
MNRAS 000, 000–000 (0000) Preprint 20 August 2021 Compiled using MNRAS LATEX style file v3.0

The physics of non-ideal general relativistic
magnetohydrodynamics

N. Andersson?1, I. Hawke1, T. Celora1 and G.L. Comer2

1 School of Mathematics and STAG Research Centre, University of Southampton, Southampton SO17 1BJ, UK
2 Department of Physics, Saint Louis University, St Louis, MO 63156-0907, USA

20 August 2021

ABSTRACT

We consider a framework for non-ideal magnetohydrodynamics in general relativity, paying particular attention to

the physics involved. The discussion highlights the connection between the microphysics (associated with a given

equation of state) and the global dynamics (from the point of view of numerical simulations), and includes a careful

consideration of the assumptions that lead to ideal and resistive magnetohydrodynamics. We pay particular attention

to the issue of local charge neutrality, which tends to be assumed but appears to be more involved than is generally

appreciated. While we do not resolve all the involved issues, we highlight how some of the assumptions and simpli-

fications may be tested by simulations. The final formulation is consistent, both logically and physically, preparing

the ground for a new generation of models of relevant astrophysical scenarios.
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1 CONTEXT

Electromagnetic phenomena are central to neutron star astro-
physics, with issues ranging from the formation and evolution
of the star’s internal magnetic field through to the elusive pul-
sar emission mechanism and the violent dynamics associated
with supernova core collapse and binary mergers. The inti-
mate connection between highly dynamical events and pow-
erful observed gamma-ray bursts provides ample motivation
to improve the available simulation technology. In this re-
spect, there has been notable progress towards realistic nu-
merical simulations of neutron star mergers in full nonlinear
general relativity (with the live spacetime required by Ein-
stein’s theory, see Baiotti & Rezzolla (2017); Bernuzzi (2020)
for reviews). In particular, given the problem we focus our at-
tention on here, there has been interesting recent work on the
role of the magnetic field. Most current efforts remain within
the regime of ideal magnetohydrodynamics (see for example
Cipolletta et al. (2021)), but there have also been attempts to
account for non-ideal effects, like resistivity and viscous dis-
sipation (Palenzuela et al. 2009; Dionysopoulou et al. 2013;
Wright & Hawke 2020). Steps in this direction are important
as they take us towards a more detailed implementation of
the physics, which is always desirable. In particular, we need
to be able to quantify to what extent these (complicating)
aspects may leave an observational signature. If they do not,
then we can “get away” with a simpler treatment. The ar-
gument is straightforward but it raises a number of thorny
issues. Not only do we need a better handle on what the input
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physics should be, we also need to understand to what ex-
tent simulations are able to faithfully represent these aspects.
Neither of these issues are trivial.

An important part of the discussion links the microphysics
(represented by the matter equation of state) to the large-
scale dynamics. This inevitably involves considering the com-
position and state of matter, as well as different possible
“flows” (associated with heat, charge currents and possibly
superfluidity) that enter the problem. The recent work of
Andersson et al. (2017a,b,c) (see also Andersson (2021)) rep-
resents a coherent effort in this direction, outlining a flexible
multi-component framework (at the level of fluid dynamics)
that allows us to represent different aspects of the problem.
The results set the scene for more detailed considerations by
providing both a fibration perspective—suitable for the lo-
cal fluid dynamics (Andersson et al. 2017b)—and a foliation
description, geared towards spacetime simulations (Anders-
son et al. 2017c). This paper aims to clarify the connection
between the two pictures. Adding context and depth to the
previous work—paying particular attention to issues relating
to the assumptions associated with magnetohydrodynamics
and local charge neutrality on different relevant scales—our
discussion takes us another couple of steps towards realism.

Throughout the discussion, we adopt the convention that
spacetime indices are represented by a, b, c, ... while i, j, k, ...
are spatial indices in a chosen coordinate frame. The Einstein
summation convention is assumed for both sets.
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Fig. 2.4 As no signals can travel faster than light, actual clocks are confined to remain inside

the light-cone associated with an event (now). This constrains both the past history of the

event and future events it may communicate with. Spacetime intervals Aa (say) that may

be associated with an observer carrying a clock are called timelike and satisfy gabA
aAb < 1.

In contrast, spacelike intervals, for which gabA
aAb > 1, would have to involve superluminal

motion. Finally, intervals associated with light signals (called null) are such that gabA
aAb = 0.

2.4 The four velocity

In order to discuss motion in more detail, it is useful to revisit the concept of an
inertial frame. An inertial frame can be viewed as a lattice of rods and clocks that
moves in such a way that it is not a↵ected by any forces. It also does not rotate with
respect to distant observers. We let the rods form an orthogonal lattice with uniform
length intervals and can be used to set up orthonormal Cartesian coordinates. The
clocks are synchronised by light pulses, as in figure ??, and measure time in a uniform
way. Given such an inertial system we have a natural coordinate system for spacetime,
xa = {t, x, y, z} (say). The coordinates associated with a certain event P is then given
by the location {x, y, z} in the lattice of rods, and the time t measured by the clock
at that coordinate location. However, in a curved spacetime one cannot construct a
global inertial frame. One is forced to consider local inertial frames, which are relevant
only in a small region of spacetime.

The world line of a particle is the sequence of events P(⌧), where ⌧ is the proper time
measured by an ideal clock carried along by an imagined observer riding alongside the
particle. The world line’s tangent vector u is called the four-velocity. Mathematically,
we can define the four-velocity through the standard limiting procedure for derivatives

u =
dP
d⌧

= lim
�⌧!0

P(⌧ + �⌧) � P(⌧)

�⌧
. (2.27)

In practice, one would think of the world line as a trajectory xa(⌧), leading to

Figure 1. Illustrating the connection between two formulations

of the relativistic fluid problem. The fibration approach, which fo-

cuses on the worldline associated with a given fluid element (and
a four velocity u with components ua), provides a natural descrip-

tion of the microphysics and issues relating to the local thermo-

dynamics. Meanwhile, a spacetime foliation, based on the use of
spatial slices and normal observers (depending on a lapse α and a

shift vector βi), is typically used in numerical simulations. In or-

der to ensure that the local physics is appropriately implemented
in simulations, we need to understand the translation between the

two descriptions.

2 THE EQUATIONS OF ELECTROMAGNETISM

It is natural to begin by considering the equations that gov-
ern the electromagnetic degrees of freedom. The 3+1 form
for Maxwell’s equations is well known (Baumgarte & Shapiro
2003), but this exercise is nevertheless useful as it establishes
the procedure we use for the fluid dynamics. It also offers an
opportunity to highlight how the issue of charge neutrality
leads to (potentially unavoidable) uncertainties in the mod-
elling.

Key to the discussion is the relation between the local
physics—encoded by a matter equation of state—and the
variables used in a numerical simulation (see fig. 1). In par-
ticular, we need to understand how the evolved variables con-
nect with the microphysics and the local thermodynamics. In
a fully nonlinear/nonequilibrium system this is a challenging
problem and we do not expect to resolve all the involved is-
sues here (especially those linked to small scale turbulence,
see Celora et al. (2021) for a recent discussion and references
to the relevant literature). Having said that, we will demon-
strate how we can make progress by making physically rea-
sonable approximations.

2.1 Maxwell’s equations

To set the scene, recall that the 3+1 decomposition used in
nonlinear gravity simulations (Baumgarte & Shapiro 2003;
Rezzolla & Zanotti 2013; Andersson & Comer 2021) involves
a set of spatial hypersurfaces and (Eulerian) observers as-
sociated with the corresponding normal, Na. The spacetime
metric is given by

ds2 = −(α2−β2)dt2 +γij(β
idxj+βjdxi)dt+γijdx

idxj , (1)

where α and βi represent the lapse and the shift, respectively
(see fig. 1). The spatial metric γab acts as a projection orthog-
onal to Na and is used to introduce a suitable derivative in
each spatial hypersurface

Di = γbi∇b , (2)

where all free indices should be projected. We also introduce
the Christoffel symbols Γjki associated with γij , ensuring the
compatibility Diγjk = 0. Moreover, if γ is the determinant
of the induced metric, then

Diγ
1/2 = ∂iγ

1/2 − Γjjiγ
1/2 = 0 . (3)

We also need the extrinsic curvature

2αKij = −(∂t − Lβ)γij , (4)

where Lβ is the Lie derivative along βi. We then have

Lβγij = γkjDiβ
k + γikDjβ

k = Diβj +Djβi , (5)

and it follows that the trace of the extrinsic curvature satisfies

αK = −∂t ln γ1/2 +Diβ
i . (6)

Turning to the equations of electromagnetism, let us (for
clarity) assume that we opt to work with the electric and
magnetic fields. (An alternative description based on work-
ing with the vector potential can be found in Baumgarte
& Shapiro (2003), with recent implementations discussed by
Etienne et al. (2020); Cipolletta et al. (2021).) These are (ob-
viously) observer dependent quantities. In terms of the Fara-
day tensor Fab an Eulerian observer (associated with Na) will
measure the electric field

Ea = −NbFba , (7)

and the magnetic field

Ba =
1

2
εabcF

bc . (8)

where we have defined

εabc = εdabcN
d , (9)

(associated with a right-handed coordinate system moving
along with Na). This then leads to

Fab = NaEb −NbEa + εabcB
c . (10)

Clearly, the electric and magnetic fields are orthogonal to
Na (by construction) and so each will have only three com-
ponents (as expected).

