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ABSTRACT
We consider a framework for non-ideal magnetohydrodynamics in general relativity, paying particular attention to the physics
involved. The discussion highlights the connection between the microphysics (associated with a given equation of state) and the
global dynamics (from the point of view of numerical simulations), and includes a careful consideration of the assumptions that
lead to ideal and resistive magnetohydrodynamics. We pay particular attention to the issue of local charge neutrality, which tends
to be assumed but appears to be more involved than is generally appreciated. While we do not resolve all the involved issues,
we highlight how some of the assumptions and simplifications may be tested by simulations. The final formulation prepares the
ground for a new generation of models of relevant astrophysical scenarios.
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1 C O N T E X T

Electromagnetic phenomena are central to neutron star astrophysics,
with issues ranging from the formation and evolution of the star’s
internal magnetic field through to the elusive pulsar emission
mechanism and the violent dynamics associated with supernova core
collapse and binary mergers. The intimate connection between highly
dynamical events and powerful observed gamma-ray bursts provides
ample motivation to improve the available simulation technology. In
this respect, there has been notable progress towards realistic numer-
ical simulations of neutron star mergers in full non-linear general
relativity (with the live spacetime required by Einstein’s theory; see
Baiotti & Rezzolla 2017; Bernuzzi 2020, for reviews). In particular,
given the problem we focus our attention on here, there has been
interesting recent work on the role of the magnetic field. Most current
efforts remain within the regime of ideal magnetohydrodynamics
(see e.g. Cipolletta et al. 2021), but there have also been attempts to
account for non-ideal effects, like resistivity and viscous dissipation
(Palenzuela et al. 2009; Dionysopoulou et al. 2013; Wright & Hawke
2020). Steps in this direction are important as they take us towards
a more detailed implementation of the physics, which is always
desirable. The available results outline how one may deal with
the fact that the addition of resistivity tends to make the evolution
system numerically stiff. As this complicates the problem, we need
to quantify to what extent these aspects may leave an observational
signature. If they do not, then we can ‘get away’ with a simpler
treatment. The argument is straightforward, but it raises a number
of thorny issues. Not only do we need a better handle on what the
input physics should be, we also need to understand to what extent
simulations are able to faithfully represent these aspects. Neither of
these issues is trivial.

� E-mail: n.a.andersson@soton.ac.uk (NA); t.celora@soton.ac.uk (TC)

An important part of the discussion links the microphysics (repre-
sented by the matter equation of state) to the large-scale dynamics.
This inevitably involves considering the composition and state of
matter, as well as different possible ‘flows’ (associated with heat,
charge currents, and possibly superfluidity) that enter the problem.
The recent work of Andersson, Comer & Hawke (2017a) and
Andersson et al. (2017b, c) (see also Andersson 2021) represents a
coherent effort in this direction, outlining a flexible multicomponent
framework (at the level of fluid dynamics) that allows us to represent
different aspects of the problem. The results set the scene for more
detailed considerations by providing both a fibration perspective –
suitable for the local fluid dynamics (Andersson et al. 2017b) – and a
foliation description, geared towards spacetime simulations (Ander-
sson et al. 2017c). This paper aims to clarify the connection between
the two pictures. Adding context and depth to the previous work
– paying particular attention to issues relating to the assumptions
associated with magnetohydrodynamics and local charge neutrality
on different relevant scales – our discussion takes us another couple
of steps towards realism.

Throughout the discussion, we adopt the convention that spacetime
indices are represented by a, b, c, ... while i, j, k, ... are spatial indices
in a chosen coordinate frame. The Einstein summation convention is
assumed for both sets.

2 TH E E QUAT I O N S O F E L E C T RO M AG N E T I S M

It is natural to begin by considering the equations that govern the
electromagnetic degrees of freedom. The 3 + 1 form for Maxwell’s
equations is well known (Baumgarte & Shapiro 2003), but this
exercise is nevertheless useful as it establishes the procedure we
use for the fluid dynamics. It also offers an opportunity to highlight
how the issue of charge neutrality leads to (potentially unavoidable)
uncertainties in the modelling.

Key to the discussion is the relation between the local physics
– encoded by a matter equation of state – and the variables used
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Figure 1. Illustrating the connection between two formulations of the
relativistic fluid problem. The fibration approach, which focuses on the
worldline associated with a given fluid element (and a four-velocity u with
components ua), provides a natural description of the microphysics and issues
relating to the local thermodynamics. Meanwhile, a spacetime foliation, based
on the use of spatial slices and normal observers (depending on a lapse α and
a shift vector β i), is typically used in numerical simulations. In order to ensure
that the local physics is appropriately implemented in simulations, we need
to understand the translation between the two descriptions.

in a numerical simulation (see Fig. 1). In particular, we need to
understand how the evolved variables connect with the microphysics
and the local thermodynamics. In a fully non-linear/non-equilibrium
system, this is a challenging problem and we do not expect to
resolve all the involved issues here [especially those linked to small-
scale turbulence; see Celora et al. (2021) for a recent discussion
and references to the relevant literature]. Having said that, we
will demonstrate how we can make progress by making physically
reasonable approximations.

2.1 Maxwell’s equations

To set the scene, recall that the 3 + 1 decomposition used in non-
linear gravity simulations (Baumgarte & Shapiro 2003; Rezzolla
& Zanotti 2013; Andersson & Comer 2021) involves a set of
spatial hypersurfaces and (Eulerian) observers associated with the
corresponding normal, Na. The spacetime metric is given by

ds2 = −(α2 − β2)dt2 + γij (βidxj + βj dxi)dt + γij dxidxj , (1)

where α and β i represent the lapse and the shift, respectively (see
Fig. 1). The spatial metric γ ab acts as a projection orthogonal to
Na and is used to introduce a suitable derivative in each spatial
hypersurface

Di = γ b
i ∇b, (2)

where all free indices should be projected. We also introduce the
Christoffel symbols �

j

ki associated with γ ij, ensuring the compati-
bility Diγ jk = 0. Moreover, if γ is the determinant of the induced
metric, then

Diγ
1/2 = ∂iγ

1/2 − �
j

jiγ
1/2 = 0. (3)

We also need the extrinsic curvature

2αKij = −(∂t − Lβ )γij , (4)

where Lβ is the Lie derivative along β i. We then have

Lβγij = γkjDiβ
k + γikDjβ

k = Diβj + Djβi, (5)

and it follows that the trace of the extrinsic curvature satisfies

αK = −∂t ln γ 1/2 + Diβ
i. (6)

Turning to the equations of electromagnetism, let us (for clarity)
assume that we opt to work with the electric and magnetic fields.
[An alternative description based on working with the vector po-
tential can be found in Baumgarte & Shapiro (2003), with recent
implementations discussed by Etienne et al. (2020) and Cipolletta
et al. (2021).] These are (obviously) observer-dependent quantities.
In terms of the Faraday tensor Fab, an Eulerian observer (associated
with Na) will measure the electric field

Ea = −NbFba (7)

and the magnetic field

Ba = 1

2
εabcF

bc, (8)

where we have defined

εabc = εdabcN
d (9)

(associated with a right-handed coordinate system moving along with
Na). This then leads to

Fab = NaEb − NbEa + εabcB
c. (10)

Clearly, the electric and magnetic fields are orthogonal to Na (by
construction) and so each will have only three components (as
expected).

The equations that govern the electromagnetic field are (obviously)
well known, so we simply draw on the results from Andersson
et al. (2017c). First of all, we need to introduce the Eulerian frame
decomposition of the charge current

ja = σ̂Na + Ĵ a, Ĵ aNa = 0. (11)

The charge current actively generates and sustains the electromag-
netic field. Yet, much of the astrophysics literature assumes that the
charge current plays a more passive role. This step – one of the
assumptions that leads to magnetohydrodynamics – is important. It
effectively reduces the problem from a multicomponent plasma (see
Andersson 2012 for discussion and pointers to the relevant literature)
to a ‘single-fluid’ model that is easier to work with. The arguments in
favour of this strategy are well developed in non-relativistic physics
(Mestel 1999), but the extension to general relativity tends to be
made by analogy rather than in-depth analysis. Given this, we will
pay particular attention to issues related to the charge current in the
following.

