeS equa-
tions where we instead take exactly constant scalar, ignore
F and set � ¼ 1, is a good approximation to the full
TeVeS equations, within the scale of interest L [32].

FIG. 1. Flat Space evolution of a Gaussian perturbation to the
radial component of the vector field for the Einstein-Maxwell
case (c2 ¼ 0, no divergence term included). The solution dis-
plays caustic instabilities.

FIG. 2. Flat Space Same as Fig. 1 but for c2 ¼ 0:2 i.e. a
divergence term included in the kinetic part of the Einstein-
Æther vector action. The addition of a divergence term sup-
presses the formation of caustics.
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For a constant scalar the vector equation reduces to

Kr�F
�� þ �A� ¼ 0: (20)

Consider starting with initial data on a Cauchy surface� at
t ¼ 0, where F�� ¼ 0. Since A� is timelike, the t compo-

nent At cannot vanish, and hence the t component of the
above vector equation sets � ¼ 0 on this initial data sur-
face. However, the remaining components i ¼ 1 . . . 3 then
determine @tF

ti ¼ 0 at t ¼ 0. Furthermore, the Bianchi
identity for F��, r½�F��� ¼ 0 implies that @tFij ¼ 0 at

t ¼ 0. Together these imply that @tF�� ¼ 0 and so F��

remains zero when evolved off the surface �. Hence, we
see that starting with initial data @�� ¼ F�� ¼ 0 on �

implies (in the absence of matter) that the scalar is con-
stant, F�� ¼ 0 and � ¼ 0 for all t. As discussed above, for

F�� ¼ 0 the vector can then be written as A� ¼ @�� with

the timelike constraint A�A� ¼ �1 giving the p.d.e. in

Eq. (18), which can be used to evolve �. Hence, the initial
data for the vector can be parametrized by the function �
on �, which determines the direction of the vector on �.

The dynamics of TeVeS in this truncation are the same
as those of Einstein-Æther with Maxwell kinetic term and
no matter. Hence, as we claimed above, for F�� ¼ 0where

vector integral curves are timelike geodesics, we should
expect to be able to form caustics. While this is true, and
indeed Fig. 1 gives an example in 1þ 1 for the Minkowski
geometry, there is no matter to focus the geodesics and
hence it is not obvious how generic caustic formation
would be. If we start with initial data in this class of
solution—i.e. suitable data for the metric, together with
the function �, which specifies initial data for the vector—
are the initial data that develop to a singularity generic, or a
special case? We now address this by precisely character-
izing when initial data will form a caustic. We note that
while our analysis is given in the context of TeVeS, pre-
cisely the same argument can be made in the context of
Einstein-Æther theory, although we know of no previous
literature doing so.

Hence, we consider TeVeS in the absence of matter, with
constant scalar, and with F�� ¼ 0. We note that the TeVeS

vacuum, with Minkowski geometry and A� ¼ ð@tÞ� is in
this class, and hence we may regard the class as a restricted
(although not necessarily small) deformation of the TeVeS
vacuum. The equation for the metric immediately gives
R�� ¼ 0. Thus, the class covers gravity wave spacetimes

and black hole exteriors (with constant scalar).
We now briefly review some basic facts in GR. For a

congruence of timelike geodesics, parametrized by proper
time � with tangent vector field ��, with ���� ¼ �1, we

may define a tensor field

B�� ¼ r���; (21)

which then satisfies B���
� ¼ B���

� ¼ 0. We define the

expansion �, shear 	��, and twist !�� as

�¼B��h��; 	�� ¼ 1
2Bð��Þ � 1

3�h��; !�� ¼ 1
2B½���;

(22)

where h�� ¼ g�� þ ���� is the projector onto the tangent

space orthogonal to the timelike geodesics. Then
Raychaudhuri’s equation is

d�

d�
¼ � 1

3
�2 � 	��	

�� �!��!
�� � R���

���: (23)

Now we consider applying this result to our situation.
Recall that since our solutions have F�� ¼ 0, then the

integral curves of A� are timelike geodesics, and moreover
the tangent vector A� has unit norm. Hence, we may take
the �� above to be A�. Then since F�� ¼ 0 the twist !��

vanishes, and hence the congruence is hypersurface or-
thogonal. Furthermore, we have R�� ¼ 0, and using the

fact that 	��	
�� 
 0 therefore arrive at the expression

d�

d�
� � 1

3
�2; (24)

where � ¼ ðr�A�Þðg�� þ A�A�Þ ¼ r � A since A�A� ¼
�1. Thus, we have the result

ðr � AÞ�1ð�Þ 
 ðr � AÞ�1
0 þ 1

3�; (25)

along a geodesic with r � A ¼ ðr � AÞ0 at the point where
the geodesic intersects the initial Cauchy surface �. So we
conclude that if r � A < 0 anywhere on the initial hyper-
surface 	, within a proper time �3ðr � AÞ�1

0 , r � A di-

verges, signaling that the geodesic congruence ends at a
caustic singularity.
In summary, we have obtained the following result: In

the absence of matter smooth initial data with @�� ¼
F�� ¼ 0 on a spacelike hypersurface � will evolve to

form a caustic singularity if r � A < 0 anywhere on �.
Note that while these are solutions with exactly constant
scalar, the timescale of caustic formation is set by L, and so
they will still be good approximations to the TeVeS equa-
tions in the strong acceleration regime, as discussed in
Appendix A.
While this class of solutions is clearly restricted, it is still

physically reasonable and, in particular, includes initial
data close to the TeVeS vacuum. The initial data includes
the initial data for the metric and for the vector, the
function � on �. The condition that r � A < 0 at any point
on the initial data surface is very weak, and certainly
generic within our restricted class. For example, consider
the small perturbation from the TeVeS vacuum, where the
metric is taken to be Minkowski and the vector near the
initial surface � at t ¼ 0 is given by � ¼ �tþ 
�, for
small 
�. Then the singularity condition on �, ðr � AÞ ’
r2

i 
� < 0 will be generically satisfied in the region sur-
rounding a maximum in � on �.
Hence, our result very clearly highlights the fact that

caustic singularities do indeed occur in TeVeS. Note that
we have bounded the time to form the singularity by the
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initial data—no dimensional constants enter that might be
used to tune away the singularity. It is worth emphasizing
that if we were considering a gauge theory where A� were

a gauge potential, then such caustic singularities would not
be a concern. One could simply gauge them away.
However, the Lagrange multiplier and coupling of the
vector to the matter here mean there is no such gauge
symmetry, and a singularity of the type here is a true
physical singularity. The classical evolution of the theory
is ill-posed once the singularity has formed.

In a sense we are done. While in the absence of matter
for more general initial data we have no argument to show
caustics form, it certainly seems likely. This fact is already
sufficient to render the dynamics of the TeVeS theory
rather dubious. However, since phenomenologically it is
the interaction with matter that is of tantamount interest in
TeVeS, it is still interesting to understand whether matter
ameliorates the situation or instead makes it worse, and we
spend the remainder of the paper investigating this.

An interesting and possibly related topic is the linear
instability noted by Seifert [33] when considering pertur-
bations of spherically symmetric backgrounds in Einstein-
Æther and TeVeS using the methods of [34]. Clearly the
phenomenon of caustic singularity formation is essentially
nonlinear, and one would not expect to see it in linear
theory. However, the dynamics of such singularity forma-
tion may be associated with a growing unstable linear
mode for the vector field, and it would be interesting to
investigate whether there is indeed a link between our
discussion and Seifert’s linear instability. Seifert has dis-
cussed modifying TeVeS in the same sense we do later, and
his work led to Skordis considering the same modification
we present later in the context of cosmological perturba-
tion theory.