The equations that govern the electromagnetic field are
(obviously) well known, so we simply draw on the results from
Andersson et al. (2017c). First of all, we need to introduce
the Eulerian frame decomposition of the charge current

ja = σ̂Na + Ĵa , ĴaNa = 0 . (11)

The charge current actively generates and sustains the
electromagnetic field. Yet, much of the astrophysics liter-
ature assumes that the charge current plays a more pas-
sive role. This step—one of the assumptions that leads to
magnetohydrodynamics—is important. It effectively reduces
the problem from a multi-component plasma (see Andersson
(2012) for discussion and pointers to the relevant literature)
to a “single-fluid” model that is easier to work with. The
arguments in favour of this strategy are well developed in
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non-relativistic physics (Mestel 1999), but the extension to
general relativity tends to be made by analogy rather than
in-depth analysis. Given this, we will pay particular attention
to issues related to the charge current in the following.

Maxwell’s equations follow from, first of all

∇bF ab = µ0j
a , (12)

which, from the foliation perspective, leads to a relation be-
tween the divergence of the electric field and the charge den-
sity σ̂

DiE
i = µ0σ̂ , (13)

where µ0 is the magnetic permeability. Here, and in the fol-
lowing, we use the same matter quantities as in Andersson
et al. (2017c) and—in order to make clear the distinction—
retain the convention of using hats to denote matter quanti-
ties measured by Eulerian observers (while the correspond-
ing electric and magnetic fields are given as capital let-
ters). It is also worth noting that, since we are assuming
c2 = 1/µ0ε0 = 1 we recover the standard form for Gauss’
law:

DiE
i =

σ̂

ε0
. (14)

We also have an evolution equation for the electric field1

(∂t − Lβ)Ei − εijkDj(αBk) + αµ0Ĵ
i = αKEi . (15)

The second pair of Maxwell equations follow from

∇[aFbc] = 0 . (16)

Given the absence of magnetic monopoles, we have

DiB
i = 0 , (17)

while the magnetic field evolves according to

(∂t − Lβ)Bi + εijkDj(αEk) = αKBi . (18)

It is important to keep in mind that, in practice, these
equations refer to a computational cell on a specified numer-
ical grid. There is no actual observer that moves through
spacetime with four-velocity Na. This is obvious, but de-
serves emphasis as a typical grid resolution involves a fluid
“box” that is much larger than the fluid “elements” of the un-
derlying fluid model. The relevance of this should (hopefully)
become clear as we proceed.

2.2 Towards magnetohydrodynamics

Astrophysical problems tend to be considered in the context
of magnetohydrodynamics. As we want to understand the
physics of the problem, it is useful to spell out how this sim-
plifies the equations. The argument is fairly straightforward.
Let us assume that the dynamics is associated with character-
istic length- and timescales, L and T , leading to an associated

1 Here, and in the following, we write the evolution equations

in a way that focusses on the physics involved, rather than the

flux-conservative form required for a numerical implementation.
The translation between the descriptions is, however, standard and

should not present any particular difficulties.

velocity V ∼ L/T (noting that K ∼ 1/T and Lβ ∼ 1/T ). It
then follows from eq. (18) that

(∂t − Lβ − αK)Bi︸ ︷︷ ︸
∼B/T

+ εijkDj(αEk)︸ ︷︷ ︸
∼E/L

= 0

=⇒ B ∼ E/V . (19)

Similarly, it follows from eq. (15) that

(∂t − Lβ − αK)Ei︸ ︷︷ ︸
∼E/T

− εijkDj(αBk)︸ ︷︷ ︸
∼B/L

+αµ0Ĵ
i = 0 . (20)

We see that that we can safely neglect the displacement cur-
rent (the first term) as long as V 2 � 1 (= c2). In effect, we
have a low frequency/velocity approximation. Leaving out
the corresponding contribution to eq. (15) we arrive at the
familiar relation from magnetohydrodynamics:

εijkDj(αBk) ≈ αµ0Ĵ
i . (21)

As the charge current is slaved to the magnetic field, we have
effectively removed a dynamical degree of freedom from the
problem.

The argument is (of course) standard in flat space (and the
usual Cartesian coordinates), where we have α = 1, βi = 0
and γ = 1 in the various equations and the covariant deriva-
tives reduce to partials (Bellan 2006; Mestel 1999). The sug-
gested extension to the curved spacetime setting is intuitive,
but we may have to tread a bit more carefully. Clearly, the
scaling argument relies on the assumption that the gauge (the
choice of lapse and shift) does not impact on the scaling, but
there is no guarantee that it could not. For example, if we
consider βi as (effectively) a velocity then we clearly have to
restrict it to be small (in a suitable sense). However, there
is no reason why one would not be “allowed” to consider
gauges with a large enough βi that the argument is messed
up. With a non-trivial choice of the shift vector, one would
at least have to consider the possibility that this impacts on
the dynamics. In a similar fashion, the lapse α may affect the
assumed scalings. In essence, we have to apply the magne-
tohydrodynamics approximation with some level of caution,
as the logic leading to eq. (21) inevitably involves a degree
of gauge dependence. One might consider testing the result
by actual simulations, which ought to be fairly straightfor-
ward. Having said that, perhaps the most natural attitude is
to pragmatically assume that any choice of gauge that breaks
the logic is likely to be somewhat artificial, ignore the issue
and move on.

Let us see where this takes us. We now have a different
problem. By effectively working with the pre-Maxwell form
of eq. (15) (leaving out the displacement current) we cannot
solve eq. (18) without providing Ei. We need an additional re-
lation between the electric and magnetic fields. This is where
the issue of the conductivity (effectively Ohm’s law) enters
the discussion. In a perfect conductor, where charges easily
flow, one would expect the electric field to “short out” as
the matter becomes locally charge neutral. As this argument
brings in the local physics associated with a given fluid el-
ement, let us change perspective and consider the problem
from that point of view.

MNRAS 000, 000–000 (0000)
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2.3 The local view

The local description introduces a different observer, with
four velocity ua (as in fig. 1), associated with the fluid mo-
tion. Connecting to the Eulerian observers from the foliation
picture, we have

ua = W (Na + v̂a) , Nav̂
a = 0 , (22)

with v̂a the relative velocity between the two frames and the
Lorentz factor

W =
(
1− v̂2)−1/2

, v̂2 = γij v̂
iv̂j . (23)

The electric field measured by the fluid observer follows
from

ea = −ubFba , (24)

leading to

ea = W
[
Ea + εabcv̂

bBc +Na
(
v̂bEb

)]
. (25)

It is evident that, in general, the electric field inferred by the
local observer has a component parallel to Na

e‖ = −eaNa = −W
(
v̂bEb

)
, (26)

as well as an orthogonal piece

e⊥a = W
(
Ea + εabcv̂

bBc
)
. (27)

Let us now bring in the assumption that the local electric
field vanishes, as one would expect from the standard (Debye)
screening argument in a perfect conductor. Specifically, if we
let

e⊥a = 0 =⇒ Ea + εabcv̂
bBc = 0 , (28)

then is easy to see that we also have e‖ = 0. If we combine
eq. (28) with eq. (18) and eq. (21) we have all the relations
we need to solve the problem. This is ideal magnetohydrody-
namics. The arguments are, of course, standard but—as we
will soon see—we need to pay attention to a number of subtle
points. In particular, we need to carefully consider the issue
of charge neutrality.

2.4 Charge neutrality

In addition to invoking the low-frequency argument to sim-
plify the Maxwell equations, text-book magnetohydrodynam-
ics involves an assumption of local charge neutrality. This
is, effectively, the (previous) argument that the local electric
field vanishes. The result follows immediately from the flat-
space version of the Gauss law eq. (13). If the electric field
vanishes, then so does the local charge density. However, the
problem turns out to be more involved—and interesting!—in
the relativistic setting.