Maxwell’s equations follow from, first of all

∇bF
ab = μ0j

a, (12)

which, from the foliation perspective, leads to a relation between the
divergence of the electric field and the charge density σ̂

DiE
i = μ0σ̂ , (13)

where μ0 is the magnetic permeability. Here, and in the following,
we use the same matter quantities as in Andersson et al. (2017c) and –
in order to make clear the distinction – retain the convention of using
hats to denote matter quantities measured by Eulerian observers
(while the corresponding electric and magnetic fields are given as
capital letters). It is also worth noting that, since we are assuming c2

= 1/μ0ε0 = 1 we recover the standard form for Gauss’ law:

DiE
i = σ̂

ε0
. (14)
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We also have an evolution equation for the electric field1

(
∂t − Lβ

)
Ei − εijkDj (αBk) + αμ0Ĵ

i = αKEi. (15)

The second pair of Maxwell equations follow from

∇[aFbc] = 0. (16)

Given the absence of magnetic monopoles, we have

DiB
i = 0, (17)

while the magnetic field evolves according to(
∂t − Lβ

)
Bi + εijkDj (αEk) = αKBi. (18)

It is important to keep in mind that, in practice, these equations refer
to a computational cell on a specified numerical grid. There is no
actual observer that moves through spacetime with four-velocity Na.
This is obvious, but deserves emphasis as a typical grid resolution
involves a fluid ‘box’ that is much larger than the fluid ‘elements’ of
the underlying fluid model. The relevance of this should (hopefully)
become clear as we proceed.

2.2 Towards magnetohydrodynamics

Astrophysical problems tend to be considered in the context of
magnetohydrodynamics. As we want to understand the physics of the
problem, it is useful to spell out how this simplifies the equations. The
argument is fairly straightforward. Let us assume that the dynamics
is associated with characteristic length- and time-scales, L and T,
leading to an associated velocity V ∼ L/T (noting that K ∼ 1/T and
Lβ ∼ 1/T ). It then follows from equation (18) that(
∂t − Lβ − αK

)
Bi︸ ︷︷ ︸

∼B/T

+ εijkDj (αEk)︸ ︷︷ ︸
∼E/L

= 0

=⇒ B ∼ E/V . (19)

Similarly, it follows from equation (15) that(
∂t − Lβ − αK

)
Ei︸ ︷︷ ︸

∼E/T

− εijkDj (αBk)︸ ︷︷ ︸
∼B/L

+αμ0Ĵ
i = 0. (20)

We see that that we can safely neglect the displacement current
(the first term) as long as V2 � 1 (=c2). In effect, we have a low-
frequency/velocity approximation. Leaving out the corresponding
contribution to equation (15) we arrive at the familiar relation from
magnetohydrodynamics:

εijkDj (αBk) ≈ αμ0Ĵ
i . (21)

As the charge current is slaved to the magnetic field, we have effec-
tively removed a dynamical degree of freedom from the problem.

The argument is (of course) standard in flat space (and the usual
Cartesian coordinates), where we have α = 1, β i = 0 and γ = 1 in
the various equations and the covariant derivatives reduce to partials
(Mestel 1999; Bellan 2006). The suggested extension to the curved
spacetime setting is intuitive, but we may have to tread a bit more
carefully. Clearly, the scaling argument relies on the assumption that
the gauge (the choice of lapse and shift) does not impact on the

1Here, and in the following, we write the evolution equations in a way
that focuses on the physics involved, rather than the flux-conservative
form required for a numerical implementation. The translation between
the descriptions is, however, standard and should not present any particular
difficulties.

scaling, but there is no guarantee that it could not. For example, if we
consider β i as (effectively) a velocity then we clearly have to restrict
it to be small (in a suitable sense). However, there is no reason
why one would not be ‘allowed’ to consider gauges with a large
enough β i that the argument is messed up. With a non-trivial choice
of the shift vector, one would at least have to consider the possibility
that this impacts on the dynamics. In a similar fashion, the lapse α

may affect the assumed scalings. In essence, we have to apply the
magnetohydrodynamics approximation with some level of caution,
as the logic leading to equation (21) inevitably involves a degree of
gauge dependence. One might consider testing the result by actual
simulations, which ought to be fairly straightforward. Having said
that, perhaps the most natural attitude is to pragmatically assume that
any choice of gauge that breaks the logic is likely to be somewhat
artificial, ignore the issue and move on.

Let us see where this takes us. We now have a different problem.
By effectively working with the pre-Maxwell form of equation (15)
(leaving out the displacement current) we cannot solve equation
(18) without providing Ei. We need an additional relation between
the electric and magnetic fields. This is where the issue of the
conductivity (effectively Ohm’s law) enters the discussion. In a
perfect conductor, where charges easily flow, one would expect the
electric field to ‘short out’ as the matter becomes locally charge
neutral. As this argument brings in the local physics associated with
a given fluid element, let us change perspective and consider the
problem from that point of view.

2.3 The local view

The local description introduces a different observer, with four-
velocity ua (as in Fig. 1), associated with the fluid motion. Connecting
to the Eulerian observers from the foliation picture, we have

ua = W
(
Na + v̂a

)
, Nav̂

a = 0, (22)

with v̂a the relative velocity between the two frames and the Lorentz
factor

W = (
1 − v̂2

)−1/2
, v̂2 = γij v̂

i v̂j . (23)

The electric field measured by the fluid observer follows from

ea = −ubFba, (24)

leading to

ea = W
[
Ea + εabcv̂

bBc + Na

(
v̂bEb

)]
. (25)

It is evident that, in general, the electric field inferred by the local
observer has a component parallel to Na

e‖ = −eaNa = −W
(
v̂bEb

)
, (26)

as well as an orthogonal piece

e⊥
a = W

(
Ea + εabcv̂

bBc
)
. (27)

Let us now bring in the assumption that the local electric field
vanishes, as one would expect from the standard (Debye) screening
argument in a perfect conductor. Specifically, if we let

e⊥
a = 0 =⇒ Ea + εabcv̂

bBc = 0, (28)

then is easy to see that we also have e� = 0. If we combine equation
(28) with equations (18) and (21), we have all the relations we
need to solve the problem. This is ideal magnetohydrodynamics.
The arguments are, of course, standard but – as we will soon see –
we need to pay attention to a number of subtle points. In particular,
we need to carefully consider the issue of charge neutrality.

MNRAS 509, 3737–3750 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3737/6440174 by Southam
pton O

ceanography C
entre N

ational O
ceanographic Library user on 24 February 2022



3740 N. Andersson et al.

2.4 Charge neutrality

In addition to invoking the low-frequency argument to simplify
the Maxwell equations, text-book magnetohydrodynamics involves
an assumption of local charge neutrality. This is, effectively, the
(previous) argument that the local electric field vanishes. The result
follows immediately from the flat-space version of the Gauss law
equation (13). If the electric field vanishes, then so does the local
charge density. However, the problem turns out to be more involved
– and interesting! – in the relativistic setting.

In order to see why this is the case, we may start from the charge
current, which has to satisfy

∇aj
a = 0, (29)

in order to ensure electromagnetic gauge invariance. This is not an
independent result – it can be obtained from the Maxwell equations
(Thorne & MacDonald 1982) – but it is nevertheless useful to
consider it separately. In terms of the Eulerian variables, we have(
∂t − Lβ

) (
γ 1/2σ̂

) + Di

(
γ 1/2αĴ i

) = γ 1/2σ̂Diβ
i . (30)

Invoking equation (21), we see that

μ0Di

(
γ 1/2αĴ i

) ≈ εijkDiDj

(
γ 1/2αBk

) = 0, (31)

which leaves us with(
∂t − Lβ

) (
γ 1/2σ̂

) = γ 1/2σ̂Diβ
i . (32)

In flat space (e.g. special relativity, with β i = 0 and γ = 1, as before),
we immediately arrive at the usual argument for quasi-neutrality:

∂t σ̂ = 0. (33)

If a system starts out with σ̂ = 0 (e.g. due to screening on length-
scales of relevance for the evolution) then this condition is preserved
as time marches on.

In the curved spacetime case, the problem is more subtle since
simulations tend to involve non-trivial choices for the lapse and shift
(and the logic obviously breaks if equation 21 does not hold, as
discussed earlier), but it might still seem reasonable to argue that an
evolution initiated with a uniformly vanishing charge density should
remain charge neutral (in this sense). In principle, we are ‘allowed’
to assume σ̂ = 0 (as in the example used as illustration by Andersson
et al. 2017c), but the question is if this is a ‘sensible’ thing to do.2 It
will soon become clear that it is not.

For example, if we combine equations (28) with (13) we see that

μ0σ̂ = −Di

(
εijkv̂jBk

)
. (34)

This is also a well-known result – of immediate relevance for neutron
star astrophysics as it leads to the Goldreich–Julian charge density
for rotating magnetospheres (Goldreich & Julian 1969) – enforcing
the point that we should not expect σ̂ = 0 to hold everywhere.

Noting this argument, let us shift the emphasis to the local charge
density measured by the fluid observer, σ . This follows from

ja = σua + J a, uaJa = 0, (35)

2As a slight aside, it is worth noting that we could always, in principle,
construct a gauge such that equation (30) preserves any initial σ̂ . All we need
to do is set

σ̂ βi = αJ i .

