
ASPECTS OF TOPOLOGICAL APPROACHES FOR DATA
SCIENCE

JELENA GRBIĆ†, JIE WU†,‡, KELIN XIA†, AND GUOWEI WEI†

Abstract. We establish a new theory which unifies various aspects of topo-
logical approaches for data science, by being applicable both to point cloud
data and to graph data, including networks beyond pairwise interactions. We
generalize simplicial complexes and hypergraphs to super-hypergraphs and es-
tablish super-hypergraph homology as an extension of simplicial homology.
Driven by applications, we also introduce super-persistent homology.

1. Introduction

Topological data analysis (TDA) is a new-born research area mainly stemming
from the pioneering works on persistent homology carried in [61, 154] and the
landmark paper of Gunnar Carlsson [37] published in 2009. Under its rapid
development, TDA has achieved various successful applications in many areas of
sciences and technologies such as material science [85, 124, 95, 107], 3D shape
analysis [132, 135], multivariate time series analysis [129], biology [31, 34, 33, 94,
146, 36, 35, 110], sensor networks [52], scientific visualization [134], image analy-
sis [38, 113, 131, 18, 68], dynamics systems [104], etc. A great number of TDA
softwares have been developed, including JavaPlex [133], Perseus [108], Dipha [14],
Dionysus [1], jHoles [22], GUDHI [101], Ripser [13], PHAT [16], DIPHA [15], and
R-TDA package [65]. The results from TDA can be visualized by persistent di-
agram [105] and persistent barcode [70], and further transformed into differen-
t representations that are suitable for machine learning models, such as Betti
curve [122], persistent landscape [27, 25, 26], persistent image [2], persistent path
and signature [47], persistent codebook [153], persistent 2D matrices [35], and oth-
ers [3, 89, 36, 35, 110]. TDA-based machine learning models [44, 116] have been
used in various areas, including image analysis [9, 83, 117, 99, 112, 71], shape
analysis [23, 151, 96, 82, 149], time-series data analysis [130, 6, 150, 139, 136],
computational biology [114, 54, 31, 34], noise data [111], sphere packing [123], lan-
guage analysis [152], etc. Other the traditional persistent homology, other TDA
models have been proposed for the detailed characterization of the data, such as
persistent local homology [19, 66, 17, 20, 5], persistent cohomology [53], multidi-
mensional persistent homology [40, 39, 49, 41], element-specific persistent homolo-
gy [35, 110], persistent functions [21], persistent spectral [138, 102], persistent Ricci
curvatures [140, 141], etc. The wide applications of TDA have made topology as
one of the most commonly used mathematical tools in Data Science [125, in Section
1.3]. A summary of TDA and TDA-based learning models can be found in Figure
1.

In a survey paper [45], Chazal and Michel outlined a pipeline that stresses the
role of topology and geometry in data science:

(i) input data is given in the form of a finite set of points coming with a notion
of distance;
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Figure 1. Illustration of TDA and TDA-based learning model-
s for data analysis. Generally speaking, all TDA-based learning
models have four components, including data, topology, feature
and learning. More specifically, data is collected and preprocessed
firstly. Second, topological representations and models are con-
structed to describe the inner structural and interactional infor-
mation of the data. Note that efficient representations are of
key importance to machine learning. Third, a series of topolog-
ical features are generated by using persistent homology models.
Topological-invariant-based features provide a better characteriza-
tion of the most fundamental and intrinsic properties of the data,
thus they have a better generalizability and transferability for ma-
chine learning models. Finally, the topological features are com-
bined with machine learning models for various classification and
regression tasks.

(ii) a “continuous shape” is built on top of the input data: this results in a
structure over the data;

(iii) topological and geometric information is extracted from the structure;
(iv) the topological and geometric information is the output of the analysis

and forms the new representation of the data, allowing for an in-depth
modeling of the original data.

Such an approach can be naturally applied to point cloud data with a drawback
that it can not be immediately or directly applied to non-Euclidean data such as
graphs for abstract relationship.

The purpose of this article is to provide a new theory that unifies various aspects
of topological approaches for data science that is suitable for both point cloud data
and graphic data. In our setting, we explore topological structures on graph data
with scoring schemes. The popular persistent homology can be obtained as special
cases of our more general theory from a natural transformation from point cloud
data to graphic data with scoring schemes.

We start with a graph, which is the working graph for the data analytic purpose.
Our approach consists of the following steps:

(A). We introduce a homology theory of a collection of subgraphs of the working
graph, which is a canonical extension of simplicial homology theory. Briefly,
this homology theory will canonically obtain “topological invariants” for
collections of subgraphs associated to sample data or experimental data.
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(B). We assign a scoring scheme on the working graphG, where a scoring scheme
is a function from the set of subgraphs of G to the set of real numbers. The
scoring scheme induces a persistence on homologies in (A), which in this ar-
ticle will be called as super persistent homology, as well as its derived topo-
logical features such as super-persistence diagrams and super-persistence
modules for data analytics.

(C). The current persistent homology on point cloud data can be deduced from
(A) and (B). Hence our approach is suitable for performing topological data
analysis on both graphic data and point cloud data.

The pineline of our super persistent homology is as follows:

(1) The input is assumed to be a finite (or infinite) graph G with
(i) a scoring scheme and
(ii) a selection of subgraphs.
The definition of the scoring scheme on the data is usually given as an input
or guided by applications. It is however important to notice that the choice
of a scoring scheme may be critical to revealing interesting topological and
geometric features of the data. The selection of subgraphs on the data is
also usually given as an input or guided by the applications at hand. Again
it is important to notice that the selection of subgraphs may be critical to
revealing interesting topological and geometric features of the data.

(2) An “abstract geometry-like” shape is built on top of the data in order to
highlight the underlying topological structure. This is a nested family of
super-hypergraphs filtered by the scoring scheme that reflects the structure
of the data at different scales. Super-hypergraphs can be seen as higher
dimensional generalizations of neighboring graphs that are classically built
on top of data in many standard data analysis or learning algorithms. The
challenge here is to define such structures that reflect relevant information
about the structure of the data and that can be effectively constructed and
manipulated in practice.

(3) The extracted topological and geometric information provides new families
of features and descriptors of the data. These can be used to better under-
stand the data or they can be combined with other kinds of features for fur-
ther analysis and machine learning tasks. Demonstrating the added-value
and the complementarity (with respect to other features) of the information
provided by super persistent homology is an important issue at this step.

(4) Adjust the choice of scoring scheme and the selection of subgraphs to get
better features and descriptors of the data.

(5) One can repeat the procedure on the choices of scoring scheme and selec-
tions of subgraphs to obtain the best suitable features and descriptors of
the data.

For analyzing both point cloud data and graph data in a unified way, we convert
a point cloud data into a graph data by adding exact one edge to each pair of
the points in the data to form a fully connected graph. There have been extensive
explorations on topological and categorical structures on graphs. In Appendix A, we
give a brief review of simplicial complexes constructed from graphs. In addition to
the commonly-used construction of a clique complex, here we give a short discussion
on a famous construction called neighborhood complex introduced by Lovász in
his foundational work [98] in the area of topological combinastorics. Let G be a
graph. Define the neighborhood complex N (G) to be an abstract simplicial complex
whose vertices are the vertices of G and whose simplices are those subsets of the
vertex set V (G) which has a common neighbor. Lovász Theorem [98, Theorem 2]
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states that if N (G) is (k − 2)-connected, then G is not k-colorable1. As Lovász
remarked [98, p.320], in the case k = 2, the converse statement is also true, and
so N (G) is connected if and only if G is not bipartite. Note that a simplicial
complex is connected if and only if its 0-th Betti number is 1. If we choose Lovász’
neighborhood complex as the construction filtered by a scoring scheme, then the
resulting barcodes of the 0-th super-persistent homology introduced in Section 3
would immediately give the bipartite information for the level subgraphs of the
filtration.

The geometric realization of neighborhood complex (of a graph) is quite different
from that of the clique complex, see Appendix A for details. This indicates that
one could have different topological structures from the same working graph.

It is also possible that simplicial complexes model data from practical problems.
According to the review article [12] supported by hundreds of references, extensive
research has been recently taken on the networks beyond pairwise interactions. A
simplicial complex (hypergraph) can be naturally constructed by taking the nodes
having a group-interaction as a simplex (hyperedge).

Hypergraph is a preferred model in some practical problems. Although simplicial
complexes overcome some of the problems encountered by other lower dimensional
representations, they are still quite limited by the requirement on the existence of all
subfaces. In some cases, such as group interactions in social systems, this constraint
is too restrictive. In other cases, such as author collaborations in scientific papers
and gene pathways, the inclusion constraint can be less easily justified. Hypergraphs
provide the most general and unconstrained description of higher-order interactions,
see [12, paragraphs 2-4, page 7].

For graph data having higher-order interactions, it is natural to take the col-
lections of subgraphs that have group-interactions. This arises a mathematical
question: Given H a collection of subgraphs of a working graph, how to introduce
topology on H with as less constraints as possible on H?

In this article, we are going to answer this question. Here we give some observa-
tions and brief ideas. For graph data, it is likely that two different subgraphs share
the same nodes. This observation implies that the notion of simplicial complexes
does not work well for the collections of subgraphs due to the fact that any sim-
plex in a simplicial complex must be uniquely determined by its vertices (nodes).
The notion of ∆-set in algebraic topology, which is a generalization of simplicial
complex, can solve this problem. Roughly, a ∆-set X is a graded (multi-layered)
set labeled by X0, X1, X2, · · · , where Xn can be intuitively viewed as the set of
n-dimensional simplices. The structure of a ∆-set X is given by face operators,
that is, we assign n + 1 face operators labeled by d0, d1, . . . , dn as functions from
the set of n-dimensional simplicies to the set of (n−1)-dimensional simplices, satis-
fying the ∆-identity (the matching rule of faces) that didj = djdi+1 for i ≥ j. The
geometric realization of a ∆-set is ∆-complex, a notion defined in the popular text-
book of algebraic topology [84]. A ∆-set can be described in terms of feed-forward
neural networks, see Subsection 3.5. Using the notion of ∆-sets, we are allowed to
select two or more subgraphs treated as n-simplices sharing the same vertices. For
addressing as less constraints as possible in the question, we introduce the notion
of super-hypergraph in Subsection 2.3, which is defined as a graded (multi-layered)
subset of a ∆-set. If a ∆-set is given by an oriented simplicial complex, then our
definition of super-hypergraph coincides with a hypergraph. Roughly speaking, a
super-hypergraph is an extension of a hypergraph that allows hyperedges to form
a multiset. An important aspect in the present article is that simplicial homology

1As a consequence of this theorem, he solved the Kneser conjecture in combinatorics [98,
Theorem 1].
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Figure 2. Illustration of a super-hypergraph model constructed
from the protein-ligand complex (ID: 3E6Y). The ligand (green
color) is a drug that is used to cure the disease caused by the
protein (red color). The potency and efficacy of the drug is di-
rectly determined by the atomic interactions between the ligand
and the protein. Traditionally, atomic interactions are modeled
by a graph (A). However, graphs can only characterize pair-wise
interactions (by edges) and fall short for many-body interactions.
Hypergraph models (C) use the hyperedge, i.e., a set of vertices,
to represent many-body interactions and have demonstrated great
power for biomolecular data analysis (See Section 4 for details).
Mathematically, a n-hyperedge contains n+ 1 vertices in it. Note
that 1-hyperedges are denoted by red ellipses and n-hyperedges
(n > 1) are represented by blue ellipses. The super-hypergraph
(D) provides an even more flexible representation and incorpo-
rates detailed local topology within each hyperedge. Note that the
hyperedge in super-hypergraph is a subgraph, i.e., a set of ver-
tices together with edges. If we only consider vertex part of the
subgraph, the super-hypergraph reduces to a hypergraph.

can be naturally extended to a homology theory on super-hypergraphs as described
in Section 2, and so there are topological invariants (in terms of homology) on
super-hypergraphs.

To introduce persistence on graph data, we propose to use the notion of a scoring
scheme, which is a real valued function on finite subgraphs of the working graph.
As discussed in Subsection 3.2, the classical persistent homology can be converted
into super-persistent homology under the notion of scoring schemes. Hence super-
persistent homology is a novel topological approach that can be applied to broader
objects in data science.

Mathematically, the main results of the article are Theorems 2.7, 2.20 and 3.7.
Theorem 2.7 states that hypergraph homology does not depend on the choice of
orientation, which shows that the hypergraph homology provides the invariants on
the intrinsic structure of hypergraph. The Mayer-Vietoris sequence is one of the
fundamental tools for computing simplicial homology. Theorem 2.20 gives an ana-
logue of the classical Mayer-Vietoris sequence for super-hypergraphs. Theorem 3.7
gives the structure theorem on super-persistent homology.

We should point out that it is commonly known (such as the textbook of al-
gebraic topology [84]) that the computation of simplicial homology can be largely
simplied using the notion of ∆-complex, if the geometric shape can be homotopi-
cally deformed. Also the complexity of computing super-hypergraph homology is
essentially the same as that of computing the simplicial homology of ∆-sets.

It should be pointed out that even though this article is a theoretic framework,
it has deep roots in application. One of the main motivations is from the drug
design, in particular the analysis of binding affinities between proteins and ligands,
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i.e., how powerful is a drug (ligand) for a certain disease (protein-related). Fig-
ure 2 illustrates the topological representations for the protein-ligand complex (ID:
3E6Y). Biologically, the interactions between the ligand and the protein are key
to the drug potency and efficacy. Graph models (as in Figure 2 (B)) is widely
used to characterize the atomic interactions. A major drawback for graph models
is that they only characterize pair-wise interactions and can not be used in many-
body interaction characterization. Recently, we have used hypergraph models to
describe various types of interactions (beyond pair-wise ones) for biomolecular in-
teractions (Figure 2 (C)). Essentially, many-body interactions can be modeled as
hyperedges. It has been found that hypergraph models have great advantages over
graph models in molecular representation. More details can be found in Section 4. A
further generalization of hypergraphs to super-hypergraphs (Figure 2 (D)) provides
us more flexibility to characterize the complicated topology within each individu-
al hyperedge. We believe that the super-hypergraph model provides an upgraded
topological approach to data science, and can help to foster further interactions
between topology and data science. The content of the article is organized in the
following way.

Contents
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2. Homology Theory on Super-hypergraphs 6
2.1. Algebraic Lemmas. 7
2.2. Hypergraphs. 9
2.3. Super-Hypergraphs 13
3. Super-Persistent Homology 21
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2. Homology Theory on Super-hypergraphs

Recently, homology of hypergaphs has opened new avenues for using topological
tools in data analysis. Hypergraphs have been used for data analytics in various
areas of sciences from social networks to molecular bioscience. The notion of hyper-
graph can be generalized as super-hypergraph, see Subsection 2.3. These objects
are important for understanding the different explorations of topological structures
on spaces of subgraphs. This setting realizes our aim to establish a unified approach
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to explore data science using topological combinatorics. The purpose of this section
is to establish a homology theory of super-hypergraphs as a natural extension of
simplicial homology and homology of hypergraphs.

2.1. Algebraic Lemmas. The following algebraic tools will be needed to define
a homology theory of super-hypergraphs. Although we will only make use of chain
complexes of abelian groups, we note that using simplicial group models, homotopy
groups can be combinatorially defined using Moore chain complexes, which are
chain complexes of possibly non-abelian groups [51, 145]. There are many studies
of the homotopy type of topological structures of subgraphs as indicated in the
references in Appendix A. Therefore, we consider chain complexes of possibly non-
abelian groups so that the results in this subsection may be relevant for future
research.

A graded group G∗ = {Gn}n∈Z is a sequence of groups Gn indexed by the
integers. A graded subgroup G′∗ = {G′n}n∈Z of G∗ = {Gn}n∈Z is a sequence of
subgroups G′n such that G′n ≤ Gn for n ∈ Z. A chain complex G∗ of groups is a
graded group G∗ with a group homomorphism ∂n = ∂G∗n : Gn −→ Gn−1 for n ∈ Z
such that the composite

∂n−1 ◦ ∂n : Gn −→ Gn−2

is the trivial homomorphism. Let us emphasise that in this definition we do not
require Gn to be abelian. A subcomplex C∗ of G∗ is a graded subgroup C∗ of G∗
such that

∂G∗n (Cn) ⊆ Cn−1

for each n ∈ Z. So C∗ together with the restrictions ∂G∗n |Cn : Cn −→ Cn−1 forms a
chain complex.