III. VECTOR FIELDDYNAMICS ANDNEWSTATIC
BLACK HOLE GEOMETRIES

In this section we find new classes of black holes in
TeVeS where the Einstein metric is static, but the vector
field has nontrivial dynamics, and its integral curves fall
through the horizon. The previous static black hole geome-
tries of Giannios [17] and of Sagi and Bekenstein [24] have
had the vector aligned with the Killing time, which naively
suggests the vector field in the exterior regions to slowly
moving matter might dynamically wish to align with the
matter’s natural frame. However, the existence of our new
solutions clearly shows that this is not to be expected, and
that the dynamics of the vector exterior to a region con-
taining matter may be very complicated, and, in particular,
is likely to want to fall toward the matter and may form
caustic singularities. For an actual matter source rather
than a black hole where the integral curves cannot disap-
pear through a horizon, accumulation of curves as the
vector falls toward the matter are more likely to form

singularities. Indeed, in later sections our simulations
with matter show that this is the case.
Later in the paper we will suggest a modification of the

TeVeS theory to avoid caustic singularity formation. It is
worth noting that the black hole solutions presented below
will not be solutions in this modified theory, and hence we
avoid going into detailed phenomenology for these solu-
tions here. It would be interesting to study black hole
solutions in the modified theory we suggest, and we
make some comments on this in the concluding discussion
in Sec. VI.
As discussed in the previous section, we will be inter-

ested in length scales L 	 ‘, where the TeVeS scalar is
approximately constant in the region of interest but varies
enough to place the region in the strong acceleration
regime. Thus, as discussed in Appendix A, we may con-
sider solutions to the TeVeS equations with exactly con-
stant scalar, ignoring F and setting � ¼ 1 as a good
approximation.

A. New static black hole geometries with
constant scalar

It was shown by Giannios in [17] that if the vector field A
is aligned with the time translation Killing vector, then the
solution for � is singular unless it is constant. Letting that
constant be �c, the solutions take the form

� ¼ �c; (26)

A� ¼
�

1ffiffiffiffiffiffiffiffiffi
TðrÞp ; 0; 0; 0

�
; (27)

ds2 ¼ �TðrÞdt2 þ RðrÞdr2 þ r2ðd�2 þ sin2�d’2Þ: (28)

The Penrose diagram for this solution is presented in Fig. 3.
For our new solutions we again have a static Einstein
metric and constant scalar, but now take Ar � 0

A� ¼ ðAtðrÞ; ArðrÞ; 0; 0Þ; (29)

The scalar field equation is trivially satisfied for a vacuum
spacetime. The vector field equation becomes

Kr�F
�� þ �A� ¼ 0: (30)

For the case where � ¼ r the first term vanishes leaving

�Ar ¼ 0; (31)

and thus for Ar � 0 we have � ¼ 0. In this case, the field
equations become those of Einstein-Maxwell theory for a
particular choice of gauge. Given this we expect to find
Reissner-Nordström (RN) black holes, and one can check
this is indeed the general solution—we give the argument
in Appendix B [35]. We find
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g ¼ Diag

�
�
�
1� 2M

r
þQ2

r2

�
;

�
1� 2M

r
þQ2

r2

��1
;

r2; r2sin2ð�Þ
�
; (32)

A� ¼ @��þ 
t
�

ffiffiffiffi
2

K

s
Q

r
; (33)

� ¼ �t�
Z

dr

�
1� 2M

r
þQ2

r2

��1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

K
� 1

�
Q2

r2
þ

�
Mþ

ffiffiffiffi
2

K

s
Q

�
2

r

vuut
; (34)

and hence see that the solution is indeed simply RN where
the gauge freedom for the field A, specified by the function
�, has been fixed up to a sign by the Lagrange multiplier
constraint that A has unit timelike norm. Note that forQ ¼
0 this gauge transformation � is the Lemaı̂tre time coor-
dinate, i.e. the coordinate time experienced by in-falling
geodesic observers. Clearly, F�� ¼ 0 when Q ¼ 0, and so

the integral curves of A are geodesics of the EF geometry.
One may show that the matter frame metric is RN too,

after an appropriate coordinate transformation. We cast ~g
into Schwarzschild-type coordinates, ð�; �Þ defined as

tð�; �Þ ¼ e��c�þ fð�Þ rð�Þ ¼ e�c�; (35)

where f is given by

f;� ¼ �e�c
~grt
~gtt

: (36)

These transformations leave all components � indepen-
dent, and ~g in standard RN form in Schwarzschild coor-
dinates

~g �� ¼ � 1

~g��
¼ �

�
1� 2 ~M

�
þ

~Q2

�2

�
~g�� ¼ 0; (37)

where now the mass and charge are given as

e�c ~M ¼ e�4�cM� ð1� e�4�cÞ
ffiffiffiffi
2

K

s
Q; (38)

e2�c ~Q2 ¼
�
e�4�c þ ð1� e�4�cÞ 2

K

�
Q2: (39)

This shows the metric is still RN, but with shifted horizon
positions. For example, in the Schwarzschild case (Q ¼ 0)
we have that the MF and EF horizons are related by

rH ð~gÞ ¼ e�4�crH ðgÞ: (40)

The Penrose diagram for this solution is presented in Fig. 4.
Bekenstein [8] demonstrates the speed of scalar perturba-
tions (at fixed background vector) and vector perturbations
(at fixed background scalar) is subluminal with respect to
electromagnetic propagation only if�> 0 everywhere. So
we conclude that in this case, the horizon seen by the
matter fields is smaller than the horizon for the gravita-
tional fields ð�;A; gÞ.
We now approach TeVeS solutions from another direc-

tion. Starting with the standard RN solution in Einstein-
Maxwell theory, we may obtain a vacuum solution of
TeVeS with constant scalar and � ¼ 0 provided we may
choose a gauge such that the vector potential satisfies the
TeVeS constraint A�A� ¼ �1. Hence, we find a large

class of solutions with metric (32) and vector of the form
(33) but where, as in the earlier Eq. (18), we regard the
gauge condition as a first order p.d.e. in time for �

@t� ¼ �
ffiffiffiffi
2

K

s
Q

r
þ 1

ð�gttÞ ðg
ti@i�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�gttÞð1þ @i�@i�Þ þ ðgti@i�Þ2

q
Þ: (41)

Hence, we may take the solutions to be characterized by
the charges M, Q, and also �ðt ¼ 0Þ, from which we
evolve to construct � for all t. The solution above in
Eq. (34) is a stationary solution to this p.d.e. for �. In

g
g

FIG. 4. The Penrose Diagram for the generalized
Schwarzschild MF Spacetime (Q ¼ 0 case) with the EF horizon
position. In this case, the vector field is free falling along geo-
desics of g through both horizons.

FIG. 3. Penrose diagram for the Schwarzschild MF spacetime,
where the vector field is aligned with the Killing time as in the
Giannios solutions [17].
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general, however, the solutions to this p.d.e. will have
complicated time dependence.

Note that for Q ¼ 0, this class of solutions has R�� ¼
F�� ¼ 0 as well as constant scalar and hence falls into our

earlier class discussed in Sec. II. Thus, in this black hole
background we can again precisely characterize caustic
singularity formation by the previous statement that, let-
ting ðr � AÞ0 be the value of r � A on a surface �, then if
ðr � AÞ0 < 0 at any point on � a singularity will form
within a proper time �3ðr � AÞ�1

0 measured along the

future of the integral curve of A through that point. Since
this condition is generic within our class of solutions for
Q ¼ 0, we see that caustic singularity formation is to be
expected in the exterior of these black holes. While we
have no argument that the same is true for Q � 0, we
expect it is likely.

The presence of the matter appears to attract the vector
field integral curves. Naively this focusing would seem-
ingly make caustic singularity formation more likely.
However, interestingly the presence of the horizon actually
renders the singularity formation less severe in the sense
that if the time to singularity formation is sufficient that the
integral curve of A has fallen inside the horizon, an external
observer need not care. Indeed, in the stationary solution
(34) above this precisely happens, with a caustic singular-
ity occurring at the black hole singularity itself. Of course,
if the matter source is not a black hole, but rather a compact
object without horizon, then we still expect the vector field
curve attraction, but now there is nowhere for the curves to
go, and hence the expectation that the matter focuses the
vector to form singularities would hold. Later in the paper
we investigate this.

We conclude this section by commenting that we have
examined the case of constant scalar, stationary black hole
solutions. One might wonder whether stationary solutions
with nonconstant scalar can be found, which share the
symmetry and asymptotics of those found here. We address
this question in Appendix C, finding evidence that no
solutions exist near to the ones above with constant scalar.
We show that for a linear perturbation of the scalar about
our constant scalar solution a singular develops exterior to
the horizon, and that performing a full nonlinear numerical
evaluation of such a solution one finds both the EF and MF
metrics are nakedly singular. We cannot argue that no
nonconstant scalar black holes exist [36] but do expect
there are none that are qualitatively similar to the constant
scalar solutions we have found. Note that this is compatible
with the argument presented in Appendix A, since the kind
of nontrivial scalar considered there need not be static nor
share the same asymptotics or symmetry.

