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We consider holographic renormalization for the decoupling limit of coincident Dp-branes. We
truncate the theory to the supergravity sector which is homogeneous on the (8 − p)-sphere and
carries only RR electric (p+2)-flux, leaving a graviton and two scalar degrees of freedom associated
to the dilaton and the sphere radius. We non-linearly construct the asymptotic graviton and dila-
ton deformations – the analog of the Graham-Fefferman expansion for AdS/CFT – and compute
counterterms to give a finite renormalized bulk action and dual one point functions. Restricting to
linear deformations we find additional counterterms to include the remaining sphere deformations
which strongly deform the asymptotic behaviour.

PACS numbers: 04.60.Cf, 11.25.Tq

I. INTRODUCTION

The conjecture of Maldacena’s AdS/CFT correspondence [1] provides remarkable insight into the structure of non-
perturbative string theory and quantum gravity. The holographic dictionary [2, 3] between the asymptotic supergravity
behaviour of this string theory and the dual CFT, and the subsequent holographic renormalization group developed in
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] extending previous ideas of Brown and York [16] provide the tools to connect the
two sides of the correspondence in detail. Whilst this holographic renormalization group originated for the AdS5×S5

near horizon geometry of decoupled D3-branes, it is now taken to apply whenever one considers strings or M-theory
on a target spacetime which asymptotically has an AdS factor.
An interesting generalization of AdS/CFT was proposed by Itzhaki et al [17] where the decoupling limit of coincident

Dp-branes for p ≤ 4 was argued to be dual to 16 supercharge Yang-Mills theory in (1+p)-dimensions, the worldvolume
theory living on these branes [18]. For p 6= 3 the theory is no longer conformal, although there does appear to exist a
generalization of the conformal symmetry [19], which is related to the existance of a ‘dual frame’ where the geometry
has an AdS factor [20]. The holographic aspects of the duality have been discussed in the context of Dp-branes in [21].
The extraction of the dual Yang-Mills thermodynamics from the near extremal behaviour of thermal Dp-brane black
holes [22, 23, 24] was performed in [25]. Several works have addressed the computation of two point functions. In
particular for p = 1 the stress tensor 2 point functions were computed [26, 27], and for p = 0 a full harmonic analysis
of the vacuum solution was performed [28] and all 2 point functions computed. Shortly after it was argued that in
analogy to p = 3, the generalized conformal symmetry actually constrains all 2 point functions to have a simple form
[29]. The map between worldvolume operators and supergravity fields has also been explored in detail[28, 30, 31].
Recently quasinormal mode spectra have been computed [32] and shear viscosity extracted from the two point stress
energy correlator [33]. Investigation of the analog of the BMN limit [34] has also been performed [35, 36].
The case of p 6= 3 is of considerable interest as it appears that the lower dimensional cases, p < 3, are more

accessible to direct numerical lattice computation in the Yang-Mills theory due partly to their superrenormalizablity,
and partly as fewer dimensions require less lattice points for the same lattice spacing. For p = 4 the field theory is
non-renormalizable, and hence numerical tests will not be possible. For this reason we will only consider the case p < 3
in this paper. Recent numerical attempts to test the correspondence have been made for p = 1 by computing the stress
tensor two point correlation function [37, 38], and for p = 0 by computing the theory at finite temperature in order
to extract dual black hole entropy [39, 40, 41, 42]. For the case p = 0 there have also been analytic approximation
methods used to study this thermal behaviour of theory [43, 44, 45, 46, 47].
With recent development of exact 16 supercharge supersymmetric lattices [48, 49, 50, 51] it is reasonable to hope

much numerical progress will be made in the future for the low dimensional cases of the correspondence. This provides
a good motivation to consider more carefully the map between supergravity and field theory. Knowing only predictions
for two point functions and thermal behaviour provides only limited scope for explicit tests of the correspondence. In
principle, if we are able to numerically solve these theories, we would like to perform detailed tests by deforming the
field theory with various sources and examining its response, and comparing the prediction from the string theory. It
is precisely the technology of holographic renormalization that allows one to make predictions from supergravity for
the connection between deformation by sources and the response in expectations values in the field theory.
Whereas the Graham-Fefferman expansion [52] and holographic renormalization for the asymptotic supergravity of

the dual string theory has been well developed for the AdS/CFT case p = 3, it has not been extended to these other
non-conformal cases. Holographic renormalization has been successfully extended to a non-AdS/CFT duality only in
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the case of cascading gauge theories [53, 54] and little string theory [55]. We note that previous work has considered
the boundary stress tensor specifically for thermal Dp-brane solutions in [56] finding consistency with [25].
Thus the aim of this paper is to extend the Graham-Fefferman expansion and holographic renormalization to the

case of coincident Dp-branes for p < 3. We begin the paper in section 2 by discussing the truncation of the string
theory dual to (1 + p)-dimensional maximally supersymmetric Yang-Mills to a particular supergravity sector. In
section 3 we use linear theory to identify the physical deformations of the supergravity vacuum solution, and compute
their asymptotic form. We study a subclass of these in the full non-linear theory. In section 4 we discuss holographic
renormalization for the theory using this asymptotic behaviour of the physical modes. We conclude with a brief
discussion in section 5.

II. NEAR HORIZON GEOMETRY OF Dp-BRANES

The duality of Itzhaki et al [17] states that Type IIA/B strings in the near horizon region of N coincident Dp-branes
with p even/odd and p ≤ 4 is dual to 16 supercharge U(N) Yang-Mills in (1+ p)-dimensions with coupling gYM . The
string theory may be described by Type IIA/B supergravity provided the string coupling is small and string frame
curvatures are small compared to α′ = l2s. The bosonic part of this supergravity action in Einstein frame is,

S =
1

2κ2
10

∫

d10x
√
−G

(

R− 1

2
(∂Φ)2 − g

(p−3)
2

s
e

(3−p)
2 Φ

2
|Fp+2|2

)

(1)

where gs is the string coupling, defined in terms of the dilaton in the asymptotically flat region of the spacetime.
We use coordinates xA, A = 0, . . . , 9, the Einstein-frame metric is G, we use |Fp+2|2 = 1

(p+2)!Fσ1···σp+2F
σ1···σp+2 and

where F is the (p+ 2)-form field strength for the RR-potential that is sourced by the presence of the Dp-branes and
we have neglected the remaining NS-NS and RR form field strengths which may consistently be set to zero. We have
taken 2κ2

10 = (2π)7g2sℓ
8
s.