Of course, this only works for a non-vanishing σ̂ , as otherwise α = 0
and time would not progress. Moreover, the suggestion is unlikely to ever be
relevant as one has to reserve the gauge choices to deal with more serious
issues.

Figure 2. A fluid element inside a much larger computational cell.

leading to

σ = −uaja = W
(
σ̂ − v̂a Ĵa

)
. (36)

That is, if the matter is locally charge neutral (in the sense that σ = 0)
then the quantities measured by the Eulerian observer must satisfy

σ̂ − v̂a Ĵa = 0. (37)

The result is intuitive. A change of observer frame impacts on
measured volumes and hence the charge density and the associated
current.

So far, we have essentially summarized the standard approach to
(ideal) relativistic magnetohydrodynamics. We have seen how we
may represent the charge current in terms of the curl of the magnetic
field as long as we ignore the displacement current. We have also
seen how the condition of local charge neutrality (σ = 0) enters the
discussion and how the dynamics (e.g. bulk rotation) may induce an
effective large-scale charge density (σ̂ 
= 0), as in equation (34).

2.5 Averaging from the nuclear physics scale

From the neutron star physics point of view, it seems inevitable
that the condition of local charge neutrality (σ = 0) should hold
on the scale relevant for nuclear physics (in all reasonable settings,
with a possible caveat for extended regions with mixed phases).
Basically, the fact that the electrons are highly mobile makes the
relevant screening length vastly smaller than the size of a typical
fluid element [which must, in turn, exceed (say) the electron mean
free path]. Given this, local charge neutrality is (almost exclusively)
assumed in modern equation of state calculations.3 Basically, we
need to take the condition equation (37) seriously.

The question is on what scale we have to enforce the condition
– exactly how local is local? In order to explore this issue, let us
zoom in on a fluid element from a numerical evolution, as indicated
in Fig. 2 (where �L could be as large as 100 m across even in
a state-of-the-art simulation; Baiotti & Rezzolla 2017), to a much
smaller scale (still large enough that we can meaningfully use the
fluid description, leading to a typical �l of something like a few

3The situation is notably different for beta equilibrium, for which the
governing reactions (the Urca reactions in the case of a neutron star core)
are slow enough that the system may not reach equilibrium on the time-scale
of (say) core collapse or neutron star merger (see Hammond et al. 2021 for a
recent discussion).
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mm in a neutron star core; Andersson & Comer 2021). We want to
understand the impact of the averaging from the smallest scale in the
problem to the computational scale and to what extent there is a risk
of key aspects being ‘lost in translation’. This is a legitimate concern
because, in essence, one assumes that the physics can be adequately
represented by average values for the different fields. First of all, the
fluid model itself is (obviously) based on the notion of averaging
over a large number of particles (represented by suitable distribution
functions in the more fine grained kinetic theory picture). Secondly,
we average again to reach the computational scale. As we will see,
both steps require careful consideration.

Let us first consider the problem at the level of individual fluid
elements. Letting the local fluid frame be represented by ua, the four
velocity of a fluid component exhibiting relative flow, ua

x, is given by
(Andersson et al. 2017b)

ua
x = γx

(
ua + va

x

)
, uav

a
x = 0, (38)

where

γx = (
1 − v2

x

)−1/2
. (39)

In the problem at hand, we need there to be a relative flow because
the system has to sustain a charge current. If we assume that the
charge carriers are electrons (x = e) and protons (p) as in a neutron
star core, then

ja =
∑
x=p,e

qxn
a
x = e

(
na

p − na
e

)
, (40)

where na
x = nxu

a
x and nx = −ux

an
a
x is the (co-moving) number

density of each species, while qx is the charge per particle (so qe

= −e). It follows that, in general, we have

σ = −uaj
a = e(npγp − neγe). (41)

At this point, we note that we need to keep track of the individual
Lorentz factors, γ x. This may be problematic as it implies that we
keep track of the individual velocities, i.e. work at the level of a
multicomponent plasma (which would at the very least be compu-
tationally expensive). Given this, and the fact that we want to make
contact with the underlying microphysics (and the charge neutral
equation of state), which is determined in dynamical equilibrium,
it is natural to simplify the problem by assuming that the relative
drift is sufficiently slow that we can linearize the relations to ensure
that γ x ≈ 1. At the linear drift level, all observers (e.g. comoving
with either of the particle species) will agree on the number densities
and the notion of charge neutrality for a given fluid element is not
contentious.

It is important to note that the linear drift assumption does not
imply the single-fluid approximation. We still retain the distinct flows
of the system, although these are now assumed to be sufficiently close
that the approximation makes sense.

Let us now ask what happens if we scale the argument up to the
(vastly larger) evolution scale. In effect, we consider a set of ‘boxes
within boxes’, illustrated in Fig. 3, and ask how the physics averages
as we return to the evolution scale. The main point is to illustrate
that this involves unknown (perhaps even unknowable) aspects. For
obvious reasons – given the context – we concentrate on the charge
current. We then need

ja =
∑

x

qxnxu
a
x ≈

∑
x

qxnx

(
ua + va

x

) = σua + J a, (42)

where

uaJa = 0, (43)

Figure 3. A schematic illustration of the boxes within boxes used in the
discussion of the averaging over charged flows.

and we have (again) made use of the linear drift approximation.
For fluid elements on the smallest scale, we impose local charge
neutrality (as per the previous argument) so take σ = 0. However,
this condition only holds along the world line of a particular fluid
element. Suppose we consider a set of neighbouring fluid elements,
as in Fig. 3, and ask how the argument changes as we average over
a larger volume. Labelling quantities associated with each box by N
= 1, 2, ... we then have the total charge current

ja =
∑
N

[− (
ubj

b
N

)
ua+ ⊥a

b j b
N

]
, (44)

where the projection is associated with the four velocity of the
observer on the averaged scale. In general, this observer would
not record a vanishing charge density (even though each σ N = 0).
However, recalling the linear drift argument we have

σ = −
∑
N

ubj
b
N ≈ −

∑
N

(
uN

b − vN
b

)
jb
N =

∑
N

vN
b jb

N . (45)

Since each term in the sum is quadratic in small quantities, it would
seem consistent to ignore the contribution and take the charge current
(on the larger scale) to be given by

ja =⊥a
b

∑
N

jb
N . (46)

This argument extends to the scale on which we are carrying out the
evolution, providing (some) support for the constraint from equation
(37).

However, one can easily come up with a counterargument. Suppose
that the linear drift introduces a small scale such that ja

N ∼ O(ε).
Then we can easily break the logic by taking the number of boxes
in equation (45) to be of O(1/ε). And clearly, in scaling up from
the local fluid scale (∼mm) to the numerical evolution (�m) we
are dealing with a large number of boxes. This may be problematic,
but what we should replace the argument with is less obvious. The
key question is if the connection between charge neutrality on the
nuclear physics scale (encoded in the equation of state) breaks as
we average to the evolution scale, and if so, how we account for the
corresponding (subgrid) behaviour in an evolution.
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2.6 A filtering argument

Having explained the issue, let us consider how we might be able
to get a more quantitative handle on it. To do this, we draw on the
recent discussion of spacetime filtering/averaging in the context of
large-eddy models of turbulence from Celora et al. (2021). The main
idea is that, we may squeeze in a lot of physics when we scale up
to the resolution of a numerical simulation. We need an effective
representation of this physics, e.g. small-scale fluctuations, on the
resolved scale. Following the discussion of Celora et al. (2021), we
may develop the required model by describing the different physical
fields according to a ‘Favre-weighted’ observer ũa (constructed to
ensure that the equation for baryon number conservation takes the
pre-filtered form, without additional closure terms). We then have
the filtered charge current (we will not need to prescribe the actual
filtering procedure, which is denoted by 〈...〉, in order to make the
argument we are interested in here)

〈jb〉 = σ̃ ũa + J̃ a, ũaJ̃
a = 0. (47)

Introducing the projection

⊥̃a

b = δa
b + ũaũb (48)

we have

σ̃ = −ũa〈ja〉 (49)

and

J̃ a = ⊥̃a

b〈jb〉. (50)

The fields we would study in an evolution – on the macroscopic scale
– are ũa , σ̃ , and J̃ a . Naturally, we can compare these quantities to
the filtered version of the fine-scale quantities. We then have

〈ja〉 = 〈σua〉 + 〈J a〉 (51)

and it follows that

σ̃ = −ũa

(〈σua〉 + 〈J a〉) . (52)

From this relation, it is evident that, even if the small-scale flow is
locally charge neutral (in the sense that σ = 0, as expected from the
local nuclear physics argument) there is no reason to expect this to
remain the case for the filtered flow. In fact, if σ = 0 we get

σ̃ = −ũa〈J a〉, (53)

effectively the filtered version of equation (45), which is not expected
to vanish.