Definition 2.1. Let G∗ be a chain complex of groups and let D∗ be a graded
subgroup of G∗. Define

supG∗∗ (D∗) =
⋂
{C∗ | Dn ≤ Cn for n ∈ Z, and C∗ is a subcomplex of G∗}

infG∗∗ (D∗) =
∏
{E∗ | En ≤ Dn for n ∈ Z, and E∗ is a subcomplex of G∗}.

For simplicity, if the embedding of D∗ ⊆ G∗ is clear, we denote supG∗∗ (D∗) by
sup∗(D∗) and infG∗∗ (D∗) by inf∗(D∗).

Proposition 2.2. Let G∗ be a chain complex of groups and let D∗ be a graded
subgroup of G∗. Then

(1) sup∗(D∗) is the smallest subcomplex of G∗ containing D∗. Moreover,

supn(D∗) = Dn · ∂G∗n+1(Dn+1)

is the product of Dn and ∂G∗n+1(Dn+1).
(2) inf∗(D∗) is the largest subcomplex of G∗ contained in D∗. Moreover,

infn(D∗) = Dn ∩ ∂−1
n (Dn−1)

is the intersection of Dn and ∂−1
n (Dn−1).

Proof. (1) The first part follows from the definition. Let

D̃n = Dn · ∂G∗n+1(Dn+1)

for n ∈ Z. Let C∗ be any subcomplex of G∗ such that Dn ≤ Cn for each n ∈ Z.
Then

∂G∗n+1(Dn+1) ≤ ∂G∗n+1(Cn+1) ≤ Cn
and so

D̃n = Dn · ∂G∗n+1(Dn+1) ≤ Cn.
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Thus D̃∗ is a graded subgroup of C∗ for any subcomplex C∗ of G∗ with Dn ≤ Cn
for n ∈ Z, and so D̃∗ is a graded subgroup of sup∗(D∗). Notice that

∂G∗n (D̃∗) = ∂G∗n (Dn · ∂G∗n+1(Dn+1))

≤ ∂G∗n (Dn) · ∂G∗n (∂G∗n+1(Dn+1))
= ∂G∗n (Dn)

≤ D̃n−1.

Hence D̃∗ is a subcomplex of G∗ containing D∗, and so sup∗(D∗) = D̃∗.

(2) The first part follows from the definition. Let

Ďn = Dn ∩ ∂−1
n (Dn−1).

Let x ∈ Ďn. Then ∂n(x) ∈ Dn−1 because x ∈ ∂−1
n (Dn−1), and

∂n(x) ∈ ∂−1
n−1(Dn−2)

because ∂n−1(∂n(x)) = 1 ∈ Dn−2. Thus ∂n(x) ∈ Ďn−1. It follows that Ď∗ is a
subcomplex of G∗ contained in D∗. Hence

Ď∗ ≤ inf∗(D∗).

Let E∗ be any subcomplex of G∗ such that En ≤ Dn for n ∈ Z. Then

En ≤ ∂−1
n (En−1) ≤ ∂−1

n (Dn−1).

Thus En ≤ Ďn for n ∈ Z. It follows that inf∗(D∗) ≤ Ď∗. This finishes the
proof. �

Let G∗ be a chain complex of groups. The homology of G∗ is defined as the right
cosets

Hn(G∗) = Ker(∂G∗n )/∂G∗n+1(Gn+1).

Proposition 2.3. Let G∗ be a chain complex of groups and let D∗ be a graded
subgroup of G∗.

(1) The inclusion
inf∗(D∗) −→ sup∗(D∗)

induces an injective map on homology.
(2) Suppose that ∂G∗n+1(Dn+1) is contained in the normalizer of Dn in Gn for

each n. Then the inclusion

inf∗(D∗) −→ sup∗(D∗)

induces an isomorphism on homology. In particular, if Dn is normal in Gn
for n ∈ Z, then the inclusion inf∗(D∗) −→ sup∗(D∗) induces an isomor-
phism on homology.

Proof. (1) From Proposition 2.2 (2),

Hn(inf∗(D∗)) = (Dn ∩ ∂−1
n (Dn−1) ∩Ker(∂G∗n ))/∂n+1(Dn+1 ∩ ∂−1

n+1(Dn))

as right cosets. Since Ker(∂G∗n ) ≤ ∂−1
n (Dn−1), we have

Dn ∩ ∂−1
n (Dn−1) ∩Ker(∂G∗n ) = Dn ∩Ker(∂G∗n ).

We also claim that

∂n+1(Dn+1 ∩ ∂−1
n+1(Dn)) = Dn ∩ ∂n+1(Dn+1).

Clearly, ∂n+1(Dn+1 ∩ ∂−1
n+1(Dn)) ≤ Dn ∩ ∂n+1(Dn+1).
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Let x ∈ Dn ∩ ∂n+1(Dn+1) and let y ∈ Dn+1 such that ∂n+1(y) = x. Then
y ∈ Dn+1 ∩ ∂−1

n+1(Dn). Thus x ∈ ∂n+1(Dn+1 ∩ ∂−1
n+1(Dn)). Hence ∂n+1(Dn+1 ∩

∂−1
n+1(Dn)) = Dn ∩ ∂n+1(Dn+1) and so

Hn(inf∗(D∗)) = (Dn ∩Ker(∂G∗n ))/(Dn ∩ ∂n+1(Dn+1)).

From Proposition 2.2 (1),

Hn(sup∗(D∗)) = ((Dn · ∂G∗n+1(Dn+1)) ∩Ker(∂G∗n ))/∂G∗n+1(Dn+1 · ∂G∗n+2(Dn+2)).

Since ∂G∗n+1(∂G∗n+2(Dn+2)) = {1}, ∂G∗n+1(Dn+1 · ∂G∗n+2(Dn+2)) = ∂G∗n+1(Dn+1). Thus

Hn(sup∗(D∗)) = ((Dn · ∂G∗n+1(Dn+1)) ∩Ker(∂G∗n ))/∂G∗n+1(Dn+1).

Let w1, w2 ∈ Dn ∩ Ker(∂G∗n ) such that w1 ≡ w2 in Hn(sup∗(D∗)). Then there
exists y = ∂G∗n+1(Dn+1) such that w2 = w1y. Note that

y = w−1
1 w2 ∈ Dn ∩Ker(∂G∗n ) ≤ Dn.

We have y ∈ Dn ∩∂G∗n+1(Dn+1) with w2 = w1y. Thus w1 ≡ w2 in Hn(inf∗(D∗)). So

Hn(inf∗(D∗)) −→ Hn(sup∗(D∗))

is injective. This proves (1).
(2) Let w ∈ (Dn · ∂G∗n+1(Dn+1)) ∩Ker(∂G∗n ). Then w ∈ Dn · ∂G∗n+1(Dn+1) and so

w = x1y1x2y2 · · ·xmym
with xi ∈ Dn and yi ∈ ∂G∗n+1(Dn+1) for 1 ≤ i ≤ m. Since ∂G∗n+1(Dn+1) is contained
in the normalizer of Dn, the product

w = x1(y1x2y
−1
1 )(y1y2x3y

−1
2 y−1

1 ) · · · (y1 · · · ym−1xmy
−1
m−1 · · · y

−1
1 )y1 · · · ym = xy

with

x = x1(y1x2y
−1
1 )(y1y2x3y

−1
2 y−1

1 ) · · · (y1 · · · ym−1xmy
−1
m−1 · · · y

−1
1 ) ∈ Dn

and
y = y1y2 · · · ym ∈ ∂G∗n+1(Dn+1).

Since y ∈ Ker(∂G∗n ) and w ∈ Ker(∂G∗n ),

x = wy−1 ∈ Ker(∂G∗n ).

It follows that x ∈ Dn ∩Ker(∂G∗n ), and so

Hn(inf∗(D∗)) −→ Hn(sup∗(D∗))

is surjective. From (1), Hn(inf∗(D∗)) −→ Hn(sup∗(D∗)) is injective and so it is an
isomorphism. This finishes the proof. �

2.2. Hypergraphs. Recall that a hypergraph H is a pair H = (VH, EH), where
the vertex set VH is a finite or infinite set and the hyperedge set EH is a collection
of finite nonempty subsets of VH. Let P(VH) be the set of all finite subsets of
VH. The hypothesis in the definition of hypergraph H = (VH, EH) only requires
that EH ⊆ P(VH) r ∅. This is different from the notion of an abstract simplicial
complex as hypergraphs do not require EH to be closed under taking subsets.

The simplicial closure (or the associated simplicial complex as in [115]) of a
hypergraph H = (VH, EH), denoted by ∆H, is defined as

∆H = {A 6= ∅ | A ⊆ B for some B ∈ EH}.
It is straightforward to check that the simplicial closure of H is the minimal sim-
plicial complex containing H. The homology of ∆H has been studied previously
in [115]. However, it is desirable for a homology theory of H to be directly derived
from H itself rather than the simplicial closure ∆H. Using Proposition 2.3, there
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is an embedded homology theory of hypergraphs that is an extension of simplicial
homology theory.

Definition 2.4. LetH = (VH, EH) be a hypergraph with a total ordering on VH and
let G be an abelian group. Let C∗(∆H;G) be the chain complex with coeffcients in
group G. Consider Z(H)⊗G as a graded subgroup of the chain complex of abelian
groups C∗(∆H;G). The embedded homology Hemb

∗ (H;G) with coefficients in G is
defined by

Hemb
∗ (H;G) = H∗(infC∗(∆H;G)

∗ (Z(H)⊗G)) ∼= H∗(sup
C∗(∆H;G)
∗ (Z(H)⊗G)).

The crucial point is that by Proposition 2.3 the inclusion

infC∗(∆H;G)
∗ (Z(H)⊗G) −→ sup

C∗(∆H;G)
∗ (Z(H)⊗G)

induces an isomorphism on homology. Hence this homology can be considered as
a natural topological invariant of H. To detect more subtle information about H,
one could explore the acyclic chain complex

sup
C∗(∆H;G)
∗ (Z(H)⊗G)/infC∗(∆H;G)

∗ (Z(H)⊗G).

For example, when G is a field, one can investigate the Hilbert-Poincaré series

ξemb(H, t) =

∞∑
n=0

(dim(supC∗(∆H;G)
n (Z(H)⊗G)/infC∗(∆H;G)

n (Z(H)⊗G)))tn

to detect gaps and get more robust information.
Let δ(H) denote the maximal simplicial complex contained in H. In general,

Hemb
∗ (H;G) is different from H∗(δ(H);G) and H∗(∆(H);G) as shown in the fol-

lowing example.

Example 2.5. Let H be the boundary of a 2-simplex with all vertices removed,
VH = {0, 1, 2} and EH = {{{0, 1}, {0, 2}, {1, 2}}} as depicted in Figure 4. Then
δ(H) is the empty set, and ∆(H) is the boundary of the 2-simplex. By defini-
tion, Hemb

1 (H;Z) = Z and Hemb
0 (H;Z) = 0. Thus Hemb

∗ (H;Z) is different from
H∗(δ(H);Z) and H∗(∆(H);Z).

0

2

1

(a) The hypergraph H, where the
cross indicates that a vertex is miss-
ing.

0 1

2

(b) ∆(H), the smallest ∆-set that
contains H .

Figure 3

This example shows that Hemb
∗ (H;G) may not be the homology of any simplicial

complex as Hemb
0 (H;Z) = 0, which is not the case for any nonempty simplicial

complex. Let us consider another example.
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Example 2.6. Let H = (VH, EH) with VH = {0, 1, 2} ordered by 0 < 1 < 2, and

EH = {{0, 1, 2}, {0, 1}, {0, 2}, {0}, {1}, {2}}
see Figure 4. Then ∆H is the abstract simplicial complex of a 2-simplex with
vertices labeled by 0, 1, 2. The 1-face {1, 2} is not in H. Let G = Z. Then the

2

0 1

Figure 4. The hypergraph H is a standard 2 simplex where the
dotted edge is missing.

chain complex C∗(∆H) is given by C0(∆H) = Z⊕3 = Z{{0}, {1}, {2}}, C1(∆H) =
Z⊕3 = Z{{0, 1}, {0, 2}, {1, 2}}, and C2(∆H) = Z = Z{{0, 1, 2}}.

We have inf0 = C0(∆H) = Z{{0}, {1}, {2}},
inf1 = Z(E1) ∩ ∂−1

1 (Z(E0)) = Z(E1) ∩ C1(∆H) = Z(E1) = Z{{0, 1}, {0, 2}}

inf2 = Z(E2) ∩ ∂−1
2 (Z(E1)) = 0

with ∂1(inf1) = Z{{1} − {0}, {2} − {0}}. Thus Hemb
0 (H) = Z and Hemb

i (H) = 0
for i ≥ 1.

Let H′ = (VH′ , EH′) with VH′ = VH = {0, 1, 2} ordered by 0 < 1 < 2, and

EH′ = {{0, 1, 2}, {0, 1}, {0}, {1}, {2}}.
Then Hemb

0 (H′) = Z⊕Z and Hemb
i (H) = 0 for i ≥ 1. Thus the embedded homology

of H′ can not be realized as the homology of a path-connected topological space.

These examples indicate that embedded homology is a new homology theory
with unusual properties and that poses its own questions and challenges.

The definition of embedded homology of a hypergraph H depends on the ori-
entation of its simplicial closure ∆H. It is well-known that simplicial homology is
independent on the choice of orientation. The following theorem shows that this is
also true for the embedded homology of hypergraphs.

Theorem 2.7. The embedded homology Hemb
∗ (H;G) of a hypergraph H does not

depend on a choice of orientation on ∆H.

Proof. Let Hemb
∗ (H) and G(H) denote Hemb

∗ (H, G) and Z(H)⊗G, respectively. We
assume that VH is a finite set {v1, v2, . . . , vm}. Take a linear ordering on VH so that
v1 < v2 < · · · < vn as a fixed choice of total order and let C∗ = C∗(∆H;G) denote
the oriented chain complex. It suffices to show that the homology stays the same
up to isomorphism under the transpositions (i, i + 1) of the ordering on V (H) for
1 ≤ i ≤ m− 1.

Let ∂′n : Cn → Cn−1, n ≥ 1 be the boundary homomorphism defined using the
new order on VH, that is, v1 < v2 < · · · < vi−1 < vi+1 < vi < vi+2 < · · · < vn. For
n ≥ 1, the abelian group Cn admits a direct sum decomposition

Cn = Cvivi+1
n ⊕ C v̂ivi+1

n (1)

where Cvivi+1
n is the subgroup of Cn given by linear combinations with coefficients

in group G of the n-simplicies σ ∈ ∆H whose vertex set contains both vi and vi+1,
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and C v̂ivi+1
n is the subgroup of Cn given by linear combinations with coefficients in

group G of the remaining n-simplicies in ∆H. For any chain α ∈ Cn, there is a
corresponding unique decomposition

α = αvivi+1 + αv̂ivi+1 . (2)

Since vi and vi+1 are neighbored vertices in the order, we have

∂′(σ) = ∂(σ) if σ does not contain both vi and vi+1 in its vertex set.

Therefore
∂′n| = ∂n| : C v̂ivi+1

n −→ Cn−1. (3)
Let σ = [a1 · · · atvivi+1b1 · · · bs] be an oriented simplex in ∆H with a1 < · · · < at <
vi < vi+1 < b1 < · · · < bs. By the definition of ∂(σ), we have

∂(σ)vivi+1 =
t∑

j=1

(−1)j−1[a1 · · · âj · · · atvivj+1b1 · · · bs]+
s∑

k=1

(−1)t+k+1[a1 · · · atvivi+1b1 · · · b̂k · · · bs]

where · · · x̂ · · · means that x is deleted, and

∂(σ)v̂ivi+1 = (−1)t[a1 · · · atvi+1b1 · · · bs] + (−1)t+1[a1 · · · atvib1 · · · bs].
By switching the order of vi and vi+1, we have

∂′(σ) = (∂(σ))vivi+1 − (∂(σ))v̂ivi+1 .