The decoupling limit is given by considering fixed g2YM = (2π)p−2gsα
′(p−3)/2 as α′ → 0. Following Itzhaki et al [17]

finite energy excitations no longer see the asymptotically flat greometry, and instead in the supergravity approximation
see a string frame metric, dilaton and RR potential,

ds2string = α′

(

U
7−p

2

gYM (dpN)1/2
ηµν dx

µdxν +
gYM (dpN)1/2

U (7−p)/2

(

dU2 + U2dΩ2
8−p

)

)

eΦ = (2π)2−pg2YM

(

U7−p

g2YMdpN

)

p−3
4

A01...p =
α′2U7−p

g2YMdpN
− 1, (2)

where dp = 27−2pπ
3(3−p)

2 Γ ((7− p)/2). Here µ, ν = 0, . . . , p are the coordinates transverse to the worldvolume of the
Dp-branes. The radial variable U is interpreted as the energy scale associated to strings stretched between the N
Dp-branes and a probe Dp-brane at radial position U , and hence is thought of as an energy scale in the dual Yang-
Mills. We note that as with p = 3 the interpretation of the energy depends on the precise probe being considered, and
supergravity modes infact see an energy scale E ∼ U (5−p)/2/

√

Ng2YM [21]. For p < 3 the string theory, with effective
string coupling eΦ, is weakly coupled in the UV, U → ∞. The non-trivial dilaton profile indicates the dual theory is
not conformal, which can be simply seen as the Yang-Mills coupling is dimensional.
The curvature Rstring of the string frame metric derives from the size of the (8 − p)-sphere, and is given in string

units by,

α′Rstring ∼ U3−p

Ng2YM

. (3)

Hence a concern for p < 3 is that for sufficiently large energies U we see a singular behaviour in the UV boundary
region of the vacuum solution. This indicates that the supergravity truncation might break down and we should
take into account α′ corrections. Since holographic renormalization crucially uses the structure of the supergravity
solutions in the near boundary region we might initially ask whether this can be studied self-consistently.
Let us assume we have a fixed characteristic energy scale U0 that is of interest. The dimensionless Yang-Mills effective

coupling at this energy scale is λ = Ng2YMUp−3
0 . We may then form a dimensionless radial variable z = U0/U . The
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ultraviolet region of the geometry is then as z → 0. For p = 3 the duality is the familiar AdS/CFT correspondence [1],
and the geometry is AdS5 × S5 with constant dilaton, with z being the Poincare coordinate, and z = 0 being the
conformal boundary. As for p = 3, we see that z = 0 is a conformal boundary of the supergravity geometry
(independent of frame), and we use the usual terminology that it is the boundary. For our vacuum solution the string
coupling and curvature become,

α′Rstring ∼ 1

λ
z−(3−p)

eΦ ∼ λ
7−p

4

N
z(7−p)(3−p)/4 (4)

and hence for supergravity to be consistent in the bulk for z ∼ O(1) we require the strict large N , and large λ limit.
We will be interested in deforming the vacuum solution above for p < 3 to introduce some characteristic energy scale
U0. Having done this we see that the supergravity solution is valid in this limit near the boundary for the range,

λ−1/(3−p) < z. (5)

Thus it is an important point that while the supergravity solution breaks down near the boundary, provided we
have large N and large λ, we may employ the supergravity approximation close enough to the boundary to use the
holographic renormalization group.
For the remainder of the paper we will use the Einstein frame metric,

ds2Einstein = GABdx
AdxB = β

(

z−
(7−p)2

8 ηµνdx
µdxν +

(

λdp
U2
0

)

z
−p2+6p−25

8

(

dz2 + z2dΩ2
8−p

)

)

eΦ =
gs

β
2(3−p)
(7−p)

z
(3−p)(7−p)

4

A01...p = β
8

7−p
1

z7−p
− 1 (6)

where we have defined the dimensionless combination,

β ≡
(

α′U2
0

√

λdp

)

(7−p)
4

, (7)

and we will use units where λdpU
−2
0 = 1. For convenience we also define,

eφ ≡ β
2(3−p)
(7−p)

gs
eΦ. (8)

Recall that we have truncated the string theory to the supergravity sector, and have also truncated to only include
the RR (p + 2)-form field strength. For the remainder of the paper we will be concerned with deformations of the
above vacuum solution and for convenience we will make the following further consistent truncations. Firstly we will
only consider deformations that preserve the SO(9 − p) isometry of the (8 − p)-sphere. Hence metric functions will
depend only on the worldvolume coordinates xµ and the radial coordinate r. Secondly we will restrict to deformations
of the field strength given by a purely ‘electric’ potential, so that A01...p is a scalar function and all other components
of this antisymmetric potential vanish.
Let us combine the worldvolume coordinates xµ and radial z into a set xa = {xµ, z} so a = 0, . . . , (p + 1). Our

truncation to homogeneity on the (8− p)-sphere allows us to write the 10-d Einstein frame metric as,

GABdx
AdxB = β

(

gab (x
µ, z)dxadxb + e2S(xµ,z)dΩ2

8−p

)

. (9)

With our truncation to electric RR fluctuations only, the field strength is constrained by its equations of motion to
be,

|Fp+2|2 = −(7− p)2β
(p2−5p+2)

(7−p) e−(3−p)φ−2(8−p)S (10)
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and we may write a (p+ 2)-dimensional action Strunc that yields the truncated field equations,

Strunc =
β4V8−p

κ2
10

∫

dp+2x
√−gLtrunc

Ltrunc =
1

2
e(8−p)S

(

R− 1

2
(∂φ)

2
+ (7− p)(8 − p) (∂S)

2
+ (7 − p)(8− p)e−2S − (7− p)2

2
e−

(3−p)
2 φ−2(8−p)S

)

, (11)

bearing in mind that this is not simply the result of substituting the flux equation above into the original action [57].

V8−p ≡ 2 (π)
9−p

2 /Γ
(

9−p
2

)

is the volume of the unit (8− p)-sphere.
We will shortly be concerned with the most general deformations of the above vacuum solution that reside in our

consistently truncated sector of the supergravity. In the case that p = 3 Witten has argued [3] that supergravity
degrees of freedom with infinite action (non-normalizable deformations) are dual to a source term for a specific
operator in the field theory. Finite action (normalizable) deformations for the same degree of freedom are dual to
VEV’s for that operator. In the case of p = 3 the program of holographic renormalization, which allows identification
of these normalizable and non-normalizable deformations, has now become very well developed [5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 58]. The procedure involves constructing a renormalized action which is finite for all deformations.
This may be achieved by introducing a geometric cut-off or boundary, and including counterterms that are intrinsic
to this boundary. Then removing the boundary yields a finite result. Hence we will later consider the action above,
integrated only up to a boundary which we will take to reside at z = ǫ. Calling the regulated action Sreg, we then
have,

Sreg(ǫ) =
β4V8−p

κ2
10

{∫

z≥ǫ

dz dp+1xLtrunc −
∫

z=ǫ

dpx
√−γKγ

}

, (12)

where now we have included the Gibbons-Hawking boundary term where γ is the induced metric on the boundary
and Kγ is the trace of the second fundamental form.
In considering the deformations of the vacuum solution we will make the following coordinate choice,

gabdx
adxa = γµν (x, z)dx

µdxν + e2R(x,z)dz2, (13)

to adapt our coordinate system to the boundary we introduce at z = ǫ. We note that we have not yet locally fixed the
gauge. We locally have (p+2) coordinates that we may transform, and having set the off-diagonal metric components
to zero constrains (p+1) of these (p+2) local transformations. We might use this remaining freedom to set R = 0, and
hence take a Gaussian normal coordinate system to the boundary, but instead we will leave this freedom explicitly for
now, returning to fix it later. In appendix A we give the 10-d field equations obtained after employing our truncations
and coordinate choice above.