In order to see why this is the case, we may start from the
charge current, which has to satisfy

∇aja = 0 , (29)

in order to ensure electromagnetic gauge invariance. This
is not an independent result—it can be obtained from the
Maxwell equations (Thorne & MacDonald 1982)—but it is
nevertheless useful to consider it separately. In terms of the
Eulerian variables, we have

(∂t − Lβ)
(
γ1/2σ̂

)
+Di

(
γ1/2αĴ i

)
= γ1/2σ̂Diβ

i . (30)

Invoking eq. (21), we see that

µ0Di
(
γ1/2αĴ i

)
≈ εijkDiDj

(
γ1/2αBk

)
= 0 , (31)

which leaves us with

(∂t − Lβ)
(
γ1/2σ̂

)
= γ1/2σ̂Diβ

i . (32)

In flat space (e.g. special relativity, with βi = 0 and γ = 1,
as before) we immediately arrive at the usual argument for
quasi-neutrality:

∂tσ̂ = 0 . (33)

If a system starts out with σ̂ = 0 (e.g. due to screening on
length scales of relevance for the evolution) then this condi-
tion is preserved as time marches on.

In the curved spacetime case the problem is more subtle
since simulations tend to involve non-trivial choices for the
lapse and shift (and the logic obviously breaks if eq. (21) does
not hold, as discussed earlier), but it might still seem reason-
able to argue that an evolution initiated with a uniformly
vanishing charge density should remain charge neutral (in
this sense). In principle, we are “allowed” to assume σ̂ = 0
(as in the example used as illustration by Andersson et al.
(2017c)), but the question is if this is a “sensible” thing to
do2. It will soon become clear that it is not.

For example, if we combine eq. (28) with eq. (13) we see
that

µ0σ̂ = −Di
(
εijkv̂jBk

)
. (34)

This is also a well-known result—of immediate relevance for
neutron star astrophysics as it leads to the Goldreich-Julian
charge density for rotating magnetospheres (Goldreich & Ju-
lian 1969)— enforcing the point that we should not expect
σ̂ = 0 to hold everywhere.

Noting this argument, let us shift the emphasis to the local
charge density measured by the fluid observer, σ. This follows
from

ja = σua + Ja , uaJa = 0 , (35)

leading to

σ = −uaja = W
(
σ̂ − v̂aĴa

)
. (36)

That is, if the matter is locally charge neutral (in the sense
that σ = 0) then the quantities measured by the Eulerian
observer must satisfy

σ̂ − v̂aĴa = 0 . (37)

The result is intuitive. A change of observer frame impacts
on measured volumes and hence the charge density and the
associated current.

So far, we have essentially summarized the standard ap-
proach to (ideal) relativistic magnetohydrodynamics. We

2 As a slight aside, it is worth noting that we could always, in

principle, construct a gauge such that eq. (30) preserves any initial
σ̂. All we need to do is set

σ̂βi = αJi .

Of course, this only works for a non-vanishing σ̂, as otherwise α = 0

and time would not progress. Moreover, the suggestion is unlikely
to ever be relevant as one has to reserve the gauge choices to deal

with more serious issues.
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ΔT
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Figure 2. A fluid element inside a much larger computational cell.

have seen how we may represent the charge current in terms
of the curl of the magnetic field as long as we ignore the
displacement current. We have also seen how the condition
of local charge neutrality (σ = 0) enters the discussion and
how the dynamics (e.g. bulk rotation) may induce an effective
large-scale charge density (σ̂ 6= 0), as in eq. (34).

2.5 Averaging from the nuclear physics scale

From the neutron star physics point of view it seems in-
evitable that the condition of local charge neutrality (σ = 0)
should hold on the scale relevant for nuclear physics (in all
reasonable settings, with a possible caveat for extended re-
gions with mixed phases). Basically, the fact that the elec-
trons are highly mobile makes the relevant screening length
vastly smaller than the size of a typical fluid element (which
must, in turn, exceed (say) the electron mean free path).
Given this, local charge neutrality is (almost exclusively) as-
sumed in modern equation of state calculations3. Basically,
we need to take the condition eq. (37) seriously.

The question is on what scale we have to enforce the
condition—exactly how local is local? In order to explore this
issue, let us zoom in on a fluid element from a numerical evo-
lution, as indicated in fig. 2 (where ∆L could be as large as
100m across even in a state of the art simulation (Baiotti &
Rezzolla 2017)), to a much smaller scale (still large enough
that we can meaningfully use the fluid description, leading
to a typical ∆l of something like a few mm in a neutron star
core (Andersson & Comer 2021)). We want to understand
the impact of the averaging from the smallest scale in the
problem to the computational scale and to what extent there
is a risk of key aspects being “lost in translation”. This is a
legitimate concern because, in essence, one assumes that the
physics can be adequately represented by average values for
the different fields. First of all, the fluid model itself is (obvi-
ously) based on the notion of averaging over a large number

3 The situation is notably different for beta equilibrium, for which

the governing reactions (the Urca reactions in the case of a neu-
tron star core) are slow enough that the system may not reach

equilibrium on the time scale of (say) core collapse or neutron-star

merger (see Hammond et al. (2021) for a recent discussion).

of particles (represented by suitable distribution functions in
the more fine grained kinetic theory picture). Secondly, we
average again to reach the computational scale. As we will
see, both steps require careful consideration.

Let us first consider the problem at the level of individual
fluid elements. Letting the local fluid frame be represented by
ua, the four velocity of a fluid component exhibiting relative
flow, uax, is given by (Andersson et al. 2017b)

uax = γx (ua + vax) , uav
a
x = 0 , (38)

where

γx =
(
1− v2

x

)−1/2
. (39)

In the problem at hand we need there to be a relative flow
because the system has to sustain a charge current. If we
assume that the charge carriers are electrons (x = e) and
protons (p) as in a neutron star core, then

ja =
∑

x=p,e

qxn
a
x = e

(
nap − nae

)
, (40)

where nax = nxu
a
x and nx = −ux

an
a
x is the (co-moving) number

density of each species, while qx is the charge per particle (so
qe = −e). It follows that, in general, we have

σ = −uaja = e(npγp − neγe) . (41)

At this point we note that we need to keep track of the
individual Lorentz factors, γx. This may be problematic as
it implies that we keep track of the individual velocities, i.e.
work at the level of a multi-component plasma (which would
at the very least be computationally expensive). Given this,
and the fact that we want to make contact with the underly-
ing microphysics (and the charge neutral equation of state),
which is determined in dynamical equilibrium, it is natural
to simplify the problem by assuming that the relative drift is
sufficiently slow that we can linearise the relations to ensure
that γx ≈ 1. At the linear drift level, all observers (e.g. co-
moving with either of the particle species) will agree on the
number densities and the notion of charge neutrality for a
given fluid element is not contentious.

It is important to note that the linear drift assumption does
not imply the single-fluid approximation. We still retain the
distinct flows of the system, although these are now assumed
to be sufficiently close that the approximation makes sense.

Let us now ask what happens if we scale the argument up
to the (vastly larger) evolution scale. In effect, we consider
a set of “boxes within boxes”, illustrated in fig. 3, and ask
how the physics averages as we return to the evolution scale.
The main point is to illustrate that this involves unknown
(perhaps even unknowable) aspects. For obvious reasons—
given the context—we concentrate on the charge current. We
then need

ja =
∑

x

qxnxu
a
x ≈

∑
x

qxnx(ua + vax) = σua + Ja , (42)

where

uaJa = 0 , (43)

and we have (again) made use of the linear drift approxima-
tion. For fluid elements on the smallest scale, we impose lo-
cal charge neutrality (as per the previous argument) so take
σ = 0. However, this condition only holds along the world
line of a particular fluid element. Suppose we consider a set

MNRAS 000, 000–000 (0000)
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ja1
ja2 ja3

ja4

ja

Figure 3. A schematic illustration of the boxes within boxes used
in the discussion of the averaging over charged flows.

of neighbouring fluid elements, as in fig. 3, and ask how the
argument changes as we average over a larger volume. La-
belling quantities associated with each box by N = 1, 2, ...
we then have the total charge current

ja =
∑
N

[
−(ubj

b
N )ua+ ⊥ab jbN

]
, (44)

where the projection is associated with the four velocity of
the observer on the averaged scale. In general, this observer
would not record a vanishing charge density (even though
each σN = 0). However, recalling the linear drift argument
we have

σ = −
∑
N

ubj
b
N ≈

∑
N

(uNb − vNb )jbN = −
∑
N

vNb j
b
N . (45)

Since each term in the sum is quadratic in small quantities
it would seem consistent to ignore the contribution and take
the charge current (on the larger scale) to be given by

ja =⊥ab
∑
N

jbN . (46)

This argument extends to the scale on which we are carrying
out the evolution, providing (some) support for the constraint
from eq. (37).