IV. VECTOR FIELD DYNAMICS AND MATTER:
NUMERICAL SIMULATION

In Sec. II, we have shown that in the absence of matter, a
large class of deformations of the TeVeS vacuum initial

data quickly terminate in caustic singularities upon time
evolution. In Sec. III, we have shown that black hole
solutions of TeVeS have complicated vector dynamics,
which again include caustic singularities, and, in particular,
that the black hole appears to attract the integral curves of
the vector field toward it. We might then expect this to
occur for any matter source, and then imagine that such an
attraction which focuses the integral curves is likely to
generate caustic singularities. This is too quick however,
as matter couples to the vector field in TeVeS in a compli-
cated fashion, and hence we have little intuition or analytic
control over what happens.
It is the subject of this section to investigate the vector

dynamics in the presence of matter using full numerical
evolution of the TeVeS equations of motion. To make
progress we restrict ourselves to spherical symmetry. We
are then able to consider both gravitational collapse of a
matter scalar field, and evolution of an initially near static
boson star. In both cases we find the vector curves in the
region exterior to the matter are indeed attracted toward the
matter and do form caustic singularities. One might be
concerned that imposing spherical symmetry restricts to a
rather special class of solutions, which focuses energy at
the origin of spherical symmetry. However, the caustic
singularities actually form away from the origin and hence
the singularities themselves locally have a planar symme-
try, and seem not to result from the peculiarities of spheri-
cal symmetry. In both cases the TeVeS scalar is fully
dynamical and nonconstant, hence justifying the
Newtonian regime approximation (� ¼ 1, neglecting F ).
It remains smooth where the caustics form indicating that
the scalar plays no role in the pathalogical vector
dynamics.
Full details of the numerical implementation and con-

vergence and constraint tests are postponed to
Appendices D and E.

A. Scalar field collapse

Our first matter system is the collapse of a complex
scalar field. We perform an integration of the field equa-
tions from an initial spherical shell of scalar matter. We use
a canonical complex scalar field �, whose action is con-
structed using the matter frame metric ~g. Using time
symmetric initial data and a radial Gaussian shell for the
matter field �, the matter energy density will split into
ingoing and outgoing components and for sufficient am-
plitude of the initial shell, the ingoing component will be
focused at the origin into a high enough energy density to
form a black hole. We use the coordinate system

ds2 ¼ �T2ðt; rÞdt2 þ eRðt;rÞdr2 þ r2d�2
2; (42)

which clearly covers only the exterior region of any black
hole that might form.We emphasize that since the matter �
couples to the TeVeS vector and scalar, both must be
evolved and have nontrivial dynamics.
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For the metric we choose time symmetric initial data
that satisfies the constraint equations. The TeVeS scalar we
take to be constant initially, and time symmetric, and for
the vector, we take Ar ¼ 0 at t ¼ 0 and choose _Ar such that
F�� ¼ 0 at t ¼ 0. However, since there is matter, in con-

trast to the discussion in the previous sections above, F��

will immediately evolve to be nonzero and � to be
nonconstant.

We find that for different initial Gaussian shells of �, of
sufficient amplitude to ensure nonlinear dynamics when
the ingoing pulse reaches the origin (for weak amplitudes
the energy density simply passes through the origin and
radiates to infinity as is the case in usual standard gravity
coupled to a scalar) rather similar qualitative behavior
results. Figs. 5–7 give the results of a representative evo-
lution. Even though F�� � 0, we do see that the vector

field curves are initially attracted to the matter shell.
Evolution proceeds with the ingoing pulse deforming the
geometry as for a usual scalar collapse. However, before a
horizon can form—recall our coordinate system only cov-
ers the black hole exterior—we see the formation of a
caustic singularity. This is signaled by the divergence of
A, which develops a growing spike on constant t slices as
seen in Fig. 6. At this point, dynamical evolution is no
longer well defined. As noted above, the singularity forms
well away from the origin of spherical symmetry. Figure 7
shows that the TeVeS scalar remains small and smooth up
to this point, which suggests that dynamically it does very
little, if anything, to prevent singularity formation. It is

interesting that while we have found many candidate black
hole end states for such a collapse in the previous section,
the actual dynamics of the collapse is sufficiently badly
behaved that we cannot even see an apparent horizon form.
One might worry that the choice of initial data with

F�� ¼ 0 is somewhat special (even though F�� evolves

to be nonzero) [37]. Indeed, since our earlier analytic
arguments were for F�� ¼ 0 it is useful to check that

caustics may also form for initial data with F�� � 0.

Another question is whether the magnitude of K, 
 play
a role in the singularity formation. For these reasons we
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FIG. 7 (color online). �� for the simulation of massless scalar
field shell-collapse, as in Figs. 5 and 6. The scalar field remains
small and smooth up to the formation of the caustic.
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FIG. 6 (color online). �r � A for the simulation of massless
scalar field shell-collapse, as in Fig. 5. Spiking of the 4 diver-
gence of �A corresponding to the convergence of its integral
curves is easily seen, signalling the formation of a caustic.
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FIG. 5. Massless scalar field shell collapse in an attempt to
form a black hole. Upper Frame: The light cone structure is
shown overlaying contours for the amplitude of the � matter
field. Lower Frame: Integral curves for the TeVeS vector A. In
this evolution we see a caustic singularity develop around r ’ 11
at t ’ 3:2. The light cone structure indicates an apparent horizon
is likely to have formed if the evolution had not been terminated
by the caustic. The initial data for the vector was Ar ¼ 0 with _Ar

chosen so F�� ¼ 0. The coordinate system is (42), with parame-

ters K ¼ 
 ¼ 0:01
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present the result of another simulation in Figs. 8–10.
These simulations used initial data for the vector where
_Ar ¼ Ar ¼ 0. Hence, the initial data as a whole is now time
symmetric, and F�� � 0 initially. For the simulation

shown we have also taken larger K, 
. We observe caustic
formation again. Indeed the singularity forms earlier.
Experimentally we find that for larger K, 
 a caustic forms
earlier, which is to be expected as the vector is more
strongly coupled to the dynamics of the other fields.
Thus, we see that for two very different choices of the
vector initial data caustic singularities result.

B. Perturbations to a boson star

Scalar field collapse is an extreme dynamical process,
which is highly relativistic. It is interesting to consider
whether an initially nonrelativistic matter source also seeds
an attraction of vector curves and subsequent caustic sin-
gularity. To this end we examine the full dynamics of
TeVeS in the presence of an initially quasistatic boson
star [38].

We use an identical numerical method and boundary
conditions to integrate the field equations as for the scalar
collapse above. To create the boson star we follow Gleiser
[39]; as a matter source we use a complex scalar � now
with potential Vðj�jÞ. We begin by finding a static boson
star solution. This is achieved by imposing the following
separable solution to the � equation of motion with the
potential Vðj�jÞ ¼ m2 ���

�ðt; rÞ ¼ �0ðrÞe{!t; (43)

where �0 is real. While we term this a ‘‘static’’ star, we note
that in fact � has the above phase rotation, although all
other fields are indeed static. The metric functions T, R are

taken to depend only on r, and likewise for the TeVeS
scalar. The TeVeS vector is chosen to be aligned with
Killing time, so A� ¼ ð�TðrÞ; 0; 0; 0Þ. The radial profile

for each of these functions is obtained via a shooting
method—we fix the value of �0ð0Þ and m so that the
resulting solution will have flattened out well before the
boundary of our numerical grid. We then fine-tune the
value of ! to obtain the profile for �0 with no nodes; this
is the ground state star. We also choose the parameters so
that the start has a low density compared with its radius and
hence Tð0; rÞ ’ 1, so the backreaction of the star is weak—
it is nonrelativistic. Note that for this static star F�� � 0,

and the TeVeS scalar is nonconstant.
To consider a dynamical perturbation of this static star

we take similar initial data to the scalar collapse. We take
T, R, the TeVeS scalar, and the matter scalar to have initial
data simply given by that on a constant time slice of the
static boson star solution above. However, we now take
Ar ¼ 0 and F�� ¼ 0 at t ¼ 0 (although again F�� will not
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FIG. 9 (color online). �r � A for the simulation in Fig. 8.
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FIG. 8. As for Fig. 5, although now with initial data _Ar ¼
Ar ¼ 0, so that F�� � 0, initially. This simulation was per-

formed with larger K ¼ 
 ¼ 0:1. We see again caustic forma-
tion, now much sooner.
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FIG. 10 (color online). �� for the simulation in Figs. 8 and 9.