Extending this formula linearly with coefficients in group G, we obtain the formula

∂′(α) = (∂(α))vivi+1 − (∂(α))v̂ivi+1 for α ∈ Cvivi+1
∗ . (4)

Define the group homomorphism

φn : Cn = Cvivi+1
n ⊕ C v̂ivi+1

n −→ Cn = Cvivi+1
n ⊕ C v̂ivi+1

n

by setting
φn(zvivi+1 + zv̂ivi+1) = zvivi+1 − zv̂ivi+1 .

Clearly, φn is an isomorphism. Let z = zvivi+1 + zv̂ivi+1 ∈ Cn be a chain. Then

∂(z) = ∂(zvivi+1) + ∂(zv̂ivi+1)

= (∂(zvivi+1))vivi+1 + (∂(zvivi+1))v̂ivi+1 + ∂(zv̂ivi+1)

so
(∂(z))vivi+1 = (∂(zvivi+1))vivi+1

and
(∂(z))v̂ivi+1 = (∂(zvivi+1))v̂ivi+1 + ∂(zv̂ivi+1).

On the other hand, by direct computation

∂′(φn(z)) = ∂′(zvivi+1 − zv̂ivi+1)

= ∂(zvivi+1))vivi+1 − ((∂(zvivi+1))v̂ivi+1 + ∂(zv̂ivi+1))

= (∂(z))vivi+1 − (∂(z))v̂ivi+1 .

This gives a commutative diagram

Cn
φn

∼=
//

∂n

��

Cn

∂′n
��

Cn−1

φn−1

∼=
// Cn−1.

Note that the decomposition (1) restricted to G(Hn) gives the decomposition

G(H) = G(H)vivi+1 ⊕G(H)v̂ivi+1
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with the same rule on simplices. The subgroup G(Hn) is invariant under φn. More-
over, there is a commutative diagram

infC∗(∆H;G)
n (G(H))

φn

∼=
//

∂n|
��

infC∗(∆H;G)
n (G(H))

∂′n|
��

inf
C∗(∆H;G)
n−1 (G(H))

φn−1

∼=
// inf

C∗(∆H;G)
n−1 (G(H)).

The assertion then follows by taking homology of this commutative diagram.
�

The embedded homology of hypergraphs was introduced in 2019 in [24]. Previ-
ously, cohomological aspects on k-uniform hypergraphs have been studied, see [30,
29, 46, 48, 100, 103, 127, 128, 144, 148], using cohomology introduced in a combina-
torial way. Also Emtander [63] studied the homology of the independence complex
∆cH of a hypergraph H = (VH, EH) in 2009, where ∆cH = {F ⊆ VH | E 6⊆
F for any E ∈ EH}. The approach of embedded homology is different from the
classical research on topological structures related to hypergraphs as it is directly
define on the hypergraph.

Although the embedded homology of hypergraphs is a new topic with surprising
properties, it inherits many characteristics of simplicial homology. The following
proposition is an example of this, the proof of this proposition is similar to that in
of [106, Theorem 8.2, p.45].

Recall that the cone CK of a simplicial complex K is defined as a join CK =
w∗K with w a vertex not in K. Analogously, we can define the join of hypergraphs
and the cone CH = w ∗ H.

Theorem 2.8. Let H be a hypergraph and let G be an abelian group. Then

Hemb
n (CH;G) =

{
0 if n > 0
G if n = 0.

�

2.3. Super-Hypergraphs. Recall [51, 145] that a ∆-set X∗ is a sequence of sets
X∗ = (Xn)n≥0 with maps di : Xn → Xn−1, for 0 ≤ i ≤ n and n ≥ 1, called face
operations, satisfying the following ∆-identity

didj = djdi+1 for i ≥ j. (5)

Definition 2.9. A super-hypergraph is a pair (H, X), where X is a ∆-set and H is
a graded subset of X. We call H a super-hypergraph born from X, and X is called
a parental ∆-set of H. The ∆-closure of H in X is defined by

∆X(H) =
⋂
{Y | H ⊆ Y as a graded subset and Y ⊆ X as a ∆-subset}.

A morphism φ : (H, X) −→ (H′, Y ) of super-hypergraphs is a ∆-map φ : X −→ Y
such that φ(H) ⊆ H′.

2.3.1. Homology of Super-Hypergraphs. Using Proposition 2.3, there is an embed-
ded homology on super-hypergraphs.

Definition 2.10. Let (H, X) be a super-hypergraph and let G be an abelian group.
The embedded homology Hemb,X

∗ (H;G) with coefficients in G of (H, X) is defined
by

Hemb,X
∗ (H;G) = H∗(infC∗(X;G)

∗ (Z(H)⊗G)) ∼= H∗(sup
C∗(X;G)
∗ (Z(H)⊗G))
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where Z(H) ⊗ G is a graded subgroup of the chain complex of abelian groups
C∗(X;G).

We want to show that this definition is an extension of the embedded homology
of hypergraphs. An oriented hypergraph is a hypergraph H with a partial order on
its vertex set so that the restriction to the vertices of each hyperedge of H is linear.
If the vertices of a simplex are totally ordered, then the restricted order on the
vertices of any of its faces is linear. Thus the simplicial closure ∆H can be oriented
with its orientation induced by the order on H. From Definition 2.4,

Hemb
∗ (H;G) = Hemb,∆H

∗ (H;G)

by considering the oriented simplicial complex ∆H as a ∆-set. From Theorem 2.7,
this definition is independent on the choice of orientation.

We now consider how morphisms of super-hypergraphs, recall Definition 2.9,
induce maps on the infimum and supremum chain complexes as well as embedded
homology of super-hypergraphs.

Proposition 2.11. Let φ : (H, X) −→ (H′, Y ) be a morphism of super-hypergraphs.
Then there is a commutative diagram

infC∗(X;G)
∗ (Z(H)⊗G) ⊆

φ#|
��

Z(H)⊗G ⊆

φ#|
��

sup
C∗(X;G)
∗ ((Z(H)⊗G) �

� //

φ#|
��

C∗(X;G)

φ#

��
infC∗(Y ;G)
∗ (Z(H′)⊗G) ⊆ Z(H′)⊗G ⊆ sup

C∗(Y ;G)
∗ ((Z(H′)⊗G) �

� // C∗(Y ;G)

(6)
which induces a map φ∗ : Hemb,X

∗ (H;G) −→ Hemb,Y
∗ (H′;G). Moreover, if φ(H) =

H′, then there is a short exact sequence of chain complexes

sup
C∗(X;G)
∗ ((Z(H)⊗G) ∩Ker(φ#)

� � // sup
C∗(X;G)
∗ ((Z(H)⊗G)

φ# // // sup
C∗(Y ;G)
∗ ((Z(H′)⊗G) .

(7)

Proof. Since sup
C∗(Y ;G)
∗ ((Z(H′)⊗G) is a subcomplex of C∗(Y ;G) containing Z(H′)⊗

G, its preimage
φ−1

# (sup
C∗(Y ;G)
∗ ((Z(H′)⊗G))

is a subcomplex of C∗(X;G) containing Z(H)⊗G because φ(H) ⊆ H′. Thus

sup
C∗(X;G)
∗ ((Z(H)⊗G) ⊆ φ−1

# (sup
C∗(Y ;G)
∗ ((Z(H′)⊗G)) (8)

as a subcomplex. Similarly

φ#(infC∗(X;G)
∗ (Z(H)⊗G)) ⊆ infC∗(Y ;G)

∗ (Z(H′)⊗G) (9)

as a subcomplex. Therefore, there is a commutative diagram 6.
Now, we assume that φ(H) = H′. Then

φ#(sup
C∗(X;G)
∗ ((Z(H)⊗G)) ⊇ φ#((Z(H)⊗G)) = Z(H′)⊗G

is a subcomplex of C∗(Y ;G) containing Z(H′)⊗G. Hence

φ#(sup
C∗(X;G)
∗ ((Z(H)⊗G)) ⊇ sup

C∗(Y ;G)
∗ ((Z(H′)⊗G).

Together with the containment 8, we have

sup
C∗(Y ;G)
∗ ((Z(H′)⊗G) = φ#(sup

C∗(X;G)
∗ ((Z(H)⊗G))

and hence the short exact sequence 7. �

Corollary 2.12. Let φ : (H, X) −→ (H′, Y ) be a morphism of super-hypergraphs.
Suppose that

(1) φ : X −→ Y is an injective ∆-map and
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(2) φ(H) = H′.
Then

φ# : sup
C∗(X;G)
∗ ((Z(H)⊗G) −→ sup

C∗(Y ;G)
∗ ((Z(H′)⊗G)

is an isomorphism. In particular, φ∗ : Hemb,X
∗ (H;G) −→ Hemb,Y

∗ (H′;G) is an
isomorphism.

Proof. By the assumption (1),

sup
C∗(X;G)
∗ ((Z(H)⊗G) ∩Ker(φ#) = 0

and so the assertion follows by Proposition 2.11. �

2.3.2. Variations of Parental ∆-sets. In recent topological applications to data an-
alytics and machine learning, one of the most common approaches is to use discrete
Hodge-Laplacian theory. Mathematically, combinatorial Laplacian operators de-
fined on linear transformations on cochains of simplicial complexes have been stud-
ied, for example in [59, 86]. Therefore, in addition to simplicial homology, research
on (co)chains of simplicial complexes such as spectral analysis on combinatorial
Laplacian operators is also important for potential applications in data science.
Similarly, the research on chains infC∗(X;G)

∗ (Z(H)⊗G) and sup
C∗(X;G)
∗ (Z(H)⊗G)

could be useful for the applications of super-hypergraphs. Next, we describe some
basic properties related to the chain complexes arising from super-hypergraphs.

A super-hypergraph H is assumed to have a parental ∆-set X that carries geo-
metric structural information about H. The embedded homology Hemb,X

∗ (H;G) is
defined using the geometric information inherited from X. On level of chains, there
are inclusions of graded groups

infC∗(X;G)
∗ (Z(H)⊗G)

� � // Z(H)⊗G �
� // sup

C∗(X;G)
∗ (Z(H)⊗G)

� � // C∗(X;G)

where the right most inclusion is a chain map. By Proposition 2.3, the inclusion

infC∗(X;G)
∗ (Z(H)⊗G) �

� // sup
C∗(X;G)
∗ (Z(H)⊗G)

is a chain homotopy equivalence that defines the embedded homology. The gap
complex

sup
C∗(X;G)
∗ (Z(H)⊗G)/infC∗(X;G)

∗ (Z(H)⊗G) (10)
which is an acyclic chain complex, gives more robust information about the graded
set H.

Let H be a fixed graded data set. Our aim is to vary the parental ∆-set X such
that the corresponding infimum and supremum chain complexes reveal different
aspects of the topological structure of H. One natural way to vary the parental ∆-
set would be to consider morphisms φ : (H, X)→ (H, Y ) that fix H and investigate
how these affect the embedded homology. Another important question is whether
one can vary the parental ∆-set so that the gap complex (10) is as small as possible.
We consider the following example.

Example 2.13. Let n be an odd positive integer. Let X = ∆+[n] be the ∆-set
induced by an n-simplex with vertices labelled 0, 1, . . . , n. Let Y be the ∆-set with
Yk = {ak}, 0 ≤ k ≤ n, Yk = ∅ for k > n and di(ak) = ak−1 for 0 ≤ i ≤ k ≤ n.
Let H be the graded set given by Hn = {xn} and Hk = ∅ for k 6= n. Consider
the super-hypergraphs (H, X), xn = [0, 1, 2, . . . , n], and (H, Y ), xn = an. There
is a unique morphism φ : (H, X) → (H, Y ) such that φ|H = idH. Then, we have
Hemb,X
k (H;Z) = 0 for k ≥ 0 and

Hemb,Y
k (H;Z) =

{
Z if k = n,
0 otherwise.
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This shows the embedded homology or super-hypergraphs depends on the parentl
∆-set. The gap complex for (H, X) is the same as the acyclic complex

sup
C∗(X;Z)
k (Z(H)) =

{
Z if k = n, n− 1,
0 otherwise

with ∂ : sup
C∗(X;Z)
n (Z(H))→ sup

C∗(X;Z)
n−1 (Z(H)) an isomorphism, and the gap com-

plex for (H, Y ) is 0.

Now we consider the effect of morphisms on super-hypergraphs with a fixed
hypergraph more generally. Let φ : (H, X) → (H, Y ) be a morphism of super-
hypergraphs so that φ|H = idH. By 9, we have

infC∗(X;G)
∗ (Z(H)⊗G) �

� // infC∗(Y ;G)
∗ (Z(H)⊗G)

namely the chain complex of Y is closer to the graded group Z(H) ⊗ G than the
chain complex of X. Together with the inclusion 8, it follows that the gap complex
for (H, Y ) is smaller, as shown in the above example. If φ is injective, then both

infC∗(X;G)
∗ (Z(H)⊗G) = infC∗(Y ;G)

∗ (Z(H)⊗G) and

sup
C∗(X;G)
∗ (Z(H)⊗G) = sup

C∗(Y ;G)
∗ (Z(H)⊗G)

which means that we can replace X by any of its ∆-subsets that contain H without
changing the infimum and supremum chain complexes. In particular, we have

Hemb,X
∗ (H;G) = H

emb,∆X(H)
∗ (H;G) (11)

where ∆X(H) is the ∆-closure of H in X, which is the minimal ∆-subset of X
containing H defined in Definition 2.9.

Definition 2.14. A super-hypergraph (H, X) is called regular if X = ∆X(H).

It is straightforward to see that a super-hypergraph (H, X) is regular if and only
if all elements in X are obtained from the elements in H together with their iterated
faces in X. The following proposition may be useful for analysing for variations of
parental ∆-sets.

Proposition 2.15. Let H = {Hn}n≥0 be a graded set such that the cardinality
of the set

∐
n≥0

Hn is finite. Then there are finitely many regular super-hypergraphs

(H, X) up to isomorphisms.

Proof. Consider the collection of all possible ∆-sets X such that (H, X) is a regular
super-hypergraph. If (H, X) is regular, then all elements in X are given by the
elements in the graded subset H together with their iterated faces in X. Therefore,
as a ∆-set X is a finite extension of H together with finitely many face operations.

�

Definition 2.16. A super-hypergraph (H, X) is complete if it is regular, and for
any morphism of super-hypergraphs φ : (H, X) → (H, Y ) with φ|H = idH, the
∆-map φ : X → Y is injective.

Therefore, for a complete super-hypergragh (H, X), the infimum complex

infC∗(X;G)
∗ (Z(H)⊗G)

reaches a maximum and the gap complex (10) reaches a minimum.
By definition, a complete super-hypergraph is regular. However, the converse

may not be true. For instance, the super-hypergraph (H, X) in Example 2.13
is regular but not complete as the morphism to (H, Y ) is not an injective ∆-set
map. Therefore completeness provides a notion of maximality in the set of super-
hypergraphs related to a given hypergraph.
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Theorem 2.17 (Completeness Criterion). A regular super-hypergraph (H, X) with
H 6= ∅ is complete if and only if it has the following properties:

(1) (Vertex Property) If H0 6= ∅, then X0 = H0. If H0 = ∅, then X0 is a
one-point set.

(2) (Matching Face Property) Let z1, z2 ∈ Xn with n > 0. Suppose that
(i) diz1 = diz2, 0 ≤ i ≤ n, and
(ii) {z1, z2} 6⊆ Hn.
Then z1 = z2.

Proof. Suppose that (H, X) is complete. We first show that properties (1) and (2)
hold.

(1) Assume that H0 6= ∅. Suppose that there exists z ∈ ∆X(H)0 rH0. Choose
an element x ∈ H0. Let Z be the ∆-quotient of X by identifying z and x. Let
q : X −→ Z be the quotient map. Then q|H is injective, but q : X −→ Z is not
injective, which is a contradiction. Hence X0 = H0.