However, one can easily come up with a counterargument.
Suppose that the linear drift introduces a small scale such
that jaN ∼ O(ε). Then we can easily break the logic by taking
the number of boxes in eq. (45) to be of O(1/ε). And clearly,
in scaling up from the local fluid scale (∼mm) to the numer-
ical evolution (�m) we are dealing with a large number of
boxes. This may be problematic, but what we should replace
the argument with is less obvious. The key question is if the
connection between charge neutrality on the nuclear physics
scale (encoded in the equation of state) breaks as we aver-
age to the evolution scale, and if so, how we account for the
corresponding (subgrid) behaviour in an evolution.

2.6 A filtering argument

Having explained the issue, let us consider how we might be
able to get a more quantitative handle on it. To do this we
draw on the recent discussion of spacetime filtering/averaging
in the context of large-eddy models of turbulence from Celora
et al. (2021). The main idea is that, we may squeeze in a lot of
physics when we scale up to the resolution of a numerical sim-
ulation. We need an effective representation of this physics,
e.g. small scale fluctuations, on the resolved scale. Following
the discussion of Celora et al. (2021) we may develop the
required model by describing the different physical fields ac-
cording to a “Favre-weighted” observer ũa (constructed to en-
sure that the equation for baryon number conservation takes
the pre-filtered form, without additional closure terms). We
then have the filtered charge current (we will not need to
prescribe the actual filtering procedure, which is denoted by
〈...〉, in order to make the argument we are interested in here)

〈jb〉 = σ̃ũa + J̃a , ũaJ̃
a = 0 . (47)

Introducing the projection

⊥̃ab = δab + ũaũb (48)

we have

σ̃ = −ũa〈ja〉 (49)

and

J̃a = ⊥̃ab 〈jb〉 . (50)

The fields we would study in an evolution—on the macro-
scopic scale—are ũa, σ̃ and J̃a. Naturally, we can compare
these quantities to the filtered version of the fine-scale quan-
tities. We then have

〈ja〉 = 〈σua〉+ 〈Ja〉 (51)

and it follows that

σ̃ = −ũa (〈σua〉+ 〈Ja〉) (52)

From this relation it is evident that, even if the small-scale
flow is locally charge neutral (in the sense that σ = 0, as
expected from the local nuclear physics argument) there is
no reason to expect this to remain the case for the filtered
flow. In fact, if σ = 0 we get

σ̃ = −ũa〈Ja〉 , (53)

effectively the filtered version of eq. (45), which is not ex-
pected to vanish.

This argument only hints at what a properly developed
filtering argument for the electromagnetic problem will entail
(we will discuss that problem in more detail elsewhere), but it
illustrates the main point we are interested in. The fact that
the local charge density vanishes at the equation of state level
does not guarantee that this should be true on the evolved
scale. In fact, it seems natural to argue that local charge
neutrality should not be enforced in a large-scale simulation.

3 THE FLUID EQUATIONS

Having considered the electromagnetic aspects from differ-
ent perspectives, it is apparent that the problem is intricate.
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When it comes to the assumptions associated with mag-
netohydrodynamics, the low-frequency approximation that
leads to the displacement current being ignored (see eq. (15))
should be testable on a case by case basis. The issue of charge
neutrality is more involved. One would need to consider how
“local” the fluid frame has to be for a given flow. This, in turn,
imposes a constraint on the scale on which we are able to av-
erage over fluid boxes without violating an assumed charge
neutrality. Naturally, this has repercussions for the magneto-
hydrodynamics and—in absence of a convincing argument—
one may have to settle for a pragmatic approach. A sensible
way forward may be to focus on consistency—making sure
that the chosen formulation is internally “logical”—and then
test whether alternative choices make an actual difference.
Before we reflect on the options, we need to consider the
fluid dynamics.

As a model example we consider the system explored by
Andersson et al. (2017c), relevant for the outer core of a neu-
tron star above the superfluid transition temperature. We
assume that neutrons and protons are locked to each other
as well as any thermal component (i.e. we ignore heat flow
relative to the baryons) but allow the electrons to drift. This
reduces the set-up to a two-fluid problem. We then need con-
servation laws for baryon number and total momentum and
we also have to account for the charge current. This way we
arrive at a system of equations for the baryon number density
n̂ and the (Eulerian) fluid velocity v̂i, the electron number
density n̂e (noting that we also need to be able to work out
the charge density σ̂) and the charge current Ĵ i.

At this level, we have two coupled fluid degrees of freedom
(e.g. associated with v̂a and Ĵa), which include “plasma”
properties that are often ignored in astrophysical modelling.
However, the general system allows the two components to
flow with a large relative velocity, which becomes problem-
atic when we try to make contact with the microphysics and
the equation of state. The reason for this is fairly obvious.
Modern equations of state include key many-body interac-
tions but they do so in dynamical equilibrium. The impact
of relative flows is rarely considered.

As we have already discussed, the standard approach to
making modelling more “manageable” involves reducing the
problem to a single-fluid one. In magnetohydrodynamics, this
reduction follows from eq. (21). Once the charge current is
slaved to the magnetic field, we can ignore the associated
dynamics—we only need to track the fluid via the usual Euler
equations (adding the Lorentz force). However, suppose we
want to proceed more cautiously (in such a way that we keep
better control on the assumptions that led to eq. (21)). What
can we then sensibly do to simplify the problem?

The first step is natural (and we have, in fact, already
outlined it). Returning to the evolution problem and the sit-
uation from fig. 1, we can take the fluid frame (represented
by ua) and let different fluid components flow according to
eq. (38). Assuming that the linear drift argument holds on
this scale (as we have to in order to arrive at a description
that does not require the individual γx factors, and in turn
the individual velocities) and translating to the point of view
of an Eulerian observer, it makes sense to assume that the dif-
ference between the two three-velocities v̂ax and v̂a is small, as
well. Linearizing in the Eulerian velocity difference, we then

have

Wx = (1− v̂2
x)−1/2 ≈W

[
1 +W 2v̂a(v̂ax − v̂a)

]
. (54)

Combining this with

uax = Wx (Na + v̂ax) ≈ [W (Na + v̂a) + vax ] , (55)

we find that

vax ≈W
[
δab +W 2v̂b(N

a + v̂a)
]

(v̂bx − v̂b) , (56)

and it is easy to confirm that the argument is consistent. A
small drift in the fluid frame (the left-hand side) corresponds
to a small velocity difference according to the Eulerian ob-
server (the right-hand side).

Let us stress the importance of this intermediate step
between the two-fluid model and magnetohydrodynamics,
which is (effectively) a one-fluid description. The linear drift
allows us to work with a single Lorentz factor, W , associated
with the bulk flow (the magnitude of which is not restricted
by the assumptions). If we do not assume a linear drift we
have to keep track of the individual velocities (which makes
large-scale simulations much more complicated and expen-
sive).

3.1 Baryon number conservation

In general, the physical setting we are exploring represents
a two-component system with co-moving baryons (and en-
tropy) but allows for a relative charge current. Given this
set-up it is natural to associate the “fluid velocity” with the
baryons (this is analogous to using the Eckart frame in studies
of relativistic heat flow (Andersson & Comer 2021) or work-
ing with the Favre-weighted frame in the large-eddy context
(Celora et al. 2021)). That is, we have

v̂i = v̂ip = v̂in . (57)

The foliation approach (Andersson et al. 2017c) then makes
use of Eulerian observers such that (as before)

ua = W (Na + v̂a) =
W

α
(ta − βa + αv̂a) , (58)

with the same Lorentz factor as before.
Baryon number conservation is ensured by

∂t
(
γ1/2n̂

)
+Di

[
γ1/2n̂

(
αv̂i − βi

)]
= 0 , (59)

where the Eulerian number density is related to the co-
moving one by

n̂ = nW , (60)

and we have introduced n = nn + np. The relation simply
encodes the change in number density that arises because of
the length contraction due to the relative motion between the
fluid and the (Eulerian) observer.

We have expressed eq. (59) in the usual flux-conservative
form within the 3+1 approach (as laid out in Andersson et al.
(2017c)). However, as we have suggested, when we consider
the microphysics it is natural to pay closer attention to the
local physics experienced by a family of observers that ride
along with the fluid. Then we have (at least) two alternatives.
We can choose to describe the physics in the local fluid frame
associated with the four velocity ua, or we can try to make
the equations look “similar” to the more familiar flat space
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(Newtonian) ones. In this latter approach (see for example
Thorne & MacDonald (1982)) one would introduce a global
time (associated with ta) and use a spatial tetrad (relative
to this time coordinate) to describe the fluid. The fluid then
has four velocity

ua =
W

α
(ta + V a) , (61)

with

V i = αv̂i − βi . (62)

Making use of this result, we can rewrite eq. (59) as

(∂t + LV )
(
γ1/2n̂

)
+ γ1/2n̂DiV

i = 0 , (63)

or

∂t(γ
1/2n̂) +Di(γ

1/2n̂V i) = 0 , (64)

closely resembling the continuity equation from non-
relativistic physics. In this picture, the linear drift argument
involves keeping only linear terms in velocity differences in a
frame determined by the global time coordinate. This follows
immediately from the relations in the previous section, since

V ax = V a + α(v̂ax − v̂a) . (65)

We will use this result later.