TeVeS GETS CAUGHT ON CAUSTICS PHYSICAL REVIEW D 78, 044034 (2008)

044034-11



evolve to remain zero due to the boson star matter). Thus,
the vector is not now aligned with Killing time, and dy-
namics will ensue. Note, however, that since the stars
considered are in the nonrelativistic regime, this perturba-
tion to the vector field initial data is small. Hence, the
evolution is a nonrelativistic process in its early stages.

We performed evolutions for a variety of star configura-
tions, obtaining qualitatively similar results. A representa-
tive choice is illustrated in Figs. 11–13. This shows that for
our quasistatic initial configuration, the vector field curves
fall in toward the star and do evolve to form a caustic
singularity. However, the singularity does not form in the
interior of the star as one might naively expect. This is
essentially due to the vector coupling to the matter, which
apparently leads to a repulsive effect, as we see the integral
curves are clearly repelled from the origin of the spherical
spatial geometry. While F�� is not zero outside the star, as

it is sourced by the stellar matter, and then the region where
F�� is nonzero propagates outward, we see that it does not

stop the vector curves falling toward the star and eventually
‘‘colliding’’ with the curves that were ‘‘bounced’’ out of
the interior of the star. The singularity appears rather
similar in nature to that in the case of the scalar collapse,
and Fig. 12 clearly shows a growing vector divergence at a
finite radius as we approach the caustic. Figure 13 shows
that once again the TeVeS scalar remains small and smooth
up to the singularity.

Thus, we have seen in this section that even starting with
initial data whose short term evolution is nonrelativistic,
pathological vector behavior may quickly follow. In par-
ticular, we see visually that since the integral curves are, at
least initially, following an approximate timelike geodesic,
the timescale for this singularity formation is of order the
gravitational in-fall time. Thus, in a Newtonian, quasistatic
regime such as the neighborhood of the Earth, one might

expect caustic singularity formation to occur on the order
of hours, and after that point classical evolution is ill
defined. This poor dynamical behavior is clearly a serious
obstruction to considering TeVeS as a phenomenological
theory of modified gravity.

V. MODIFYING TEVES TO GETA
WELL-BEHAVED VECTOR DYNAMICS

AND A MOND LIMIT

Having demonstrated the formation of caustic singular-
ities in TeVeS in various contexts that render the classical
dynamics of the theory quickly ill defined, we now propose
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FIG. 11. A complex scalar field � ( gray shading) initially in
the lowest static mode of a quadratic potential, as a matter source
for a full TeVeS evolution. Shown also are the integral curves for
the TeVeS vector A, illustrating the phenomenon of caustic
formation where the initial data is quasistatic.
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FIG. 12 (color online). �r � A for the simulation of a complex
scalar field as a ground state Boson star, as in Fig. 11. Spiking of
the 4 divergence of �A corresponding to the convergence of its
integral curves is easily seen, signalling the formation of a
caustic singularity.
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FIG. 13 (color online). �� for the simulation of a complex
scalar field as a ground state Boson star, as in Figs. 11 and 12.
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a correction to the vector part of the action (4), which may
ameliorate this problem. The problem is essentially due to
the Maxwell structure of the vector action. There is no
energy cost when the divergence of the vector becomes
large. Our modification is simply to introduce terms that
disfavor large divergences. We simply take the vector
action to be the most general diffeomorphism invariant
action, which is quadratic in derivatives and consistent
with the A2 ¼ �1 constraint. This action is of course
precisely the one used for the vector in Æ theory. We begin
with

Sgþv ¼ 1

16�G

Z �
R� K

2
F��F

�� � cþ
4
S��S

��

� c2ðr�A
�Þ2 � c4 _A�

_A� þ�ðA2 þ 1Þ
�

�ð�gÞ1=2d4x; (44)

where cþ ¼ c1 þ c3, c1 � c3 ¼ 2K, _A� ¼ A�r�A
�, and

S�� ¼ r�A� þr�A�. We retain the pure TeVeS scalar

action. The metric redefinitions, which may performed in
Æ theory [40] to remove one of these terms, are no longer
applicable here, as there are no nontrivial field redefini-
tions, which leave the scalar action form invariant at the
same time as retaining the unit-norm constraint. As noted
earlier, Seifert [33] has already proposed such a modifica-
tion of TeVeS motivated by finding a linear instability
about certain spherically symmetric backgrounds (those
of Giannios [17]) and leading from this Skordis [15] has
recently derived the equations of motion and studied the
cosmological perturbation equations. Our emphasis here is
to check that the MoND limit is still recovered with this
modification, and this has not previously been addressed—
without this, of course, the modified TeVeS would be
unlikely to provide any alternative explanations for dark
matter.
With this modified vector action, only the � term of the

metric field equation is affected, and we obtain [41]

��� ¼ K

�
F	�F

	
� � 1

4
F2g��

�
þ cþ

2

�
S�	S�

	 � 1

4
S2g�� þr	½A	S�� � S	ð�A�Þ�

�
þ c2

�
g��r	ðA	r � AÞ

� Að�r�Þr � A� g��

2
ðr � AÞ2

�
þ c4

�
_A�

_A� þ _A	Að�r�ÞA	 �r	½ _A	A�A�� �
g��

2
_A	

_A	

�
� �A�A�;

Kr�F
�� þ cþ

2
r�S

�� þ c2r�ðr � AÞ � c4 _A	r�A	 þ c4r	ð _A�A	Þ þ �A�

þ 8�G	2A��;�g
���;� ¼ 8�Gð1� e�4�Þg�� ~T��A

�; (45)

for the vector and scalar equations. We will refer to
Bekenstein’s theory as ‘‘pure TeVeS’’, and the theory
with the modification as ‘‘modified TeVeS’’.

The new parameters introduced into the action cþ, c2, c4
will certainly be subject to physical constraints. The con-
siderations are likely to be similar to those constraining the
Einstein-Æther parameters, reviewed recently by Jacobson
[31]. One complication is that the physical fluctuation
modes of the vector now have different wave speeds
when the more general vector action is introduced. In
particular, this leads to new constraints from Cherenkov
radiation produced by cosmic rays [42,43], although since
the matter couplings are different from those of Einstein-
Æther such analysis would likely have to be repeated for
the modified TeVeS. We leave determination of constraints
on these parameters for future work.

We have modified the TeVeS vector action in the hope
that it will alleviate the problem of singularity formation.
An absence of caustic formation is a crucial requirement
for the theory to be dynamically well behaved, though we
do not attempt to assess whether this is actually the case for
our modified theory. We leave this as an interesting open
problem. Now, assuming that the dynamics of this theory
are in fact good, we would then require the theory to have
the appropriate phenomenology. That is, we would like

modified TeVeS to have inherited pure TeVeS’s MoND
limit. In order to check whether this is the case, we perform
a Newtonian analysis, where the goal is to obtain the
equivalent of Poisson’s equation for MF Newtonian poten-
tial. We perturb the EF metric to leading order in the
Newtonian expansion as

gtt ¼ �1� 2V gij ¼ ð1� 2VÞ
ij gti ¼ 0; (46)

where we linearize the equations in V, and ignore time
derivatives at leading order. The matter source has only the
nontrivial component ~Ttt ¼ ~�. As for the EF metric, for the
MF metric we take

~g tt ¼ �1� 2� gij ¼ ð1� 2�Þ
ij gti ¼ 0;

(47)

and in the Newtonian expansion only the time component
of A is nontrivial at leading order, and is determined from
V by the condition A�A� ¼ �1. The TeVeS scalar is

written as � ¼ �c þ 
�. In the Newtonian limit at lead-
ing order we take 
� 	 1, and again neglect time deriva-
tives. One may then verify that the disformal relation then
relates these perturbations: � ¼ V þ�.
Consider first the scalar field equation at leading order in

the Newtonian expansion
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r � ½�ð
l2ðr
�Þ2Þr
�� ¼ 
G~�: (48)

Note that we have not linearized the argument of the �
function in 
� since while 
� 	 1, the TeVeS parameter l
is precisely large enough to balance this—hence we may
recover MoND at leading order in the Newtonian analysis.
There is no such subtlety in the other field equations, and
we may straightforwardly perform a linearization in the
Newtonian potentials. All components of the vector field
equation vanish except for the t-component

�þ
�
K � cþ

2

�
r2V ¼ ð�4�cÞ8�G~�; (49)

and similarly all components of Einstein’s equation vanish
with the exception of the tt-component

�þ ð2þ c4 � cþÞr2V ¼ ð1� 8�cÞ8�G~�; (50)

where we note that, as shown by Bekenstein [8], the term
F does not contribute to the stress tensor in the leading
order Newtonian limit. Combining the above results, we
learn how � is related to �N and �

� ¼
�
1þ 2K � 2c4 þ cþ

4
� 4�c

�
�N þ�: (51)

Hence, by following the same arguments that apply to pure
TeVeS theory (as discussed by Bekenstein in [8]), MoND
phenomenology results from (48) and (51) when c4 and cþ
are suitably constrained. Hence, our proposed modification
of TeVeS, which likely can avoid caustic formation for
specific parameter ranges, does indeed correctly reproduce
the MoND limit, which is the raison d’etre for TeVeS.