If H0 = ∅, then the same argument shows that X0 must be a one-point set.
(2) Suppose z1 6= z2. Then, similarly to the proof of (1), we can construct the

∆-quotient Z obtained from X by identifying z1 with z2 in dimension n. Since
all faces of z1 and z2 match, the equivalence relation z1 ∼ z2 does not induce
non-trivial identifications in Xm for m 6= n. Since {z1, z2} 6⊆ Hn, the equivalence
relation z1 ∼ z2 does not effect elements in H. This proves property (2).

Now let φ : (H, X) → (H, Y ) be a morphism of super-hypergraphs with φ|H =
idH such that (H, X) is a regular super-hypergraph satisfying properties (1) and
(2).

We show that the ∆-map φ : X → Y is injective. By the vertex property,
φ : X0 → Y0 is injective. Suppose that φ : X → Y is not injective. Then there
exists n > 0 such that φ : Xk → Yk is injective for k < n and φ : Xn → Yn is
not injective. It follows that there exists z1, z2 ∈ Xn with z1 6= z2 such that
φ(z1) = φ(z2). Then {z1, z2} 6⊆ Hn because φ|H is injective. Since φ is a ∆-set
map, we have

φ(diz1) = diφ(z1) = diφ(z2) = φ(diz2)

for 0 ≤ i ≤ n and φ : Xn−1 → Yn−1 is injective. Therefore diz1 = diz2 for 0 ≤ i ≤ n.
However, by the matching face property, z1 = z2, which contradicts the assumption
that z1 6= z2. �

For a given regular super-hypergraph (H, X), the above proof gives a way to
construct a complete super-hypergraph (H, Y ) with Y as a ∆-quotient of X. The
following example shows that (H, X) may have non-isomorphic complete quotients.

Example 2.18. Let

H = {{0, 1, 2}, {0, 1}, {0, 2}, {1, 2}, {1}, {2}}

be the graded subset of the 2-simplexX = ∆+[2] without the 0 vertex. Let Y be the
∆-quotient of X by identifying vertices {1} and {0}, and let Z be the ∆-quotient
of X by identifying vertices {2} and {0}. Then

1) (H, X), (H, Y ) and (H, Z) are regular super-hypergraph.
2) (H, Y ) and (H, Z) are complete, but (H, X) is not complete.
3) There are non-injective ∆-quotients X � Y and X � Z with (H, Y ) 6∼=

(H, Z).

2.3.3. Mayer-Vietoris Sequence. The Mayer-Vietoris sequence (MV sequence) is
one of the fundamental tools in topology for inductively computing homology. In
general, the MV sequence fails for embedded homology of super-hypergraphs.
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Example 2.19. Let X = {f1, f2, e1, e2, v} be a ∆-set with face operations given
by

(1) d0fi = d2fi = e1, d1fi = e2 where j = 1, 2, and
(2) diej = v for i = 0, 1 and j = 1, 2.

Let
H = X r {e1, e2}

be the graded subset of X missing the edges e1, e2. Let A = {f1, e1, e2, v} and
B = {f2, e1, e2, v} with face operations induced from X. Then

(H, X) = (H ∩A,A) ∪ (H ∩B,B)

with A ∩B = {e1, e2, v} and H ∩A ∩B = {v}. Then there is no exact sequence

· · · // Hemb,A
2 (H ∩A)⊕Hemb,B

2 (H ∩B) // Hemb,X
2 (H) // Hemb,A∩B

1 (H ∩A ∩B) // · · ·

Since H1 = ∅ and H2 = X2,

inf
C∗(A)
2 (Z(H ∩A)) = Z(H2 ∩A) ∩Ker(∂A2 ) = 0,

inf
C∗(B)
2 (Z(H ∩B)) = Z(H2 ∩B) ∩Ker(∂B2 ) = 0,

inf
C∗(X)
2 (Z(H)) = Z(H2) ∩Ker(∂X2 ) = Z{f1 − f2} = Z,

inf
C∗(X)
1 (Z(H)) = Z(H1) ∩ (∂X1 )−1(Z(H0)) = 0,

inf
C∗(A∩B)
1 (Z(H ∩A ∩B)) = 0.

Then Hemb,A
2 (H ∩ A) = Hemb,B

2 (H ∩ B) = Hemb,A∩B
1 (H ∩ A ∩ B) = 0 and

Hemb,X
2 (H) = Z. Hence the above sequence cannot be exact.

An analogue of the classical Mayer-Vietoris sequence for super-hypergraphs is a
multi-exact sequence derived from the following theorem.

Theorem 2.20. Let (H, X) be a super-hypergraph and let A and B be ∆-subsets of
X such that A∪B = X. Let HA = H∩A, HB = H∩B and HA∩B = H∩A∩B. Let
G be an abelian group, and denote sup

C∗(X;G)
∗ (H) and infC∗(X;G)

∗ (H) by supX∗ (H)

and infX∗ (H), respectively.
Then there is a commutative diagram

supX∗ (H)

supA∗ (HA) ∩ supB∗ (HB) �
� // supA∗ (HA)⊕ supB∗ (HB)

jA−jB// // supA∗ (HA) + supB∗ (HB)

infA∗ (HA) ∩ infB∗ (HB))
?�

OO

� � // infA∗ (HA)⊕ infB∗ (HB))
?�
'

OO

jA|−jB |// // infA∗ (HA) + infB∗ (HB))
?�

OO

infA∩B∗ (HA∩B)

where the middle two rows are short exact sequences of chain complexes, the maps
jA and jB are canonical inclusions and the vertical arrows are inclusions.

Example 2.19 shows that the left and right vertical arrows in the above diagram
are not chain homotopy equivalences. However, the middle vertical arrow is always
a chain homotopy equivalence.

Proof. We need to show that

supA∗ (HA) + supB∗ (HB) = supX∗ (H) and
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infA∩B∗ (HA∩B) = infA∗ (HA) ∩ infB∗ (HB).

First we prove that supA∗ (HA)+supB∗ (HB) = supX∗ (H). Since supA∗ (HA)+supB∗ (HB)
is a sub complex of C∗(X;G) containing Z(H)⊗G = Z(HA)⊗G+Z(HB)⊗G, we
have supX∗ (H) ⊆ supA∗ (HA)+supB∗ (HB). On the other hand, supA∗ (HA), supB∗ (HB) ⊆
supX∗ (H). Thus supA∗ (HA)+supB∗ (HB) ⊆ supX∗ (H), and so supX∗ (H) = supA∗ (HA)+
supB∗ (HB)

Now we show that infA∩B∗ (HA∩B) = infA∗ (HA) ∩ infB∗ (HB). Clearly

infA∩B∗ (HA∩B) ⊆ infA∗ (HA) ∩ infB∗ (HB).

Conversely, note that

infA∗ (HA) ∩ infB∗ (HB) ⊆ (Z(H ∩A)⊗G) ∩ (Z(H ∩B)⊗G) = Z(H ∩A ∩B)⊗G
where (Z(H∩A)⊗G)∩(Z(H∩B)⊗G) = Z(H∩A∩B)⊗G because C∗(X;G) is the
direct sum of the copies of G with its coordinates labeled by the graded set X. Thus
infA∗ (HA)∩ infB∗ (HB) is a subcomplex of C∗(X;G) contained in Z(H∩A∩B)⊗G,
and so it is contained in infA∩B∗ (HA∩B). �

Corollary 2.21. Using the notation as in the theorem above, the inclusion

infA∗ (HA) ∩ infB∗ (HB) �
� // supA∗ (HA) ∩ supB∗ (HB)

is a chain homotopy equivalence if and only if so is the inclusion

infA∗ (HA) + infB∗ (HB) �
� // supA∗ (HA) + supB∗ (HB).

Proof. The statement follows by applying the Five Lemma to the long exact se-
quence obtained from Theorem 2.20. �

2.3.4. Gap Complexes. Let (H, X) be a super-hypergraph and define

δX(H) =
⋃
{Y ⊆ H | Y is a ∆− subset of X} (12)

to be the largest ∆-subset ofX contained inH. Then δX(H) consists of the elements
in H whose all iterated faces lie in H. The gap between δX(H) ⊆ ∆X(H) measures
how far H is from being a ∆-set. For a finite hypergraph H, the differences can be
expressed as

#(∆X(H) r δX(H)) = #(∆X(H))−#(δX(H)).

Topological invariants of the geometric gap complex

|∆X(H)|/|δX(H)| (13)

such as homology groups and homotopy groups, provide different means of measur-
ing how far H is from being a ∆-set.

Algebraically, at the chain level

C∗(δ
X(H);G) �

� // infC∗(∆
X ;G)

∗ (G(H)) ⊆ G(H) ⊆ sup
C∗(∆

X ;G)
∗ (G(H)) �

� // C∗(∆X(H);G)

(14)
where G(H) = Z(H)⊗G. An important consequence of Proposition 2.3 is that the
inclusion

infC∗(∆
X ;G)

∗ (G(H))
� � // sup

C∗(∆
X ;G)

∗ (G(H))

is a chain homotopy equivalence, which implies that the algebraic gap complex (10)
is acyclic. However, the geometric gap complex (13) is not contractible in general.
For example, let X be any ∆-set and let H be the graded subset of X by removing
the vertex set X0. Then δX(H) = ∅ and so its geometric gap complex is |X|+, the
space |X| disjoint union with a one-point set. The homology of the chain complexes

infC∗(∆
X ;G)

∗ (G(H))/C∗(δ
X(H);G),
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C∗(∆
X(H);G)/sup

C∗(∆
X ;G)

∗ (G(H))

could give extra information in addition to the topology of the geometric gap com-
plex (13).

The proof of the following proposition is immediate.

Proposition 2.22. Let (H, X) be a super-hypergraph. Then

infC∗(∆
X(H);G)

∗ (G(H))/C∗(δ
X(H);G) = infC∗(∆

X(H);G)/C∗(δ
X(H);G)

∗ (G(H)/C∗(δ
X(H);G)),

sup
C∗(∆

X(H);G)
∗ (G(H))/C∗(δ

X(H);G) = sup
C∗(∆

X(H);G)/C∗(δ
X(H);G)

∗ (G(H)/C∗(δ
X(H);G)).

�

2.3.5. Computations. With the potential applications in mind, it is important to
consider the computability of these topological constructions. There have been
various algorithms developed for computing simplicial homology that have led to
the applications of topology in data analytics. The computations of embedded
homology are quite similar to those of simplicial homology. Below we detail a
procedure for computing embedded homology.

For a super-hypergraph (H, X), let us consider the computations forHemb,X
∗ (H;F)

using the chain complex infC∗(X;F)
∗ (H;F) with coefficients in a field F.

By definition,

Hemb,X
n (H, F ) = Zn(infC∗(X;F)

∗ (H;F))/Bn(infC∗(X;F)
∗ (H;F))

where

Zn(infC∗(X;F)
∗ (H;F)) = F(Hn) ∩Ker(∂n : Cn(X;F)→ Cn−1(X;F)),

Bn(infC∗(X;F)
∗ (H;F)) = F(Hn) ∩ ∂n+1(Cn+1(X;F)).

The Betti number bn(H, X) is defined as

bn(H, X) = dimHemb,X
n (H;F) (15)

= dim(Zn(infC∗(X;F)
∗ (H;F))− dim(Bn(infC∗(X;F)

∗ (H;F))).

To compute Zn(infC∗(X;F)
∗ (H;F)), we can consider the restriction of the linear

transformation ∂n : Cn(X;F)→ Cn−1(X;F) to F(Hn). Namely, consider F(Hn) as
a vector spaces over F with a basis given by the elements in Hn. For each element
x in Hn, express ∂n(x) as an element in Cn−1(X;F) = F(Xn−1). This defines a
linear transformation

∂n| : F(Hn) −→ F(Xn−1)

whose kernel is Zn(infC∗(X;F)
∗ (H;F)).

For computing Bn(infC∗(X;F)
∗ (H;F)), we can first consider ∂n+1(Cn+1(X;F)) as

a subspace of the vector space Cn(X;F) = F(Xn), which is spanned by linear
combinations of ∂n+1(σ) for σ ∈ Xn+1. Then consider the decomposition

F(Xn) = F(Hn)⊕ F(Xn rHn).

Let
p : F(Xn)→ F(Xn rHn)

be the projection. Then Bn(infC∗(X;F)
∗ (H;F)) is the kernel of the restriction

p| : ∂n+1(Cn+1(X;F)) −→ F(Xn rHn).

If the data (H, X) is large, the complexity of direct computation ofHemb,X
∗ (H;F)

increases. The existing computational methods for chain complexes aim at reducing
this complexity.
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3. Super-Persistent Homology

The general idea of super-persistent homology is to use the geometry of ∆-sets
and super-hypergraphs as tools to investigate collections of subgraphs in a given
graph and to get topological features from for example graphic data and various
networks. We will see that a ∆-set model performs much better than models using
simplicial complexes, particularly for exploring topological features arising from the
structures related to clustering.

3.1. General Theory. Let G be a directed/undirected (multi)-graph. Let FP(G)
denote the set of all finite subgraphs of G.

Definition 3.1. A ∆-set X is said to be dominated by G if there exists an injective
map φ : X −→ FP(G) such that φ(di(σ)) is a subgraph of φ(σ) for any 0 ≤ i ≤ n
and any element σ ∈ Xn.

A super-hypergraph (H, X) is said to be dominated by G if its parental ∆-set X
is dominated by G.

For a ∆-set X dominated by G, we identify the elements σ in X with its image
φ(σ), a finite subgraph of G, and so we consider X as a collection of finite subgraphs
of G. A super-hypergraph (H, X) dominated by G can be described as a multi-
layered collection of families of finite subgraphs X = {X0, X1, . . .}, where each Xi

is a family of finite subgraphs, with face operations di : Xn → Xn−1, 0 ≤ i ≤ n,
satisfying the ∆-identity, and a marked graded subset H of X.

To introduce persistence we need a scoring scheme on G. For graphs P and Q,
denote by P � Q if P is a subgraph of Q.

Definition 3.2. A scoring scheme on a directed/undirected (multi-)graph G is a
function

M : FP(G) −→ R
from the set of finite subgraphs of G to the real numbers.

A scoring scheme M on G is called regular if for every P,Q ∈ FP(G) such that
P � Q,

M(P ) ≤M(Q).

Definition 3.3. A persistent ∆-filtration of a ∆-set X over R is a family of ∆-
subsets X(t) of X, indexed by t ∈ R, such that

1) X(s) is a ∆-subset of X(t) for s ≤ t, and
2) X =

⋃
t∈R

X(t).

A persistent super-hypergraph filtration of a super-hypergraph (H, X) over R is
a family of super-hypergraphs (H(t), X(t)), indexed by t ∈ R, such that

1) the indexed family X(t), t ∈ R, is a persistent ∆-filtration of X over R,
2) H(t) = H ∩X(t).

Proposition 3.4. Let G be a directed/undirected (multi-)graph with a regular s-
coring scheme M : FP(G) −→ R. Let (H, X) be a super-hypergraph dominated by
G. Then

X(t) = M−1((−∞, t]) ∩X, t ∈ R
is a persistent ∆-filtration of X, and the pair

(H(t), X(t)) = (M−1((−∞, t]) ∩H,M−1((−∞, t]) ∩X), a ∈ R

is a persistent super-hypergraph filtration of (H, X).

Proof. The proof follows from the definitions. �
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Let F be a fixed choice of a ground field. A (graded/ungraded) persistence module
over F, denoted by V, is defined to be an indexed family of (graded/ungraded) F
vector spaces

V = (V (t) | t ∈ R)

and a bi-indexed family of (graded/ungraded) linear maps

(vts : V (s)→ V (t) | s ≤ t)

which satisfy the composition law

vts ◦ vsr = vtr

whenever r ≤ s ≤ t, where vtt is the identity map on V (t). For graded vector spaces
V andW , a graded linear map of degree q is a collection of linear maps φ = (φn)n∈Z
with φn : Vn → Wn+q. A persistence morphism Φ of dregree q between two graded
persistence modules V and W is a collection of graded linear maps of degree q,
(φt : V (t)→W (t) | t ∈ R), such that the diagram

V (s)
vts //

φs

��

V (t)

φt

��
W (s)

wts // W (t)

commutes for s ≤ t. If q = 0, then Φ is called a persistence morphism. A persistence
morphism between ungraded persistence modules is defined in the same way.