III. NEAR BOUNDARY DEFORMATIONS OF THE VACUUM

We begin by considering linear perturbations about the vacuum solution above in order to understand the degrees
of freedom present in our truncation, and in addition any residual gauge invariance. From the Lagrangian above we
have gravity coupled to 2 scalar fields coming from the dilaton φ and (8 − p)-sphere radius S. Hence we expect to
have degrees of freedom for a graviton in (p + 2)-dimensions and the 2 scalar degrees of freedom, although we note
that these will be combinations of the fields φ, S and the trace of the (p+ 2)-metric. Imagining that we may deform
away from our vacuum solution at the boundary and then ‘integrate in’ to the interior we may then consider the data
we should specify at the boundary [73]. Introducing a cut-off at z = ǫ and treating this as a ‘Cauchy’ surface one
should specify the values of the scalars on this surface and their momenta, given by their normal derivatives. Let us
consider the tensor degree of freedom more carefully. For the graviton one should specify the induced metric on the
surface and its momenta. As ADM have shown [59], the diffeomorphism invariance implies there are less degrees of
freedom than components of this induced metric. The residual coordinate freedom within the slice may be thought
of as removing the transverse freedom in the induced metric and the freedom normal to the slice may be thought of
as removing the trace. Likewise the constraint equations, the (zz) and (zµ) components of the Einstein equations,
correspondingly constrain the trace and transverse part of the metric momentum. Hence both in the metric and its
momentum, the (p+ 1)(p+ 2)/2 components are reduced to p(p+ 1)/2 actual degrees of freedom.
We will shortly exhibit the linear solutions showing that they capture precisely the expected degrees of freedom.

There are two types of deformation; the graviton/dilaton and the sphere. The graviton/dilaton deformations comprise
the graviton and a scalar degree of freedom with the same behaviour near the boundary. Both the field and its
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momentum must be specified on the cut-off surface for these degrees of freedom. We identify this scalar degree of
freedom with the dilaton as the sphere scalar is determined in terms of the dilaton. The sphere deformation is a scalar
degree of freedom, independent of the dilaton, again with value and momentum to specify. As we shall see the sphere
deformation behaviour is more pathological near the boundary, and turning it on takes one away from the decoupled
near horizon region back to the asymptotically flat Dp-brane solution.
Having constructed the full linear solution of the near boundary behaviour, we then construct the non-linear

extension of the graviton/dilaton mode. It is possible to discuss this mode independently of the sphere mode because
the action (11) admits a further consistent truncation which turns off the sphere deformation:

S = − (3− p)

4(7− p)
φ. (14)

Imposing (14) in the field equations obtained from (11) one finds that the S and φ equations of motion become the
same, hence this truncation is consistent. Upon imposing this relation at the level of the action (11), one obtains

Sgraviton/dilaton =
β4V8−p

κ2
10

∫

dp+2x
√
−gLgraviton/dilaton

Lgraviton/dilaton =
1

2
e−

(8−p)(3−p)
4(7−p)

φ

(

R− (7 − p)2p− 16

16(7− p)
(∂φ)

2
+

(7 − p)(9− p)

2
e

(3−p)
2(7−p)

φ

)

, (15)

which yield the correct truncated equations of motion, whose deformations consist only of the graviton/dilaton mode.
Since the sphere mode has a pathological behaviour, as we shall discuss, we do not discuss it non-linearly.

A. Linearized analysis of deformations

Before we proceed to discuss the linear solution we must address the residual gauge invariance. There are two
sources of this. Firstly we have not fixed the lapse function R in our metric ansatz. This means that we expect locally
to have one function parameterize this freedom and to be undetermined in any solution. Secondly, the metric form is
invariant under a coordinate transformation only depending on x.
We now use a power series expansion in z to solve the Einstein equations near the boundary z = 0 and show that

we do indeed capture the 2 scalar and graviton degrees of freedom correctly. The ansatz we take is,

γij = z
−(7−p)2

8

(

ηij + zq
∞
∑

n=0

ℓq,n
γij (x) z

n(5−p)

)

,

2R =
−p2 + 6p− 25

8
log z − zq

∞
∑

n=0

ℓq,n

R (x) zn(5−p),

2S =
−(p− 3)2

8
log z − zq

∞
∑

n=0

ℓq,n

S (x) zn(5−p),

φ =
(7− p)(3 − p)

4
log z + zq

∞
∑

n=0

ℓq,n

φ (x) zn(5−p), (16)

where we must solve for q from the indicial equations which result from the lowest power of z that arises when
expanding the Einstein equations. We have introduced the label ℓq to indicate the value of q to which the deformation
belongs, defined in each case below.
We now state the linear solutions to the Einstein equations. First we consider the leading behaviours allowed by

the indicial equations,

Mode ℓq
ℓq,0
γij

ℓq,0

R
ℓq,0

S
ℓq,0

φ

q = −(7− p) −1 − (7−p)
2(3−p)ηij

−1,0

φ (8− p)
−1,0

S + (7−p)(p+1)
2(3−p)

−1,0

φ — —

q = 2(7− p) 2 − (7−p)
2(3−p)ηij

2,0

φ 2(8−p)(3−p)(5p−33)
2,0

S +(7−p)(5p2−34p+9)
2,0

φ
2(9−p)(3−p) — —

q = 0 0 —
(p2−9p+18)

2(p−7)

0,0

φ (3−p)
2(7−p)

0,0

φ —

q = (7− p) 1 constraint (17)
(p2−9p+18)

2(p−7)

1,0

φ + ηij
1,0
γij

(3−p)
2(7−p)

1,0

φ —
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where
1,0
γij is subject to the constraint equation,

4(7− p)ηmn∂m
1,0
γni − 2(5− p)∂iη

mn 1,0
γmn + (3 − p)(7− p)∂i

1,0

φ = 0. (17)

Data which is undetermined in this near boundary analysis is indicated by ‘—’. Notice that
ℓq,0

φ is free in each mode
and, as we shall see shortly, parameterizes part of our local residual gauge freedom. Secondly, the subleading terms in
each expansion are then determined by the recursion relations for n > 0 in terms of the deformations at order n− 1.
The remainder of the local gauge freedom is exhibited in the fact that these recursion relations do not determine any
ℓq,n

φ . The relations we find are,

ℓq,n

S =
(3− p)

2(7− p)

ℓq,n

φ

+
(9− p)

ℓq,n−1

�ηR + (2n(p− 8)(p− 5) + 27p+ 16q − 2p(p+ q)− 89)
ℓq,n−1

�ηS

(p− 7)2(n(p− 5)− 2p− q + 14)(n(p− 5) + p− q − 7)

+
2(−n(p− 5) + p+ q − 5)

ℓq,n−1

R
(p− 7)2(n(p− 5)− 2p− q + 14)(n(p− 5) + p− q − 7)

, (18)