VI. SUMMARYAND DISCUSSION

We have argued that Bekenstein’s original formulation
of TeVeS, while reproducing MoND phenomenology, is
actually dynamically badly behaved. We have shown ana-
lytically and numerically in a variety of situations that the
integral curves of the vector field quickly and generically
evolve from regular initial data to caustic singularities.
Once this occurs the classical evolution to the future is
ill-posed.

Since the time scale to a singularity is not suppressed by
any parameters, and is only determined by the initial data
itself, it seems the original formulation of TeVeS is un-
likely to provide a realistic theory of modified gravity. Put
another way, while TeVeS does reproduce Newtonian and
modified Newtonian dynamics in a nonrelativistic regime,
it appears that in many cases this regime is unstable, the
instability leading to the caustic singularities. We stress
that already the analytic arguments of Sec. II, while made
in the absence of matter, already highlight instability in the
dynamics of TeVeS. The latter sections of the paper merely
serve to illustrate that the situation remains unchanged
when one considers the dynamics in the presence of matter.

Indeed, since matter can focus vector field curves toward it,
it can make the situation worse.
It is useful to contrast this situation with the singularities

that form in GR. We are very familiar with the fact that
given certain initial data, matter can collapse to a singu-
larity in GR, on the time scale of the gravitational in-fall
time. However, in GR cosmic censorship means that these
singularities are always hidden behind event horizons.
Hence, evolution outside the horizon is perfectly well
defined. In contrast, the vector field singularities we have
exhibited here lie outside any event horizon, and hence
evolution is impossible in the future null cone of these
points unless there is some way to understand these singu-
larities beyond the TeVeS effective field theory.
A similar situation arises in the perfect fluid, dust de-

scription of dark matter. The evolution of such a fluid also
forms caustics (shocks) on time scales of the in-fall time.
Caustic formation in this case signals the breakdown of the
fluid description of the dark matter and a requirement for a
microscopic, particle description. Similarly, our results
indicate that the dynamical regime where TeVeS can be
applied is limited by the breakdown of the effective theory
on in-fall timescales. In this case, however, we do not have
a microscopic description to transition to and the regime
where the effective description appears to break down is
relevant to the motivation of the theory itself.
Nonetheless, we believe a relatively minor modification,

namely, generalizing the vector action of TeVeS to a form
like that of Einstein-Æther is likely to be able to give a
dynamically well-defined theory, which as we have shown
still gives MoND behavior for nonrelativistic situations. It
is interesting that a possibly related instability was ob-
served for linear perturbations about the spherically sym-
metric static backgrounds of Giannios [17] by Seifert [33]
and the same modification was proposed, although the
recovery of the MoND limit had not previously been
checked.
We emphasize that the detailed predictions of this modi-

fied TeVeS will likely differ from the original TeVeS
theory, and therefore any phenomenological studies of
TeVeS testing its ability to explain astrophysical or cos-
mological data without dark matter should be careful to
include the necessary modification. It would be interesting
to revisit the questions addressed in [12,13,18,44–63] us-
ing the modified theory.
We have given large classes of new black hole solutions

in the original TeVeS theory. However, these and the earlier
solutions of Giannios are not solutions of the modified
TeVeS theory. Instead in the case of modified TeVeS black
hole solutions with a constant scalar (and it is likely there
are not ‘‘nearby’’ solutions with nonconstant scalar) will be
identical to those in Einstein-Æther theory discussed by
Eling and Jacobson [64,65]. In particular, there is no
‘‘charge’’ parameter Q, with the static black hole geome-
tries only being parametrized by one parameter, the mass
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M. However, the qualitative behavior of the solutions is
somewhat similar to ours, with the integral curves of the
vector field falling into the future horizon. It would be very
interesting to study the geometry of the MF metric for
these solutions. As a passing comment Eling et al. [66]
have argued that such black holes may violate the gener-
alized second law. It is interesting that while the black hole
solutions we found in the original TeVeS do not necessarily
violate the law, since their entropy depends on multiple
charges M and Q, for black hole solutions in the modified
TeVeS there is only a one parameter family and the argu-
ments of Eling et al. apply.
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APPENDIX A: APPROXIMATELY CONSTANT
SCALAR SOLUTIONS IN THE

NEWTONIAN REGIME

In the main text we have made the claim that in the
absence of matter we may formally consider solutions of
TeVeS with constant scalar, and yet for the length scale of
interest, let us call it L, which is much shorter than the
TeVeS length scale ‘, we are still in the Newtonian regime
� ’ 1. We envisage our scales of interest L to be of order
planetary or solar system scales. We claimed that to any
solution with constant scalar, one can consider deforming
the solution by adding scalar gradients that are tiny com-
pared with our scale of interest L, and hence effectively
negligible, but that would still be large enough over the
region of interest to put the theory into the strong accel-
eration regime. The equation determining 	 is

��F ð�Þ � 1
2�

2F 0ð�Þ ¼ y; (A1)

where we have written � ¼ 
G	2 and y ¼ 
‘2j�j2 with
h�� ¼ g�� � A�A�, and we have introduced the notation
j�j2 � h���;��;�. Let us also choose, following

Bekenstein [8], anF such that in the Newtonian limit� !
1, we have

F ! 3

2
lnð1��Þ; y ! 3

4

1

1��
; (A2)

and hence in this limit we have

� ¼ 
G	2 ¼ 1þOð
‘2j�j2Þ�1: (A3)

We see a potential dilemma in this claim, which is that
naively � ’ 1, y ! 1 appears precisely at odds with a
constant scalar, which has y ¼ 0. Hence, how can a con-
stant scalar solution ever be ‘‘close’’ to a solution in the

strong acceleration regime � ’ 1. The resolution is that
what matters is not j�j2, but ‘2j�j2, and hence one can
have a tiny gradient on scales of interest L over a region of
size L, but provided ‘ is large enough, one can still have
� ’ 1. We will now formalize this more carefully, by
providing a prescription to take a solution of Einstein-
Maxwell theory and then generating a solution of TeVeS
with almost constant scalar in a controlled manner.
In the absence of matter, the scalar equation reduces to

r�ð�ð
‘2j�j2Þh���;�Þ ¼ 0; (A4)

and the vector, which satisfies the constraint A�A� ¼ �1,

obeys,

Kr�F
�� þ �A� þ 8�



A��;�g

���;� ¼ 0; (A5)

with the Einstein equations governing the metric becoming

G�� ¼ �scalar
�� þ�vector

�� þ�F
��; (A6)

with

�scalar
�� � 8�G	2

�
�;��;� � 1

2
g���;��;�g��

� A��;�

�
Að��;�Þ � 1

2
A��;�g��

��
; (A7)

�vector
�� � K

�
F�

�F�� � 1

4
g��F

2

�
� �A�A�; (A8)

�F
�� � �2�G2‘�2	4F ð
G	2Þg��: (A9)

We consider the dimensionless constants K, 
 to be small
but order one in what follows.