3.2 The fluid frame

Having discussed the issue of baryon number conservation,
we are primed to comment on a question that we have so
far avoided. What exactly do we mean by the “fluid frame”
when we discuss the local dynamics? The answer involves an
element of choice. In fact, in a somewhat underhand manner,
we have already introduced one of the options. In the deriva-
tion of eq. (59) we chose to work in the frame that moves
along with the baryons (which were assumed to be locked at
the outset). This gives precise meaning to the fibration four
velocity ua. This choice has the advantage of making the con-
servation law eq. (59) simple and intuitive. To see how this
works, consider a general observer Ua within the family of
linear drift models. In general, we then have the baryon flux∑

x=n,p

nx(Ua + vax) = (nn + np)(Ua + va) ≡ nua . (66)

The argument involves two steps. First lock the baryons to-
gether (va = van = vap) and then define the co-moving four
velocity ua as the desired frame. The logic is simple but im-
portant. Any other choice introduces a diffusion velocity in
the equation for baryon number conservation.

Now turn to the stress-energy tensor, which takes the form
(for the model system we are considering here and leaving
out the purely electromagnetic contribution, see Andersson
(2021) for more details)

T ab = εUaUb+ ⊥ab p+ 2
∑

x

nxµxU
(avb)x (67)

(ignoring quadratic terms in the drift velocities vax), where ε
is the energy density and p is the pressure. We also need the
chemical potential µx for each species. An observer moving

along with each individual fluid frame measures the corre-
sponding chemical potential as (introducing tildes to make a
distinction at this point)

µ̃x = −uaµx
a . (68)

If we ignore entrainment (see Andersson & Comer (2021) for
the general role of this effect in multifluid systems), then

µx
a = µxu

x
a (69)

so we need

µ̃x = −µx(uaux
a) . (70)

Within the linear drift model, it is straightforward to show
that µ̃x ≈ µx. Similarly, if we define the measured number
density as

ñx = −uxn
a
x (71)

then we also have ñx ≈ nx. This is important; different fluid
observers agree on both number densities and chemical po-
tentials, which in turn means that there is no ambiguity as-
sociated with issues like chemical equilibrium.

Returning to eq. (67), the first two terms on the right-hand
side remind us of the perfect fluid result, while the third term
represents the energy/momentum flux that arises due to the
relative flow. In the example we are considering we lock the
neutrons to the protons, but the electrons exhibits a relative
flow. That is, we have∑

x

nxµxU
(avb)x = (nnµn + npµp)U (avb) + neµeU

(avb)e (72)

If we combine this result with the frame choice from eq. (66)
then we arrive at an explicit (non-vanishing) expression for
the momentum flux. As an alternative, we may use the free-
dom of choice associated with Ua to ensure that the stress-
energy tensor is reduced to the perfect fluid form. In order to
do this, we must work in a frame such that

(nnµn + npµp)va + neµev
a
e = 0 (73)

Implicitly, this prescribes the corresponding four-velocity ua,
and corresponds to the standard Landau-Lifshitz frame (An-
dersson & Comer 2021). Finally, once we have defined the
frame we can always replace the electron velocity with the
charge current, since

ja =
∑

x

qxnx(Ua + vax)

= e(np − ne)Ua + e(npv
a
p − nev

a
e ) . (74)

From this last expression, it is worth noting yet another
option. We could introduce the observer frame in such a way
that the spatial charge current vanishes. This would involve
removing the last term in eq. (74). However, as this choice
would introduce a drift velocity in the baryon number con-
servation law as well as a momentum flux in the stress-energy
tensor it does not bring any obvious advantages.

The key conclusion here is that we can introduce the fluid
frame in whatever way we find most convenient, with the two
options eq. (66) and eq. (73) being attractive for different rea-
sons. There is, however, no free lunch. Whichever choice we
make, we cannot at the same time arrive at a baryon number
conservation law without particle diffusion and a perfect-fluid
stress energy tensor. This may be obvious, but it is an im-
portant observation as precisely this combination tends to be
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assumed from the outset in discussions of relativistic mag-
netohydrodynamics. Hence, the standard results can only be
approximately true. In the following we will make the na-
ture of the required approximation precise by adopting the
Eckart frame choice and quantifying the “offending” momen-
tum terms in the stress-energy tensor.

3.3 Energy-momentum conservation

In order to complete the fluid model, we need the evolution
equations for energy and momentum. The starting point is
the stress-energy tensor from eq. (67), expressed in the 3+1
foliation. After some fairly straightforward algebra, we find
that the energy evolves according to

∂t
(
γ1/2ρ

)
+Di

[
γ1/2

(
αSi − ρβi

)]
= γ1/2

(
αSijKij − SiDiα

)
, (75)

where, noting the linear drift assumption, we have

p+ ρ = W 2(p+ ε) + 2W 4
∑

x

v̂a(v̂ax − v̂a)nxµx , (76)

Si = (p+ ρ)v̂i +W 2
∑

x

nxµx(v̂ix − v̂i) , (77)

and

Sij = pγij + Siv̂j +W 2
∑

x

nxµxv̂
i
(
v̂jx − v̂j

)
. (78)

We also have the momentum equation

∂t(γ
1/2Si) +Dj

[
γ1/2

(
αSji − Siβ

j
)]

= γ1/2
(
SjDiβ

j − ρDiα
)
. (79)

We need to add the purely electromagnetic contributions—
the Lorentz force—to the right-hand side of the fluid equa-
tions. This involves

fbL = −jaF ab = Nb(ĴaEa) + (σ̂Eb + εbadĴaBd) , (80)

which means that we need to add, first of all, a term

αγ1/2(Ĵ iEi) , (81)

to the right-hand side of eq. (75), representing the electro-
magnetic contribution to the energy flow and the Joule heat-
ing. Secondly, we need a term

αγ1/2(σ̂Ei + εijkĴ
jBk) , (82)

on the right-hand side of eq. (79), representing the (spatial)
Lorentz force.

In the case of a charged two-component problem it makes
sense to represent the relative flow of the electrons with re-
spect to the baryons by the charge current. At the linear drift
level, we have

σ̂ = e(n̂p − n̂e) = e(Wpnp −Wene)

= eW
[
(np − ne)−W 2nev̂a(v̂ae − v̂a)

]
, (83)

and

Ĵa = e(n̂pv̂
a − n̂ev̂

a
e ) ≈ σ̂v̂a − eWne(v̂ae − v̂a)

=⇒ v̂ae − v̂a ≈
1

eWne

(
σ̂v̂a − Ĵa

)
. (84)

At this point, it is natural to recall the issue of charge
neutrality. Inverting eq. (83) we have

σ = e(np − ne) = W
(
σ̂ − v̂aĴa

)
, (85)

and it is easy to see that if we were to impose the condition
that the system should be charge neutral in the fluid frame,
np = ne, we must have

v̂aĴ
a = σ̂ , (86)

which connects to the earlier discussion of local charge neu-
trality that led to eq. (37). We now see that the condition
arises naturally from the multifluid model (at the linear drift
level)—a useful consistency check. It is also worth noting that
we need to be careful with what is small and what is not (at
least not necessarily). In order to remain consistent, we need
pay attention to eq. (84). In general, the linear drift assump-
tion implies that the combination on the right-hand side of
eq. (84) must be small, so we should ignore quadratic terms
of this form. It does not follow that σ̂ and Ĵa are individ-
ually small. However, if we were to add the assumption of
local charge neutrality (σ = 0) then it follows from eq. (83)
that σ̂ will be small (of order the linear drift) and hence (via
eq. (84)) the spatial current Ĵa must be small as well. In
essence, whether specific quadratric terms should be ignored
in a consistent model depends on the physics assumptions.

At the linear drift level we now have

p+ ρ ≈ (p+ ε)W 2 +
2µe

e
W 3

(
σ̂v̂2 − v̂iĴ i

)
(87)

Si ≈ (p+ ρ)v̂i +
µeW

e

(
σ̂v̂i − Ĵ i

)
, (88)

and

Sij ≈ pγij + v̂iSj +
µeW

e
v̂j
(
σ̂v̂i − Ĵ i

)
. (89)

Note that there is only one Lorentz factor (associated with
the relative velocity between the observer and the fluid frame)
in these expressions. Moreover, for low velocities, v̂ � c, we
may be able to ignore the σ̂v̂i term compared to the charge
current. Also, for weakly relativistic systems one would ex-
pect µe ≈ me � mb. The upshot of this is that the terms
involving the charge current would be another factor of order
2,000 or so smaller than the other “fluid” terms. For this sim-
ple reason, these terms tend to be ignored in non-relativistic
problems. This then leads to the usual statement that the
relativistic problem follows by adding a perfect fluid stress-
energy tensor to the electromagnetic contribution. The valid-
ity of this assumption is less obvious for a neutron star core,
where the electron effective mass may be of order 10% of the
baryon (rest) mass (µe ≈ 100MeV). In essence, one should
consider including the charge current contribution from the
outset. At the very least, it would be worthwhile quantifying
its importance by test simulations.