ℓq,n

R =

(

(p− 3)2 + 16n(p− 5)− 16q
)

ℓq,n

φ

2(p− 7)(p− 3)
+

1

3

(

(p− 9)(p− 8)

(p− 7)3(−n(p− 5)− p+ q + 7)

+
(5p− 33)(p− 8)

(p− 7)3(−n(p− 5) + 2p+ q − 14)
− 6p

(p− 3)2(−n(p− 5) + p+ q − 7)

)

ℓq,n−1

�ηR

+
1

3
(p− 8)

(

6p

(p− 3)2(−n(p− 5) + p+ q − 7)
+

(2p− 15)(5p− 33)

(p− 7)3(n(p− 5)− 2p− q + 14)

+
(57− 4p)p− 201

(p− 7)3(n(p− 5) + p− q − 7)
+

96

(p− 7)2(p− 3)2

)

ℓq,n−1

�ηS

+
2

3

(

2(p− 8)(p− 6)

(p− 7)3(n(p− 5) + p− q − 7)
− 3(p− 1)

(p− 3)2(−n(p− 5) + p+ q − 7)

+
(p− 8)(5p− 33)

(p− 7)3(−n(p− 5) + 2p+ q − 14)
− 48

(p− 7)2(p− 3)2

)

ℓq,n−1

R , (19)

ℓq,n
γij = − (7− p)

2(3− p)

ℓq,n

φ ηij

+
(p− 9)

ℓq,n−1

�ηR + (8 − p)((2n− 1)(p− 5)− 2q)
ℓq,n−1

�ηS + (2(n− 1)(p− 5)− 2q)
ℓq,n−1

R
(p− 3)2(n(p− 5)− q)(n(p− 5)− p− q + 7)

ηij

+
∂i∂j

ℓq,n−1

R + (8− p)∂i∂j
ℓq,n−1

S + 2
ℓq,n−1

Rij

(n(p− 5)− q)(n(p− 5)− p− q + 7)
, (20)

where �η = ηij∂i∂j . Up to the required order, there is only one divergence in these recursion relations at the following
point:

(p, q, n) = (2,−7 + p, 5). (21)

One may worry about the choices of (1,−7+p, 3) and (1, 0, 3) where some of the denominators in the recursion relations
vanish, however it is easily verified using the recursion relations for n < 3 that these cancel amongst themselves. The
true divergence found here corresponds to the leading data of the modes q = −(7 − p) and q = 2(7 − p) coinciding
at order z10. The coincidence of data at a value of z in general means that one should include logarithmic terms in
the z expansion at that order. For example, in the case where p = 3 it is this logarithm which gives rise to the field
theory conformal anomaly [4]. In section IVC we will indeed see that the p = 2 case will contribute a logarithmic
term to the one-point functions.
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B. A preferred gauge: homogeneous dilaton

As mentioned above the freedom of
ℓq,n

φ for n ≥ 0 in each solution above is a result of our local residual gauge
freedom due to the unspecified lapse. We now explicitly show this using the coordinate transformation,

z → z′ = z (1 + F (x, z)) , (22)

xi → x
′i = xi + ηij∂jG(x, z), (23)

where we linearize in the functions F and G. These transformations induce an infinitesimal shift in the fields

δφ(x, z) =
(3− p)(7 − p)

4
F, (24)

δγij = z−
(7−p)2

8

(

− (7− p)2

8
ηijF + 2∂i∂jG

)

, (25)

δγiz = z−
(7−p)2

8 ∂i
(

∂zG+ z4−pF
)

, (26)

δ(2R) = − (3− p)2

8
F + 2z∂zF, (27)

δ(2S) = − (3− p)2

8
F. (28)

In order to preserve our metric ansatz the transformation must have δgiz = 0 and hence G =
∫

dzz4−pF . Then taking
F to have the following z expansion,

F (x, z) = zq
∞
∑

n=0

ℓq,n

F (x) zn(5−p), (29)

we see the transformation preserves the form of our metric, and also of our power series solution above. Hence

our gauge freedom is given in terms of the functions
ℓq,n

F (x) for n ≥ 0 which parameterize the local freedom of our
unspecified lapse.
We may now consider various gauge choices. One obvious choice is that one may, for any p, take the lapse

perturbation
ℓq,n

R to vanish, giving the analog of Gaussian normal coordinates. However, provided p 6= 3 we may

instead choose to set either
ℓq,n

φ ,
ℓq,n

S or some combination of them to zero by the appropriate choice of
ℓq,n

F (x).

The gauge we choose to work with is that where the dilaton is unperturbed, ie.
ℓq,n

φ = 0. We will term this the
‘homogeneous dilaton’ gauge, as the dilaton φ is then only a function of z. Hence we choose our coordinate system
such that the relation between our radial coordinate z and the value of the dilaton is fixed. For the cases p 6= 3 this
is a very physical gauge to choose, as the varying dilaton does pick a preferred radial slicing, and in particular since
the dilaton profile is dual to the running of the Yang-Mills coupling in this gauge we have ensured in the dual picture
that we are renormalizing our Yang-Mills theory such that the coupling only depends on energy and not position,
as is natural from the field theory point of view. While this gauge is possible for a dual with running coupling,
and hence non-trivial dilaton profile, in the conformal case p = 3 since the vacuum has constant dilaton one clearly
cannot take this gauge, and it is conventional instead to use the Gaussian-Normal choice δR = 0, familiar from the
Graham-Fefferman expansion.
Another important reason that the homogeneous dilaton gauge is attractive is that from the bulk string theory

perspective there are several natural choices of frame - the Einstein frame which we are using, the string frame or
the ‘dual’ frame. The metric in each frame differs by a conformal factor which is a power of eφ. As is usual when
considering choices of frame, nothing physical should depend on which choice one makes. An attractive feature of our
gauge is that this is manifest rather simply in that under a change of frame, the only change to our near boundary

expansion (16) is the leading z behaviour, and the coefficients
ℓq,n
γij (x),

ℓq ,n

R (x),
ℓq,n

S (x) are invariant, as are their recursion
relations (18).
Note that in addition to the local coordinate freedom above, we may also perform a coordinate transformation

xi → x
′i = xi + ξi(x), which only depending on the x coordinates is the remaining global residual freedom.
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C. The physical modes

Let us now reconsider the behaviour of our linear deformations using the homogenous dilaton gauge. Now
ℓq,n

φ = 0
for n ≥ 0. We have,

Mode ℓq
ℓq,0
γij

ℓq,0

R
ℓq,0

S Description

q = −(7− p) −1 0 (8− p)
−1,0

S — Sphere non-normalizable

q = 2(7− p) 2 0 (8−p)(5p−33)
(9−p)

2,0

S — Sphere normalizable

q = 0 0 — 0 0 Graviton/Dilaton non-normalizable

q = (7− p) 1 constraint (30) ηij
1,0
γij 0 Graviton/Dilaton normalizable

where
1,0
γij is subject to the constraint equation,

4(7− p)ηmn∂m
1,0
γni − 2(5− p)∂iη

mn 1,0
γmn = 0. (30)