This argument only hints at what a properly developed filtering
argument for the electromagnetic problem will entail (we will discuss
that problem in more detail elsewhere), but it illustrates the main point
we are interested in. The fact that the local charge density vanishes
at the equation of state level does not guarantee that this should be
true on the evolved scale. In fact, it seems natural to argue that local
charge neutrality should not be enforced in a large-scale simulation.

3 TH E F L U I D EQUAT I O N S

Having considered the electromagnetic aspects from different per-
spectives, it is apparent that the problem is intricate. When it comes
to the assumptions associated with magnetohydrodynamics, the low-
frequency approximation that leads to the displacement current being
ignored (see equation 15) should be testable on a case-by-case basis.
The issue of charge neutrality is more involved. One would need to
consider how ‘local’ the fluid frame has to be for a given flow. This, in
turn, imposes a constraint on the scale on which we are able to average

over fluid boxes without violating an assumed charge neutrality.
Naturally, this has repercussions for the magnetohydrodynamics and
– in absence of a convincing argument – one may have to settle for
a pragmatic approach. A sensible way forward may be to focus on
consistency – making sure that the chosen formulation is internally
‘logical’ – and then test whether alternative choices make an actual
difference. Before we reflect on the options, we need to consider the
fluid dynamics.

As a model example, we consider the system explored by An-
dersson et al. (2017c), relevant for the outer core of a neutron
star above the superfluid transition temperature. We assume that
neutrons and protons are locked to each other as well as any thermal
component (i.e. we ignore heat flow relative to the baryons) but
allow the electrons to drift. This reduces the set-up to a two-fluid
problem. We then need conservation laws for baryon number and
total momentum and we also have to account for the charge current.
This way, we arrive at a system of equations for the baryon number
density n̂ and the (Eulerian) fluid velocity v̂i , the electron number
density n̂e (noting that we also need to be able to work out the charge
density σ̂ ), and the charge current Ĵ i .

At this level, we have two coupled fluid degrees of freedom (e.g.
associated with v̂a and Ĵ a), which include ‘plasma’ properties that
are often ignored in astrophysical modelling. However, the general
system allows the two components to flow with a large relative
velocity, which becomes problematic when we try to make contact
with the microphysics and the equation of state. The reason for this
is fairly obvious. Modern equations of state include key many-body
interactions but they do so in dynamical equilibrium. The impact of
relative flows is rarely considered.

As we have already discussed, the standard approach to making
modelling more ‘manageable’ involves reducing the problem to a
single-fluid one. In magnetohydrodynamics, this reduction follows
from equation (21). Once the charge current is slaved to the magnetic
field, we can ignore the associated dynamics – we only need to track
the fluid via the usual Euler equations (adding the Lorentz force).
However, suppose we want to proceed more cautiously (in such a way
that we keep better control on the assumptions that led to equation
21). What can we then sensibly do to simplify the problem?

The first step is natural (and we have, in fact, already outlined it).
Returning to the evolution problem and the situation from Fig. 1,
we can take the fluid frame (represented by ua) and let different
fluid components flow according to equation (38). Assuming that the
linear drift argument holds on this scale (as we have to in order to
arrive at a description that does not require the individual γ x factors,
and in turn the individual velocities) and translating to the point
of view of an Eulerian observer, it makes sense to assume that the
difference between the two three-velocities v̂a

x and v̂a is small, as
well. Linearizing in the Eulerian velocity difference, we then have

Wx = (
1 − v̂2

x

)−1/2 ≈ W
[
1 + W 2v̂a

(
v̂a

x − v̂a
)]

. (54)

Combining this with

ua
x = Wx

(
Na + v̂a

x

) ≈ [
W

(
Na + v̂a

) + va
x

]
, (55)

we find that

va
x ≈ W

[
δa
b + W 2v̂b

(
Na + v̂a

)] (
v̂b

x − v̂b
)
, (56)

and it is easy to confirm that the argument is consistent. A small drift
in the fluid frame (the left-hand side) corresponds to a small velocity
difference according to the Eulerian observer (the right-hand side).

Let us stress the importance of this intermediate step between the
two-fluid model and magnetohydrodynamics, which is (effectively) a
one-fluid description. The linear drift allows us to work with a single
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Lorentz factor, W, associated with the bulk flow (the magnitude of
which is not restricted by the assumptions). If we do not assume
a linear drift we have to keep track of the individual velocities
(which makes large-scale simulations much more complicated and
expensive).

3.1 Baryon number conservation

In general, the physical setting we are exploring represents a two-
component system with co-moving baryons (and entropy) but allows
for a relative charge current. Given this set-up, it is natural to associate
the ‘fluid velocity’ with the baryons [this is analogous to using the
Eckart frame in studies of relativistic heat flow (Andersson & Comer
2021) or working with the Favre-weighted frame in the large-eddy
context (Celora et al. 2021)]. That is, we have

v̂i = v̂i
p = v̂i

n. (57)

The foliation approach (Andersson et al. 2017c) then makes use of
Eulerian observers such that (as before)

ua = W (Na + v̂a) = W

α

(
ta − βa + αv̂a

)
, (58)

with the same Lorentz factor as before.
Baryon number conservation is ensured by

∂t

(
γ 1/2n̂

) + Di

[
γ 1/2n̂

(
αv̂i − βi

)] = 0, (59)

where the Eulerian number density is related to the co-moving one
by

n̂ = nW, (60)

and we have introduced n = nn + np. The relation simply encodes
the change in number density that arises because of the length
contraction due to the relative motion between the fluid and the
(Eulerian) observer.

We have expressed equation (59) in the usual flux-conservative
form within the 3 + 1 approach (as laid out in Andersson et al. 2017c).
However, as we have suggested, when we consider the microphysics
it is natural to pay closer attention to the local physics experienced by
a family of observers that ride along with the fluid. Then we have (at
least) two alternatives. We can choose to describe the physics in the
local fluid frame associated with the four velocity ua, or we can try
to make the equations look ‘similar’ to the more familiar flat space
(Newtonian) ones. In this latter approach (see for example Thorne
& MacDonald 1982) one would introduce a global time (associated
with ta) and use a spatial tetrad (relative to this time coordinate) to
describe the fluid. The fluid then has four velocity

ua = W

α

(
ta + V a

)
, (61)

with

V i = αv̂i − βi. (62)

Making use of this result, we can rewrite equation (59) as

(∂t + LV )
(
γ 1/2n̂

) + γ 1/2n̂DiV
i = 0, (63)

or

∂t (γ
1/2n̂) + Di(γ

1/2n̂V i) = 0, (64)

closely resembling the continuity equation from non-relativistic
physics. In this picture, the linear drift argument involves keeping
only linear terms in velocity differences in a frame determined by the

global time coordinate. This follows immediately from the relations
in the previous section, since

V a
x = V a + α

(
v̂a

x − v̂a
)
. (65)

We will use this result later.

3.2 The fluid frame

Having discussed the issue of baryon number conservation, we are
primed to comment on a question that we have so far avoided.
What exactly do we mean by the ‘fluid frame’ when we discuss
the local dynamics? The answer involves an element of choice. In
fact, in a somewhat underhand manner, we have already introduced
one of the options. In the derivation of equation (59), we chose to
work in the frame that moves along with the baryons (which were
assumed to be locked at the outset). This gives precise meaning to the
fibration four velocity ua. This choice has the advantage of making
the conservation law equation (59) simple and intuitive. To see how
this works, consider a general observer Ua within the family of linear
drift models. In general, we then have the baryon flux∑
x=n,p

nx

(
Ua + va

x

) = (nn + np)(Ua + va) ≡ nua. (66)

The argument involves two steps. First lock the baryons together
(va = va

n = va
p ) and then define the co-moving four velocity ua as the

desired frame. The logic is simple but important. Any other choice
introduces a diffusion velocity in the equation for baryon number
conservation.

Now turn to the stress-energy tensor, which takes the form (for the
model system we are considering here, and leaving out the purely
electromagnetic contribution; see Andersson 2021 for more details)

T ab = εUaUb+ ⊥ab p + 2
∑

x

nxμxU
(avb)

x (67)

(ignoring quadratic terms in the drift velocities va
x ), where ε is the

energy density and p is the pressure. We also need the chemical
potential μx for each species. An observer moving along with each
individual fluid frame measures the corresponding chemical potential
as (introducing tildes to make a distinction at this point)

μ̃x = −uaμx
a. (68)

If we ignore entrainment (see Andersson & Comer 2021 for the
general role of this effect in multifluid systems), then

μx
a = μxu

x
a (69)

so we need

μ̃x = −μx

(
uaux

a

)
. (70)

Within the linear drift model, it is straightforward to show that μ̃x ≈
μx. Similarly, if we define the measured number density as

ñx = −uxn
a
x (71)

then we also have ñx ≈ nx. This is important; different fluid observers
agree on both number densities and chemical potentials, which in turn
means that there is no ambiguity associated with issues like chemical
equilibrium.

