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We propose a procedure for the significant enhancement of the strong coupling rate between
photons in an optical cavity and a single quantum emitter, such as an atom, quantum dot or
trapped ion. We show that specially designed, non-spherical mirrors can lead to cavity eigenmodes
that exhibit a large field enhancement at the center of the cavity while inducing significantly less
beam divergence, and therefore smaller round trip losses and higher cooperativity, than can be
achieved by operating a spherical-mirror cavity in the near-concentric regime. We verify our designs
using mode matching theory and discuss their robustness relative to different kinds of manufacturing
deviations.

I. INTRODUCTION

For various applications of modern quantum optics,
both in experimental academic research and commercial
quantum technology, strong coupling of a quantum emit-
ter with an optical resonator is required, and simulta-
neously a long photon lifetime in this resonator is crit-
ically important. Some of the most promising systems
to meet these requirements for practical applications are
fiber-optic microcavities [1–4], ion beam etched dielectric
resonators [5], or micro-assembled structures [6].

Strong coupling of a quantum emitter to an optical cav-
ity for quantum technology applications can be achieved
by tightly localising a single cavity photon, i.e., by mak-
ing the cavity very small. However, for most realistic
quantum information processing schemes optical access
to the emitter from the side is required, e.g., for optical
cooling [7], state preparation, and final state readout [8].
Moreover, channels for the delivery of atoms or ions into
the cavity and the integration of trapping structures into
the cavity may impose further constraints on the cav-
ity length. In the case of ion-trap quantum computing
[9], the dielectric mirrors forming the cavity can also dis-
tort the radio-frequency fields required for trapping the
ion due to their electric susceptibility and due to sur-
face charges if they are too close to the trap electrodes
[10, 11].

Overall, there is thus a need for optical cavities used
in quantum information applications to combine a strong
coupling rate with low losses, while at the same time
also keeping the mirrors sufficiently apart. The goal of
our work here is to present a new method to achieve
these requirements by moving away from the paradigm of
spherical mirrors to engineer optical cavity modes with
better confinement properties than the standard Gaus-
sian modes.

Let us first review the principal parameters to charac-
terize optical resonators for strong coupling to single par-
ticles. The coherent coupling between a two-level quan-
tum emitter, such as a quantum dot, ion or cold atom,
located at a coordinate r in an cavity with an optical
field mode E(r) is characterized by the strong coupling

rate or coupling strength [12], which is derived from the
dipole interaction energy g = µE/~ between the emitter
and the electric field of a single photon,

g0(r) =

√
3λ2cΓ

4πVψ
ψ(r), ψ(r) =

E(r)

|E(rm)|
(1)

where Γ and λ are the spontaneous dipole decay rate

of the emitter Γ = ω3µ2

3πε0~c3 (where ω is the transition

angular frequency and µ is the electric dipole moment)
and its transition wavelength. Vψ is the mode volume
which we define as

Vψ =
1

|E(rm)|2

∫
|E(r)|2dV =

∫
|ψ(r)|2dV (2)

where rm is the position of the maximum electric field in
the cavity and the integration goes over the entire cavity
volume. For a cavity mode with an emitter located at
the maximum field intensity point rm the strong coupling

rate is g0(rm) =
√

3λ2cΓ
4πVψ

.

To achieve strong emitter-cavity coupling, the coherent
coupling rate g0 between the emitter and the cavity mode
must be larger than the strength of competing incoherent
processes, i.e., larger than the dipole decay rate Γ and the
cavity loss rate κ. Therefore, the cooperativity parameter
defined as

C0 =
g2

0

κΓ
=

3λ2c

4πκVψ
(3)

must be larger than one.
We see from Eq. (3) that the cooperativity can be in-

creased by decreasing the mode volume. However, as
discussed above, the cavity length L must be sufficiently
large to allow for optical side access and constraints im-
posed by atom/ion delivery and trapping. Therefore, if
we write the mode volume as Vψ = LAψ (where L is
the distance between metallic mirrors or an effective dis-
tance in case of multilayer dielectric mirrors), reducing
the mode volume can only be achieved by reducing the
mode cross section Aψ (at the position of the particle).
The common approach for this is to operate the cavity
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in a near-concentric regime [13] where, in paraxial ap-
proximation, the mode cross section can be made arbi-
trarily small. On the other hand, this cavity configura-
tion leads to excessive mode divergence and therefore to
increased cavity losses κ because large fractions of the
mode fields miss the resonator mirrors, which eventu-
ally reduces the cooperativity again according to Eq. (3).
Furthermore, concentricity leads to cavity instability [13]
and thus makes cavity performance sensitive to smallest
alignment errors.

