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Abstract

At finite charge density certain holographic models exhibit the spontaneous

breaking of translational invariance resulting in an inhomogeneous phase. We

follow up on recent numerical work, reporting results for a larger class of

cohomogeneity two black branes in AdS, dual to a holographic striped phase.

We construct the continuous moduli space of inhomogeneous black branes as

a function of the temperature. Minimising the free energy we determine the

dominant striped solutions, revealing a growth in the stripe size as the system

is cooled. We discuss the thermodynamic properties of this line of solutions.
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1 Introduction

There is great interest in applying the holographic framework to systems which may be

of relevance to real-world condensed matter phenomena, with one focus placed on equi-

librium phases at finite charge density and temperature. An early example is provided by

the holographic description of a superfluid, which can be built with the minimal addition

of a charged scalar field to the bulk gravitational theory. The scalar may be added in

a phenomenological fashion [1, 2, 3] or by seeking appropriate consistent truncations of

supergravity reductions [4, 5]. The superfluid phase transition in the CFT is described in

the bulk by a branch of thermodynamically preferred black branes with scalar condensate

connecting with the normal phase.

There is growing evidence that symmetry breaking phases may be generic in holog-

raphy at finite charge density. In particular, linear analyses indicate the spontaneous

breaking of the Euclidean group of symmetries [6, 7, 8, 9] in a variety of gravitational

settings [10, 11, 12, 13] as well as probe brane constructions [14, 15, 16, 17]. To establish

whether a phase transition exists, construction of the broken solutions beyond linear order

is necessary, which typically requires the solution of PDEs. In cases where the broken

phase retains homogeneity, fully backreacted solutions have been constructed by solv-

ing ODEs [18, 19, 20] exhibiting the emergence of a thermodynamically preferred spatial

scale, λk ≡ 2π/k associated with helical order. Such solutions provide an important set

of examples for comparison with inhomogeneous solutions.

Recently the first examples showing continuous phase transitions to an inhomogeneous

phase in this context were presented in [21, 22] (see also [23]), in the Einstein-Maxwell-

pseudoscalar bulk models studied perturbatively in [8]. There, a branch of solutions at

fixed periodicity λkµ was considered, connecting with a single striped zero-mode of the

RN background with wavenumber k. In this paper we relax the condition of fixed k/µ,

finding a continuous moduli space of striped solutions at each temperature. In particular,

we consider the natural generalisation of the solutions constructed in [21, 22], by seeking

the nonlinear one-parameter families which emerge from a given striped zero-mode, k,

for all k. In this way we construct a two-parameter family of solutions labelled by the

dimensionless temperature, T/µ, and periodicity scale, k/µ.

For an infinite translationally invariant system at temperature T/µ, the physically

relevant solutions in this space are those which minimise the free energy. These can

be labelled by their periodicity, giving rise to the curve k
µ
(T
µ

). Considering this line of

solutions we find a second order phase transition from the homogeneous phase. In the

helical case [19, 20] it was found that the dominant scale at any given temperature was

characterised by the vanishing of a particular piece of boundary data. We will uncover an

analogous result for inhomogeneous solutions constructed here, in one lower dimension.

Note added: The paper [24], an update of [23], has recently appeared indicating the
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dominant scale in the canonical ensemble for a similar model. Continuous phase transi-

tions, as found in [21, 22], were also found the updated version.

2 The setup of [22]

In this section we briefly recap the model and numerical setup of [22]. We adopt a bulk

model studied in [8] containing a neutral pseudo-scalar, φ, a single U(1) gauge field, A
with field strength F = dA, and crucially in this context, a parity-violating coupling,

ϑ(φ)F ∧ F ,

Sb =

∫
d4x
√
−g
(
R− 1

2
(∂φ)2 − τ(φ)

4
F 2 − V (φ)

)
−
∫
ϑ(φ)

2
F ∧ F, (2.1)

where we have set 16πG = 1. In this paper we study a single case, taking τ = sech(
√