Let us now count our degrees of freedom. We see in our homogenous dilaton gauge the modes q = −(7−p),+2(7−p)
are scalar deformations only involving the (8−p)-sphere. Hence these constitute one scalar and its momentum degree
of freedom. The remaining non-trivial modes, q = 0, q = (7 − p) are deformations only of the metric, leaving the
sphere unperturbed. Clearly these include the graviton degrees of freedom we expect to find. Note that the transverse

part of
0,0
γij is unphysical due to the global coordinate freedom xi → x

′i = xi + ξi(x), and likewise the momentum
q = (7− p) mode has the explicit constraint (30) on the transverse part. However, we see that in this gauge the trace
of γij is unconstrained for both q = 0, (7 − p), and hence this trace forms the remaining scalar degree of freedom
that we expect to find. The trace of the metric and the scalar degrees of freedom mix in general, and since here S is
unperturbed we may attribute this scalar to the dilaton degree of freedom.
Hence we use the terminology that the q = −(7−p),+2(7−p) are the Sphere deformations, and the q = 0, q = (7−p)

are the Graviton/Dilaton deformations. We note now, and will discuss in more detail later, that the q = −(7 − p)
sphere and q = 0 graviton/dilaton modes of deformation give an infinite regulated action as the cut-off surface is
removed by taking ǫ → 0. Hence we term this non-normalizable. Conversely the q = +2(7−p) sphere and q = +(7−p)
graviton/dilaton modes are of finite regulated action and we term them normalizable.
We think of the non-normalizable part of the sphere and metric/dilaton deformations as being ‘Dirichlet’ data

that must be fixed at the boundary, and the normalizable part of the sphere and metric/dilaton deformations are
then determined dynamically by the solution of the Einstein equations. In the duality the non-normalizable modes
determine the sources for certain operators that deform the field theory action, and the normalizable modes determine
the VEVs of these operators.
Taking the limit p → 3, we indeed recover the expected scalings of the perturbations with the Poincare coordinate

z. The graviton/dilaton being marginal operators have a non-normalizable z0 and normalizable z4 behaviour. Hence
we expect that the graviton/dilaton non-normalizable deformations are dual to sources for the stress-tensor and
Lagrangian density (note that the trace of the stress-tensor is simply the Lagrangian density). For p = 3 the sphere
deformation mode has non-normalizable behaviour z−4 corresponding to an irrelevant operator. This mode has been
discussed in [60, 61, 62, 63], and is conjectured to be dual to the leading DBI correction to the open string Yang-Mills
description, ie. to an operator ∼ α′2F 4. Being irrelevant, one should only consider such a mode perturbatively.
Turning such a deformation on by a finite amount ‘destroys’ the asymptotic behaviour of the solution by reversing
the decoupling limit (where the DBI corrections vanish). Here for p 6= 3 it is natural to assume the same remains
true, and indeed we see the linear theory predicts the non-normalizable sphere deformation would indeed strongly
deform the asymptotic solution if we were to study it non-linearly. In the following we shall proceed to only treat the
graviton/dilaton deformations non-linearly, and will consider the sphere perturbation linearly.

D. Non-linearized analysis of graviton/dilaton deformations

We now perform a nonlinear analysis for the graviton/dilaton deformations, setting to zero the sphere perturbation.
We again compute the graviton/dilaton near boundary behaviour as a power series expansion in z proceding up to
z7−p order which will enable us to perform the holographic renormalization in the following section. The computation
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is performed in the homogeneous dilaton coordinates, and so φ is undeformed from its form in the vacuum solution.
The power series expansion takes the form analogous to that in the linear theory,

γij = z
−(7−p)2

8

(

0,0
γij(x) +

0,1
γij(x)z

5−p +
1,0
γij(x)z

7−p + . . .
)

,

2R =
−p2 + 6p− 25

8
log z −

(

0,0

R (x) +
0,1

R (x)z5−p +
1,0

R (x)z7−p + . . .

)

,

2S = − (p− 3)2

8
log z −

(

0,0

S (x) +
0,1

S (x)z5−p +
1,0

S (x)z7−p + . . .

)

,

φ =
(7− p)(3− p)

4
log z, (31)

up to the order of interest. The non-linear generalization of the q = 0, (7 − p) metric/dilaton modes are then given
by,

Mode ℓq n
ℓq,n
γij

ℓq,n

R
ℓq,n

S

q = 0(7− p) 0 0 — 0 0

q = 0(7− p) 0 1 1
(p−5)

0,0

Rij
1

(p−9)

0,0

R 0

q = 1(7− p) 1 0 constraint (33)
0,0

γij 1,0
γij 0

(32)

where
0,0

R and
0,0

Rij are the Ricci scalar and tensor of the metric
0,0
γij , and where

1,0
γij is subject to the constraint equation,

4(7− p)
0,0

∇j 1,0γji − 2(5− p)∂i
0,0

γmn 1,0
γmn = 0. (33)

IV. HOLOGRAPHIC RENORMALIZATION

In the previous section we have computed the near boundary behaviour for deformations of the vacuum. In
this section we proceed to compute the regulated action evaluated on-shell on our near boundary solutions above.
We denote the regulated action evaluated on-shell as Son−shell

reg (ǫ). The divergences in this when one removes the
regulator are, by definition, due to non-normalizable deformations. These divergences arise in our deformations
from only a few leading terms in the expansions of the non-normalizable deformations. Hence only knowledge of
the first few terms is typically required to compute them. Following [8, 11, 12, 14, 15] we renormalize the on-shell
action by introducing counterterms on the regulator boundary, Sct(ǫ), yielding a new renormalized action Srenorm =
limǫ→0

(

Son−shell
reg (ǫ)− Sct(ǫ)

)

which is finite when the regulator is removed, and is a function of the data in our
on-shell deformation.
Following the usual prescription the non-normalizable modes are dual to sources for certain operators in the dual

Yang-Mills. Then evaluating the renormalized action on our deformations, and varying with respect to the data of the
non-normalizable modes allows us to compute the dual VEVs for these operators. Whilst evaluating the counterterm
variations is simple as contributions only come from the boundary itself, Son−shell

reg involves an integral over all the
radial coordinate, and therefore whilst computing divergences only requires a few leading terms of the z expansions
to be known, naively computing variations with respect to the solution data requires knowledge to all orders in
our z expansions. However part of the elegance of holographic renormalization is that this is not the case. In fact
varying Son−shell

reg one may then perform an integration by parts to yield a contribution on the boundary, and a bulk
contribution that vanishes by virtue of the equations of motion. One then finds,

δSon−shell
reg (ǫ) =

β4V8−p

2κ2
10

∫

z=ǫ

dp+1x
√−γe(8−p)S

(

[

e−R∂zφ
]

δφ−
[

2(8− p)
(

K+ (7 − p)e−R∂zS
)]

δS

−
[

Kij − γijK − γij(8− p)e−R∂zS
]

δγij

)