Here we propose another method to increase the field
amplitude in the center of the cavity ψ(0), and thus to
enhance cooperativity: by modifying the shape of the
cavity mirrors we generate optimized interference pat-
terns in the mode field. We explore modulated spheri-
cal mirror profiles that give rise to highly localized cav-
ity modes while at the same time providing cavity loss
rates far below those obtained with near-concentric cav-
ities with comparable field localization for a wide range
of parameters.

This paper is organized as follows. First, in Sec. II,
we describe our theoretical model and compare the en-
hancement of the strong coupling rate, mode losses, and
cooperativity of target mode superpositions compared to
near-concentric cavities. In Sec. III we discuss how to de-
sign non-spherical mirrors to generate cavity eigenmodes
that consist of such mode superpositions and we verify
those designs with a-priory simulations. We also investi-
gate the stability of our designs against fabrication errors
and briefly discuss potential fabrication methods. Finally
we summarize and conclude in Sec. IV.

II. CAVITY FIELD ENHANCEMENT BY MODE
SUPERPOSITIONS

A. Mode Matching Theory

We start our investigation by introducing the formal-
ism used later in the paper to calculate the eigenmodes
of an optical cavity with arbitrarily shaped mirrors, fol-
lowing the approach of Refs. [14, 15].

We write the optical mode fields Ψ(r) as a superposi-
tion of a given set of basis modes {ψn(r)},

Ψ(r) =
∑
n

Tnψn(r). (4)

We will consider only linearly polarized modes and thus
the optical field can be described by a scalar field Ψ(r).
For simplicity we also assume cylindrical symmetry of the
cavity and thus restrict our model to radially symmetric
basis modes. For mirror shapes that are modifications of
standard spherical profiles, it is thus convenient to use
the well-known Laguerre-Gaussian (LG) modes of sym-
metric, spherical-mirror cavities as the basis modes in

our model. The basis mode functions are thus defined as

ψ±
n (ρ, ζ) =

√
2

π
Ln(2ρ2)×

exp {−ρ2 ± i(−ζρ2 + (2n+ 1) tan−1 ζ)}(5)

where ρ = r/w(ζ) and ζ = z/z0 are the dimensionless

radial and axial coordinates, w(ζ) = w0

√
1 + ζ2 is the

basis mode radius, w0 is the mode waist of the fundamen-
tal mode, z0 = kw2

0/2 is the Rayleigh length, k = 2π/λ
is the wave number, Ln are Laguerre polynomials and n
is the mode order. The index ± marks the propagation
direction.

The change of an optical field undergoing one round
trip through the cavity can be represented by a mode-
mixing operator M . Then finding the cavity eigenmodes
reduces to solving the eigenproblem [14, 16]

MΨ = γΨ (6)

where the eigenvectors are the cavity modes expressed as
superpositions of the basis LG modes and the eigenvalues
γ define the field amplitude changes of the corresponding
modes acquired per round trip. The fractional loss per
round trip D for the mode Ψ is given by

D = 1− |γ|2. (7)

The mode-mixing matrix of the cavity is given by

M = exp {2ikL}AB, (8)

where the exponential represents the longitudinal phase
shift acquired over one cavity round trip, i.e., by prop-
agation through twice the cavity length. The matrices
A and B represent the left and right-side mirrors of the
cavity positioned at coordinates z = −L/2 and +L/2,
respectively, and are given by the mode overlap integrals
taken over the finite extent of the mirrors,

An,m =

∫ ρa

0

ψ+
n ψ

−∗
m exp {−2ik∆(ρ)} 2πρ dρ

∣∣∣
ζ=−ζm

,(9)