Let us now consider a solution Â�, ĝ�� of Einstein-

Maxwell theory with gauge constraint Â�Â� ¼ �1 im-

posed using the Lagrange multiplier � as for TeVeS,

Ĝ�� ¼ K

�
F̂�

�F̂�� � 1

4
ĝ��F̂

2

�
� �Â�Â�

Kr̂�F̂
�� þ �̂Â� ¼ 0: (A10)

Here, quantities with hats are composed from Â�, ĝ��. Let

us characterize the length scales of interest by the length L,
and restrict our attention to a spacetime region V of spatial
size �L. Hence, the curvatures of interest in the solution

ðÂ�; ĝ��Þ will scale as 1=L2 as we are not interested in

much smaller curvature scales. We are envisaging that this
scale is of order the solar system or less and compared with
the TeVeS lengthscale ‘we have a vast separation of scales

L 	 ‘: (A11)

We begin by constructing a solution for a scalar �̂ on the

fixed solution ðÂ�; ĝ��Þ in the spacetime region V of spatial

scale �L. We take the scalar to obey the equation
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r̂ �ðĥ���̂;�Þ ¼ 0; (A12)

where ĥ�� ¼ ĝ�� � Â�Â�, and we emphasize that we are
ignoring any backreaction—it is simply a scalar on our
fixed solution. We require that in our region V the solution
everywhere obeys the condition

1 � L2ĥ���̂;��̂;� � L

‘
: (A13)

For example, taking the trivial flat space solution ĝ�� ¼
���, Â ¼ @

@t , one might choose the scalar to be �̂ ¼ �x,

where x is one of the spatial coordinates, and � is a
constant in the range 1 � L2�2 � L=‘. In general, we
expect to be able to find solutions obeying the condition
(A13), although we do not have a formal existence proof of
this.

From this Einstein-Maxwell solution and the associated

scalar solution ð�̂; Â�; ĝ��Þ we may construct an approxi-

mate solution of the TeVeS equations ð�;A�; g��Þ, pertur-
batively in the dimensionless constant

� ¼
�
L

‘

�
1=4

; (A14)

as

g�� ¼ ĝ�� þ �gð1Þ�� A� ¼ Â� þ �Að1Þ
�

� ¼ �̂þ �2�ð1Þ � ¼ �0 þ ��̂þ �2�ð1Þ;
(A15)

where �0 is a constant and plays no role in the vacuum
TeVeS equations, which only involve� derivatives. Taking
the limit � ! 0, i.e. looking at small scales compared with
the TeVeS length scale ‘, we therefore see that the dynam-
ics of TeVeS on scales �L is given by precisely the

Einstein-Maxwell solution ðÂ�; ĝ��Þ and hence by an ef-

fectively (although not precisely) constant TeVeS scalar.
We may think of the � ! 0 limit as fixing L and taking ‘ to
infinity, or alternatively and more physically for fixed ‘,
focussing our interest on smaller and smaller length scales
L.

Let us now check this claim. Firstly let us consider the
scalar equation at leading order in the � expansion.
Consider the behavior of �ð
l2j�j2Þ. From our condition
(A13) above we see that

1 � L2

�2
ðh���;��;� þOð�2ÞÞ � L

‘
; (A16)

so that for � ! 0 we have

‘2h���;��;� � 1

�2
; (A17)

and thus we see that

�ð
l2j�j2Þ ’ 1�Oð�2Þ; (A18)

so that in our region V we are forced into the Newtonian
regime of TeVeS, even though the scalar field gradient is

perturbatively small compared with the scale L of interest
in our region. Hence, the TeVeS scalar equation becomes

r�ðh���;�Þ ¼ Oð�3Þ; (A19)

with the right-hand side coming from the nonconstant part
of�. This is indeed consistent with our ansatz (A15) above

for the constant and �̂ pieces with the correction term �ð1Þ

accounting for the lower orders. �ð1Þ is sourced primarily
by theOð�Þ corrections to r� and h�� from the metric and

vector corrections Að1Þ
� and gð1Þ��, with the source from �

actually being sub leading to this.
We now show that just as the scalar equation is consis-

tently solved perturbatively in � by our ansatz, the Einstein
and vector equations are too. In particular, we must show
that the backreaction in the Einstein equations from the
scalar � and TeVeS function F are small compared with
the characteristic curvature scale 1=L2 in the solution

ðĝ��; Â�Þ. Now following from our condition (A13) we

have that the scalar in our region obeys the bound

�2

L2
� h���;��;�; (A20)

and in addition we have an estimate for the contribution of
F in the Einstein equations

�F
�� � 1

‘2
lnð1��Þg�� � 1

L2
ð�8 ln�Þĝ��: (A21)

Hence, we see that the Einstein and vector equations to
lowest order in � reduce simply to the Einstein-Maxwell
ones, and our ansatz (A15) therefore solves them to lowest
order. The leading higher order corrections come from the
perturbatively small backreaction of the scalar, and lead to
theOð�Þ corrections to g��, A� with the TeVeS functionF
essentially being negligible in the Newtonian limit as dis-
cussed in Bekenstein’s original paper.
We have now more carefully justified our claim in the

main text, namely, that we may consider the TeVeS scalar
to be effectively constant, and still be in the Newtonian
regime� ! 1, provided we are restricting our interest to a
region of scale L 	 l, as we are in the main text. Our first
application is to consider a bound on caustic formation
time using Raychaudhuri’s equation for the Einstein-
Maxwell system. Since caustic formation is local, we are
only concerned with the spacetime in the region of scale L
where the caustic forms, and not the asymptotic behavior
of our geometry. The physical setting would be caustic
formation on, for example, solar system scales L, with the
gradient of the scalar arising from much larger galactic
scales ‘. The second application is to embed the Einstein-
Maxwell black holes in TeVeS. Again, since we are not
interested in the far asymptotic region of these solutions,
we may again employ our approximation to ignore scalar
gradients and the TeVeS function F in the stress energy.
For a region of size L surrounding the black hole, the
corrections will be characteristic scale ‘ and for any as-
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trophysical black hole, phenomenologically this region of
interest certainly obeys L 	 ‘.

We conclude with our previous example; ĝ�� ¼ ���,

Â ¼ @
@t , �̂ ¼ 0, and scalar solution on this background �̂ ¼

�xwith the constant � obeying 1 � L2�2 � L=‘. Hence,
we may take � ¼ �=L. In this case, the exact TeVeS
solution can be found in the absence of the F term, which
we have argued is subdominant over the other corrections;

ds2 ¼ �aðxÞ2dt2 þ dx2 þ 1

aðxÞ ðdy
2 þ dz2Þ

A ¼ 1

aðxÞ
@

@t
� ¼ �0 þ �

x

L
;

(A22)

with the function

aðxÞ ¼ Ae��ð4 ffiffiffi
�

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2K�3ÞÞ

p
ðx=LÞ; (A23)

and one finds � ¼ 16K��2=ð
ð2K � 3ÞÞ. Note that y is

actually a constant for this solution y ¼ 
��7=4, so that �
is also constant. Expanding in � one finds this to be con-
sistent with the ansatz. We have ignored the F term in this
exact solution, and a calculation confirms this is of order
the estimate (A21), and hence vastly subdominant to the
leading � corrections in the solution.

APPENDIX B: CONSTANT SCALAR STATIC
BLACK HOLE DERIVATION

We begin with a spherically symmetric, stationary sys-
tem in Schwarzschild coordinates for which

� ¼ �c; (B1)

A� ¼ ðAtðrÞ; ArðrÞ; 0; 0Þ; (B2)

ds2 ¼ �TðrÞdt2 þ RðrÞdr2 þ r2ðd�2 þ sin2�d’2Þ;
(B3)

where �c is constant. The scalar field equation is trivially
satisfied for a vacuum spacetime. The vector field equation
becomes

Kr�F
�� þ �A� ¼ 0: (B4)

For the case where � ¼ r in Eq. (B4), the first term
vanishes, leaving the branch choice

�Ar ¼ 0; (B5)

thus for Ar � 0 we have � ¼ 0 everywhere. In this case,
the field equations become those of Einstein-Maxwell
theory for a particular choice of gauge. Given this, we
expect to find Reissner-Nordström black holes.
Expressing the field equations in terms of our metric and
vector ansätze, we obtain three useful components of the
Einstein equations

ðttÞ T

Rr2
ðrR0 þ R2 � RÞ ¼ K

2
ðA0

tÞ2; (B6)

ðrrÞ rT0 � RT þ T

r2
¼ �K

2
ðA0

tÞ2; (B7)

ð��Þ 1

2RT
ð2T0RT�2R0T2�T0R0TrþT00RTr�T02RrÞ
¼KrðA0

tÞ2; (B8)

where primes indicate derivatives with respect to r.
Eliminating A0

t between Eqs. (B6) and (B7) leads to the
relation

TR ¼ C1; (B9)

whereC1 is a constant, which we set to 1 using the freedom
available in rescaling the t coordinate at this stage.
Performing the same elimination between Eqs. (B7) and
(B8) and substituting for T using (B9), we arrive at a
solution for the second metric component

R ¼
�
1� 2M

r
þQ2

r2

��1
; (B10)

with the corresponding solution for T

T ¼
�
1� 2M

r
þQ2

r2

�
; (B11)

whereM andQ2 are integration constants. The quantityQ2

will indeed turn out to be positive.
Consider the t component of the covector field equation