Returning to equation (67), the first two terms on the right-hand
side remind us of the perfect fluid result, while the third term
represents the energy/momentum flux that arises due to the relative
flow. In the example we are considering we lock the neutrons to the
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protons, but the electrons exhibits a relative flow. That is, we have∑
x

nxμxU
(avb)

x = (nnμn + npμp)U (avb) + neμeU
(avb)

e . (72)

If we combine this result with the frame choice from equation
(66), then we arrive at an explicit (non-vanishing) expression for
the momentum flux. As an alternative, we may use the freedom of
choice associated with Ua to ensure that the stress-energy tensor is
reduced to the perfect fluid form. In order to do this, we must work
in a frame such that

(nnμn + npμp)va + neμev
a
e = 0. (73)

Implicitly, this prescribes the corresponding four-velocity ua, and
corresponds to the standard Landau–Lifshitz frame (Andersson &
Comer 2021). Finally, once we have defined the frame we can always
replace the electron velocity with the charge current, since

ja =
∑

x

qxnx

(
Ua + va

x

)

= e
(
np − ne

)
Ua + e(npv

a
p − nev

a
e ). (74)

From this last expression, it is worth noting yet another option.
We could introduce the observer frame in such a way that the
spatial charge current vanishes. This would involve removing the
last term in equation (74). However, as this choice would introduce
a drift velocity in the baryon number conservation law as well as
a momentum flux in the stress-energy tensor it does not bring any
obvious advantages.

The key conclusion here is that we can introduce the fluid frame
in whatever way we find most convenient, with the two options
equations (66) and (73) being attractive for different reasons. There
is, however, no free lunch. Whichever choice we make, we cannot at
the same time arrive at a baryon number conservation law without
particle diffusion and a perfect-fluid stress energy tensor. This may
be obvious, but it is an important observation as precisely this
combination tends to be assumed from the outset in discussions
of relativistic magnetohydrodynamics. Hence, the standard results
can only be approximately true. In the following, we will make the
nature of the required approximation precise by adopting the Eckart
frame choice and quantifying the ‘offending’ momentum terms in
the stress-energy tensor.

3.3 Energy–momentum conservation

In order to complete the fluid model, we need the evolution equations
for energy and momentum. The starting point is the stress-energy
tensor from equation (67), expressed in the 3 + 1 foliation. After
some fairly straightforward algebra, we find that the energy evolves
according to

∂t

(
γ 1/2ρ

) + Di

[
γ 1/2

(
αSi − ρβi

)]
= γ 1/2

(
αSijKij − SiDiα

)
, (75)

where, noting the linear drift assumption, we have

p + ρ = W 2 (p + ε) + 2W 4
∑

x

v̂a

(
v̂a

x − v̂a
)
nxμx, (76)

Si = (p + ρ)v̂i + W 2
∑

x

nxμx

(
v̂i

x − v̂i
)
, (77)

and

Sij = pγ ij + Si v̂j + W 2
∑

x

nxμxv̂
i
(
v̂j

x − v̂j
)
. (78)

We also have the momentum equation

∂t (γ
1/2Si) + Dj

[
γ 1/2

(
αS

j

i − Siβ
j
)]

= γ 1/2
(
SjDiβ

j − ρDiα
)
. (79)

We need to add the purely electromagnetic contributions – the
Lorentz force – to the right-hand side of the fluid equations. This
involves

f b
L = −jaF

ab = Nb(Ĵ aEa) + (σ̂Eb + εbad ĴaBd ), (80)

which means that we need to add, first of all, a term

αγ 1/2(Ĵ iEi), (81)

to the right-hand side of equation (75), representing the electromag-
netic contribution to the energy flow and the Joule heating. Secondly,
we need a term

αγ 1/2(σ̂Ei + εijkĴ
jBk), (82)

on the right-hand side of equation (79), representing the (spatial)
Lorentz force.

In the case of a charged two-component problem, it makes sense to
represent the relative flow of the electrons with respect to the baryons
by the charge current. At the linear drift level, we have

σ̂ = e(n̂p − n̂e) = e(Wpnp − Wene)

= eW
[(

np − ne

) − W 2nev̂a

(
v̂a

e − v̂a
)]

(83)

and

Ĵ a = e
(
n̂pv̂

a − n̂ev̂
a
e

) ≈ σ̂ v̂a − eWne

(
v̂a

e − v̂a
)

=⇒ v̂a
e − v̂a ≈ 1

eWne

(
σ̂ v̂a − Ĵ a

)
. (84)

At this point, it is natural to recall the issue of charge neutrality.
Inverting equation (83), we have

σ = e(np − ne) = W
(
σ̂ − v̂a Ĵa

)
, (85)

and it is easy to see that if we were to impose the condition that the
system should be charge neutral in the fluid frame, np = ne, we must
have

v̂a Ĵ
a = σ̂ , (86)

which connects to the earlier discussion of local charge neutrality
that led to equation (37). We now see that the condition arises
naturally from the multifluid model (at the linear drift level) – a
useful consistency check. It is also worth noting that we need to be
careful with what is small and what is not (at least not necessarily).
In order to remain consistent, we need pay attention to equation (84).
In general, the linear drift assumption implies that the combination
on the right-hand side of equation (84) must be small, so we should
ignore quadratic terms of this form. It does not follow that σ̂ and Ĵ a

are individually small. However, if we were to add the assumption
of local charge neutrality (σ = 0) then it follows from equation (83)
that σ̂ will be small (of order the linear drift) and hence (via equation
84) the spatial current Ĵ a must be small as well. In essence, whether
specific quadratic terms should be ignored in a consistent model
depends on the physics assumptions.

At the linear drift level we now have

p + ρ ≈ (p + ε)W 2 + 2μe

e
W 3

(
σ̂ v̂2 − v̂i Ĵ

i
)

(87)

Si ≈ (p + ρ)v̂i + μeW

e

(
σ̂ v̂i − Ĵ i

)
, (88)
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and

Sij ≈ pγ ij + v̂iSj + μeW

e
v̂j

(
σ̂ v̂i − Ĵ i

)
. (89)

Note that there is only one Lorentz factor (associated with the
relative velocity between the observer and the fluid frame) in these
expressions. Moreover, for low velocities, v̂ � c, we may be able to
ignore the σ̂ v̂i term compared to the charge current. Also, for weakly
relativistic systems one would expect μe ≈ me � mb. The upshot of
this is that the terms involving the charge current would be another
factor of order 2000 or so smaller than the other ‘fluid’ terms. For
this simple reason, these terms tend to be ignored in non-relativistic
problems. This then leads to the usual statement that the relativistic
problem follows by adding a perfect fluid stress-energy tensor to
the electromagnetic contribution. The validity of this assumption is
less obvious for a neutron star core, where the electron effective
mass may be of order 10 per cent of the baryon (rest) mass (μe

≈ 100 MeV). In essence, one should consider including the charge
current contribution from the outset. At the very least, it would be
worthwhile quantifying its importance by test simulations.

3.4 Electron dynamics

In order to complete the model, we need to keep track of the electron
number density (e.g. in order to work out μe) and the charge current.
In general, when the fluxes are conserved we have (for each species)

∂t

(
γ 1/2n̂x

) + Di

[
γ 1/2n̂x

(
αv̂i

x − βi
)] = 0. (90)

In the present case, we focus on the electron number density. The
linear drift assumption then leads to

n̂e = neWe ≈ neW
[
1 + W 2v̂a

(
v̂a

e − v̂a
)]

≈ neW

[
1 + W

ene

(
σ̂ v̂2 − v̂a Ĵ

a
)]

. (91)

Moreover, making use of equation (84) we arrive at

n̂ev̂
i
e ≈ neWv̂i + 1

e

(
γ i

j + W 2v̂i v̂j

) (
σ̂ v̂j − Ĵ j

)
. (92)

As a slight aside, using these results in equation (90), making use of
the global time argument and the expression for charge conservation
equation (30), we find that the electron fraction Ye = ne/n satisfies

(∂t + LV ) Ye = 0. (93)

In essence, the electron fraction is advected by the fluid flow.
This assumption effectively corresponds to situations where the
composition of matter remains frozen during the evolution. That
is, the relevant nuclear reactions are slow compared to the dynamics
of the system (see e.g. Hammond et al. 2021).