Bn,m =

∫ ρa

0

ψ−
n ψ

+∗
m exp {+2ik∆(ρ)} 2πρ dρ

∣∣∣
ζ=ζm

,(10)

where ρa = Ra/w(ζm) with the mirror radius Ra and
the axial mirror position ζm = L

2z0
. ∆(r) describes the

deviation of the mirror profile from a plane surface.
The calculation of the cavity modes consists of the fol-

lowing steps. As we are interested in cavity mirrors that
are close in shape to a spherical profile, we first define
a mirror radius of curvature R and a cavity length L.
We then calculate the waist w0 of the fundamental mode
of this spherical-mirror cavity and use this to define the
fundamental and higher order modes ψ±

n , Eq. (5). The
overlap integrals, Eqs. (9)-(10) are then calculated nu-
merically in Matlab for the modified mirror shapes dis-
cussed later in Section III. Finally, the full matrix M
and its eigenvalues and eigenvectors are calculated. We
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FIG. 1: Schematic representation of 1) a
spherical-mirror cavity and 2) a cavity with modified

mirror shape obtained by our formalism. In case 1) the
fundamental mode of the cavity is a fundamental

Gaussian mode, in case 2) it is a superposition of the
fundamental and of higher order modes. In both cases
the cavities are assumed to be coupled to optical fibers

at the mirror outputs.

normalize the eigenvectors Ψ to have the same mode vol-
ume VΨ as the LG modes Vψ (note that all LG modes
have the same mode volume),

VΨ = Vψ =
π

4
w2

0L (11)

where the last equality is evaluated from the mode defi-
nitions (5). In this case the coherent coupling rate for Ψ
has the same form as Eq. (1), i.e.,

g(r) =

√
3λ2cΓ

4πVψ
Ψ(r). (12)

The eigenvectors of matrix M contain the mode composi-
tion coefficients Tn and thus the field profile of any cavity
eigenmode at any point in the cavity can be found using
Eq. (4). The corresponding cavity loss is obtained from
the eigenvalue as per Eq. (7).

B. Comparison of Mode Superpositions and
Concentric Cavities

We are interested in comparing two methods to in-
crease the intensity of the field at the center of the cavity
as discussed in the following

1) The “traditional” approach is to operate the cavity
in the near concentric regime and use the fundamental
Gaussian mode of the cavity, see top of Fig. 1. In this
case the strong coupling rate scales as g0 ∼ 1/w0 where
w0 is the waist at the center. The mode spot size on the
mirrors (in the far field where L/2 is much larger than
the Rayleigh length) scales with 1/w0 [13]. So the spot
size on the mirrors increases proportional to g0. Once the
spot size reaches the finite radius of the cavity mirrors,

the majority of the light field misses the mirror, leading
to clipping losses that increase exponentially with the
spot size and thus with g0. Thus, setting the cavity close
to concentric maximizes the cavity field in the center, but
rapidly increases the clipping loss and therefore strongly
reduces the cooperativity.

2) The alternative method we are investigating here
is using a superposition of higher order LG modes, see
bottom of Fig. 1. Let us assume that we can shape the
mirrors in such a way that the cavity supports an eigen-
mode that is an equal superposition of the first N LG
modes (we will discuss in Section III how this can be
achieved). Hence, the eigenmode takes the form

Ψ(ρ, ζ) =
1√
N

N−1∑
n=0

ψ+
n (ρ, ζ) (13)

for the right-propagating field, and analogously for the
left-propagating field. Note that the mode is normalized
to maintain the mode volume of a single LG mode. For
this mode, the strong coupling rate g(0) at the center,

Eq. (12), scales with
√
N because for all Laguerre poly-

nomials we have Ln(0) = 1 in the mode ansatz in Eq.
(13). On the other hand, the spot size of n-th LG mode

on the mirror scales as
√

(2n+ 1) [18]. Thus, the spot
size of the highest order mode used in the superposition
(13) scales as

√
N and therefore proportional to g(0).