Definition 3.5. Let (H, X) be a super-hypergraph. Let A be an abelian group.
The relative embedded homology Hemb,X

∗ (X,H;A) with coefficients in A of (H, X)
is defined by

Hemb,X
∗ (X,H;A) = H∗(C∗(X;A)/infC∗(X;A)

∗ (Z(H)⊗A))
∼= H∗(C∗(X;A)/sup

C∗(X;A)
∗ (Z(H)⊗A)).

Now we assume that all homology is taken with coefficients in a ground field
F. Therefore, we can simplify our notation of homology groups H∗( − ;F) to
H∗( − ). Let (H, X) be a super-hypergraph dominated by a directed/undirected
(multi-)graph G with a scoring scheme M. Let X(t) = M−1((−∞, t]) ∩ X and
H(t) = M−1((−∞, t]) ∩H. Then

H∗(X) = (H∗(X(t)) | t ∈ R),

Hemb,X
∗ (H) = (Hemb,X

∗ (H(t)) | t ∈ R) and
Hemb,X
∗ (X,H) = (Hemb,X

∗ (X,H(t)) | t ∈ R)

(16)

are graded persistence modules. The short exact sequence of chain complexes

infC∗(X(t))
∗ (F(H(t))) �

� jt // C∗(X(t))
pt // // C∗(X(t))/infC∗(X(t))

∗ (F(H(t)))

induces a long exact sequence on homology, which can be written as an exact
triangle of graded persistence modules

Hemb,X
∗ (H)

J // H∗(X)

Pxx
Hemb,X
∗ (X,H)

∂

gg
(17)

where J and P are persistence morphisms and the boundary homomorphism ∂ is
persistence morphism of degree −1.
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Definition 3.6. Let (H, X) be a super-hypergraph dominated by a directed/undi-
rected (multi-)graph G with a scoring scheme. Then the three graded persistence
modules listed in (16) together with the exact triangle (17) give a super-persistent
homology of (H, X) with coefficients in a field F.

Equally, we could call Hemb,X
∗ (H) super-persistent homology. However, the defi-

nition given above can carry more information than the embedded homology of the
super-hypergraph, as we will now illustrate.

Let J ⊆ R be an interval. The interval persistence module FJ = (J(t) | t ∈ R)
is defined by

J(t) =

{
F if t ∈ J,
0 otherwise

with double indexed linear maps

jts =

{
id if s, t ∈ J,
0 otherwise.

For an ungraded persistence module V, the q-th suspension ΣqV is a graded per-
sistence module with

ΣqVn =

{
V if n = q
0 otherwise.

A graded interval persistence module is a q-th suspension of the ungraded interval
persistence module for some q.

Recall that a ∆-set X is called of finite type if Xn is finite for each n.

Theorem 3.7 (Structure Theorem). Let (H, X) be a super-hypergraph dominat-
ed by a directed/undirected (multi-)graph G with a scoring scheme. Suppose that
X is of finite type. Then the graded persistence modules H∗(X), Hemb,X

∗ (H) and
Hemb,X
∗ (X,H) admit direct sum decompositions in terms of graded interval persis-

tence modules and these decompositions are unique up to the order of factors in the
category of graded persistence modules.

Proof. For any graded persistence module V, there is a canonical decomposition

V ∼=
⊕
n∈Z

ΣnVn

in the category of graded persistence modules, where Vn is considered as an ungrad-
ed persistence module. It suffices to show thatHn(X), Hemb,X

n (H) andHemb,X
n (X,H)

admit unique factorization as ungraded persistence modules for each n.
Since X is of finite type, the chain complex C∗(X) is of finite type and so

is any subcomplex or quotient complex. The assertion follows from the structure
theorem on persistence modules [50, Theorem 1.1] derived from the classical Gabriel
Theorem in representation theory [69]. �

We now briefly summarise persistence diagrams/persistent barcodes; for which
this structure theorem is prominent in the calculations, for more details see [43].

Let V be an ungraded persistence module with a unique decomposition (up to
the order of factors)

V =
⊕
α∈I

FJα

in terms of interval persistence modules, where I is the index set. Then the multi-
set given by (inf(Jα), sup(Jα)) ⊂ R2, α ∈ I, is the persistence diagram (or barcode)
of V, denoted by dgm(V). In our case, under the hypothesis that X is of finite
type, we have three persistence diagrams.
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Corollary 3.8. Let (H, X) be a super-hypergraph dominated by a directed/undi-
rected (multi-)graph G with a scoring scheme and let X be of finite type. Then
there are three multi-layer persistence diagrams dgm(Hn(X)), dgm(Hemb,X

n (H))
and dgm(Hemb,X

n (X,H)) for n ≥ 0. �

The exact triangle (17) yields matrix data on the correlations of the multi-layer
persistence diagrams as follows. Let

Φ: V −→W

be a persistence morphism between ungraded persistence modules. Suppose that
both V and W satisfy the unique factorization property with respect to decompo-
sitions in terms of interval persistence modules and let

V =
⊕
α∈IV

FJα and W =
⊕
β∈IW

FJβ .

Let Φα,β be the composite

Φα,β : FJα
Φ|FJα //W

proj // // FJβ .

According to [28, Proposition 16, Lemma 22], the set of persistence morphisms
between two interval persistence modules is either a 1-dimensional vector space or
0. Thus Φα,β : FJα → FJβ is either a generator for Hom(FJα ,FJβ ), or zero. Let the
index sets IV and IW be totally ordered and define the correlation matrix

M(Φ) = (mα,β)α∈IV ,β∈IW

of Φ by setting

mα,β =

{
1 if Φα,β 6= 0,
0 otherwise.

The correlation matrix is an analogue of adjacency matrix of graphs, which gives
correlations between dgm(V) and dgm(W) by adding directed edges. In summary,
we have the following information data from super-persistent homology.

Proposition 3.9. Let (H, X) be a super-hypergraph dominated by a directed/undi-
rected (multi-)graph G with a scoring scheme. Suppose that X is of finite type. Then
there are three multi-layer persistence diagrams dgm(H∗(X)), dgm(Hemb,X

∗ (H)) and
dgm(Hemb,X

∗ (X,H)) together with three correlation matricesM(J),M(P) andM(∂)
between them. �

An important point is that we allow H to be an arbitrary graded subset of X. If
we fix X to be a ∆-set dominated by a graph G with a scoring scheme and allow H
to be random, then dgm(H∗(X)) is a deterministic barcode, while dgm(Hemb,X

∗ (H))

and dgm(Hemb,X
∗ (X,H)) are random. The correlation matrices may help further

analyse the data.
Let X be a fixed ∆-set dominated by a directed/undirected (multi-)graph. It

would be also interesting to consider the set P(X) of the isomorphic classes of
persistence modules (16) for all graded subsetsH of X. The inclusionsH′ ⊆ H ⊆ X
induce a morphism of super-hypergraphs (H′, X) → (H, X). By taking super-
persistent homology, one would get a quiver structure on the set P(X). Moreover,
there is an interleaving distance between persistence modules introduced in [42]
corresponding to bottleneck distance [43], which gives the structure of a metric
space on the quiver P(X). The following example illustrates that P(X) may give
more robust information.
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Example 3.10. Let X be a ∆-set. Let H be a graded subset of X consisting of
non-face elements σ ∈ X. Here a non-face element σ means that there does not
exist any element τ ∈ X such that diτ = σ for some i. In other words, H is given
by removing all face elements in X. It is straightforward to see that

Hemb,X
∗ (H) = F(H) ∩ Z(C∗(X)).

Therefore, the embedded homology can detect the cycles contributed from non-
face elements. From the exact triangle (17), a part of the boundaries in C∗(X) can
also be detected. These detected elements would contribute to bar-codes through
persistence. Hence, in addition to the persistence on the homology H∗(X), P(X)
can decode more topological features.

3.2. The Ordinary Persistent Homology. The classical persistent homology
refers to the persistent homology of point cloud data using the Vietoris-Rips com-
plex, the Čech complex or the witness complex. Persistent homology has been used
as an important topological tool in data science. In this subsection, we rewrite
on the classical persistent homology from the viewpoint of graphs with scoring
schemes, and then give a natural generalization to persistent homology for graphs
with reference maps to metric spaces.

3.2.1. The Classical Persistent Homology. A point cloud dataset is a finite set L
with a reference map that embeds L into a finite dimensional Euclidean space Rm,
thus we can consider L as a finite subset in Rm. We now use a graph with a
scoring scheme to describe the (persistent) Vietoris-Rips complex, Čech complex
and witness complex in a unified way. The graph G(L) is the complete graph
having L as its vertex set. Intuitively, we assign one and only one edge to any
two distinct points in L. The main point is to show that different scoring schemes
on G(L) can obtain different persistent complexes that are currently widely used
in TDA [37]. Below we give the scoring schemes for the Vietoris-Rips complex,
the Čech complex, the strong witness complex and the weak witness complex. Let
Λ = {l0, l1, . . . , ln} ⊆ L be a subset of L.

For x ∈ Rm, denote by B(x, r) the closed ball of radius r centered at x. Define
the following scoreing schemes on Λ:

1) The Vietoris-Rips scoring is given by

MV R(Λ) =
1

2
sup{d(li, lj) | li, lj ∈ Λ ⊆ Rm}. (18)

The balls B(l0, r), . . . , B(ln, r) pairwise intersect if and only if the score
MV R(Λ) ≤ r.

2) The Čech scoring is defined by

MČ(Λ) = infx∈Rm max{d(x, l) | l ∈ Λ ⊆ Rm}. (19)

Note that
n⋂
i=0

B(li, r) 6= ∅

if and only if the score MČ(Λ) ≤ r.
3) The Strong witness scoring is defined by

MW s

(Λ) = infx∈Rm{supy∈Λd(x, y)− infz∈Ld(x, z)}. (20)

4) The Vietoris-Rips Strong witness scoring is given by

MW s
V R(Λ) = sup0≤i<j≤n{infx∈Rm{max{d(x, li), d(x, lj)} − infz∈Ld(x, z)}}. (21)
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5) The Weak witness scoring is given by

MWw

(Λ) = infx∈Rm{supy∈Λd(x, y)− infz∈LrΛd(x, z)}. (22)

6) The Vietoris-Rips weak witness scoring is given by

MWw
VR(Λ) = sup0≤i<j≤n{infx∈Rm{max{d(x, li), d(x, lj)} − infz∈LrΛd(x, z)}}.

(23)
Let X be the clique complex of G(L) considered as a ∆-set. In other words,

because G is complete, X is the set of all nonempty full subgraphs of G(L). Here a
full subgraph H ofG is a subgraphH such that the edge set between any two vertices
v and w inH is equal to the edge set between v and w in G. Choose a linear order on
the vertex set V (G(L)). Then (X,X) is a super-hypergraph. It is straightforward
to check that the persistent super-hypergraph filtrations on (X,X) induced by
the above scoring schemes coincide with the classical persistent filtrations in [37].
Here the witness scoring schemes defined in (3)-(6) are reformulations from [37,
Definition 2.7, Definition 2.8].

3.2.2. Clique Persistent Homology of Graphs with Reference Maps. Next, we will
consider a canonical extension of ordinary persistent homology to the case of graphs
with reference maps on vertices. Let G be a finite undirected (multi-)graph with a
reference map that embeds the vertex set V (G) into a finite dimensional Euclidean
space Rm and let H be any subgraph. Then, any one of the six scoring schemes
in (18)-(23) induces a persistent filtration on the clique complex clique(G). This
gives the clique persistent homology on G.

The clique persistent homology on G could, in general, be quite different from
the ordinary persistent homology of the vertex set of G under the reference map.
For instance, if the clique complex clique(G) has non-trivial reduced homology,
the resulting clique persistent homology converges to H∗(clique(G)) as t → ∞,
but the ordinary persistent homology converges to trivial homology as t → ∞.
The ordinary persistent homology of V (G) under the reference map is obtained by
rebuilding a new graph given by the complete graph on V (G), that is, all edges in
G are forgotten and the new edges are added in depending on the scoring schemes
that are obtained through the reference map. On the other hand, when we consider
the clique complex of G itself, the edges in G are accounted for.

The following example illustrates how clique persistent homology can describe
shapes and therefore could be useful for data analysis on protein structures or image
processing on 3D objects with complicated internal structures such as the heart.

Example 3.11. Let X be a polyhedron in Rm. Let K be a simplicial complex
that is a triangulation of X and let G be the graph given by the 1-skeleton of the
barycentric subdivision of K. Let the reference map on G be given by the inclusion
of G in Rm. Then the geometric realization of the clique complex clique(G) is home-
omorphic to X, and the persistent homology of clique(G) converges to H∗(X). In
particular, the number of infinite persistence modules in the nth persistent homol-
ogy of clique(G) is equal to the nth Betti number of X. Thus the clique persistent
homology detects the topological shape of X.

More generally we can remove the embedding hypothesis of reference maps. Let
G be a finite undirected (multi-)graph and let

f : V (G) −→ Rm

be a function (without assuming injectivity). We can use pull-back scoring in the
following sense. Let H be any subgraph of G. Then the image f(V (H)) is a finite
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subset located in Rm. Let M be a scoring scheme on point cloud data such as one
of the six aforementioned scoring schemes. Define

Mf (H) = M(f(V (H))) (Pull-back Scoring) (24)

which induces a persistent filtration on the clique complex clique(G) depending on
the reference map f . Different choices of f would result in different persistence
diagrams. For instance, a constant function does induce a trivial persistence on
H∗(clique(G)). The flexibility of f could be useful. For example, if f is randomly
given, it induces corresponding random persistence diagram.

The following example illustrates that a pull-back scoring on clique persistent
homology may be useful for detecting higher dimensional geometric shapes.

Example 3.12. Let p : E → B be a continuous map between polyhedra E and B.
Assume that B is a subspace of Rm. By triangulating B, we pull it back along p
do define KE and there is a simplicial map p′ : KE −→ KB such that

1) KE and KB are simplicial complexes of triangulations of E and B, respec-
tively.

2) Let G(KE) and G(KB) be the graphs given by the 1-skeleton of KE and
KB , respectively. Then clique(G(KE)) = KE and clique(G(KB)) = KB .

3) p′ is a simplicial approximation to p.
Let the reference map R on V (G(KB)) be given by the inclusion V (G(KB)) ⊆
B ⊆ Rm. Let us take the pull-back scoring M on G(KE)). Then the persistent
filtration on clique(G(KE)) induced byM is the pull-back of the persistent filtration
on Clique(G(KB)) induced by R. In particular, if p : E → B is a fibre bundle or,
more generally, a fibration with fibre F , then we have a persistent Leray-Serre
spectral sequence convergent to H∗(E). It is well-known in algebraic topology that
Leray-Serre spectral sequences are an important tool for computing H∗(E) starting
with H∗(B) and H∗(F ).

3.3. Partition Homology and Persistent Partition Homology. The methods
of data science are typically aimed at finding structures and patterns within large
datasets. Being able to glean information about the internal structures of graphical
data would be useful in solving the typical problems given to machine learning
algorithms. For example, classification problems, prediction and, in particular,
partitioning data into clusters [119, Section 1.1.3].

If a collection of subgraphs forms a ∆-set structure, then we can calculate ho-
mology. A natural question is how to introduce a ∆-set structure on a collection
of subgraphs in some natural way. More precisely, how to define face operations
on subgraphs. We are going to show that any clustering on the vertex set can
induce canonical face operations on subgraphs. For a dataset given by a graph, the
topological features on collections of subgraphs under the face operations induced
by a clustering may help for detecting correlations between the clusters.