1

2TR2r
ð2KrA00

t RT�KrA0
tT

0R�KrA0
tR

0Tþ4KA0
tRTÞ¼0:

(B12)

Note that the radial vector component appears nowhere in
these field equations, and will be determined algebraically
using the field equation for the Lagrange multiplier field �.
Substituting in the metric components, and solving the
resulting equation for At we have

At ¼ C2 þ C3

r
; (B13)

where C2 and C3 are two more integration constants.
To determine the value of C2 consider the � equation

A2
r

R
� A2

t

T
¼ �1; (B14)

as r ! 1, Ar must be driven to zero so that isotropy is
restored at spatial infinity. This expression therefore forces
A2
t ! 1, and so we find C2 ¼ �1. We choose the vector A

to be future pointing at spatial infinity, and so we pick
C2 ¼ �1. The value of C3 can then be determined straight-
forwardly by substituting the expressions back into the
Einstein equations. In particular, for the ð�; �Þ component
we find

Q2

r2
¼ KC2

3

2r2
; (B15)
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justifying our choice of the positive quantity Q2. We then
identify

C3 ¼
ffiffiffiffi
2

K

s
Q; (B16)

where Q can be positive or negative. All that is left is to
determine Ar through the constraint Eq. (B14)

Ar ¼ �
�
1� 2M

r
þQ2

r2

��1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

K
� 1

�
Q2

r2
þ

�
Mþ

ffiffiffiffi
2

K

s
Q

�
2

r

vuut
: (B17)

Phenomenologically K < 1 [8], so the first term in the
square root is positive. However, at large r the second
term is dominant and is possibly negative. Thus, for Ar

to be real we must satisfy the following bound:

Mþ
ffiffiffiffi
2

K

s
Q 
 0: (B18)

To summarize,

g ¼ Diag

�
�
�
1� 2M

r
þQ2

r2

�
;

�
1� 2M

r
þQ2

r2

��1
;

r2; r2sin2ð�Þ
�
; (B19)

At ¼ �1þ
ffiffiffiffi
2

K

s
Q

r
; (B20)

Ar ¼ �
�
1� 2M

r
þQ2

r2

��1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

K
� 1

�
Q2

r2
þ

�
Mþ

ffiffiffiffi
2

K

s
Q

�
2

r

vuut
: (B21)

Thus, the solution is RN, but where the gauge freedom for
the field A has been fixed up to a sign by the Lagrange
multiplier constraint.

We have obtained a black hole solution in the EF metric.
Its horizons are the ones observed by the gravitational
components g, A, and �. Any matter fields are influenced
by theMFmetric (2), and it is important to consider theMF
solution, which is the observable frame.

APPENDIX C: DETAILS OF NON-EXISTENCE
ARGUMENT FOR BLACK HOLES WITH

NON-CONSTANT SCALAR

In this appendix we will argue that there are no black
hole solutions ‘‘near’’ to those found in Sec. IIIA, where
the scalar is not constant. To support this hypothesis we
first consider small perturbations to the scalar field about
this constant scalar black hole solution. We only need

consider one Eq. (C7). Since the background value for
the scalar field is a constant, the equation of evolution for
the scalar perturbation is simply


�0 ¼ 2C1K

2Kðr� 2Þrþ ðK � 1ÞðQMÞ2 � 2K
ffiffiffi
2
K

q
Q
M r

: (C1)

Unless C1 ¼ 0 this diverges for two values of r, which we
denote rsing1 and rsing2, where rsing2 
 rsing1. The horizon

positions are at rþ and r� with rþ 
 r�. It is straightfor-
ward to show that if K > 0 and�1 � Q

M � 1, then rsing2 >

rþ, and so this singularity will occur outside the outermost
horizon. A scalar field singularity is usually a symptom of a
singular geometry.
Of course, the linear theory breaks down as the scalar

perturbations become large, and so while it indicates a
singularity might form outside the horizon if we try to
deform the scalar from being constant, it cannot be trusted.
Hence, we also solved numerically the full nonlinear the-
ory with asymptotic data that is close to that of the constant
scalar RN solution, for particular parameters. The full
numerical solutions confirm that indeed a naked singularity
is found, as hinted at by the linear theory, with curvature
invariants clearly diverging at the singular point. We now
describe this in detail.
Using the same metric ansatz (B3) and the general form

for the vector field (B2), the r component of the vector field
equation is

Ar

�
�þ 8�ð�0Þ2


R

�
¼ 0; (C2)

and so for the case Ar � 0, this equation determines � to be
proportional to the square of the proper derivative of �.
Substituting Ar from the constraint Eq. (B14), and this
value of � into the other field equations yields metric
ðt; tÞ-component

� 2T

r
þ 2RT

r
þ 2TR0

R
� 16�rTð�0Þ2




¼ KrðA0
tÞ2 þ 8�rA2

t ð�0Þ2



; (C3)

metric ðr; rÞ-component

2

r
� 2R

r
þ 2T0

T
þKrðA0

tÞ2
T

� 16�ð�0Þ2



þ 8�rA2
t ð�0Þ2


T
¼ 0;

(C4)

metric ð�; �Þ-component

2rTR0

R
� 2rT0 þ r2R0T0

R
þ r2ðT0Þ2

T
þ 2Kr2ðA0

tÞ2

� 32�r2Tð�0Þ2



þ 16�r2A2
t ð�0Þ2

r
� 2r2T00 ¼ 0; (C5)

vector t-component
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K

�
� 4

r
þ R0

R
þ T0

T

�
A0
t þ 16�Atð�0Þ2



¼ 2KA00

t ; (C6)

and scalar

�0 ¼ C1

ffiffiffiffiffiffiffi
RT

p
r2ð2T � A2

t Þ
; (C7)

where C1 is an integration constant from the second order
scalar field equation. This is normally associated with a
scalar mass. Eliminating At and A0

t between (C3) and (C4)

16�rð�0Þ2



¼ ðTRÞ0
TR

; (C8)

and eliminating the same variables between (C5) and (C3),
then substituting for �0 using (C8) gives

2T

�
2ðR� 1Þ

r
þ R0

R

�
þ

�
rR0

R
� 6

�
T0 þ rðT0Þ2

T
¼ 2rT00;

(C9)

which can be integrated once to obtain a first order equa-
tion in T

RTðC2 þ 4r2TÞ ¼ 4r2T2 þ 4r3TT0 þ r4ðT0Þ2; (C10)

where C2 is a constant of integration. This equation allows
elimination of one of the metric components R from the
system of equations to numerically integrate. Choosing to
eliminate R and �0 using (C7), from (C4) and (C8), gives
the system of equations

T00 ¼ � 2

rðC2 þ 4r2TÞ
�
C2T

r
þ 2ðC2 þ 2r2TÞT0 � r3T02

� 4C2
1�ð2T þ rT0Þ3

r
ð�2T þ A2
t Þ2

�
; (C11)

A0
t ¼ � ffiffiffi

2
p �ð16�C2

1 � 
C2ð2T � A2
t ÞÞðT þ rT0Þ þ r2ð4�C2

1 þ r2
ð2T � A2
t ÞÞðT0Þ2

r2
KðC2 þ 4r2TÞð2T � A2
t Þ

�
1=2

; (C12)

from which �0 can be obtained during the numerical
integration through the scalar field Eq. (C7).