This is the same scaling as for the concentric approach
discussed above, however, in the case considered here the
N -th LG mode only carries 1/N of the power. It is there-
fore expected that for the equal mode superposition (13)
the clipping losses due to the increasing mode spot size
on the mirror with increasing strong coupling rate are
smaller than for the near-concentric case.

We show a numerical example of the scaling of clip-
ping losses with increased strong coupling rate in Fig.
2, where the clipping losses are calculated numerically
from evaluating the mode overlap with the mirrors with
finite radius Ra. Here we start with a reference cavity
with cavity length L = 500µm, mirror radius of cur-
vature R = 255µm, mirror radius Ra = 100 µm, op-
erating at wavelength λ = 0.866 µm. The strong cou-
pling rate of this reference cavity at the center is de-
noted g0 and the clipping losses are below the numerical
accuracy in our simulations of 10−9 per round trip. For
the near-concentric cavity approach, blue dashed curve
in Fig. 2, we then scan the radius of curvature towards
L/2 = 250µm. This increases the strong coupling rate
g at the center but simultaneously increases the cavity
round trip losses. For the mode superposition approach,
red solid curve in Fig. 2, we increase the number of con-
stituent modes N in Eq. (13) from 1 to 50. As dis-
cussed above, this increases the strong coupling rate g
proportional to

√
N . We can clearly see that the cor-

responding increase in losses is significantly below the
near-concentric approach - over a wide range of parame-
ters comparable strong coupling amplification factors can
be achieved with orders of magnitude lower losses.
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FIG. 2: Clipping loss as a function of coupling rate
(local electric field) enhancement factor. For the

near-concentric cavity approach (blue dashed curve) g is
enhanced by reducing the mirror radius of curvature

towards L/2. For the mode superposition approach (red
solid curve) g is enhanced by increasing the number of

modes in the superposition. Enhancement of g is
relative to the value g0 of a reference cavity with

L = 500µm, R = 255µm, Ra = 100 µm, λ = 0.866 µm.

C. Coupling Rate Enhancement

In Fig. 2 we considered strong coupling rate enhance-
ment relative to a specific reference cavity of given mir-
ror radius of curvature. We now investigate how the en-
hancement depends on radius of curvature in more detail.

Figure 3(a) shows the enhancement of the strong cou-
pling rate g/g0 and the corresponding increase in clipping
losses of the mode superposition approach for different
reference cavities, i.e., cavities with different mirror ra-
dius of curvature. As before, the enhancement in g/g0

is achieved by increasing the number N of modes in the
mode superposition. For near-concentric reference cavi-
ties, e.g. for R = 250.1µm, only a modest enhancement
in g can be realized before the round trip losses increase
significantly. In this limit, already the fundamental mode
has a large spot size on the mirrors and thus adding more
higher order modes to the superposition will quickly lead
to excessive losses. As we move away from the concentric
regime by increasing the mirror radius of curvature, the
fundamental mode spot size on the mirrors decreases and
thus more higher order modes can be added before losses
increase substantially.

Note, however, that for increasing radius of curvature
R the strong coupling rate g0 of the reference cavity de-
creases and thus every curve in Figure 3(a) is relative to
a different value g0. In Figure 3(b) we therefore plot the
data versus g in real units, where we use the parameters
for the 866-nm transition in Ca+, a species frequently
used in ion trap quantum information experiments [17].
As mentioned above, for a reference cavity very close
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FIG. 3: (a) Clipping losses as a function of
enhancement of strong coupling rate for different radius

of curvature, L = 500 µm. (b) Clipping losses as a
function of strong coupling rate of Ca+ ion for radius of

curvature 250.1 µm (blue, dotted line), 253.22 µm
(brown, bottom solid line), 300 µm (yellow, middle solid
line) and 400 µm (purple, top solid line), respectively.
The black dashed line is for near-concentric spherical

cavities. L = 500 µm, ΓCa+ = 2π × 22 MHz.

to the concentric limit the benefit of using higher-order
mode superpositions is reduced. As the radius of curva-
ture is increased, larger strong coupling rates become ac-
cessible at lower losses. Approaching a more confocal ar-
rangement we can significantly enhance g and keep losses
under control, which corresponds to the region below the
curve for the concentric cavity (black dashed line) in Fig-
ure 3(b). However, we observe that for too large radii of
curvature (300 or 400 µm in the figure) the achievable
enhancement factor reduces again.