The momentum equation for a general component is (correcting a
number of typographical errors, basically removing a term involving
the extrinsic curvature, tracing back to equations 78–80 from An-
dersson et al. 2017c, and which propagates through to their equation
129)[
∂t + (

αv̂j
x − βj

)
Dj

]
Sx

i + Sx
j Di

(
αv̂j

x − βj
)

+ Di

[
α

(
μ̂x − v̂j

xSx
j

)] = α

n̂x
Fx

i , (94)

where

Fx
i = exn̂x

(
Ei + εijkv̂

j
xBk

) + γ a
i Rx

a, (95)

with the last term representing resistivity (Andersson et al. 2017a, b,
c).

Noting that, in the absence of entrainment (which would not
normally link electrons and baryons, anyway; Andersson & Comer
2021), we have

Si
x = μ̂xv̂

i
x, (96)

and recalling that the fluid velocity is V i
x = αv̂i

x − βi , we see that
equation (94) can be concisely written:

(
∂t + LVx

)
Sx

i + Di

(
αμ̂x

W 2
x

)
= α

n̂x
Fx

i . (97)

In the particular case of the electrons, we have[
∂t + (

αv̂j
e − βj

)
Dj

]
Se

i + Se
jDi

(
αv̂j

e − βj
)

+ Di

[
α

(
μ̂e − v̂j

e Se
j

)] = α

n̂e
F e

i (98)

where (again, correcting an error in equation 130 from Andersson
et al. 2017c)

Si
e = μ̂ev̂

i
e = μeWe

[
v̂i + 1

eneW

(
σ̂ v̂i − Ĵ i

)]

≈ μeW

[(
1 + W

ene
σ̂

)
v̂i − 1

eneW

(
γ i

j + W 2v̂i v̂j

)
Ĵ j

]
. (99)

Finally, we need an expression for the resistivity. From Andersson
et al. (2017a, b, c), we have the general result (neglecting reactions)

γ a
c Rx

a = γ a
c

∑
y
=x

Rxy
(
δb
a + vb

xua

) (
v

y
b − vx

b

)
, (100)

where the velocities are with respect to the fluid frame. In the linear
drift model, these are related to the Eulerian velocities through
equation (56), and in the two-component case we are considering
we arrive at

γ a
c Re

a = RW
(
δa
c + W 2v̂a v̂c

) (
v̂a − v̂e

a

)

= R
ene

[
Ĵc − W 2(σ̂ − v̂a Ĵa)v̂c

]
. (101)

3.5 Ohm’s law

Resistivity is usually implemented at the level of some version of
Ohm’s law, often viewed as a ‘closure condition’ added to the
magnetohydrodynamics relation equation (28). In the multifluid
model, the required relation follows from the electron momentum
equation. As a first step, let us assume that we can ignore the electron
inertia. Then, it follows from equation (97) that

F e
i ≈ −eneWe

(
Ei + εijkv̂

j
e Bk

)

+ R
ene

[
Ĵi − W 2

(
σ̂ − v̂j Ĵj

)
v̂i

] ≈ neWe

α
Di

(
αμe

We

)
.

(102)

Introducing

η = R
e2n2

eW
, (103)

and recalling that

We ≈ W

[
1 + W

ene

(
σ̂ v̂2 − v̂j Ĵ

j
)]

(104)
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we have

Ei + εijkv̂
jBk + 1

eneW
εijk

(
σ̂ v̂j − Ĵ j

)
Bk

︸ ︷︷ ︸
Hall effect

+ 1

αe
Di

{
αμe

W

[
1 − W

ene

(
σ̂ v̂2 − v̂j Ĵ

j
)]}

︸ ︷︷ ︸
chemical

= η
[
Ĵi − W 2

(
σ̂ − v̂j Ĵ

j
)
v̂i

]
︸ ︷︷ ︸

resistivity

. (105)

This is the final result, and we have indicated the main features of
the model – the term associated with the Hall drift, that leads to
the development of smaller scale features, a ‘chemical’ term of the
kind that may be related to battery effects (although, as it turns out,
not in this case as a pure gradient will not contribute to 18) and the
resistivity. It is rewarding to note that equation (105) is consistent
with the text-book result for non-relativistic two-fluid systems, e.g.
equation 2.75 in Bellan (2006) (see also Mestel 1999), once we set α

= We = W → 1 (ignoring terms of order v̂2) and σ̂ → 0. Depending
on the context, different aspects of equation (105) may or may not be
relevant. Hence, it makes sense to consider possible simplifications.
First of all, ignoring the term associated with the chemical potential
gradient, we have

Ei + εijkv̂
jBk + 1

eneW
εijk

(
σ̂ v̂j − Ĵ j

)
Bk

= η
[
Ĵi − W 2

(
σ̂ − v̂l Ĵl

)
v̂i

]
. (106)

Also leaving out the Hall term, we are left with

Ei + εijkv̂
jBk = η

[
Ĵi − W 2

(
σ̂ − v̂l Ĵl

)
v̂i

]
, (107)

and, finally, if the system is locally charge neutral we have

Ei + εijkv̂
jBk = ηĴi . (108)

It is worth noting that, in the absence of resistivity, this relation
leads back to the electric field vanishing in the fluid frame (ideal
magnetohydrodynamics). This is as expected, but it is nevertheless a
useful consistency check.

Through a hierarchy of approximations and simplifications, we
have moved from a model that retains the properties of a charged
two-component plasma to a simple expression encoding Ohm’s law.
This does not necessarily mean that we are done. We still need to
consider how the result can be used in practice.

3.6 The traditional approach

Before we proceed, it is instructive to compare the final result
equation (107) to the standard argument (Bekenstein & Oron 1978),
which starts from magnetohydrodynamics and arrives at Ohm’s law
by taking the current to be proportional to the Lorentz force acting
on a particle in the fluid frame. Assuming

⊥b
a jb = κFabu

b, (109)

(using κ to represent the conductivity to avoid confusion with the
charge density σ ) and recalling equation (22), it readily follows that

σ̂ + W 2(v̂i Ĵ
i − σ̂ ) = κW (v̂iEi), (110)

and

Ĵa − W 2v̂a(σ̂ − v̂i Ĵ
i) = κW

(
Ea + εabcv̂

bBc
)
. (111)

Moreover, we have

v̂i Ĵi − W 2v̂2(σ̂ − v̂i Ĵ
i) = κW (v̂iEi), (112)

and

Ei + εijkv̂
jBk = 1

κW

[
Ĵi − W 2(σ̂ − v̂l Ĵ

l)v̂i

]
. (113)

This version of Ohm’s law – notably identical to equation (107) once
we identify η = 1/κW – has been implemented in recent numerical
simulations, see for example Palenzuela et al. (2009), Dionysopoulou
et al. (2013), and Wright & Hawke (2020).

4 A S E QU E N C E O F
APPROX IMATIONS/ASSUMPTIONS

We have explored the main aspects of the problem of charged flows
in general relativity and the connection with numerical simulations.
We considered issues relating to both electromagnetism and the fluid
dynamics. The analysis provides everything we need to complete
a formulation for magnetohydrodynamics. As such a formulation
inevitably involves a number of approximations/assumptions – with
different strategies having been adopted in the literature – it is useful
to consider a hierarchy of models of increasing ‘simplicity’.

Let us outline the main options, framing the discussion in the
context of neutron star physics – as this is an area where the
need for different approaches/approximations is obvious. When
we consider the neutron-star problem, it is intuitively clear that
electromagnetism in the vacuum region far away from the star must
be represented by Maxwell’s equations (without local charges or
currents). At the same time, the dynamics of the highly conducting
degenerate neutron-star interior can be adequately described within
(some version of) magnetohydrodynamics. However, this description
becomes problematic close to the star’s surface – basically, since
the Alfvén wave speed diverges as the density vanishes – yet, an
immediate transition to vacuum conditions may not be appropriate.
Rather, the star’s magnetosphere may support a significant effective
charge density (Goldreich & Julian 1969) and considerable currents.
Ignoring the matter inertia in this region one arrives at the force-free
assumption (Uchida 1997; Komissarov 2002; Carrasco, Palenzuela
& Reula 2018), which simplifies the dynamics (albeit bringing its
own set of issues to consider). In essence, we inevitably need to
consider different – more or less physically distinct – regions.

4.1 The top-level model: dissipative electromagnetism

At the highest level, it would be natural to consider a model that
involves the full dynamics associated with Maxwell’s equations
combined with a meaningful ‘single-fluid’ approximation. Without
such an assumption, we would have to consider multifluid (plasma)
aspects of the problem and these may be associated with both
complexity and computational cost, see Barkov et al. (2014) and
Barkov & Komissarov (2016) for efforts in this direction. As we
have seen, the single-fluid reduction involves two steps. First, we
need to make the linear-drift assumption. If we do not, then we have
to keep track of individual fluid Lorentz factors (which obviously
require the individual velocities). Secondly, we have to neglect the
dynamics associated with the charge current (e.g. ignore the electron
‘inertia’). This step removes the second fluid degree of freedom, and
closes the system through some version of Ohm’s law.