3.4 Electron dynamics

In order to complete the model, we need to keep track of the
electron number density (e.g. in order to work out µe) and
the charge current. In general, when the fluxes are conserved
we have (for each species)

∂t
(
γ1/2n̂x

)
+Di

[
γ1/2n̂x

(
αv̂ix − βi

)]
= 0 . (90)
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In the present case we focus on the electron number density.
The linear drift assumption then leads to

n̂e = neWe ≈ neW
[
1 +W 2v̂a (v̂ae − v̂a)

]
≈ neW

[
1 +

W

ene

(
σ̂v̂2 − v̂aĴa

)]
. (91)

Moreover, making use of eq. (84) we arrive at

n̂ev̂
i
e ≈ neWv̂i +

1

e

(
γij +W 2v̂iv̂j

)(
σ̂v̂j − Ĵj

)
. (92)

As a slight aside, using these results in eq. (90), making
use of the global time argument and the expression for charge
conservation eq. (30), we find that the electron fraction Ye =
ne/n satisfies

(∂t + LV )Ye = 0 . (93)

In essence, the electron fraction is advected by the fluid flow.
This assumption effectively corresponds to situations where
the composition of matter remains frozen during the evolu-
tion. That is, the relevant nuclear reactions are slow com-
pared to the dynamics of the system (see for example Ham-
mond et al. (2021)).

The momentum equation for a general component is (cor-
recting a number of typographical errors, basically remov-
ing a term involving the extrinsic curvature, tracing back to
equations (78)-(80) from Andersson et al. (2017c), and which
propagates through to their equation (129))[

∂t + (αv̂jx − βj)Dj
]
Sx
i + Sx

jDi
(
αv̂jx − βj

)
+Di

[
α
(
µ̂x − v̂jxSx

j

)]
=

α

n̂x
Fx
i , (94)

where

Fx
i = exn̂x

(
Ei + εijkv̂

j
xB

k
)

+ γai R
x
a , (95)

with the last term representing resistivity (Andersson et al.
2017a,b,c).

Noting that, in the absence of entrainment (which would
not normally link electrons and baryons, anyway (Andersson
& Comer 2021)), we have

Six = µ̂xv̂
i
x , (96)

and recalling that the fluid velocity is V ix = αv̂ix − βi, we see
that eq. (94) can be concisely written:

(∂t + LVx)Sx
i +Di

(
αµ̂x

W 2
x

)
=

α

n̂x
Fx
i . (97)

In the particular case of the electrons we have[
∂t + (αv̂je − βj)Dj

]
Se
i + Se

jDi
(
αv̂je − βj

)
+Di

[
α
(
µ̂e − v̂jeSe

j

)]
=

α

n̂e
Fe
i (98)

where (again, correcting an error in equation (130) from An-
dersson et al. (2017c))

Sie = µ̂ev̂
i
e = µeWe

[
v̂i +

1

eneW

(
σ̂v̂i − Ĵ i

)]
≈ µeW

[(
1 +

W

ene
σ̂

)
v̂i − 1

eneW

(
γij +W 2v̂iv̂j

)
Ĵj
]
.

(99)

Finally, we need an expression for the resistivity. From An-
dersson et al. (2017a,b,c) we have the general result (neglect-
ing reactions)

γacR
x
a = γac

∑
y 6=x

Rxy
(
δba + vbxua

)
(vy
b − v

x
b ) , (100)

where the velocities are with respect to the fluid frame. In
the linear drift model, these are related to the Eulerian ve-
locities through eq. (56), and in the two-component case we
are considering we arrive at

γacR
e
a = RW

(
δac +W 2v̂av̂c

)
(v̂a − v̂e

a)

=
R
ene

[
Ĵc −W 2(σ̂ − v̂aĴa)v̂c

]
. (101)

3.5 Ohm’s law

Resistivity is usually implemented at the level of some version
of Ohm’s law, often viewed as a “closure condition” added to
the magnetohydrodynamics relation eq. (28). In the multi-
fluid model, the required relation follows from the electron
momentum equation. As a first step, let us assume that we
can ignore the electron inertia. Then it follows from eq. (97)
that

Fe
i ≈ −eneWe

(
Ei + εijkv̂

j
eB

k
)

+
R
ene

[
Ĵi −W 2(σ̂ − v̂j Ĵj)v̂i

]
≈ neWe

α
Di

(
αµe

We

)
. (102)

Introducing

η =
R

e2n2
eW

, (103)

and recalling that

We ≈W
[
1 +

W

ene

(
σ̂v̂2 − v̂j Ĵj

)]
(104)

we have

Ei + εijkv̂
jBk +

1

eneW
εijk

(
σ̂v̂j − Ĵj

)
Bk︸ ︷︷ ︸

Hall effect

+
1

αe
Di

{
αµe

W

[
1− W

ene

(
σ̂v̂2 − v̂j Ĵj

)]}
︸ ︷︷ ︸

chemical

= η
[
Ĵi −W 2

(
σ̂ − v̂j Ĵj

)
v̂i
]

︸ ︷︷ ︸
resistivity

(105)

This is the final result, and we have indicated the main fea-
tures of the model— the term associated with the Hall drift,
that leads to the development of smaller scale features, a
“chemical” term of the kind that may be related to battery
effects (although, as it turns out, not in this case as a pure
gradient will not contribute to (18)) and the resistivity. It is
rewarding to note that eq. (105) is consistent with the text-
book result for non-relativistic two-fluid systems, e.g. equa-
tion (2.75) in Bellan (2006) (see also Mestel (1999)), once we
set α = We = W → 1 (ignoring terms of order v̂2) and σ̂ → 0.
Depending on the context, different aspects of eq. (105) may
or may not be relevant. Hence, it makes sense to consider pos-
sible simplifications. First of all, ignoring the term associated
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with the chemical potential gradient, we have

Ei + εijkv̂
jBk +

1

eneW
εijk

(
σ̂v̂j − Ĵj

)
Bk

= η
[
Ĵi −W 2

(
σ̂ − v̂lĴl

)
v̂i
]
. (106)

Also leaving out the Hall term, we are left with

Ei + εijkv̂
jBk = η

[
Ĵi −W 2

(
σ̂ − v̂lĴl

)
v̂i
]
, (107)

and, finally, if the system is locally charge neutral we have

Ei + εijkv̂
jBk = ηĴi . (108)

It is worth noting that, in the absence of resistivity, this re-
lation leads back to the electric field vanishing in the fluid
frame (ideal magnetohydrodynamics). This is as expected,
but it is nevertheless a useful consistency check.

Through a hierarchy of approximations and simplifications
we have moved from a model that retains the properties of
a charged two-component plasma to a simple expression en-
coding Ohm’s law. This does not necessarily mean that we
are done. We still need to consider how the result can be used
in practice.

3.6 The traditional approach

Before we proceed, it is instructive to compare the final re-
sult eq. (107) to the standard argument (Bekenstein & Oron
1978), which starts from magnetohydrodynamics and arrives
at Ohm’s law by taking the current to be proportional to the
Lorentz force acting on a particle in the fluid frame. Assum-
ing

⊥ba jb = κFabu
b , (109)

(using κ to represent the conductivity to avoid confusion with
the charge density σ) and recalling eq. (22), it readily follows
that

σ̂ +W 2(v̂iĴ
i − σ̂) = κW (v̂iEi) , (110)

and

Ĵa −W 2v̂a(σ̂ − v̂iĴ i) = κW
(
Ea + εabcv̂

bBc
)
. (111)

Moreover, we have

v̂iĴi −W 2v̂2(σ̂ − v̂iĴ i) = κW (v̂iEi) , (112)

and

Ei + εijkv̂
jBk =

1

κW

[
Ĵi −W 2(σ̂ − v̂lĴ l)v̂i

]
. (113)

This version of Ohm’s law—notably identical to eq. (107)
once we identify η = 1/κW —has been implemented in re-
cent numerical simulations, see for example Palenzuela et al.
(2009); Dionysopoulou et al. (2013); Wright & Hawke (2020).