Let G be a directed/undirected (multi-)graph. Assume that there is a disjoint
clustering p on the vertex set V (G). In other words, there is a disjoint union

V (G) =

m∐
i=0

Vi(G)

under the clustering p, where each Vi(G) is a cluster. Let H be a subgraph of G.
Then there exists a unique sequence (k0, k1, . . . , kn) with 0 ≤ k0 < k1 < . . . < kn ≤
m such that V (H) ∩ Vi(G) 6= ∅ for i ∈ {k0, k1, . . . , kn} and V (H) ∩ Vi(G) = ∅ if
i 6∈ {k0, k1, . . . , kn}. We call H a subgraph of G linked to (n+ 1) clusters. Viewing
H as an abstract n-simplex, we define the jth-face map, dpj (H), as the full subgraph
of H formed after removing all of those vertices v ∈ V (H) ∩ Vkj (G) together with
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the edges incident to (or from) such v. The resulting subgraph dpj (H) is linked
to n clusters with V (dpj (H)) ∩ Vkj (G) = ∅. It is straightforward to show that the
∆-identity

dpi d
p
j = dpj d

p
i+1

for i ≥ j holds. The face operation dpj is induced by the disjoint clustering p.
Now let H be any collection of subgraphs of G. Define Hn to be the subset of H

consisting of those subgraphs in H linked to (n + 1) clusters. This gives a graded
structure on H = {Hn}n≥0. Let X(H) be the collection of subgraphs of G given
by all of the elements in H together with all iterated faces. Then X(H) is a ∆-set
and (H, X(H)) is a super-hypergraph. The resulting homology groups

H∗(X), Hemb,X
∗ (H), Hemb,X

∗ (X,H)

are called the partition homology.
In general, X(H) may not be a simplicial complex. In simplicial complexes,

the assumption that simplices are determined by their vertices is too strict with
applications in mind. For exploring topological structures arising from disjoint
clusterings, a ∆-set is a more suitable notion.

In practice, for studying possible correlations between clusters, one could start
with a collection of one or more subgraphs, H, linked with some or all clusters, and
then produce the ∆-set X(H). Due to the nature of simplicial homology, higher
dimensional homology of X, and higher dimensional embedded homology of (H, X)
would give topological features measuring the group correlations between more
clusters. In particular, we have set up the ∆-set X(H) such that the homological
dimension of a given subgraph H in X is n− 1, where n is the number of clusters
linked with H.

In theory, we can start with any collection of subgraphs as the initial data H. For
instance, we can start with H given by all or some of the k-regular subgraphs of G,
Eulerian subgraphs, traceable subgraphs or Hamitonian subgraphs as initial data
for constructing the ∆-set X(H). This would give different topological approaches
to understanding the internal structures of H in addition to what we will survey in
Appendix A.

If there is a scoring scheme on G, then we can calculate the super-persistent
homology of (H, X) called persistent partition homology. A scoring scheme on G
can be deterministically or randomly given. If a scoring scheme is randomly given,
it may not be regular. This means that in the induced persistent filtration on
X, the graded subset X(t) may not be a ∆-subset of X for all t. In this case,
the persistence system can be modified replacing chains related to the terms X(t)
by infimum or supremum chains on X(t). The resulting persistence modules and
persistence diagrams can be modified accordingly.

From the perspective of data processing, a clustering may be compared against
certain optimization properties. Currently, we use discrete Morse theory which
works well on simplicial complexes and cell complexes [67], and chain complexes [92]
with applications in data analysis [120]. Moreover, the combinatorial Laplacian op-
erator works well on simplicial complexes and chain complexes, where cohomology
with coefficients in real numbers can be expressed as the null space of the Laplacian
operator on cochains [86].

3.4. Other Face Operations. We have shown how disjoint clusterings can induce
face operations on subgraphs. This construction works well as a theory which unifies
many constructions such as the clique complex and the neighborhood complex.
However, if we are interested in subgraphs having some special properties, this
construction has some disadvantages. For instance, if we are interested in collections
of finite connected subgraphs H, then the subgraph of H given by removing some
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of its vertices may not be connected. In the following subsection, we will discuss
some alternative ways of getting natural constructions of face operations.

3.4.1. Link-blowup Face Operations. The idea of link-blowup face operations comes
from geometric constructions on tubular neighborhoods of submanifolds or regular
neighborhoods of subcomplexes. Let H be a subgraph of some graph G and let S
be a subset of the vertex set V (H). If we remove S from H, then we could add
some edges from the working graph G to make a blowup for the subgraph H r S.
A natural way to add these edges is to consider the neighbors of vertices of S in H
and to add the edges between these neighbors from the working graph G.

Let G be a directed/undirected (multi-)graph and let EG(v, w) denote the edge
set between v and w for vertices v, w ∈ V (G). Let S ⊆ V (G) be a subset and define
the induced subgraph of S in G, G[S], to be the full subgraph of G having S as its
vertex set. The closed neighborhood set N [S] is defined by

N [S] = S ∪ {u | u ∈ V (G) adjacent to a vertex v ∈ S}

namely, N [S] is the union of the neighborhoods of vertices v ∈ S. The link set of
S in G is

Lk(S) = N [S] r S.

Let H be a subgraph of G and let S ⊆ V (H) be a subset of the vertex set of H.
The link-blowup2 of H along S is defined as

H[V (H) r S] ∪G[Lk(S) ∩ V (H)].

Note that the graph H[V (H) r S] ∪ G[Lk(S) ∩ V (H)] has the same vertex set of
H[V (H) r S].

Now suppose that there is a disjoint clustering p on the vertex set V (G) so that
there is a disjoint union

V (G) =

m∐
i=0

Vi(G)

under p with each Vi(G) a cluster. LetH be a subgraph. Then there exists a unique
sequence (k0, k1, . . . , kn) with 0 ≤ k0 < k1 < . . . < kn ≤ m such that V (H) ∩
Vi(G) 6= ∅ for i ∈ {k0, k1, . . . , kn} and V (H)∩Vi(G) = ∅ if i 6∈ {k0, k1, . . . , kn}. Let
Vj(H) = V (H) ∩ Vkj (G). Define the link-blowup face operation as

dlk
j (H) = H[V (H) r Vj(H)] ∪G[Lk(Vj(H)) ∩ V (H)] (25)

that is, the link-blowup of H along Vj(H) = V (H) ∩ Vkj (G) for 0 ≤ j ≤ n.

Remark. For helping to understand the link-blowup face operation, one can give
a coloring on the vertices of G so that the vertices in each cluster has the same
color under the disjoint clustering p, and perform the link-blowup on the vertices
having the same color.

Proposition 3.13. Given a disjoint clustering p, let dlk
j be defined as above. Then

dlk
i d

lk
j = dlk

j d
lk
i+1 (26)

for i ≥ j.

2This definition is taken from a geometric setting. We may consider the subgraph G[N [S]] as
a regular neighborhood of S. Then Lk(S) are the vertices located in the “boundary” of the regular
neighborhood. Geometrically, we add all of edges in G joining vertices in Lk(S) ∩ V (H) to form
a blowup on H[V (H) r S].
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Proof. Let H be a subgraph of G. Let Vj denote Vj(H) defined as above and let
dj denote dpj , the induced face operations from the disjoint clustering p. We will
use the fact that

V (dlk
l (H)) = V (dl(H)) = V (H) r Vl.

Now
dlk
i (dlk

j (H)) = dlk
j (H)[V (dlk

j (H)) r Vi+1] ∪G[Lk(Vi+1) ∩ V (dlk
j (H))]

= dlk
j (H)[V (dlk

j (H)) r Vi+1] ∪G[Lk(Vi+1) ∩ (V (H) r Vj)]
= dlk

j (H)[V (dlk
j (H)) r Vi+1] ∪G[Lk(Vi+1) ∩ (V (H) r Vj r Vi+1)]

because Lk(Vi+1) ∩ Vi+1 = ∅.

The term dlk
j (H)[V (dlk

j (H)) r Vi+1] is the induced subgraph of dlk
j (H) on its

vertex subset
V (dlk

j (H)) r Vi+1 = V (H) r Vj r Vi+1.

By definition, dlk
j (H) = H[V (H) r Vj(H)] ∪G[Lk(Vj(H)) ∩ V (H)]. Restricting to

the vertex subset
W = V (H) r Vj r Vi+1

we have
dlk
j (H)[V (dlk

j (H)) r Vi+1] = H[W ] ∪G[Lk(Vj) ∩W ]

and so
dlk
i (dlk

j (H)) = H[W ] ∪G[Lk(Vj) ∩W ] ∪G[Lk(Vi+1) ∩W ].

By the same arguments,

dlk
j (dlk

i+1(H)) = H[W ] ∪G[Lk(Vj) ∩W ] ∪G[Lk(Vi+1) ∩W ].

�

3.4.2. Face Operations on Subgraphs with Marked Starting-Vertices. Let H be a
subgraph of G and let S be a subset of the vertex set V (H). When we remove S
from H, we wish to add as few edges as possible to make a blowup for the subgraph
HrS with the aim of preserving particular properties of H. For this construction,
consider an extension of the working graph G by adding an extra edge between
any two distinct vertices v, w in G labeled as ∞vw. This is an analogue to the idea
of compactification in geometry. To showcase this we consider a special family of
subgraphs.

Let G be a directed/undirected (multi-)graph.

Definition 3.14. A subgraph with marked starting-vertices ofG is a pair (H,SV(H))
satisfying the following conditions:

1) H is a subgraph of G,
2) SV(H) is a subset of V (H),
3) every vertex v of H is reachable by a directed/undirected path out from a

vertex in SV(H).

In the case of digraphs, one may require further that there are no directed edges in
H incident into any vertex in SV(H). In this case, SV(H) acts as a source set for
H. We want to give a description of face operations that is consistent across graphs
and digraphs, therefore we do not require such an extra condition. There could
be some redundant vertices contained in SV(H). A trivial example is to choose
SV(H) = V (H), in which case there are no face operations. If SV(H) is a proper
subset of V (H), there will be nontrivial face operations.

Let (H,SV(H)) be a subgraph with marked starting-vertices of G. We will now
recursively construct a partition on the vertex set V (H), called the neighborhood-
extension partition, in the following way. Let V0(H) = SV(H) and suppose that
Vj(H) is constructed with j ≥ 0. Define Vj+1(H) as follows:
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1) In the undirected case, let Vj+1 be the link set of the subgraph H[Vj ] in
the graph H.

2) In the directed case, let Vj+1 be the out-link set of the subgraph H[Vj ] in
the graph H. Here, for a (multi-)digraph Γ and a subgraph Γ′, the closed
out-neighborhood set of Γ′ in Γ is the union of Γ′ and the out-neighbors of
Γ′ in Γ, denoted by Nout(Γ′). The out-link set of Γ′ is defined as

Lkout(Γ′) = Nout(Γ′) r V (Γ′).

For a subset S of V (Γ), letNout(S) = Nout(Γ[S]) and Lkout(S) = Lkout(Γ[S]).
If (H,SV(H)) is a finite subgraph with marked starting-vertices of G, then above

recursive construction will stop after finitely many steps, hence this gives a finite
partition on V (H).

To define face operations taking marked starting-vertices in to account, we embed
G into a larger graph Ĝ, where V (Ĝ) = V (G) and E(Ĝ) is the extension of E(G) by
adding one edge ∞vw for v 6= w ∈ V (G) in the undirected case, and by adding two
directed edges ∞vw from v to w and ∞wv from w to v for vertices v 6= w ∈ V (G)
in the directed case.

Now let (H,SV(H)) be a finite subgraph with marked starting-vertices of Ĝ with
the neighborhood extension partition

V (H) =

n∐
i=0

Vi.

We assume that H 6= ∅ and so V0 = SV(H) 6= ∅. From the recursive definition,
Vi+1 6= ∅ implies that Vi 6= ∅. Therefore, Vn is the last nonempty set in the recursive
procedure.

We define the face operation dSV
j on H, 0 ≤ j ≤ n, with n > 0 as follows:

(1) dSV
0 (H) = H[V (H) r V0] with SV (dSV

0 (H)) = V1.
(2) dSV

n (H) = H[V (H) r Vn] with SV (dSV
n (H)) = V0.

(3) For 0 ≤ j < n,

dSV
j (H) = H[V (H) r Vj ] ∪ EH(Vj−1, Vj+1)

with SV(dSV
j (H)) = V0, where EH(Vj−1, Vj+1) is a subset of the edge set

E(Ĝ) consisting of ∞vw for v ∈ Vj−1 and w ∈ Vj+1 satisfying the property
that there does not exist an edge from v to w in H3.

Let V−1 = Vn+1 = ∅. Then we can write in a unified way that

dSV
j (H) = H[V (H) r Vj ] ∪ EH(Vj−1, Vj+1) with SV(dSV

j (H)) = Vδj,0 (27)

for 0 ≤ j ≤ n, where δa,b is the Kronecker δ symbol.
We need to show that (dSV

j (H),SV(dSV
j (H))) is also a finite subgraph with

marked starting-vertices of Ĝ. This is straightforward because we add in ∞vw

for possible missing edges in H from Vj−1 to Vj+1. We also need to show that the
∆-identity holds for these face operations. Let i ≥ j. For i > j, we get

dSV
i (dSV

j (H)) = dSV
j (dSV

i+1(H)) = H[V (H)rVjrVi+1]∪EH(Vj−1, Vj+1)∪EH(Vi, Vi+2).

For i = j, we have

dSV
j (dSV

j (H)) = dSV
j (dSV

j+1(H)) = H[V (H) r Vj r Vj+1] ∪ EH(Vj−1, Vj+2).

This gives the following proposition.

3In the directed case, we only consider directed edges from a vertex in Vj−1 to a vertex in
Vj+1 in H. If there are no directed edges in H from v ∈ Vj−1 to w ∈ Vj+1, we add ∞vw to join
them with direction from v to w.
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Proposition 3.15. In the set of finite subgraphs with marked starting-vertices of
Ĝ, the operations dSV

j are well-defined and satisfy the ∆-identity for face operations.
�

Now let H be a collection of finite subgraphs with marked starting-vertices of
G. Under the extension G � Ĝ, H is also a collection of finite subgraphs with
marked starting-vertices of Ĝ. Let X be the collection of finite subgraphs with
marked starting-vertices of Ĝ given by all elements in H together with all of their
iterated faces under face operations dSV

j . Then X is ∆-set dominated by Ĝ. We
call (P(G) ∩X,X) the super-hypergraph generated by H.

3.4.3. Revisiting Path Complexes. We now come back to the work of Yau’s school
on path (co-)homology of graphs [77]. Following their terminology, a simple digraph
G is a pair (V,E), where V is any set and E ⊆ {V × V r diag}. We will show
that dSV

j can be used to describe the face operations given in [77]. To do this, we
consider the “ largest quotient simple digraph” G̃ on Ĝ. Let V (G̃) = V (Ĝ) = V ,
and for any ordered pair (v, w) ∈ V × V r diag, identify all the directed edges
from v to w to give one such directed edge. Since G is a simple graph, G̃ can
be chosen to be a quotient of Ĝ. Then G is a subgraph of the simple digraph G̃.
Let v, w ∈ V (G) = V (G̃) be two distinct vertices. If there exists a directed edge
evw from v to w, then ∞vw is identified with evw. Otherwise ∞vw is isolated. The
graph G̃ can be considered as the completion of G in the sense that it is the smallest
complete simple digraph containing G. Here a complete simple digraph means a
simple digraph with the property that for any two distinct vertices v and w, there
are exactly two directed edges with one from v to w and another from w to v.

Replacing Ĝ by G̃, our face operation dSV
j on paths in G̃ coincides with the

face operation in [77, Section 4] in the sense that it describes the j-th term in the
boundary operators for chains and cochains on the path complex. Here, to match
the definitions, a regular elementary path in [77, Section 4] is a path in G̃ and an
allowed regular elementary path in [77, Section 4] is a path in the subgraph G.
Then one can obtain the same objects by going via the definition of path homology
in [77] or the definition of embedded homology of hypergraphs given above. In the
undirected case, the operations dSV

j on paths in G̃ coincide with the face operations
in [77, Section 5].