As a first step, it is easy to make contact with ideal magnetohy-
drodynamics. Starting from, for example, equations (110) and (111)
it is easy to see that, if κ → ∞ (i.e. we have a perfect conductor)
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we must have Ei + εijkv̂
jBk = 0 so the electric field vanishes in the

fluid frame. The problem reduces to the one discussed in Section 2.3
and Ĵ i is slaved to the magnetic field. The opposite limit is not quite
as straightforward. Formally, if κ → 0 we get

W 2(v̂i Ĵ
i − σ̂ v̂2) = 0 (114)

and

Ĵi − W 2v̂i(σ̂ − v̂l Ĵ
l) = 0. (115)

Solving these two equations, we arrive at(
γij − v̂i v̂j

v̂2

)
Ĵ j = 0 and σ̂ = v̂i Ĵ

i

v̂2
. (116)

If we then decompose Ĵ i = Ĵ‖v̂i + Ĵ i
⊥, the first relation tells us that

Ĵ i
⊥ = 0, while the second leads to Ĵ‖ = σ̂ . At the end of the day, in

the limit κ → 0 we have

Ĵ i = σ̂ v̂i . (117)

In principle, this represents a perfect insulator – any charge imbalance
(a non-zero σ̂ ) will be carried along with the fluid. If we also assume
charge neutrality (cf. equation 86), then consistency dictates (as we
cannot have v̂2 = 1 for a massive fluid) that σ̂ = 0 and Ĵ i = 0. In
this sense, Ohm’s law limits to vacuum electromagnetism.

The next level of complexity is to allow for a finite resistiv-
ity/conductivity, without assuming charge neutrality, as in equation
(107). This relation is fairly easy to invert – first dotting equation
(107) with v̂i to get rid of v̂l Ĵ

l – leading to an expression for the
charge current required to close the system of equations:

Ĵi = σ̂ v̂i + 1

η

[(
γij − v̂i v̂j

)
Ej + εijkv̂

jBk
]
. (118)

The result would simplify further if we assumed local charge
neutrality, but – as we have discussed at length – it is not clear
to what extent this assumption will hold in a real system.

The inversion required to include the Hall effect is more involved.
It can be done, using standard methods from linear algebra (see
Appendix A), but the result is messy (as it mixes dissipative and
non-dissipative terms) and perhaps not very instructive. If we leave
out the chemical term, i.e. take equation (106) as our starting point
then we find that the charge current takes the form

Ĵ i =
{

γ ij + W 2
(
v̂2γ ij − v̂i v̂j

) + 1

eneηW

[
εijkBk

+ W 2(v̂lB
l)εijkv̂k +

(
1

eneηW

)
BiBj

]}

×
{

σ̂ v̂j + 1

ηW 2

[
Ej +

(
1 + σ̂

eneW

)
εjlmv̂lBm

]}

×
{

1 +
(

1

eneηW

)2 [
W−2B2 + (

v̂nB
n
)2

] }−1

. (119)

The different effects – the resistivity, local charge density, and the
Hall effect – are not so easy to isolate from this expression. The
physics, which is easy to recognize in equation (105), has been
mixed up. If we want to work at this level, then this is something we
have to accept. The expression may be a bit involved, but so be it.

Formally, we may think of (119) as representing a ‘tensorial
conductivity’ but this should not get confused with the physics of
such a mechanism (effectively associated with the fact that it is
more difficult for charges to flow across magnetic field lines than
along them). In the very simplest case, one would then replace

equation (108) with something like (see Palenzuela et al. 2009, for
the analogous expression in the fluid frame)

Ĵ i = κij
(
Ej + εjkl v̂

kBl
)

= 1

η

(
γ ij + κ1ε

ijkBk + κ2B
iBj

) (
Ej + εjlmv̂lBm

)
. (120)

This kind of expression clearly does not account for the Hall drift (as
indicated in Harutyunyan et al. 2018). Rather, it introduces additional
physics which may be important in its own right.

4.2 Resistive magnetohydrodynamics

So far, we have outlined a fairly general model involving only the
assumptions needed to reduce the problem to a single-fluid degree
of freedom. This is not yet a description of magnetohydrodynamics
– at least not in the traditional sense as we kept the electric field
in the discussion. In order to bring in the remaining assumptions,
it is natural to consider the low-frequency/slow-motion limit of the
model.4 The usual argument then leads to the displacement current
being small in equation (15), and we arrive at equation (21), which
provides an algebraic expression for the charge current. Crucially,
this implies that we should now think of Ohm’s law as providing
the electric field rather than the charge current. This is advantageous
because equation (105) is already written as an expression for the
electric field – we do not need an inversion in order to implement the
relation (even when we include the Hall drift). We are done.

As a practical illustration of the result, we can write down the fully
relativistic induction equation, including both the charge density and
the Hall effect. To do this, we take the pre-Maxwell form of the
Ampere law:

Ĵ i = 1

αμ0
εijkDj (αBk) (121)

as our starting point. Making use of equation (106) this leads to

Ei = −
(

1 + σ̂

eneW

)
εijkv̂

jBk − ηW 2σ̂ v̂i

− 1

eneWαμ0
Bk [Di (αBk) − Dk (αBi)]

+ η

αμ0

(
γil − W 2v̂i v̂l

)
εlmnDm (αBn) . (122)

Using this in the Faraday equation (18), we arrive at the induction
equation

(
∂t − Lβ

)
Bi − Dm

[(
1 + σ̂

eneW

)
v̂iBm

]

+ Dm

[(
1 + σ̂

eneW

)
v̂mBi

]

− εijkDj

(
αW 2ησ̂ v̂k

) + εijkDj

[
1

eneWμ0
BlDl(αBk)

]

+ εijkDj

[
η

μ0
(γkl − W 2v̂k v̂l)ε

lmnDm(αBn)

]
= αKBi. (123)

This result is complicated, but it is easy to see how it reduces to
something more familiar. First of all, leaving out the Hall term the

4Note that this does not have to represent the non-relativistic limit. The
assumption refers to the time-scale associated with the dynamics, not the
bulk motion or, indeed, weak gravity.
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relation simplifies to(
∂t − Lβ

)
Bi − εijkDj

(
αW 2ησ̂ v̂k

)

+ εijkDj

[
η

μ0
(γkl − W 2v̂k v̂l)ε

lmnDm(αBn)

]

− Dm

(
v̂iBm

) + Dm

(
v̂mBi

) = αKBi. (124)

If we also assume charge neutrality, we would have(
∂t − Lβ

)
Bi − Dm

(
v̂iBm

) + Dm

(
v̂mBi

)

+ Dj

[
η

μ0
Di(αBj )

]
− Dj

[
η

μ0
Dj (αBi)

]
= αKBi (125)

and it is easy to see that, with β = 0, α = 1, K = 0 and assuming η

constant, we end up with the standard textbook (special relativistic)
version of the (resistive) induction equation. It would obviously be
interesting to explore to what extent the additional terms in equation
(123) impact on the large-scale magnetic field evolution in a neutron
star, but we leave this for future work.

4.3 Force-free electrodynamics

The magnetohydrodynamics approach should be relevant for the
dense interior of a magnetized star, while the vacuum Maxwell equa-
tions apply at large distances. However, if we want to consider the
region immediately outside the star, or indeed the transition through
the low-density surface material, then we may need a different
prescription. A common assumption is that the magnetosphere is
composed of a highly magnetized plasma, which supports a charge
current without inducing significant ‘fluid’ motion. In essence, there
is no significant matter component to balance the Lorentz force and
we arrive at what is called force-free electrodynamics. From equation
(80), we see that we must have

σ̂Ei + εijkĴ
jBk ≈ 0, (126)

along with

EiB
i ≈ 0, (127)

and it also follows that Ĵ iEi ≈ 0. The condition of high magnetiza-
tion requires that

B2 > E2. (128)

These three conditions may be taken as the axiomatic ‘definition’
of the force-free limit (see e.g. Paschalidis & Shapiro 2013 for a
discussion of the need for all three conditions).