Figure 3(b) shows clearly that there are parameter re-
gions of cavities with larger strong coupling rate and
lower loss that can be achieved with the mode superpo-
sition approach but are not accessible by near-concentric
resonators. Finally, we note, however, that in order to
achieve large strong coupling rate enhancement for cavi-
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FIG. 4: Cooperativity enhancement as a function of the
number of modes N in the superposition (13) for

different intrinsic mirror losses Dmir. Other parameters
are L= 500 µm, R = 400 µm, λ = 0.866 µm.

ties with relatively large mirror radius curvature, a very
large number of higher order modes need to be included
in the mode superposition. This may be difficult to real-
ize, as discussed in Section III C.

D. Cooperativity Enhancement

Next we consider the enhancement of the cooperativity
using the mode superposition approach for a more real-
istic situation which takes into account intrinsic cavity
round trip losses because of light absorption or partial
transmission through the mirrors, which typically are in
the range of Dmir = 10−5 − 10−4. In this case the total
loss rate κ relates to both the loss of the mirrors Dmir

and the clipping loss per round trip D(N) which depends
on the number of LG modes in representation (13),

κ =
c

2L
(D(N) +Dmir). (14)

Using Eqs. (11)-(14), the cooperativity C, Eq. (3), then
becomes

C =
6

π2

(
λ

w0

)2
N

D(N) +Dmir
. (15)

We now denote the cooperativity of the fundamental
Gaussian mode as C0 and assume it has negligible clip-
ping losses, D(N = 1) = 0. The enhancement of cooper-
ativity by an N -mode superposition is finally expressed
as

C

C0
=

N
D(N)
Dmir

+ 1
. (16)

We show this cooperativity enhancement for different
values of Dmir in Fig. 4. As long as the clipping losses

are smaller than the intrinsic losses, D < Dmir, the coop-
erativity increases linearly with N and is independent of
Dmir. Thus, a superposition of 100 modes would ideally
enhance the cooperativity by two orders of magnitude.
In practice, the region of N between 0 and 10 is the most
interesting because it provides a significant cooperativity
enhancement and at the same time does not require too
many modes, which would pose excessive constraints on
the fabrication accuracy of the mirrors.

The cooperativity starts to drop sharply with increas-
ing N when the clipping losses exceed Dmir. This hap-
pens when the N -th order mode spot size on the mirror
[18],

wN (L/2) = w0

√
2N + 1

√
1 + [L/(2z0)]2, (17)

becomes comparable to the mirror radius Ra. This allows
us to derive an estimate for a maximum useful number
of modes in the superposition,

Ncutoff ≈ 2

(
πw0Ra
λL

)2

. (18)

This value of Ncutoff thus marks the position of the sharp
cutoff observed in Fig. 4.

III. DESIGN OF MIRROR PROFILES

In the previous section we showed that certain super-
positions of LG modes exhibit a large field enhancement
in the cavity center while maintaining low cavity loss
rates. We will now discuss the shape of the cavity mirrors
that are required to generate such mode superpositions
as eigenmodes of an optical cavity.

A. Mode Field Phase Fronts

The principle of designing a mirror that will generate
a desired electromagnetic field as an eigenmode of the
cavity is as follows. We first calculate the desired field
and analyze its wave fronts in the area of one mirror;
an example is shown in Fig. 5(a). The required mirror
shape then needs to follow a surface of constant phase,
as presented by the red, thick solid curve in the figure.

For a field composed of a low number of LG modes,
N = 3 in Fig. 5, this mirror shape still mainly follows a
spherical profile. It is thus instructive to plot the mirror
shape as the deviation from the spherical profile, shown
in Fig. 5(b). We see that the mirror can effectively be
fabricated by manufacturing a “hole” of a certain shape
and a maximum depth of the order of one micron into
the center of a spherical mirror. We will further discuss
possible routes to fabrication and the required manufac-
turing precision in Sec. III D and Sec. III C, respectively.