For directed multi-graphs (quivers), the operations dSV
j describe the face opera-

tions in [78]. Similarly to the undirected case, we need to do a certain identification
on Ĝ. Following the argument in [78, Section 3], for a complete quiver G, ∞vw is
identified with the 1-chain given by the sum of all directed edges from v to w in
G. This would define a chain complex on the path complex of a complete quiver.
For an arbitrary quiver G, one can embed G into its completion Ḡ, and take the
infimum chain complex (in Proposition 2.2) of the path complex of G in the chain
complex of the path complex of Ḡ to define path homology for the quiver G, see [78]
for details.

As notions of paths and walks are commonly used in data analytics, generalising
them to higher dimensional combinatorial objects, such as path complexes, could
provide new tools for various applications. From a data science point of view,
a graph G is assumed as a working data. Then the path homology gives some
topological information on G. Using a scoring scheme of G, one could get persistent
path homology of G, this gives a persistence diagram/barcode of G as a topological
feature. However, if the graphic data-set G is large, the computational complexity
may be an issue. From such a perspective, it would be reasonable to consider
a selected sub complex, or more generally a selected graded subset of the path
complex. The general theory developed in this article gives a framework that makes
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it possible to explore topological features from subcomplexes or graded subsets of
path complexes.

3.5. Descriptions of Simplicial Homology Via ∆-sets. In this subsetion we
only consider mod 2 homology, hence the coefficients are taken in F = Z/2.

3.5.1. ∆-neural network. We can interpret a ∆-set as a quiver or network. A similar
object is a feed-forward neural network, as defined in [147, Section 3.6.1].

Feed-forward neural networks, are the simplest form of artificial neural networks.
The feed forward neural network was the first and arguably simplest type of artificial
network devised. In this network, the information moves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) and to the output
nodes. There are no cycles or loops in the network. In a feed-forward system,
processing elements are arranged into distinct layers with each layer receiving input
from the previous layer and outputting to the next layer.

Let X = {Xn}n≥0 be a ∆-set. Each element in X is considered as a node
(vertex), that is, the node set X is partitioned by layers labeled by X0, X1, . . .. For
each x ∈ Xn, assign one and only one arrow (directed edge) dni,x : x → di(x) for
0 ≤ i ≤ n. This forms a set of arrows whose tails lie in Xn and whose heads lie in
Xn−1. So it forms a quiver. The following picture illustrates the arrows from X2

to X1.
•
d2d0

��
d1

''

•
d0

��
d2

��
d1

''• • • • •
Rephrasing the definition of ∆-set into the terminology of network, a ∆-neural
network is a quiver with distinct layers of nodes labeled by X0, X1, . . . such that
for each node x ∈ Xn with n > 0, there are arrows dni,x, 0 ≤ i ≤ n, tailed at x and
headed at some node dni (x) ∈ Xn−1 such that

dn−1
i (dnj (x)) = dn−1

j (dni+1(x)) (28)

for 0 ≤ j ≤ i ≤ n − 1. In a ∆-neural network, the information only flows in one
direction, from input nodes that could be located in different layers to the output
nodes.

The adjacency relationship from the nth layer Xn to the n− 1th layer Xn−1 can
be described by (n+ 1) matrices as follows. For x ∈ Xn and y ∈ Xn−1, let

wix,y =

{
1 if y = di(x)
0 otherwise

for 0 ≤ i ≤ n. Let
Wn(i) = (wix,y)x∈Xn,y∈Xn−1

be a |Xn| × |Xn−1| matrix, which is the matrix for the face operation di : Xn →
Xn−1. Equation (28) can be rewritten as the following formula

Wn(j)W t
n−1(i) = Wn(i+ 1)W t

n−1(j) (29)

for 0 ≤ j ≤ i ≤ n− 1, where At is the transpose of a matrix A.
Let H be a graded subset of the ∆-set X. In our theory of super-hypergraphs,

H carries part of the ∆-set structure of X. More precisely, the face operation
di : Xn → Xn−1 induces a partially defined face operation di : Hn  Hn−1. By
considering this as a network, H is full subnetwork of the ∆-neural network induced
byX, where a full subnetwork is the induced network of the nodes ofH in the neural
network induced by X. Therefore, one can get homology on any full subnetwork of
a ∆-neural network using embedded homology of super-hypergraphs.
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Remark 3.16. The product rule (28) is important to define the boundary operator
on the chains. But variations are possible. For example, one could vary the product
rule for weighted simplicial complexes [121], or the boundary operators on cochains
could be varied to account for twisted de Rham cohomology [60].

3.5.2. Descriptions of mod 2 Homology. We proceed by giving the ideas behind
the intuition of mod 2 homology of ∆-sets and super-hypergraphs. Let (H, X)
be a super-hypergraph. Then the n-chains on X are linear combinations of the
elements in Xn with coefficients in Z/2. So each n-chain α corresponds to a subset
{x1, . . . , xk} ⊆ Xn given by α = x1 + x2 + · · · + xk. Since the coefficients are in
Z/2,

∂(α) =

k∑
i=1

∂(xi) =

k∑
i=1

Σnj=0dj(xi)

which is the trace of the multi-subset {dj(xi) | 0 ≤ j ≤ n, 1 ≤ i ≤ k} of Xn−1.
Here the multiplicity of y = dj(xi) ∈ Xn−1 is the number of pairs (j′, i′) such that
dj′(xi′) = dj(xi) = y, that is, the in-degree of the node y ∈ Xn−1 in the ∆-neural
network. Hence we have the following proposition.

Proposition 3.17. An n-chain α = x1 + x2 + · · · + xk is a mod 2 cycle (that is,
∂(α) = 0) if and only if any node in the subset

{dj(xi) | 0 ≤ j ≤ n, 1 ≤ i ≤ k}

of Xn−1 has even in-degree. �

This proposition indicates that one can consider the nodes in Xn−1 with even
in-degrees in search for possible mod 2 cycles in n-chains.

The following proposition follows from the fact that Zn(infC∗(X)
∗ (H)) = Z/2(Hn)∩

Zn(C∗(X)).

Proposition 3.18. A mod 2 cycle α = x1 + x2 + · · · + xk in the chains Cn(X),
with all xi distinct represents a cycle for the mod 2 embedded homology Hemb,X

n (H)
if and only if {x1, . . . , xk} ⊆ Hn. �

An n-chain α = x1 + · · · + xk with all xi distinct is a boundary in the chain
complex C∗(X) if and only if the equation

α = ∂(β)

where β = y1 + · · · + ym with all xi distinct in Xn+1 has a solution. If there is a
solution α = ∂(β), then {x1, . . . , xk} is the set of nodes in the multi-set {ds(yt) | 0 ≤
s ≤ n + 1, 1 ≤ t ≤ m} which have odd in-degrees. This proves the following
statement.

Proposition 3.19. An n-chain α = x1 + · · ·+xk with all xi distinct is a boundary
in the mod 2 chain complex C∗(X) if and only if there exists a subset {y1, . . . , ym} ⊆
Xn+1 with y1, . . . , ym distinct such that {x1, . . . , xk} is the set of nodes in the multi-
set {ds(yt) | 0 ≤ s ≤ n+ 1, 1 ≤ t ≤ m} which have odd in-degrees. �

Note that Bn(infC∗(X)
∗ (H)) = Z/2(Hn) ∩ ∂(Z/2(Hn+1)).

Proposition 3.20. Let α = x1 + · · ·+xk ∈ Z/2(Hn) with x1, . . . , xk distinct. Then
α is a boundary in infC∗(X)

∗ (H) if and only if there exists a subset {y1, . . . , ym} ⊆
Hn+1 with y1, . . . , ym distinct such that {x1, . . . , xk} is the set of nodes in the multi-
set {ds(yt) | 0 ≤ s ≤ n+ 1, 1 ≤ t ≤ m} which have odd in-degrees. �
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4. Potential Applications

4.1. Potential Applications in Bio-molecular Structures and Drug De-
sign. Applications of persistent homology to molecular biology has achieved great
success in computer aided drug design [109, 137, 142]. According to [142, Para-
graph 0005], theoretical models for the study of the structure-function relation-
ships of biomolecules are conventionally based on purely geometric techniques.
Mathematically, these approaches make use of local geometric information such
as: coordinates, distances, angles, areas and curvatures for the physical modeling
of biomolecular systems. However, conventional purely geometry based models tend
to be overwhelmed by too much structural detail and are frequently computation-
ally intractable. Topological approaches to determining the nature of structure-
function relationships of biomolecules provide a dramatic simplification compared
to conventional geometry based approaches [142, Paragraph 0053].

However, persistent homology neglects chemical and biological information dur-
ing topological simplification and is thus not as competitive as geometry or physics-
based alternatives in quantitative predictions [143]. Element-specific persistent
homology, or multi-component persistent homology built on colored biomolecu-
lar networks, has been introduced to retain chemical and biological information in
topological abstractions [32]. This approach encodes biological properties—such as
hydrogen bonds, van der Waals interactions, hydrophilicity, and hydrophobicity—
into topological invariants, rendering a potentially revolutionary representation for
biomolecules, according to the SIAM news [143].

Recently, we have proposed hypergraph based persistent cohomology (HPC) for
molecular representations in drug design [97]. In our HPC model, the protein-ligand
interactions at the molecular level are represented as a series of element-specific hy-
pergraphs. Figure 5 illustrates our hypergraph model for a protein-ligand complex
with ID 3PB3. Its binding core region is divided into a series of element-specific
atom-sets. From these atom sets, element-specific hypergraphs can be constructed
to characterize the interactions between protein atom-sets and ligand atom-sets at
the level of atoms. Further, we have proposed a distance-related filtration process
as illustrated in Figure 6. With the embedded homology model for hypergraphs, we
have developed the hypergraph persistent homology and cohomology for molecular
characterization. Molecular features and descriptors can be obtained from hyper-
graph persistent barcodes and hypergraph enriched barcodes, and this information
can be further combined with machine learning models, in particular, the gradi-
ent boosting tree (GBT). Our HPC-GBT model has performed well for protein-
ligand binding affinity predictions. Its Pearson correlation coefficients (PCCs)
for the three PDBbind datasets, including PDBbind-v2007, PDBbind-v2013 and
PDBbind-v2016, are consistently better than traditional machine learning models
with molecular descriptors.

A molecular representation based on super-hypergraphs could give more flexibil-
ity in molecular structure and interaction characterization. Unlike simplicies and
hyperedges, super-hyperedges can incorporate local topological structures, that is,
subgraphs. This provides a unique way to identify and describe molecular motifs,
function groups, and domains. Further, boundary operators can be defined through
vertex-deletion and edge-deletion, which provide ways to define different types of
homology groups and thus characterize different types of inner topological connec-
tions. Moreover, different filtration processes can be defined by considering differ-
ent scoring functions, which in turn will induce different super-hypergraph based
persistent homology/cohomology. Finally, molecular descriptors/fingerprints can
be generated from super-hypergraph models and further combined with machine
learning models for molecular data analysis in materials, chemistry and biology.
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Figure 5. Illustration of an element-specific hypergraph model
for a protein-ligand complex (ID 3PB3). The binding core region
of the complex is decomposed into a series of element-specific atom-
sets. The interactions between protein atom-sets and ligand atom-
sets are modeled as a series of hypergraphs.

Figure 6. Illustration of a hypergraph-based filtration process for
the protein-ligand complex with ID 3PB3.

4.2. Potential Applications in Networks with Group Interactions. The
abstract of a recent review article [12], citing more than 800 references, reads,

The complexity of many biological, social and technological systems stem-
s from the richness of the interactions among their units. Over the past
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decades, a variety of complex systems has been successfully described as
networks whose interacting pairs of nodes are connected by links. Yet, from
human communications to chemical reactions and ecological systems, inter-
actions can often occur in groups of three or more nodes and cannot be de-
scribed simply in terms of dyads...We review the measures designed to char-
acterize the structure of these systems and the models proposed to generate
synthetic structures, such as random and growing bipartite graphs, hyper-
graphs and simplicial complexes. We introduce the rapidly growing research
on higher-order dynamical systems and dynamical topology, discussing the
relations between higher-order interactions and collective behavior...

Here we can see that simplicial complexes, a fundamental notion in algebraic
topology, has been extensively used for providing representations of higher-order
interactions [12, First paragraph of Section 2.1.3]. In some practical problems, the
limitations of simplicial complexes due to completeness and vertax-determination
present a problem. Hypergraphs provide a more general and unconstrained descrip-
tion of higher-order interactions [12, Paragraphs 2-4, page 7].

Recent progress shows that simplicial homology can be naturally extended as
a homology theory on hypergraphs [24]. This provides topological invariants for
geometric models using hypergraphs which have had successful applications in
biomolecular structures and drug design, described in the previous subsection.

As an extension of hypergraphs, super-hypergraphs would provide more a general
and unconstrained description of higher-order interations. If we assume that the
higher-order interactions take place among the nodes in a working graph, which
indicates the pre-existence of the pairwise bonds or the primary pairwise links
between the nodes, then the most general and unconstrained description of higher-
order interations would be a collection of finite subgraphs of the working graph,
which is exactly the topic explored in this article.

5. Conclusion

In this paper, we introduced a new mathematical theory which allows for topo-
logical invariants to be applied to broader range of problems, in particular enriching
the methods of TDA. This new theory is suitable for both graph data and point
cloud data analysis, while overcoming various limitations of the standard persistent
homology theory such as the topological noise and the constraining requirements
to use data with metric. Using this new theory, the upgraded pipeline of TDA
becomes indetermiinistic in nature allowing for flexibility and adjustments. More-
over, various new topological invariants can be constructed in our flexible setting.
As highlighted in Subsections 3.2 - 3.5, based on this topological approach, more
computational tools of algebraic topology will find applications in data science.
For example, in algebraic topology the computation of simplicial homology of a
space can be largely simplified by homotopically deforming it into a simpler shape,
see [84].

As each simplex of a simplicial complex is uniquely determined by its vertieces,
simplicial complexes cannot model collections of subgraphs. To explore topological
structures on space of subgraphs, in this paper we use ∆-sets. Furthermore, we
introduce the notion of sup-hypergraph, as a generalization of hypergraphs, which
sets a stage for the exploration of topological structures on subgraphs. The homol-
ogy theory of super-hypergraph, established in Section 2, endows any collection of
subgraphs with topological features.

In this work we also use the notion of scoring scheme. As highlighted in Section 3,
scoring schemes are used to introduce persistence in an abstract setting without
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the use of any notion of metric. The classical constructions in persistent simplicial
homology theory can be recovered using various scoring schemes.

We should point out that this work presents a theoretic research resulting in a
framework that provides an upgraded topological approach to data science, with
the aim to foster further interactions between topology and data science.

Further research on super-hypergraphs is needed as this is a new and challeng-
ing mathematical concept. From a topological perspective there are many inter-
esting questions to consider such as, the algebraic structure of the homology of
these objects as well as the homotopy aspects of super-hypergraphs that are far
less-understood. Furthermore, developments in the topological study of super-
hypergraphs will feed into new innovative methods in TDA and other wide-ranging
applications. Additionally, the computational complexity of the homology theory
of super-hypergraphs is comparable to that of simplicial homology, therefore algo-
rithms methods stemming from our approach will be similarly feasible as classical
computation.
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Appendix A. Topological structures associated to graphs

Throughout mathematics numerous topological and categorical structures on
graphs have been explored. In this appendix, we will survey various simplicial
complexes associated to graphs that allow us to consider the space of subgraphs of
a given graph from a topological perspective.

A directed (multi-)graph (or multi-digraph or quiver) is a pair G = (V (G), E(G))
together with a function end: E(G) −→ V (G)× V (G) given by

endG(e) 7→ (i(e), t(e))

where V (G) is the vertex set, E(G) is the edge set, i(e) is the initial vertex of the
edge e, and t(e) is the terminal vertex of e.

An undirected (multi-)graph4 is a pair G = (V (G), E(G)) together with a func-
tion endG : E(G) −→ (V (G)× V (G))/Σ2 given by

endG(e) 7→ {i(e), t(e)}

where (V (G)× V (G))/Σ2 is the orbit set of (V (G)× V (G)) modulo the Σ2-action
given by permuting the coordinates, V (G) is the vertex set, E(G) is the edge set,
endG is an incidence relation that associates with each edge of G an unordered pair
of, possibly equal, elements of V (G). In this definition of a directed/undirected
(multi-)graph, the empty graph is allowed.