, (34)

where Kij ≡ e−R

2 ∂zγij , K ≡ tr (K). Using this, variations of Son−shell
reg evaluated for our power series solutions may be

conveniently computed using only the leading terms of the expansion, with higher terms yielding no contribution in
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the ǫ → 0 limit. Note that provided the renormalized action Srenorm is indeed finite for all data of our near boundary
solutions, then variations of it with respect to these data will automatically be finite.
We have defined our regulator boundary to be at coordinate location z = ǫ. However depending on our coordinate

choice, this may be at different physical locations. The obvious choice is to take the regulator to be on constant
dilaton surfaces. We have discussed that for p 6= 3 a physical choice of radial coordinate z is precisely that picked out
by constant φ surfaces. Hence using this coordinate system our z = ǫ boundary is indeed a constant dilaton surface.
We will use the homogeneous dilaton (HD) coordinate system discussed above, and the counter terms we find will be
those particular to that gauge. Hence we will call our counter term action SHD

ct to emphasize that one must use the
homogeneous dilaton coordinates when computing the on-shell renormalized action. It would be a straightforward
exercise to generalize the action to not be restricted to this gauge, but we note that one should also include the
off-diagonal components of (13) in order to be fully general and for simplicitly we do not consider this further here.
We begin by computing the renormalized action for non-linear deformations of the graviton/dilaton. We then

proceed to extend this in the linear theory to include counterterms for the sphere deformations.

A. Holographic renormalization of graviton/dilaton deformations

The action evaluated on-shell for graviton/dilaton deformations takes the following form in its ǫ expansion,

Sreg(ǫ) ∼
β4V8−p

2κ2
10

∫

z=ǫ

dp+1x

√

−0,0
γ





0,0

f(x)

ǫ7−p
+

0,1

f(x)

ǫ2
+O

(

ǫ0
)



 , (35)

where
ℓq,n

f(x) denotes some function of q-mode deformations up to order n. Thus there are two terms which diverge
as the cutoff ǫ is removed and we expect to have to add counterterms with no derivatives to cancel the leading
divergence, and two derivatives to cancel the subleading one. We will employ our physically motivated homogeneous
dilaton gauge now. Hence on the regulating surface the value of the dilaton will be constant, and simply related to ǫ
as for the vacuum solution. We therefore use the ansatz,

SHD
ct (ǫ) =

β4V8−p

2κ2
10

∫

z=ǫ

dp+1x
√
γ
(

Aec1φ+c2S +Bec3φ+c4S + Cec5φ+c6SRγ

)

, (36)

where Rγ is the Ricci scalar of the induced metric at the regulator boundary γij . We have not included boundary
derivatives of φ in the action as φ is constant on the regulator surface. In addition since S is also homogeneous on
the boundary surface for the deformations in question we also have not included its derivatives in the action.
Substituting our deformations (31,32) into the regulated action and comparing with the counterterm action, we

find that the renormalized action is finite provided we choose,

A+B = 9− p C =
1

2

c1 =
(3− p)

4(7− p)
(c2 + p− 7) , c3 =

(3− p)

4(7− p)
(c4 + p− 7) , c5 =

(3− p)

4(7− p)
(c6 + p− 9) . (37)

We may now vary the renormalized action with respect to the non-normalizable data,
0,0

γij , in our deformation.

Following from p = 3 we interpret
0,0

γij as the metric for the dual Yang-Mills theory, and hence the source for the
Yang-Mills stress tensor. Then the expectation value of this stress tensor, 〈Tij〉, is given by this variation,

δSren = ℓim
ǫ→0

(

δSreg(ǫ)− δSHD
ct (ǫ)

)

=

∫

dp+1x

(

−1

2

√

−0,0
γ δ

0,0

γij 〈Tij〉
)

, (38)

and explicit computation gives,

〈Tij〉 =
β4V8−p

4 κ2
10

(

+2(7− p)
1,0
γij − (5− p)

0,0

γmn 1,0
γmn

0,0
γij

)

. (39)
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As a consequence of the (iz) Einstein constraint equation we find that the dual field theory stress tensor is conserved

in the metric
0,0
γij , so that,

0,0

∇i 〈Tij〉 = 0. (40)

Whereas in the p = 3 case the trace of the stress tensor is determined simply by the conformal anomaly and not
dynamically, in our case here, p 6= 3, the trace is dynamical and is governed by the trace of the metric deformation
which in our gauge is the dilaton scalar degree of freedom. The trace of the stress-tensor is simply proportional to
the Lagrangian density of the Yang-Mills theory, and hence we see that the dual operator to the trace of the metric is
this Lagrangian density as we should expect for the dual to the dilaton degree of freedom which directly determines
the Yang-Mills coupling.

B. Example: Thermal Dp-brane

As an example we consider the particular deformation due to turning on finite temperature. Then the solution
of interest is the decoupled limit of the thermal Dp-brane solution. This is as for the vacuum solution given above,
except that the Einstein-frame metric is deformed as [22, 23, 24],

ds2 = z̃−
(7−p)2

8

(

−1 +

(

r0
r−

)7−p

z̃7−p

)

dt2 + z̃−
(7−p)2

8 δijdx
idxj

+ r2−z̃
−p2+6p−25

8

(

1−
(

r0
r−

)7−p

z̃7−p

)−1

dz̃2 + r2−z̃
−

(3−p)2

8 dΩ2
8−p, (41)

where r7−p
0 ≡ r7−p

+ − r7−p
− , and r7−p

− = dpλα
′5−pU3−p

0 . Conveniently this solution is already in our homogeneous
dilaton coordinate system. Performing a simple rescaling of z̃,

z̃ = β
− 8

(7−p)2 z, (42)

we obtain the metric in a form compatable with our ansatz,

ds2 = β

{

z−
(7−p)2

8

(

−1 +

(

r0
r−

)7−p

β− 8
(7−p) z7−p

)

dt2 + z−
(7−p)2

8 δijdx
idxj

+ z
−p2+6p−25

8

(

1−
(

r0
r−

)7−p

β− 8
(7−p) z7−p

)−1

dz2 + z−
(3−p)2

8 dΩ2
8−p

}

, (43)

where we have chosen units so dpλU
−2
0 = 1. The deformation is of our graviton/dilaton type. There is no non-

normalizable part as
0,0
γij = 0, and only the normalizable data

1,0
γtt is non-vanishing. Calculating the expectation value

of the field theory stress-energy tensor from the obtained relations (39), and re-inserting appropriate powers of dpλU
−2
0

on dimensional grounds we find

〈ρ〉 = 〈Ttt〉 =
V8−p

κ2
10

(9− p)

4
r7−p
0 (44)

〈P〉 = 〈Txx〉 =
V8−p

κ2
10

(5− p)

4
r7−p
0 , (45)

where xx denotes any of the spatial worldvolume directions, and 〈ρ〉 , 〈P〉 are the expectation values of the energy
density and pressure respectively.
In the paper [56] the field theory stress tensor for this deformation was computed by choosing a frame where the

vacuum solution has an AdSp+2 factor - the ‘dual-frame’ - and then using the holographic stress tensor for the AdS
part of the metric evaluated on this solution. The result is the same. Furthermore in that reference the energy
density and pressure were computed using black hole thermodynamics for the asymptotically flat Dp-brane solution.
Subsequently taking the decoupling limit of these thermodynamic expressions gave rise to the same energy density
and pressure, showing consistency with the holographic approach.
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C. Holographic renormalization of linearized sphere deformations