We then integrate inwards from large r, imposing an
asymptotically flat spacetime, a constant scalar, and van-
ishing Ar component at spatial infinity. Looking first to the
asymptotic expansion of T and At will allow identification
of the free parameters available for the boundary condition
at large r. Assuming the general asymptotic form

TðrÞ ¼ t0 þ t1
r
þ t2

r2
þO

�
1

r3

�
; (C13)

AtðrÞ ¼ u0 þ u1
r
þ u2

r2
þO

�
1

r3

�
: (C14)

We may use the freedom in rescaling the t coordinate in
setting t0 ¼ 1, and the freedom in the r coordinate to set t1
to �1. Note that this explicitly sets the standard RN mass
to be positive. It then follows from the constraint equation
that if we are to have Ar ! 0 as r ! 1, then At ! �1 and
u0 ¼ �1. The remaining coefficients may be determined
by performing a series expansion about infinity of the two
differential Eqs. (C11) and (C12). We find

T ’ 1� 1

r
þ 1þ 32�C2

1


 � C2

4r2
; (C15)

At ’ �1þ�
ffiffiffiffi
2

K

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16�C2

1


 � C2

q
2r

� 4�C2
1


K

1

r2
; (C16)

where the sign choice comes from the sign of the gradient
of At, Eq. (C12). There is only one consistent choice for

this, as may be seen by using the Lagrange multiplier
Eq. (B14) to calculate the corresponding asymptotic ex-
pansion for A2

r . To lowest order

A2
r ¼

�
1��

ffiffiffiffi
2

K

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16�C2

1



� C2

s �
1

r
þO

�
1

r2

�
: (C17)

Thus, for the reality of Ar we are forced to choose the
negative sign.
We are now left with four parameters: two constants, 


and K and two free parameters C1 and C2 with an addi-
tional condition to ensure the reality of At

1þ 16�



C2
1 � C2 > 0: (C18)

Additionally, one can identify these parameters with the
standard Reissner-Nordström charge to mass ratio�

Q

M

�
2 � 1� C2; (C19)

and a quantity associated with the scalar

S2 � 16�C2
1



; (C20)

so that the reality condition (C18) is now guaranteed.
Using this definition of S, the differential equations to
numerically integrate (C11) and (C12) are reduced to a
constant K, and the two parameters S and Q=M.
Naively considering the � equation of motion (C7), one

sees that a possible divergence occurs when 2T ¼ A2
t . This

does occur, and we demonstrate below for the parameter
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choices K ¼ 0:01, 
 ¼ 0:01, Q=M ¼ 0:01, and a small
scalar charge, S ¼ 0:001.
We find that both the EF and MF Ricci scalars diverge,

and thus it is not a coordinate singularity—this is shown in
the left panel of Figs. 14 and 15. Further, at no point outside
of the singular position does the gtt component of the
metric vanish—the singularity is not enclosed within a
horizon. �, T, and At remain finite (though their proper
gradients diverge) up to the singular point. Interestingly, at
the singular point grr � R ¼ 0 implying (through 2T �
A2
t ¼ 0 and A2 ¼ �1) that the radial component of the

TeVeS vector vanishes at this point.
We have shown that linear theory suggests no deforma-

tion of the constant scalar RN solution that has regular
horizon, and nontrivial scalar. In specific cases, we have
confirmed that the full nonlinear theory agrees with the
linear theory in that attempts to make the scalar be non-
constant lead to a naked singularity rather than a regular
horizon. However, we have not shown that there is no such
solution far in ’’solution-space’’ from the constant scalar
RN solution. We think it unlikely, although have not ex-
plored this possibility in detail.

APPENDIX D: DETAILS OF FULL DYNAMICAL
NUMERICAL SIMULATION METHOD

We use the following Schwarzschild-like coordinate
system for our evolution

ds2 ¼ �T2ðt; rÞdt2 þ eRðt;rÞdr2 þ r2d�2
2: (D1)

In this coordinate system the Einstein equations have the
usual constraints (the tt and tr components) together with a
second order evolution equation for R, the �� component.
We do not use this directly to evolve R, instead we use the
tr constraint equation itself. Once all variables (apart from
T) have been successfully evolved to the next spatial slice,
we integrate across the grid in the radial direction to obtain
T on the slice using the rr equation. A simplification is
made for this radial integration of T; we use the value of T
from the old spatial slice to compute the contribution to the
right-hand side of the rr-Einstein equation, for the sake of
computational runtime. Using this approximation, the rr
component is a first order differential equation in T.
We find that the most stable way to evolve the vector

field is to evolve �, rather than evolving A and then
calculating � through contraction of the vector field equa-
tion. The evolution equation we use for � is given by taking
the divergence of the vector equation

r�r�F
�� þr�ð�A�Þ þ r�ð	2A��;� g

���;� Þ
¼ r�½ð1� e�4�Þg��A� ~T���: (D2)

The first term vanishes through antisymmetry of F and the
symmetry of the Ricci Tensor. The third term will contain
second time derivatives of �, and so we substitute for this
using the � equation of motion. The last term will contain

FIG. 14. EF (solid) and MF (dashed) Ricci scalars for the
parameters S ¼ 0:001 and K ¼ 
 ¼ Q=M ¼ 0:01 as functions
of the proper distance from the singular surface, illustrating a
physical singularity.

FIG. 15. Square of the proper derivative of �, �
02
R , for the full

integration (solid) and for the linearized theory (dashed). A
larger S would see a larger discrepancy between the singular
positions for the full and the linearized theory. This plot also
demonstrates the agreement of the two curves away from the
singularity.

CARLO R. CONTALDI, TOBY WISEMAN, AND BENJAMIN WITHERS PHYSICAL REVIEW D 78, 044034 (2008)

044034-20



second derivatives of the � field. For this we do not
substitute from the � field equation, as we are able to use
the conservation properties of ~T to obtain a simpler (and so
numerically advantageous) expression. Consider the defi-
nition of ~T from a variation of the action with respect to the
MF metric


S ¼ � 1

2
~T��

ffiffiffi
~g

p

~g��; (D3)

and one may rewrite the variation of ~g in terms of varia-
tions of the other fields, through the disformal relation 2
(see [8])


~g�� ¼ e2�
g�� þ 2 sinh2�A�
g
�ð�A�Þ þ 2½e2�g��

þ 2A�A� cosh2��
�þ 2 sinh2�Að�g�Þ�
A�:

(D4)

Specifically, consider the case of a diffeomorphism gen-
erated by the vector field itself,


g�� ¼ LAg
�� ¼ rð�A�Þ; (D5)


A� ¼ LAA
� ¼ 0; (D6)


� ¼ LA� ¼ A�r��; (D7)

so that


A� ¼ 
ðg��A�Þ ¼ �A�g��
g
�� ¼ �A�g��rð�A�Þ:

(D8)

Inserting all of this into (D3) and integrating by parts
from the terms containing variations of the inverse EF
metric, we obtain the following expression

A�r� ~T�� ¼ ðg�� þ ð1þ e�4�ÞA�A�ÞA�r��; (D9)

which we can then use instead of the � evolution equation
in the evolution of �.

Thus, both the metric components and � are evolved
with first order differential equations, while A,�, and � are
evolved at second order. The origin boundary conditions
are �;r ¼ 0, Ar ¼ 0, T ¼ 1, R ¼ 0, T;r ¼ 0, R;r ¼ 0, and
�;r ¼ 0.

For the scalar shell collapse in Sec. IVA, the initial
conditions on the t ¼ 0 spatial slice are � ¼ �c, A

r ¼ 0,
R;t ¼ T;t ¼ �;t ¼ �;t ¼ 0. We consider two simulations
with differing initial conditions for F��, and these are

discussed in the text. The initial R and T configurations
are specified by solving the rr and tt Einstein equations for
a choice of Gaussian initial data on �. The tr-Einstein
equation is automatically satisfied for this initial data.

For the boson star in Sec. IVB, the initial conditions for
all fields are fixed by requiring for a static star configura-

tion, initially. This configuration was found using a radial
shooting method, as discussed in the text.
Second order finite differencing was used to discretize

the equations of motion. For the scalar-shell collapse
simulation, we used resolutions up to �r ¼ 0:05 and �t ¼
0:0005, while for the Boson star simulation we used reso-
lutions up to �r ¼ 0:05 and �t ¼ 0:000 05. Each simula-
tion had 400 simulation sites per slice, and took on the
order of a day to run using an average desktop computer.

APPENDIX E: CONSTRAINT TESTING

We ran simulations at a variety of resolutions to check
convergence, which was seen in accord with our second
order finite differencing. To test the constraint equations
(and convergence), we consider the black hole dynamics
for some representative initial data as in Sec. IVA, and take
the absolute value of the constraint equation (left-hand
side—right-hand side) at a grid point, and then average
this over all grid points ( labeled by i) in a large physical
area. We then compute this average for various spatial and
temporal resolutions, keeping the physical region fixed.We
denote the set of all grid points in this region as 	.
Figure 16 shows this sum for the tt component of the
Einstein equation against log10�t, for four spatial steps
�r ¼ 0:2, 0.1, 0.05, and 0.025. We clearly see agreement
with expected constraint behavior for second order differ-
encing as the spatial and temporal resolutions are reduced.
Similar checks were performed for the boson star simula-
tion of Sec. IVB.

FIG. 16. The average of the tt constraint equation over simu-
lated grid points for the black hole of Sec. IVA, for different time
steps. Each curve corresponds to a different spatial resolution.
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