4 A SEQUENCE OF
APPROXIMATIONS/ASSUMPTIONS

We have explored the main aspects of the problem of charged
flows in general relativity and the connection with numeri-
cal simulations. We considered issues relating to both elec-
tromagnetism and the fluid dynamics. The analysis provides
everything we need to put together a consistent formulation

for magnetohydrodynamics. As such a formulation inevitably
involves a number of approximations/assumptions—with dif-
ferent strategies having been adopted in the literature—it is
useful to consider a hierarchy of models of increasing “sim-
plicity”.

Let us outline the main options, framing the discussion in
the context of neutron star physics—as this is an area where
the need for different approaches/approximations is obvious.
When we consider the neutron-star problem, it is intuitively
clear that electromagnetism in the vacuum region far away
from the star must be represented by Maxwell’s equations
(without local charges or currents). At the same time, the
dynamics of the highly conducting degenerate neutron-star
interior can be adequately described within (some version of)
magnetohydrodynamics. However, this description becomes
problematic close to the star’s surface—basically, since the
Alfvén wave speed diverges as the density vanishes—yet, an
immediate transition to vacuum conditions may not be ap-
propriate. Rather, the star’s magnetosphere may support a
significant effective charge density (Goldreich & Julian 1969)
and considerable currents. Ignoring the matter inertia in this
region one arrives at the force-free assumption (Komissarov
2002; Uchida 1997; Carrasco et al. 2018), which simplifies the
dynamics (albeit bringing its own set of issues to consider).
In essence, we inevitably need to consider different—more or
less physically distinct—regions.

4.1 The top-level model: Dissipative
electromagnetism

At the highest level, it would be natural to consider a model
that involves the full dynamics associated with Maxwell’s
equations combined with a meaningful “single-fluid” approx-
imation. Without such an assumption, we would have to con-
sider multi-fluid (plasma) aspects of the problem and these
may be associated with both complexity and computational
cost, see Barkov et al. (2014); Barkov & Komissarov (2016)
for efforts in this direction. As we have seen, the single-fluid
reduction involves two steps. First, we need to make the
linear-drift assumption. If we do not, then we have to keep
track of individual fluid Lorentz factors (which obviously re-
quire the individual velocities). Second, we have to neglect
the dynamics associated with the charge current (e.g. ignore
the electron “inertia”). This step removes the second fluid de-
gree of freedom, and closes the system through some version
of Ohm’s law.

As a first step, it is easy to make contact with ideal magne-
tohydrodynamics. Starting from, for example, eq. (110) and
eq. (111) it is easy to see that, if κ → ∞ (i.e. we have a
perfect conductor) we must have Ei + εijkv̂

jBk = 0 so the
electric field vanishes in the fluid frame. The problem reduces
to the one discussed in section 2.3 and Ĵ i is slaved to the mag-
netic field. The opposite limit is not quite as straightforward.
Formally, if κ→ 0 we get

W 2(v̂iĴ
i − σ̂v̂2) = 0 , (114)

and

Ĵi −W 2v̂i(σ̂ − v̂lĴ l) = 0 . (115)
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Solving these two equations we arrive at:(
γij −

v̂iv̂j
v̂2

)
Ĵj = 0 , and σ̂ =

v̂iĴ
i

v̂2
. (116)

If we then decompose Ĵ i = Ĵ‖v̂
i + Ĵ i⊥, the first relation tells

us that Ĵ i⊥ = 0, while the second leads to Ĵ‖ = σ̂. At the end
of the day, in the limit κ→ 0 we have

Ĵ i = σ̂v̂i . (117)

In principle, this represents a perfect insulator—any charge
imbalance (a non-zero σ̂) will be carried along with the fluid.
If we also assume charge neutrality (cf. eq. (86)), then consis-
tency dictates (as we cannot have v̂2 = 1 for a massive fluid)
that σ̂ = 0 and Ĵ i = 0. In this sense, Ohm’s law limits to
vacuum electromagnetism.

The next level of complexity is to allow for a finite resistiv-
ity/conductivity, without assuming charge neutrality, as in
eq. (107). This relation is fairly easy to invert—first dotting
eq. (107) with v̂i to get rid of v̂lĴ

l—leading to an expres-
sion for the charge current required to close the system of
equations:

Ĵi = σ̂v̂i +
1

η

[(
γij − v̂iv̂j

)
Ej + εijkv̂

jBk
]
. (118)

The result would simplify further if we assumed local charge
neutrality, but—as we have discussed at length—it is not
clear to what extent this assumption will hold in a real sys-
tem.

The inversion required to include the Hall effect is more
involved. It can be done, using standard methods from lin-
ear algebra (see Appendix A), but the result is messy (as it
mixes dissipative and non-dissipative terms) and perhaps not
very instructive. If we leave out the chemical term, i.e. take
eq. (106) as our starting point then we find that the charge
current takes the form

Ĵ i =

{
γij +W 2

(
v̂2γij − v̂iv̂j

)
+

1

eneηW

[
εijkBk

+W 2(v̂lB
l)εijkv̂k +

(
1

eneηW

)
BiBj

]}

×
{
σ̂v̂j +

1

ηW 2

[
Ej +

(
1 +

σ̂

eneW

)
εjlmv̂

lBm
]}

×

{
1 +

(
1

eneηW

)2 [
W−2B2 + (v̂nB

n)2
]}−1

. (119)

The different effects—the resistivity, local charge density and
the Hall effect—are not so easy to isolate from this expres-
sion. The physics, which is easy to recognize in eq. (105), has
been mixed up. If we want to work at this level, then this is
something we have to accept. The expression may be a bit
involved, but so be it.

Formally, we may think of (119) as representing a “tenso-
rial conductivity” but this should not get confused with the
physics of such a mechanism (effectively associated with the
fact that it is more difficult for charges to flow across mag-
netic field lines than along them). In the very simplest case,
one would then replace eq. (108) with something like (see
Palenzuela et al. (2009) for the analogous expression in the

fluid frame)

Ĵ i = κij
(
Ej + εjklv̂

kBl
)

=
1

η

(
γij + κ1ε

ijkBk + κ2B
iBj
)(

Ej + εjlmv̂
lBm

)
(120)

This kind of expression clearly does not account for the Hall
drift (as indicated in Harutyunyan et al. (2018)). Rather, it
introduces additional physics which may be important in its
own right.

4.2 Resistive magnetohydrodynamics

So far, we have outlined a fairly general model involving
only the assumptions needed to reduce the problem to a sin-
gle fluid degree of freedom. This is not yet a description of
magnetohydrodynamics—at least not in the traditional sense
as we kept the electric field in the discussion. In order to
bring in the remaining assumptions, it is natural to consider
the low-frequency/slow-motion limit of the model4. The usual
argument then leads to the displacement current being small
in eq. (15), and we arrive at eq. (21), which provides an alge-
braic expression for the charge current. Crucially, this implies
that we should now think of Ohm’s law as providing the elec-
tric field rather than the charge current. This is advantageous
because eq. (105) is already written as an expression for the
electric field—we do not need an inversion in order to imple-
ment the relation (even when we include the Hall drift). We
are done.

As a practical illustration of the result, we can write down
the fully relativistic induction equation, including both the
charge density and the Hall effect. To do this, we take the
pre-Maxwell form of the Ampere law:

Ĵ i =
1

αµ0
εijkDj (αBk) (121)

as our starting point. Making use of eq. (106) this leads to

Ei = −
(

1 +
σ̂

eneW

)
εijkv̂

jBk − ηW 2σ̂v̂i

− 1

eneWαµ0
Bk [Di (αBk)−Dk (αBi)]

+
η

αµ0

(
γil −W 2v̂iv̂l

)
εlmnDm (αBn) . (122)

Using this in the Faraday eq. (18) we arrive at the induction
equation

(∂t − Lβ)Bi −Dm
[(

1 +
σ̂

eneW

)
v̂iBm

]
+Dm

[(
1 +

σ̂

eneW

)
v̂mBi

]
− εijkDj

(
αW 2ησ̂v̂k

)
+ εijkDj

[
1

eneWµ0
BlDl(αBk)

]
+ εijkDj

[
η

µ0
(γkl −W 2v̂kv̂l)ε

lmnDm(αBn)

]
= αKBi .

(123)

4 Note that this does not have to represent the non-relativistic
limit. The assumption refers to the timescale associated with the

dynamics, not the bulk motion or, indeed, weak gravity.

MNRAS 000, 000–000 (0000)



Physics of magnetohydrodynamics 13

This result is complicated, but it is easy to see how it reduces
to something more familiar. First of all, leaving out the Hall
term the relation simplifies to

(∂t − Lβ)Bi − εijkDj
(
αW 2ησ̂v̂k

)
+ εijkDj

[
η

µ0
(γkl −W 2v̂kv̂l)ε

lmnDm(αBn)

]
−Dm

(
v̂iBm

)
+Dm

(
v̂mBi

)
= αKBi . (124)

If we also assume charge neutrality we would have

(∂t − Lβ)Bi −Dm
(
v̂iBm

)
+Dm

(
v̂mBi

)
+

+Dj

[
η

µ0
Di(αBj)

]
−Dj

[
η

µ0
Dj(αBi)

]
= αKBi (125)

and it is easy to see that, with β = 0, α = 1, K = 0 and
assuming η constant, we end up with the standard textbook
(special relativistic) version of the (resistive) induction equa-
tion. It would obviously be interesting to explore to what
extent the additional terms in eq. (123) impact on the large
scale magnetic field evolution in a neutron star, but we leave
this for future work.