In this section we extend the holographic renormalization analysis to include also the remaining sphere deformation.
However, since the non-normalizable part of this strongly changes the asymptotic behaviour of the solution, we only
consider this mode and its normalizable component linearly. We use the linear deformations of section III C and
extend the counterterm action found above for the graviton/dilaton deformation to this case. Since S is now not
homogeneous when the sphere deformations are turned on we may add to our graviton/dilaton counterterm action
(36) kinetic terms involving S on the boundary. Hence we use the counterterm action,

SHD
ct (ǫ) =

β4V8−p

2κ2
10

∫

dp+1x
√
γ

(

[

Aec1φ+c2S +Bec3φ+c4S + Cec5φ+c6SRγ

]

+
[

Dec7φ+c8S�γS + Eec9φ+c10S�
2
γS + Fec11φ+c12S�

3
γS +Gec13φ+c14S�

4
γS
]

)

z=ǫ

, (46)

where the terms in the first bracket are as for the graviton/dilaton calculation above. By expanding the first two
terms in this bracket to quadratic order in the deformations one can see that there are only three independent terms,
thus one expects a single ambiguity here. For the second bracket only the combinations Dc8, Ec10, F c12 and Gc14 are
independent parameters in the linear theory, as can be seen by integrating by parts.

In our linear solution the non-normalizable components are determined by the data
0,0
γij and

−1,0

S , and give rise to
the divergences in the regulated action. To determine the remaining counterterm parameters we look at variations
with respect to this data, and require that the divergences cancel. This is equivalent to requiring cancellation of
divergences in the action to quadratic order in the deformation, provided the undeformed action is regular. We find
that the remaining counterterm parameters are determined as,

A = 2(p−8)(p−7)3

(p−9)c22+4(p−8)(p−7)c2+2(p−8)(p−7)2
, D c8 = 3p−23

2 ,

E c10 = (7−p)2

4(11−p)(9−p)(8−p) , F c12 = (7−p)2

24(8−p)2(p2−20p+99) ,

G c14 = − (7−p)2(2p−25)
48(11−p)2(9−p)(8−p)3(1+p) , c4 = 2(8−p)(7−p)(c2+p−7)

c2(9−p)−2(8−p)(7−p) ,

c6 = 4(8−p)
(9−p) , c2k+1 = (3−p)

4(7−p) (c2k+2 + p− 3− 2k)

for k = 3, 4, 5, 6. Indeed for this set of counterterms the undeformed action is finite, and hence the deformed action
is finite too, up to quadratic order in the deformations. Thus we find no ambiguity in the counterterm ansatz for the
linear theory.
As discussed above, the sphere non-normalizable mode is dual to a source for a higher-dimension correction OS to

the Yang-Mills action, thought to be ∼ α′2F 4. Varying the renormalized action with respect to the non-normalizable

data
−1,0

S , we may then obtain the VEV of this operator 〈OS〉 which is determined by the normalizable part of the
sphere deformation,

δSren = ℓim
ǫ→0

(δSreg(ǫ)− δSct(ǫ)) =

∫

dp+1x

(

−〈Tij〉
2

δ
0,0

γij − 〈OS〉
2

−1,0

δS

)

. (47)

Computing the variations explicitly, we find

〈Tij〉 =
β4V8−p

4 κ2
10

(

2(7− p)
1,0
γij − (5− p)ηmn 1,0

γmnηij

)

(48)

〈OS〉 = −β4V8−p

κ2
10

(

3(8− p)(7− p)3

(9− p)

)

2,0

S , (49)

where the stress tensor is simply the linearized version of our expression above (39).

For D2-branes there is an additional divergent contribution to the action, proportional to
−1,0

�
5
ηS log z. Obtaining the

precise coefficient for this term requires extending our recursion relations to include logarithms at the order n = 5.
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This is of course coincident with a divergence of the recursion relations (21). In order to have a finite action and one
point function a new logarithmically divergent counterterm would have to be added to the action, as for the conformal
anomaly for p = 3.

The log divergence occurs for p = 2 and depends only on the non-normalizable data
−1,0

S . Therefore a trick is to
deform p = 2 to p = 2− |δ|, |δ| << 1, where our renormalized action is now finite, as is the corresponding one-point
function for OS obtained by variation. From this we know that even for p = 2, the expression for the one point
function (49) is the correct one provided we added the appropriate log divergent counterterm to the action.
However, as we have discussed, the non-normalizable sphere deformation appears to only be treatable perturbatively

ie. the source in the dual Yang-Mills can’t be turned on. Whilst we have to consider this non-normalizable component
to use the holographic technology to compute the one-point function for OS , in practice we would be interested in
vacuum deformations that do not have the non-normalizable sphere component in, and hence we should not encounter
this log divergence when evaluating the action on-shell.

V. DISCUSSION

We have discussed the holographic renormalization for coincident Dp-branes, in part motivated by recent numerical
lattice attempts to study the strongly coupled Yang-Mills description directly. In the future one would hope that
detailed comparisons with the dual closed string theory at least in the supergravity limit could be made, using the
holographic dictionary which we are considering here. As we have seen the structure of the analysis is similar to
that of the p = 3 AdS/CFT case, the principle difference being that we have used a physical gauge derived from the
running of the dilaton which is not possible for p = 3.
In principle holographic renormalization provides a very powerful predictive tool for the dual Yang-Mills theory,

relating sources explicitly to specific vacuum expectation values. However in order to use this predictive power bulk
solutions must be found and cast in our generalized Graham-Fefferman form in order to read off these predictive
relations. The key point is that consideration of the bulk solutions requires imposing physical boundary conditions
in the IR of the geometry, as well as fixing the non-normalizable sources in the UV. For p = 0 as noted earlier a full
linear analysis has been performed [28], and this might be extended to general p and used to give predictions for the
behaviour of one-point functions using our holographic renormalization group. However a linear analysis will not allow
one to compute the response of the theory to sources, which manifestly requires non-linear interaction. Progress in
developing techniques to solve the non-linear bulk Einstein equations has developed on various fronts, in particular the
derivative expansions for hydrodynamics [64] which has recently been generalized to include non-normalizable sources
[65], and also analytic and numerical understanding of non-trivial relevant supergravity solutions [66, 67, 68, 69].
Development of the hydrodynamic derivative expansion is so far for AdS/CFT only, but it is clear that it may be
extended to the Dp-brane cases for p < 3, although being manifestly Lorentzian it is unlikely it will allow lattice tests
of the correspondence. It will be interesting in future to see if any of these techniques may applied to find non-trivial
bulk solutions, for various p, deformed by boundary sources which are of interest as probes of the correspondence that
might be tested on the lattice via the holographic renormalization group.
We have considered deformations of the (8− p)-sphere, which we believe from previous arguments made for p = 3