Note that all calculations in this paper are based on the
paraxial approximation [19], and therefore are only valid
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FIG. 5: Phase of the target field (superposition of
N = 3 LG modes) near one of the cavity mirrors. The

red (thick solid) curve marks a contour of constant
phase, which would be an appropriate mirror profile to
generate this field as a cavity eigenmode. (b) Shape of

the required mirror profile as a deviation from a
spherical profile. Parameters are L= 500 µm,

R = 400 µm, λ = 0.866 µm.

for fields with low divergence angles. Within this approx-
imation a spherical mirror is equivalent to a parabolic
profile. Moreoever, the mode mixing matrices A and B,
Eqs. (9)-(10), are calculated in the limit of thin mirrors,
i.e., by applying a phase shift on a plane of constant
position z = L/2. Numerically, instead of extracting a
contour of constant phase as described above, we calcu-
late the phase of the target field along z = L/2 and use
this phase for the terms exp{±2ik∆(ρ)} in Eqs. (9)-(10).
Within the paraxial and thin-mirror approximations the
two approaches are equivalent.

B. Verification of Mirror Designs

Having extracted the shape of the mirror from the wave
front pattern near z = L/2, as described above, we now
use it to verify our mirror design. Using the formalism
presented in Sec. II A we calculate the eigenmodes of the
cavity formed by two identical mirrors with the extracted
shape and analyze the clipping losses D of the eigen-
modes, Eq. (7), and their coefficients |Ti|2 which describe
the weight of each LG mode i in each cavity mode.

An example for a target mode which contains an equal
superposition of N = 3 LG modes, Eq. (13), is shown in
Fig. 6. Figure (a) shows that the cavity supports exactly
one low-loss eigenmode for the chosen parameters while
all other modes exhibit large round trip losses. Figure
(b) shows the corresponding values of |Ti|2. The lowest

0 10 20 30
Eigenmode number

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

L
os

s 
pe

r 
ro

un
d 

tr
ip

(a)

5 10 15 20 25 30

Eigenmode number

5

10

15

20

25

L
ag

ue
rr

e-
G

au
ss

 m
od

e 
nu

m
be

r

0.1

0.2

0.3

0.4

0.5

|T i|
2

(b)

FIG. 6: Eigenmodes of a cavity formed by mirrors
designed in Fig. 5 using mode matching theory. (a)

Clipping loss per round trip D for different eigenmodes
sorted by increasing loss. (b) Corresponding coefficients
|Ti|2. The lowest loss eigenmode has weights 1/3 for the

lowest 3 LGs, confirming the target mode design.
Parameters are are L= 500 µm, R = 400 µm,

λ = 0.866 µm.

loss mode (eigenmode number 1) is an equal superposi-
tion of the first three LG modes with weight 1/3 each,
confirming that our mirror design in fact makes this tar-
get superposition an eigenmode of the cavity. All other
modes contain contributions from high LG modes, which
explains their large loss seen in figure (a). For all pa-
rameters we tested numerically, we always found that
the mirror shapes designed by the procedure described
in Section III A generate the target cavity eigenmodes.

As discussed above, our calculations are performed
within the paraxial approximation. For the parameters
of Fig. 6 we found that the error in the obtained coef-
ficients Ti does not exceed 5% when we use the mirror
profile extracted from the geometrical phase front (as in
Fig. 5) instead of the thin-mirror approximation. This
check shows the limitations of the paraxial approxima-
tion together with mode mixing theory.
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FIG. 7: Loss per round trip for the lowest loss mode for mirror shapes with systematic fabrication errors. Dotted
blue, dashed red and solid yellow lines correspond to axial, radial and longitudinal displacements given by deviations

of parameters a, b, and L, respectively, see Eq. (19). (a), (c), (e) are near-concentric cavities with parameters
L = 500 µm, R = 255 µm and N = 3, 5, 7, respectively. (b), (d), (f) are near-confocal cavities with parameters

L = 500 µm, R = 400 µm and N = 3, 5, 7, respectively.

C. Fabrication Tolerances

As we discussed in Sec. III A the target mirror has a
spherical shape (parabolic within the paraxial approxi-
mation) with some deviations as seen, for example, in

Fig. 5(b). In this section we investigate the effect on cav-
ity eigenmode losses if this target mirror profile is imple-
mented with some errors, e.g., by fabrication imprecision.