3φ),

V = −6 cosh(φ/
√

3) and ϑ = c1
6
√

2
tanh(

√
3φ). When c1 = 6

√
2 this phenomenological

model becomes a consistent truncation of a reduction from 11D on SE7 [25, 26, 27]. Here

we adopt the slightly higher value of c1 = 9.9 which raises the critical temperature for the

striped instability. We seek regular stationary solutions within the bulk metric ansatz

ds2 =
1

z2

(
− Tf(z)dt2 + Z

dz2

f(z)
+X(dx+ γdz)2 + Y (dy + βdt)2

)
(2.2)

and gauge field A = Adt + Bdy, where T, Z,X, Y, γ, β, A,B and φ are functions both of

the AdS radial coordinate, z, and a single spatial boundary direction x with translational

invariance in y. The function f(z) ≡ (1 − z)(1 + z + z2 − µ2z3/4) conveniently factors

out the normal phase solution, an electrically charged Reissner-Nordstrom (RN) black

brane branch at Z = T = X = Y = 1 and γ = β = B = φ = 0 and A = µ(1 − z).

The coordinate z runs from z = 0 at the boundary to z = 1 at the (non-degenerate)

horizon. To render the system elliptic we adopt the Harmonic Einstein equation approach

of [29, 30, 31] and we employ a spectral method with N × (N + 1) grid points in the bulk.

Further details can be found in [22]. For the data presented in this paper we have taken

N = 24 for 0.01 ≤ T/µ ≤ (T/µ)c,max, N = 30 for 0.005 ≤ T/µ < 0.01, N = 40

for 0.003 ≤ T/µ < 0.005, N = 50 for 0.0015 ≤ T/µ < 0.003 and finally N = 52 for

T/µ = 0.001.

The non-vanishing components of the expectation value of the CFT stress tensor and

current are given by,

ε ≡ 〈Ttt〉 = 2 +
µ2

2
− 3T (3)(x) (2.3)

〈Tty〉 = 3β(3)(x), (2.4)

Px ≡ 〈Txx〉 = 1 +
µ2

4
+ 3X(3) (2.5)

Py ≡ 〈Tyy〉 = 1 +
µ2

4
− 3X(3) − 3T (3)(x), (2.6)
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ρ ≡ 〈Jt〉 = −A(1)(x) (2.7)

〈Jy〉 = −B(1)(x). (2.8)

where F (n) denotes the coefficient of zn in the small-z boundary expansion of the field

F . Note that the stress tensor is traceless and X(3) is constant in x, following from

conservation of the stress tensor. Spatial averages of these quantities will be denoted with

a bar.

3 Striped zero-modes

We begin with a summary of the striped zero-modes on the RN normal phase solution,

following [8]. These modes indicate the boundary of stability for the RN solution, provid-

ing a starting point for the construction of an emergent family of nonlinear striped black

branes. Moreover, in this model at any temperature the boundary of stability will coincide

with the boundary of existence for the striped solutions (labelled by their periodicity), as

we shall show in the following section.

Consider a single Fourier mode with wavenumber k for the following perturbations,

φ = ε φk(z) cos kx, B = εBk(z) sin kx, β = ε βk(z) sin kx, (3.1)

with the others set at their RN values. The resulting equations at O(ε) are three sec-

ond order k-dependent linear ODEs. With the conditions of horizon regularity and nor-

malisability in the UV, counting the number of pieces of boundary data reveals that

there can be at most discrete striped zero-modes at a given T/µ. In particular for

T/µ < (T/µ)c,max ' 0.0236 there are two zero-modes at fixed T/µ, giving rise to the

characteristic critical temperature ‘bell curve’ presented in figure 1.

0.4 0.6 0.8 1.0 1.2 1.4
0.000

0.005

0.010

0.015

0.020

T/µ

k/µ

Figure 1: Critical temperatures for the onset of the striped instability for each wavenumber
k/µ, constructed using a zero-mode analysis. For the model considered in this paper this
curve gives the boundary of the region where striped solutions exist.

As the system is cooled we first encounter a single zero-mode at T/µ = (T/µ)c,max at

the scale k/µ ' 0.783. Thus the natural strategy for constructing nonlinear solutions is to
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consider those solutions which are continuously connected to this mode. In particular, in

the next section we consider those solutions which emerge from starting with a single zero-

mode of wavenumber k and lowering the temperature. This gives rise to a two parameter

family of solutions labelled by k/µ and T/µ.