A subgraph H of a directed/undirected (multi-)graphG is a graphH = (V (H), E(H))
with V (H) ⊆ V (G), E(H) ⊆ E(G) and endH = endG|E(H).

A directed/undirected graph G is simple if endG is injective and the image
endG(E(G)) is disjoint from the diagonal ∆(V (G)) in V (G) × V (G) or (V (G) ×
V (G))/Σ2. This means that there are no loops or multi-edges between two vertices.

From the perspective of applications, the initial data is represented by a given
graph G and let H be a collection of subgraphs of G. Our goal is to investigate
the possible topological structures on H. However, before we address this general
question, we review some classical constructions of simplicial complexes associated
to graphs.

A.1. Clique Complexes. Typically, the study of collections of subgraphs has fo-
cused on measuring how strongly connected different parts of a graph are. A clique
(or flag) complex and an independence complex (the clique complex of the comple-
mentary graph) are topological spaces that contain information about the connec-
tivity of a graph. These are widely used objects in mathematics and its applications,
see [4, 11, 62, 64, 91] for some recent works.

4We follow the definition of a multi-graph in [55, 10]. In some literature such as [118], a
multi-graph is defined by requiring the edge set to be a multi-set. The difference is that the edges
between two vertices are labeled by E(G) together with the incidence map endG. Such a definition
coincides with the definition on quiver (as directed multi-graph) [126].
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A complete graph is a simple graph G = (V (G), E(G)) with the property that
every pair of distinct vertices of G are adjacent in G.

A clique of a graph G is a complete subgraph of G.
The clique complex of a simple graph G is the abstract simplicial complex

Clique(G) whose simplices consist of all cliques of G. An n-simplex σ in Clique(G)
is a clique of G with (n + 1) vertices, and a face of a simplex σ ∈ Clique(G) is a
complete subgraph obtained by deleting some vertices of σ.

When working with a multi-graph G = (V,E), the set of cliques Clique(G) is
generally not a simplicial complex as this requires that all simplices are uniquely
determined by their vertex set. For example, let G be a multi-graph with two
vertices v and w and two edges e1 and e2 joining them. Then

Clique(G) = {ē1, ē2, v, w}
has two 1-simplices ē1 and ē2 sharing the same vertices v and w, see Figure 7. There-
fore, a more suitable object for describing the topological structure of Clique(G) is
a ∆-set.

e1

e2

wv

Figure 7. The multi-graph G, which looks the same as the clique
complex Clique(G).

For an undirected multi-graph G, the ∆-set structure on Clique(G) is given in
the following way. Assign a total ordering to V (G) and define Cliquen(G) to be the
set of cliques of G that have exactly n+1 vertices. For σ ∈ Cliquen(G) with vertices
v0 < v1 < · · · < vn, define diσ = σ− vi, the subclique of σ obtained by deleting the
vertex vi and the edges incident to vi for 0 ≤ i ≤ n. It is straightforward to check
that Clique∗(G) forms a ∆-set5.

A.2. Neighborhood Complexes and Jonsson’s Graph Complexes. We pro-
ceed by considering a collection of simplicial complexes associated to graphs which
will naturally lead to new constructions suitable for studying spaces of subgraph-
s. We start with a famous construction of the neighborhood complex of a graph.
This was introduced by Lovász [98] in 1978 in his work on Kneser’s conjecture
which laid the foundations of topological combinatorial by introducing homotopy
theoretical methods to combinatorics. Nowadays, the research area of topologi-
cal combinatorics is very active and fruitful. The generalization by Lovász of the
neighborhood complexes to the Hom complex [7, 93], which has the same homo-
topy type as the clique complex of an exponential graph [58, Remark 3.6], was used
in a breakthrough work of Babson and Kozlov [8] to solve the Lovász conjecture
which relates the chromatic number of a graph with the homology of its Hom com-
plex. Our theory is based on the exploration of the interplay between topology and
combinatorics.

The neighborhood complex N (G) of a graph G is a simplicial complex on vertex
set V (G) in which an n-simplex is a subset of V (G) with n + 1 vertices such that
all vertices are adjacent to an other vertex in G.

5The definition of the ∆-set Clique∗(G) depends on the given order on vertices of G, but the
homology of Clique∗(G) is independent on this choice because the geometric realization of a ∆-set
is a ∆-complex [145, Proposition 1.39, p. 51] in the sense of Hatcher [84].
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As we discussed in the previous subsection, Clique(G) may not be a simplicial
complex for a multi-graph G. However, for any graph G the neighborhood complex
N (G) is a simplicial complex.

The topology on the geometric realization of N (G) can be quite different from
that of Clique(G) in general. For example, let G be a graph with three vertices
a, b, c and two edges given by ab and bc. Then N (G) = {{a, c}, {a}, {b}, {c}},
which is not connected, see Figure 8b, and Clique(G) = {{a, b}, {b, c}, {a}, {b}, {c}}
which is connected, see Figure 8a. This indicates that there are various topological
structures one could construct for a given working graph G.

a

b

c

(a) The graph G, which is the same
as Clique(G).

a c

b

(b) The neighborhood complex of G,
N (G).

Figure 8

In [88, p.26], Jonsson defines a graph complex in the following way. A graph
complex 6 on a finite vertex set V is a family E of simple graphs on the vertex set V
such that E is closed under deletion of edges; if H ∈ E and e ∈ H, then H − e ∈ E .
Identifying H = (V,E) ∈ E with the edge set E, we may interpret E as a simplicial
complex. There are potentially different graph complexes on a given vertex set V
because the collection of simple graphs can be chosen in a different way.

With a slight modification to Jonsson’s definition, namely adding a hypothesis
that the simple graphs in E are subgraphs of G, we retain the central ideas of
Jonsson’s construction but also gain control over the space of subgraphs. In contrast
to clique complexes and neighborhood complexes, the face operations in Jonsson’s
graph complex are given by deleting edges. Also, the construction of a graph
complex is not fully determined by G as there are various choices for families E
of simple subgraphs of G that can form graph complexes. A non-deterministic
characteristic of these complexes might be useful in data science as the family E
can be adjusted for each iteration of the analysis.

A.3. Path Complexes. Considering hypergraphs as a combinatorial generaliza-
tion of simplicial complexes allows the construction of the path complex of a given
digraph.

The topological exploration of path complexes was first introduced by Shing-
Tung Yau and his collaborators in a series of papers [74, 75, 76, 77, 72, 81, 73,
80, 79, 78]. Motivated by ideas from physical applications, A. Dimakis and F.
Müller-Hoissen attempted to construct the cohomology of digraphs [57, 56]. They
considered path complexes on an intuitive level without a precise definition of the
corresponding cochain complex.

In this subsection, we survey the main ideas of path complexes of simple digraphs.
Let G be a simple digraph. A directed path in G is an alternating sequence

λ = v0α1v1α2v2 · · ·αkvk, with all vertices vi distinct for 0 ≤ i ≤ k and the edges,
αi, are incident out of vi−1 and incident into vi for 1 ≤ i ≤ k.

6Kontsevich also introduced graph complexes with a different defintion [90].
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Let P be the set of directed paths in G. We want to associate a combinatorial
object to G built out of directed paths. Since G is simple, there is at most one
edge joining two distinct vertices. So a directed path λ = v0α1v1α2v2 · · ·αkvk is
determined by its vertices v0, v1, . . . , vk. Thus we consider λ = v0α1v1α2v2 · · ·αkvk
as an abstract k-simplex {v0, v1, . . . , vk}. For P to be a simplicial complex, any
nonempty subset of {v0, v1, . . . , vk} must be a simplex. In other words, any subse-
quence (vi0 , vi1 , vi2 , . . . , vit), 0 ≤ i0 < i2 < · · · < it ≤ k of λ must forms a directed
path in G. This is not true in general. For example, if v0α1v1α2v2 is a directed
path in G, then there may not exist an edge incident out of v0 and incident into
v2 in G, that is, (v0, v2) may not form a directed path. Therefore, a structure to
consider on the set P is that of a hypergraph.

The set P becomes a hypergraph with its vertex V (G) and the hyperedge set
given by directed paths in G. By definition, an abstract simplicial complex is a
hypergraph with the additional condition that any nonempty subset of a hyperedge
is a hyperedge. Therefore, a hypergraph can be viewed as a simplicial complex
with some faces missing, where a hyperedge of cardinal k + 1 is a k-simplex in
the terminology of simplicial complexes. The approaches in [57, 56] and Yau’s
school lead to the embedded homology of hypergraphs as an extension of simplicial
homology theory as introduced in [24].

By allowing vertex repetition in directed paths, we get directed walks. The walk
complexW(G) for a digraph or quiver (i.e. directed multi-graph) G, is similar to the
path complex but with we replace directed paths with directed walks. Therefore,
W(G) is an extension of the notion of the nerve of a category in the following sense.
Consider a category C as a quiver with the composition operation on head-to-tail
arrows. Then the nerve of category C is the walk complex of quiver C.

A.4. Vertex-deletion topology. Let G be a directed/undirected (multi-)graph.
Let H be a collection of finite subgraphs of G. Assign to H the grading function
fv : H −→ N = {0, 1, 2, . . .} given by the size, namely, for H ∈ H, let fv(H) =
|V (H)| − 1. Let Hn = f−1

v (n). Next step is to define face operations to obtain a
topological structure. There are several natural approaches available.

A.4.1. Primary vertex-deletion topology. Assume that the vertex set V (G) is totally
ordered. A geometric way to define face operations is to delete a vertex together
with all edges incident to this vertex. More precisely, let H ∈ Hn with vertices
v0, v1, . . . , vn. Define di(H) for 0 ≤ i ≤ n to be the subgraph of H by deleting vi
together with any edges joining with vi. This vertex deletion does not ensure that
di(H) lies in Hn−1. Let

∆(H) = {di1di2 · · · dit(H) | H ∈ H, 0 ≤ i1 < i2 < · · · < it ≤ |V (H)| − 1} (30)

be the family of subgraphs of G obtained from H together with iterated faces on the
subgraphs in H. It is straightforward to check that ∆(H) is a ∆-set, and H ⊆ ∆(H)
is a graded subset7. Hence (H,∆(H)) is a super-hypergraph.

Definition A.1. Let G be a directed/undirected (multi-)graph. Let H be a col-
lection of finite subgraphs of G. The primary vertex-deletion topological structure
on H is the super-hypergraph structure defined as above.

Similarly to clique complexes on multi-graphs, ∆(H) may not be a simplicial
complex in general. Therefore, the notion of a super-hypergraph is the most natural
and suitable topological description for H.

The super-hypergraph (H,∆(H)) has a structure of fibrewise topology as follows.

7From the ∆-identity (5), ∆(H) contains all iterated faces on the subgraphs in H, which is the
smallest family of subgraphs of G containing H that is closed under the face operation.
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Let

V (H) = {V (H) | H ∈ H} and V (∆(H)) = {V (H) | H ∈ ∆(H)}

be a family of finite subsets of V (G). Then V (∆(H)) is a simplicial complex, and
V (H) is a hypergraph whose simplicial closure is V (∆(H)). Moreover we have a
∆-map

V : ∆(H) −→ V (∆(H))

and a morphism of super-hypergraphs

V : H −→ V (H).

By taking geometric realization, we have a continuous map

|V | : |∆(H)| −→ |V (∆(H))|

which is a fibrewise topology in the sense of James [87].
Clique complexes are typical examples of primary vertex-deletion topology, where

H is given by cliques in a grpah G. In this case, H itself is already a ∆-set so
H = ∆(H) and the map V : H → V (H) is an isomorphism.

The neighborhood complex is another good example that admits a fibrewise
topological structure as follows. Let

Ñ (G) = {H | H is a subgraph of G and V (H) ∈ N (G)}. (31)

Then it is straightforward to check that

Ñ (G) = ∆(Ñ (G)) and V (Ñ (G)) = N (G) (32)

with a continuous map

|V | : |Ñ (G)| −→ |N (G)| (33)
which is called a fibrewise neighborhood topology of G.

A.4.2. Secondary vertex-deletion topology. Consider the path complex of a simple
digraph G and its face operation di. Let λ = v0α1v1α2v2 · · ·αnvn be a directed
path. Then di(λ) is given by deleting the vertex vi. However, we have to add
back the directed edge from vi−1 to vi+1 provided that it exists to ensure that
di(λ) ∈ Pn. This gives a different type of topological structure, in which we need
to redefine the edges to match the vertex removal of the face operation. This can
be generalized in the following way.

Let G be a directed/undirected simple graph and let H be a family of finite
subgraphs of G. Let the vertex set V (G) be totally ordered. For H ∈ H, as a finite
subgraph of G with vertices v0 < v1 < · · · < vn, define diH to be the subgraph of
G by removing vi from H and adding the edge between vi−1 and vi+1 if it exists.
Then H forms a super-hypergraph in a similar way as in the case of primary vertex-
deletion topology. Here the notion of a super-hypergraph is necessary because there
could be two subgraphs in H sharing same vertices. For instance, if there is an edge
joining two distinct vertices v and w in G, then the subgraphs consist of two vertices
v and w with the edge joining them and without the edge joining them, respectively,
are different.

Definition A.2. Let G be a directed/undirected simple graph. Let H be a collec-
tion of finite subgraphs of G. The secondary vertex-deletion topological structure
on H is the super-hypergraph structure defined as above.

The secondary vertex-deletion topology naturally applies to subgraphs of a sim-
ple graph. However, to construct a topological structure on a space of subgraphs
of a multi-graph in this a way would be more complicated.



TOPOLOGICAL APPROACH TO DATA SCIENCE 49

There are other possible topological structures on special families of subgraphs.
Analogously to various techniques developed in simplicial homotopy theory, for
special families of subgraphs having good patterns, one could delete more than one
vertex under each elementary face operation di.

A.5. Edge-deletion topology. Let G be a directed/undirected (multi-)graph and
H be a collection of finite subgraphs of G. Another reasonable way to assign the
grading function fe : H −→ N = {0, 1, 2, . . .} is by counting edges, that is, for
H ∈ H let fe(H) = |E(H)| − 1. Then Hn = f−1

e (n). Note that a subgraph H of G
is uniquely determined by its edge set E(H). We do not need to use the notion of
a ∆-set for describing topological structure on H from edge-deletion. If H is closed
under edge-deletion operation, then it forms a simplicial complex, which is exactly
a path complex in the sense of Jonsson. Otherwise, H is only a hypergraph.

For a fixed graph G, the edge-deletion topology could be quite different from
the vertex-deletion topology because already the grading functions fv and fe could
be quite different. The edge-deletion operation may not commute with the vertex-
deletion operation, so the relationship between the edge-deletion topology and the
vertex-deletion topology is not immediately clear. To better understand these struc-
tures, more exploration of the relationship between different topological structures
on families of subgraphs is needed.

Finally, we should point out that there are many other ways to introduce topolog-
ical structures on subgraphs, for example following ideas related to Hom complexes.
The frontier of research in topological combinatorics has potential to provide new
mathematical tools in data science.

Appendix B. The connections of the concepts in the article

There are various concepts in the article, including new concepts such as super-
hypergraph. We highlight the connections between them in this appendix.

The following statements are well known and important:

• A simple graph is a 1-dimensional simplicial complex.
• A multi-graph with its vertices totally ordered is a 1-dimensional ∆-set/∆-
complex.

• A quiver (multi-digraph) is a 1-dimensional ∆-set/∆-complex.

In the following table, the arrow ↪→ means an inclusion of sets.

{simplicial complexes} �
� //

� _

��

{hypergraphs}� _

��
{∆-sets} �

� // {super-hypergraphs}.
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Table 1. Topological structures associated to graphs

Constructions Complex Type Face Type

clique complex of simplicial complex vertex-deletion
a simple graph

clique complex of ∆-set vertex-deletion
a multi-graph

neighborhood complex simplicial complex vertex-deletion

Jonsson’s graph complex simplicial complex edge-deletion

path complex of hypergraph vertex-deletion
a simple graph
path complex of super-hypergraph vertex-deletion

a multi-graph/quiver
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