Since the vanishing of the Lorentz force follows from the low-
inertia assumption, the force-free model is often described as
the low-inertia limit of ideal magnetohydrodynamics (Komissarov
2002; McKinney 2006). The argument is also motivated by the
fact that the last two conditions (equations 127 and 128) hold
in ideal magnetohydrodynamics as well. The limit argument may
seem intuitive, but it is not quite that straightforward. In ideal
magnetohydrodynamics, the electric field vanishes in the fluid frame,
while force-free electrodynamics is identified by the electric field
vanishing in a frame associated with the charge current. Trivially,
the two conditions (equations 28 and 126) are identical if we let
v̂i → Ĵ i/σ̂ . That is, the force-free region does not strictly follow
from simply taking the low-inertia limit (at least not in the usual
mathematical sense). We do not have an adjustable parameter that
takes us from magnetohydrodynamics to the force-free case. The
argument relies on a boost of the frame in which the electric field

is taken to vanish. With this in mind, it is not surprising that
the force-free case does not arise naturally from the equations we
have discussed. Our starting point was the two-fluid model and the
derivation of, for example, Ohm’s law clearly builds on the fluid
assumption. As a result, one would not expect to be able to reconcile
the derived form of Ohm’s law with the conditions in the force-free
region (where the plasma can be assumed to be collisionless). Instead,
one would have to consider dissipation associated with collective
processes and/or radiation (Komissarov 2004), which obviously
changes the argument. Having said that, the conditions required
for ideal magnetohydrodynamics and force-free electrodynamics are
sufficiently similar that it may nevertheless be useful for numerical
implementations to link them through a somewhat ad hoc limiting
argument (Palenzuela 2013; Paschalidis & Shapiro 2013).

When it comes to evolving the equations in the force-free region,
the typical approach involves solving for both the electric and
magnetic fields. At a glance, we need a ‘closure relation’ for the
charge current ja in order to close the system. While this is not
exactly true – as we could contract the Maxwell equations with the
Faraday tensor, and then use the vanishing of the Lorentz force to
get rid of ja (see Carrasco & Reula 2016 for discussion) – it might
still be useful to write the charge current in terms of Ei and Bi such
that the force-free constraints are automatically satisfied. This leads
to (see e.g. Gruzinov 2006; Komissarov 2011; Paschalidis & Shapiro
2013)5

Ĵ i = Bi

μ0B2

[
Bjε

jklDkBl − Ejε
jklDkEl

− 2BjEkKjk

]
+ σ̂

B2
εijkEjBk. (129)

As suggested by Palenzuela (2013), we may work with a phenomeno-
logical closure for the charge current, such that it limits to ideal mag-
netohydrodynamics in one case and to force-free electrodynamics in
the other.

5 C O N C L U D I N G R E M A R K S

We have explored the physics of general relativistic magnetohy-
drodynamics, as required for studies of large-scale magnetic field
dynamics associated with, for example, neutron star mergers. With
this particular application in mind, we formulated the problem using
the standard 3 + 1 foliation approach to spacetime. However, given
the need to faithfully represent the physics, we also considered the
spacetime fibration associated with the fluid elements. Our main
aim was to discuss commonly made assumptions (which tend to be
motivated in the non-relativistic setting and then taken, more or less,
for granted in the curved spacetime case) and establish to what extent
they are appropriate for different problem settings.

The discussion brought issues associated with the charge density
and charge current into focus, and we highlighted the connection
between the microphysics (associated with a given equation of state)
and the global dynamics (from the point of view of numerical sim-
ulations). This discussion emphasized different effects that involve
going beyond ‘standard’ ideal magnetohydrodynamics and that may

5This relation is sometimes referred to as ‘Ohm’s law’ for force-free
electrodynamics, but this is clearly misleading as there is no resistivity
involved. Instead, the component of the current orthogonal to the magnetic
field is easily obtained from equation (126), while the component along the
magnetic field is obtained by demanding that the evolution preserves the EiBi

= 0 condition.
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come into play if a more precise description of the problem is
desired. Our derivation of Ohm’s law takes the two-fluid plasma
as its starting point and, hence, includes features beyond the usual
scalar resistivity/conductivity (like the Hall effect). This provided
a hierarchy of models – from dissipative electromagnetism where
Ohm’s law provides a closure relation for the charge current (as
in equation 119) through to resistive magnetohydrodynamics where
Ohm’s law provides the electric field (as in equation 105) – that
should be relevant for future applications.

While we have (admittedly) not resolved all the involved issues,
the final formulation is logically complete. This prepares the ground
for a new generation of models of various astrophysical scenarios.
In particular, our results will allow us to test the validity of different
assumptions and simplifications by direct simulations. This seems
like an important step in the right direction.
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APPENDI X

Assuming that each index is raised (lowered) with γ ij (γ ij), we can
rewrite equation (106) in the form (as the chemical term makes this
inversion more complicated, we neglect it in the following)

Aij Ĵ
j = Ci, (A1)

where we have defined

Aij = γij + Lv̂i v̂j + MεijkB̂
k, (A2)

Ci = NEi + Pεijkv̂
jBk + Qv̂i, (A3)

L = W 2, (A4)

M = 1

eneηW
, (A5)

N = 1

η
, (A6)

P = 1

η

(
1 + σ̂

eneW

)
, (A7)

Q = W 2σ̂ . (A8)

From Linear Algebra, we know that the inverse Aij to a 3 × 3 matrix
Aij is

Aij = γ

2!A
εiklεjmnAkmAln, (A9)

where γ = det γij and A = det Aij . The solution is therefore

Ĵ i = AijCj . (A10)

Note that

εiklεjmn = 3!δ[i
j δk

mδl]
n , (A11)

εiklεimn = 2δ[k
m δl]

n , (A12)

εiklεikn = 2δl
n. (A13)

Explicitly, we have

Aij = γ

2!A
εiklεjmn

(
γkm + Lv̂kv̂m + MεkmqB

q
)

× (
γln + Lv̂l v̂n + MεlnrB

r
)

= γ

A

[
γ ij + L

(
v̂k v̂

kγ ij − v̂i v̂j
) + MεijkBk

+ LMv̂lB
lεijkv̂k + M2BiBj

]
(A14)

MNRAS 509, 3737–3750 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3737/6440174 by Southam
pton O

ceanography C
entre N

ational O
ceanographic Library user on 24 February 2022

http://dx.doi.org/10.1103/PhysRevD.86.043002
http://dx.doi.org/10.3389/fspas.2021.659476
http://dx.doi.org/10.1007/s41114-021-00031-6
http://dx.doi.org/10.1088/1361-6382/aa6b37
http://dx.doi.org/10.1088/1361-6382/aa6b3a
http://dx.doi.org/10.1088/1361-6382/aa6b39
http://dx.doi.org/10.1088/1361-6633/aa67bb
http://dx.doi.org/10.1093/mnras/stw384
http://dx.doi.org/10.1093/mnras/stt2247
http://dx.doi.org/10.1086/346103
http://dx.doi.org/10.1103/PhysRevD.18.1809
http://dx.doi.org/10.1007/s10714-020-02752-5
http://dx.doi.org/10.1103/PhysRevD.93.085013
http://dx.doi.org/10.1103/PhysRevD.98.023010
http://dx.doi.org/ 10.1103/PhysRevD.104.084090
http://dx.doi.org/10.1088/1361-6382/abebb7
http://dx.doi.org/10.1103/PhysRevD.88.044020
http://dx.doi.org/10.1086/150119
https://arxiv.org/abs/astro-ph/0604364
http://dx.doi.org/ 10.1103/PhysRevD.104.103006
http://dx.doi.org/10.1140/epja/i2018-12624-1
http://dx.doi.org/10.1046/j.1365-8711.2002.05313.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07598.x
http://dx.doi.org/10.1111/j.1745-3933.2011.01150.x
http://dx.doi.org/10.1111/j.1745-3933.2006.00150.x
http://dx.doi.org/10.1093/mnras/stt311
http://dx.doi.org/10.1111/j.1365-2966.2009.14454.x
http://dx.doi.org/10.1103/PhysRevD.88.104031
http://dx.doi.org/10.1093/mnras/198.2.339
http://dx.doi.org/10.1103/PhysRevE.56.2181
http://dx.doi.org/10.1093/mnras/stz2779


3750 N. Andersson et al.

and

A = γ

3!
εiklεjmnAijAkmAln

= γ

3!
εiklεjmn

(
γij + Lv̂i v̂j + MεijpBp

)

× (
γkm + Lv̂kv̂m + MεkmqB

q
) (

γln + Lv̂l v̂n + MεlnrB
r
)

= γ
[
1 + Lv̂nv̂

n + M2BnB
n + LM2

(
v̂nB

n
)2

]
. (A15)

The inverse matrix is therefore

Aij =
[
γ ij + L

(
v̂k v̂

kγ ij − v̂i v̂j
) + MεijkBk

+ LMv̂lB
lεijkv̂k + M2BiBj

]

×
[
1 + Lv̂nv̂

n + M2BnB
n + LM2

(
v̂nB

n
)2

]−1
, (A16)

and, finally, the current density is

Ĵ i = [
γ ij + L

(
v̂k v̂

kγ ij − v̂i v̂j
) + MεijkBk + LMv̂lB

lεijkv̂k

+ M2BiBj
] (

NEj + Pεjlmv̂lBm + Qv̂j

)

×
[
1 + Lv̂nv̂

n + M2BnB
n + LM2

(
v̂nB

n
)2

]−1
. (A17)
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