As a side remark, as there are two zero-modes at temperatures T/µ < (T/µ)c,max,

a second possibility is that there are additional branches of nonlinear solutions which

connect with a superposition of them. In the numerical method used we must fix the

periodicity of the solution and so this scenario is largely excluded, except at a discrete

set of temperatures for which the higher zero-mode wavenumber is an integer multiple of

the lower. We have not constructed any solutions of this type, though we anticipate that

if they do exist they will be thermodynamically subdominant.

4 Nonlinear solutions

If we fix the periodicity of the solution and lower the temperature then [22] (see also

[21] for similar models) showed the existence of a second order phase transition. More

generally though, as discussed in section 3, there is a two parameter family of solutions

connecting with the RN branch along the line of striped zero-modes shown in figure 1.

Here we construct these solutions and investigate the thermodynamically preferred stripe

as a function of the temperature, k
µ
(T
µ

).

We begin by considering the space of such solutions which exist at a fixed temperature

T/µ, for which various averaged thermodynamic quantities are shown in figure 2. First we

note that the striped solutions exist within the interval defined by the locations of the two

zero-modes at this temperature. Additionally we see that the free energy and the entropy

of the striped phase is always lower than the RN value. Note that the thermodynamically

preferred striped solution at this temperature appears to have the property Px = P̄y,
and we will discuss this shortly. The relationship between ε̄ and Px, P̄y follows from

conformality.

Extending this analysis to the two parameter family, in figure 3 we show the averaged

free energy w̄ where the RN value has been subtracted. We have only found striped solu-

tions below the threshold temperature, indicated in blue, where they dominate.1 Outside

this region we have simply plotted the RN values. Considering the system at any fixed

k/µ we see that there is a continuous phase transition to the broken phase, as seen for a

specific value in [22]. However, as emphasised we should determine the preferred k/µ as

a function of the temperature. This locus of solutions is given by the red line in figure

3. For clarity we also plot the dominant k
µ
(T
µ

) in figure 4, showing a monotonic growth in

the stripe size as the temperature is reduced. Furthermore it approaches a non-zero value

1See however, an example of a different model in [22] where solutions at higher temperatures were
found.
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Figure 2: The spatially averaged stress tensor, free energy, charge density and entropy
density in the space of solutions labelled by k/µ a fixed T/µ = 0.01. The dashed line
indicates the k/µ which minimises w̄ at this temperature.

at low temperatures.

k/µ

T/µ

w̄−wRN

µ3

Figure 3: The two parameter family of striped black branes, which exist at temperatures
below the line of striped zero-modes indicated in blue. Plotted is the difference between the
spatially-averaged free energy w̄(k/µ, T/µ) and that of the RN solution, with the striped
solutions dominant. The red line indicates the line of solutions obtained by minimising
w̄ with respect to k/µ at constant T/µ. The remaining contours show solutions of equal
free energy difference.

We now restrict our attention to this preferred line of solutions. Again, we see that

there is a continuous phase transition, illustrated by the free energy shown in figure 5.

Figure 6 shows the entropy density, which via the first law indicates a that the transition is

second order. Following the system to lower temperatures, T/µ = 0.001, we see evidence

of a zero entropy state emerging at zero temperature.
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Figure 4: The thermodynamically dominant striped black brane labelled by k/µ (i.e.
periodicity 2πµ/k) as a function of temperature T/µ. The blue line is a section of the
zero-mode curve displayed in figure 1. To accentuate the trend at low temperatures we
have included the black dashed line which gives the best linear fit in the range 0.011 <
T/µ < (T/µ)c,max.
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Figure 5: Left: Averaged free energy density for the thermodynamically preferred striped
solutions labelled in figure 4, with RN shown in black. Right: Difference with the free
energy density of the RN branch.
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Figure 6: Averaged entropy density, s̄, for the thermodynamically preferred striped solu-
tions labelled in figure 4. The right panel shows this quantity in the vicinity of the phase
transition indicating a second order phase transition. RN is shown in black.
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For the five-dimensional helical black branes constructed in [19, 20], it was found that