4.3 Force-free electrodynamics

The magnetohydrodynamics approach should be relevant for
the dense interior of a magnetized star, while the vacuum
Maxwell equations apply at large distances. However, if we
want to consider the region immediately outside the star, or
indeed the transition through the low-density surface mate-
rial, then we may need a different prescription. A common
assumption is that the magnetosphere is composed of a highly
magnetized plasma, which supports a charge current without
inducing significant “fluid” motion. In essence, there is no sig-
nificant matter component to balance the Lorentz force and
we arrive at what is called force-free electrodynamics. From
eq. (80) we see that we must have

σ̂Ei + εijkĴ
jBk ≈ 0 , (126)

along with

EiB
i ≈ 0 , (127)

and it also follows that Ĵ iEi ≈ 0. The condition of high
magnetization requires that

B2 > E2 . (128)

These three conditions may be taken as the axiomatic “defi-
nition” of the force-free limit (see e.g. Paschalidis & Shapiro
(2013) for a discussion of the need for all three conditions.)

Since the vanishing of the Lorentz force follows from the
low-inertia assumption, the force-free model is often de-
scribed as the low-inertia limit of ideal magnetohydrodynam-
ics (Komissarov 2002; McKinney 2006). The argument is also
motivated by the fact that the last two conditions eqs. (127)
and (128) hold in ideal magnetohydrodynamics as well. The
limit argument may seem intuitive, but it is not quite that
straightforward. In ideal magnetohydrodynamics the electric
field vanishes in the fluid frame, while force-free electrody-
namics is identified by the electric field vanishing in a frame
associated with the charge current. Trivially, the two condi-
tions eq. (28) and eq. (126) are identical if we let v̂i → Ĵ i/σ̂.

That is, the force-free region does not strictly follow from
simply taking the low-inertia limit (at least not in the usual
mathematical sense). We do not have an adjustable param-
eter that takes us from magnetohydrodynamics to the force-
free case. The argument relies on a boost of the frame in
which the electric field is taken to vanish. With this in mind,
it is not surprising that the force-free case does not arise nat-
urally from the equations we have discussed. Our starting
point was the two-fluid model and the derivation of, for ex-
ample, Ohm’s law clearly builds on the fluid assumption. As
a result, one would not expect to be able to reconcile the de-
rived form of Ohm’s law with the conditions in the force-free
region (where the plasma can be assumed to be collision-
less). Instead, one would have to consider dissipation associ-
ated with collective processes and/or radiation (Komissarov
2004), which obviously changes the argument. Having said
that, the conditions required for ideal magnetohydrodynam-
ics and force-free electrodynamics are sufficiently similar that
it may nevertheless be useful for numerical implementations
to link them through a somewhat ad hoc limiting argument
(Paschalidis & Shapiro 2013; Palenzuela 2013).

When it comes to evolving the equations in the force-free
region, the typical approach involves solving for both the elec-
tric and magnetic fields. At a glance, we need a “closure re-
lation” for the charge current ja in order to close the sys-
tem. While this is not exactly true—as we could contract the
Maxwell equations with the Faraday tensor, and then use the
vanishing of the Lorentz force to get rid of ja (see Carrasco
& Reula (2016) for discussion)—it might still be useful to
write the charge current in terms of Ei and Bi such that the
force free constraints are automatically satisfied. This leads
to (see e.g. Gruzinov (2006); Komissarov (2011); Paschalidis
& Shapiro (2013))5

Ĵ i =
Bi

µ0B2

[
Bjε

jklDkBl − EjεjklDkEl

− 2BjEkKjk

]
+

σ̂

B2
εijkEjBk . (129)

As suggested by Palenzuela (2013), we may work with a phe-
nomenological closure for the charge current, such that it lim-
its to ideal magnetohydrodynamics in one case and to force-
free electrodynamics in the other.

5 CONCLUDING REMARKS

We have explored the physics of general relativistic magne-
tohydrodynamics, as required for studies of large-scale mag-
netic field dynamics associated with, for example, neutron
star mergers. With this particular application in mind, we
formulated the problem using the standard 3+1 foliation ap-
proach to spacetime. However, given the need to faithfully
represent the physics, we also considered the spacetime fibra-
tion associated with the fluid elements. Our main aim was to

5 This relation is sometimes referred to as “Ohm’s law” for force-
free electrodynamics, but this is clearly misleading as there is no

resistivity involved. Instead, the component of the current orthog-
onal to the magnetic field is easily obtained from eq. (126), while
the component along the magnetic field is obtained by demanding

that the evolution preserves the EiBi = 0 condition.
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discuss commonly made assumptions (which tend to be mo-
tivated in the non-relativistic setting and then taken, more
or less, for granted in the curved spacetime case) and estab-
lish to what extent they are appropriate for different problem
settings.

The discussion brought issues associated with the charge
density and charge current into focus, and we highlighted the
connection between the microphysics (associated with a given
equation of state) and the global dynamics (from the point of
view of numerical simulations). This discussion emphasised
different effects, that involve going beyond “standard” ideal
magnetohydrodynamics and which may come into play if a
more precise description of the problem is desired. For exam-
ple, our derivation of Ohm’s law takes the two-fluid plasma
as its starting point and, hence, includes features beyond
the usual scalar resistivity/conductivity (like the Hall effect).
This provided a hierarchy of models that should be relevant
for future applications.

While we have (admittedly) not resolved all the involved
issues, the final formulation is consistent, both logically and
physically. This prepares the ground for a new generation of
models of various astrophysical scenarios. In particular, our
results will allow us to test the validity of different assump-
tions and simplifications by direct simulations. This seems
like an important step in the right direction.
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APPENDIX A

Assuming that each index is raised (lowered) with γij (γij)
we can rewrite eq. (106) in the form (as the chemical term
makes this inversion more complicated, we neglect it in the
following)

Aij Ĵ
j = Ci , (1)

where we have defined

Aij = γij + Lv̂iv̂j +MεijkB̂
k , (2)

Ci = NEi + Pεijkv̂
jBk +Qv̂i , (3)

L = W 2 , (4)

M =
1

eneηW
, (5)

N =
1

η
, (6)

P =
1

η

(
1 +

σ̂

eneW

)
, (7)

Q = W 2σ̂ . (8)

From Linear Algebra we know that the inverse Aij to a 3× 3
matrix Aij is

Aij =
γ

2!A
εiklεjmnAkmAln , (9)

where γ = det γij and A = detAij . The solution is therefore

Ĵ i = AijCj . (10)

Note that

εiklεjmn = 3!δ
[i
j δ

k
mδ

l]
n , (11)

εiklεimn = 2δ[k
mδ

l]
n , (12)

εiklεikn = 2δln . (13)

Explicitly, we have

Aij =
γ

2!A
εiklεjmn (γkm + Lv̂kv̂m +MεkmqB

q)

(γln + Lv̂lv̂n +MεlnrB
r)

=
γ

A

[
γij + L

(
v̂kv̂

kγij − v̂iv̂j
)

+MεijkBk+

LMv̂lB
lεijkv̂k +M2BiBj

]
(14)

and

A =
γ

3!
εiklεjmnAijAkmAln

=
γ

3!
εiklεjmn (γij + Lv̂iv̂j +MεijpB

p)

(γkm + Lv̂kv̂m +MεkmqB
q) (γln + Lv̂lv̂n +MεlnrB

r)

=γ
[
1 + Lv̂nv̂

n +M2BnB
n + LM2 (v̂nB

n)2
]
.

(15)

The inverse matrix is therefore

Aij =
[
γij + L

(
v̂kv̂

kγij − v̂iv̂j
)

+MεijkBk

+ LMv̂lB
lεijkv̂k +M2BiBj

]
[
1 + Lv̂nv̂

n +M2BnB
n + LM2 (v̂nB

n)2
]−1

, (16)

and, finally, the current density is

Ĵ i =
[
γij + L

(
v̂kv̂

kγij − v̂iv̂j
)

+MεijkBk + LMv̂lB
lεijkv̂k

+M2BiBj
] (
NEj + Pεjlmv̂

lBm +Qv̂j
)

[
1 + Lv̂nv̂

n +M2BnB
n + LM2 (v̂nB

n)2
]−1

. (17)
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