Let us assume that our mirror is described by a profile
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P (r) as

P (r) = − r2

2R
+ a∆(br), (19)

where the first term is a parabolic mirror with radius of
curvatureR and the second term is the deviation from the
parabolic profile predicted by our theory to generate the
desired cavity eigenmode. We assume that the mirrors
are fabricated with some systematic error described by
two coefficients a and b in Eq. (19) which correspond to
axial and radial stretch, respectively, of the target profile
∆(r) that is machined into the parabolic mirror. We also
consider longitudinal misalignment of the cavity, i.e., a
cavity length L different from the one used to design the
mirrors.

Figure (7) shows the loss of the lowest-loss cavity mode
eigenmode when the coefficients a and b in Eq. (19) differ
from their design value of 1 and when the cavity length
L is slightly varied. Results for two values of the mirror
radius of curvature are shown as well as for target mode
superpositions containingN = 3, 5, 7 LG modes. Overall,
we can conclude that manufacturing inaccuracies of the
order of 0.5% will not increase the cavity mode loss be-
yond an intrinsic mirror absorption/transmission loss of
Dmir = 10−5. Note that according to these simulations
an error in cavity length L seems to be the most severe
in many cases. However, in practice the cavity length in
quantum optics experiments is always controlled to ex-
tremely high precision in order to maintain the cavity
resonance frequency close to the transition frequency of
the quantum particle of the experiment (atom, ion, or
quantum dot) and therefore this requirement should not
pose any additional restrictions on cavity alignment.

In general, we find that superpositions of more LG
modes are more difficult to achieve with good stability,
i.e., they are more susceptible to fabrication errors. How-
ever, for the chosen parameters in Fig. 7 it appears inter-
estingly that the near-confocal cavity with a three-mode
superposition is less stable than the cavity with a five-
mode superposition

D. Comments on Fabrication

Our scheme requires mirrors that are machined with
a small deviation from a spherical (parabolic) profile,
as calculated in Section III A. We envisage that these
profiles are machined into the mirror substrate before
the substrate is coated with a high-reflectivity dielectric
stack.

Various methods exist that, in principle, allow the fab-
rication of such fine mechanical structures. Laser micro-

fabrication has successfully been demonstrated in silica
[20–22]. Pulses of a CO2 laser can be used for thermal
evaporation of surface material [23, 24] and laser radia-
tion focused on the cleaved surface can compose a sur-
face landscape with extremely low roughness. Another
method is focused ion beam milling [5] that can be used
for material ablation with nanometer precision. For ex-
ample, Ref. [25] cites 1 nm precision which corresponds to
a relative deviation of 0.16 % of the 0.6 µm beam profile
depth of Figs. 5(b) and 7(a). Finally, modern mechanical
micro-machining tools [26–28] can also provide sufficient
precision to meet the fabrication requirements discussed
in Section III C.

IV. CONCLUSIONS

In this work we developed a novel approach that allows
us to achieve a significant enhancement of the coupling
rate and cooperativity between a quantum emitter and a
low-loss optical cavity without increasing mode instabil-
ity. We proposed to modify the cavity mirror geometry
in such a way that a specific superposition of LG modes
becomes an eigenmode of the cavity and provides sig-
nificant local field enhancement. We demonstrated that
such mode superposition can provide lower losses and
higher stability at the same electric field amplitude than
can be achieved by a more conventional approach using
near-concentric cavities. We envisage that such cavities
could find widespread use in a variety of research and
engineering problems.

We demonstrated an approach to design the required
mirror shapes by following the contours of constant phase
of the target mode superposition field and verified our
designs using mode matching theory. Finally we briefly
discussed options for manufacturing such mirrors and we
investigated the effect of systematic errors in fabrication
on the performance of the cavity designs. Overall, cur-
rent state-of-the-art manufacturing methods should al-
ready be sufficient to fabricate at least the simpler de-
signs presented in our work.

All data supporting this study are openly available
from the University of Southampton repository [29].
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