the thermodynamically preferred solutions at fixed temperature were characterised by the

vanishing of a particular quantity in the boundary stress tensor. Here we work in four

dimensions, and we seek a analogous statement. One way of characterising the vanishing

quantity of [19, 20] is through the relation 〈Txx〉 = ε̄/d in the case where the stress tensor

depends on the coordinate x and d is the spatial dimension of the boundary.2 Indeed, we

find that along the preferred line of d = 2 inhomogeneous solutions studied in this paper,

this relation holds within numerical accuracy, and is not satisfied away from this locus.

This is clearly demonstrated for the space of solutions at the fixed T/µ shown in figure

2. This is equivalent to the relation amongst averaged boundary data, 2X(3) + T̄ (3) = 0.

For all solutions presented in this paper we find that the spatial average of 〈Tty〉 and

〈Jy〉 vanishes, consistent with the perturbative structure [8]. Consequently if the relation

〈Txx〉 = ε̄/d is satisfied, then conformality implies that both the spatially averaged stress

tensor and spatially averaged current are isotropic. In order to numerically test this

relation more comprehensively, it is convenient to define the dimensionless ratio,

δ ≡ 〈Txx〉 − ε̄/d
〈Txx〉

. (4.1)

In figure 7 we plot this quantity for the two parameter family of black branes. In general,

δ 6= 0, but we find that it vanishes along the line of thermodynamically preferred solutions.

5 Final comments

We have constructed a two-parameter family of cohomogeneity-two black brane solutions

with AdS4 asymptotics, dual to a phase at finite charge density with spontaneously broken

translational invariance in one direction. The family may be described as a space of

solutions labelled by their periodicity in one of the spatial boundary directions, 2πµ/k, at

each temperature T/µ. This work builds on the results [22] (see also [21]) where second

order phase transitions were found for one parameter families at fixed k/µ in this model.

In section 4, for the two parameter family, we find continuous phase transitions at

the threshold of the linear striped instabilities. In other words, if we were to fix the

periodicity of the system somehow, then the phase boundary would be given by the zero-

mode analysis, illustrated by the characteristic ‘bell curve’ in figure 1. However, in the

absence of such a restriction we are interested in those solutions which minimise the free

energy at a given temperature, T/µ. Constructing this set of solutions, we have found

the preferred scale as a function of temperature k
µ
(T
µ

), with the stripe size monotonically

growing as the temperature is reduced, approaching a non-zero value at low temperatures.

2In the notation of [19, 20], xhere = x1 whilst the relation 〈Txx〉 = ε̄/d amounts to the vanishing of
the boundary data ch.
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Figure 7: Left: Contour plot for the quantity δ defined in (4.1) for the two-parameter
family of solutions. The blue curve shows the location of striped zero-modes about the
RN solution. The red line shows the dominant striped solution at each T/µ. Right: The
quantity log10 |δ| for the thermodynamically preferred solutions showing δ ' 0. Note that
the dominant error and associated scatter in this plot may be attributed to the extraction
of the stress tensor; we observe convergence towards zero with N .

We also examined the properties of this preferred set of solutions. As in the fixed

k/µ case, we have shown that the system exhibits a second order phase transition to the

inhomogeneous phase, with the entropy appearing to vanish as the inhomogeneous zero

temperature state is approached. Constructing these states directly at zero temperature

would be profitable. Motivated by an analogous feature in the helical black brane setting

[19, 20] we have examined a particular combination of stress-tensor components, δ. We

find that whilst δ is non-zero in general for the two parameter family, it vanishes along

the line of solutions which dominate the ensemble at fixed T/µ. In this case, vanish-

ing δ implies isotropy of the spatially-averaged stress tensor. It would be interesting to

investigate the origin of this feature.

Finally, we stress that we have focussed on cohomogeneity-two solutions. More gener-

ally we anticipate that there is a cohomogeneity-three family of solutions emerging from

the bell-curve (figure 1), which may turn out to dominate the ensemble.
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