are dual to DBI corrections to the Yang-Mills action OS ∼ α′2F 4. It is interesting that at the non-linear level in the
supergravity these deformations decouple from the graviton/dilaton deformations and can hence be ‘turned off’. In
the context of Yang-Mills lattice simulations, DBI corrections will not be included, and hence one is unlikely to wish
to consider the non-normalizable part of this sphere deformation. One might naively conclude that the normalizable
part of the sphere deformation is also uninteresting, as without its non-normalizable source turned on it will be absent
and hence can only have a trivial one-point function for OS . Whilst it is true that without its source it is consistent
to set it to zero, this need not be the case. For example, in the Lorentzian context one might consider the evolution of
initial data in the supergravity that has a normalizable sphere deformation component. More likely to be of interest
for numerical simulations of Yang-Mills one might be interested in testing multi-point functions that involve two or
more OS operators.
Interestingly there seems to be no obstacle in applying the results obtained here to the D-instanton, p = −1, for

which the worldvolume theory is the IKKT model [70]. There are of course no worldvolume directions, and so the
only physical deformation would be that of the sphere. Due to its lack of spatial extent, the IKKT model may be
the easiest setting in which to numerically simulate a theory with string dual. Developing a better understanding of
the DBI corrections to this model, and effect on the supergravity solution of deforming non-linearly by the sphere
non-normalizable mode might be a promising direction for new tests. Numerical work has been conducted on this
model [71], although so far only employing a loop approximation.
It has been a deliberate choice in this work not to use the ‘dual frame’ discussed in [20]. In this frame, an AdS factor
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does emerge in the geometry, and in particular the boundary stress tensor can be extracted using similar methods to
the usual AdS/CFT case as was done for the specific thermal deformation (41) above in [56]. The reason we have
not used the dual frame is that whilst the calculations may appear closer to what one does in the AdS/CFT case,
they are no simpler and we feel little intuition is gained this way. The dual theory is not a conformal theory and the
running of the dilaton is an important aspect of this and allows us to employ the useful homogenous dilaton gauge.
We believe the simplest conceptual way to apply the holographic renormalization is as we have done here, simply to
consider physical deformations, identify those of divergent and finite bare action, and construct local counterterms
for the bulk regulated action to render it finite when evaluated on-shell.
There are various other interesting directions for future work. We have truncated to the supergravity deformations

which are homogeneous on the (8−p)-sphere, and also to only electric fluctuations of the (2+p)-form RR field strength.
Including non-linear deformations of the remaining form fields would be interesting. Likewise, considering the modes
of deformation that are inhomogeneous on the sphere would be interesting and could presumably be done using the
methods of ‘Kaluza-Klein’ holography discussed for AdS/CFT in [72]. In addition, a consideration of the Coulomb
branch of the Yang-Mills theory via the decoupling limit of multi-centered Dp-brane solutions and comparison to the
gauge theory would likely follow along the lines of [60] in the AdS/CFT case.
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APPENDIX A: FIELD EQUATIONS

To obtain the field equations associated with the metric ansatz (9,13) we perform a reduction of the terms in the
field equations directly. The full, unreduced field equations for our action (1) are, for the dilaton,

�Φ =

(

3− p

4

)

g
(p−3)

2
s e

3−p

2 Φ |Fp+2|2 , (A1)

and for the RR form,

∇µ

(

g
(p−3)

2
s e

3−p

2 ΦFµσ1···σp+1

)

= 0, (A2)

and the Einstein equations

Rµν − 1

2
GµνR =

1

2
∂µΦ∂νΦ− 1

4
Gµν (∂Φ)

2
+

1

2

g
(p−3)

2
s e

3−p

2 Φ

(p+ 1)!
Fµσ1···σp+1F

σ1···σp+1
ν − 1

4
Gµνg

(p−3)
2

s e
3−p

2 Φ |Fp+2|2 . (A3)

Upon inserting our metric ansatz (9,13) and using Cartan’s structural equations to obtain the curvature terms, we
obtain field equations in terms of the ‘reduced’ quantities. That is, covariance is with respect to the p+1-dimensional
brane-metric γij , and the metric functions R and S are scalar degrees of freedom. Primes indicate z derivatives,

Kij ≡ e−R

2 ∂zγij , K ≡ tr (Kij) and i, j = 0, . . . , p. R is the Ricci scalar of γij .
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Einstein- ij:

Ri
j −

1

2
δijR =

(

∇j∂
iR− δij�R

)

+ (8− p)
(

∇j∂
iS − δij�S

)

+
(

∂iR∂jR − δij (∂R)
2
)

+ (8− p)

(

∂iS∂jS − 1

2
(9− p)δij (∂S)

2

)

−(8− p)δij (∂R · ∂S) + 1

2

(

∂iφ∂jφ− 1

2
δij (∂φ)

2

)

+e−2R

(

−1

2
(8− p)(9 − p)S′2δij −

1

4
φ′2δij + (8− p)R′S′δij − (8 − p)S′′δij

)

+e−R
(

(8 − p)
(

Ki
j − δijK

)

S′ +
(

Ki
j

)′ − δijK′
)

+

(

Ki
jK − 1

2
δij
(

K2 +K · K
)

)

+
(7− p)

2
δij

(

e−2S(8− p)− (7− p)

2
e−

(3−p)
2 φ−2(8−p)S

)

. (A4)

Einstein- z, i:

∇j
(

Ki
j − δijK

)

= −(8− p)Ki
j∂

jS − e−R

(

(8− p)
(

S′∂iR− S′∂iS − ∂iS′
)

− 1

2
φ′∂iφ

)

. (A5)

Einstein- zz:

0 = −R+ 2(8− p)�S + (8− p)(9− p) (∂S)
2
+

1

2
(∂φ)

2

+e−2R

(

(7 − p)(8− p)S′2 − 1

2
φ′2

)

+ 2(8− p)e−RKS′ +K2 −K · K

−(7− p)

(

e−2S(8− p)− (7− p)

2
e−

(3−p)
2 φ−2(8−p)S

)

. (A6)

Einstein- θθ:

0 = −R
2

+�R+ (7− p)�S + (∂R)
2
+

1

2
(7− p)(8− p) (∂S)

2
+ (7− p) (∂R · ∂S)

+
1

4
(∂φ)

2
+

1

4
e−2Rφ′2 + (7− p)e−2R

(

(8− p)

2
S′2 + S′′ − S′R′

)

(A7)

+e−R (K′ + (7− p)KS′) +
1

2

(

K · K +K2
)

.

− (7− p)

2

(

e−2S(6− p) +
(7− p)

2
e−

(3−p)
2 φ−2(8−p)S

)

. (A8)

φ field equation:

0 = �φ+ ∂R · ∂φ+ (8− p)∂S · ∂φ+ e−2R (φ′′ −R′φ′ + (8− p)S′φ′)

+e−RKφ′ +
(3− p)(7− p)2

4
e−

(3−p)
2 φ−2(8−p)S . (A9)

These ‘reduced’ field equations have been verified by evaluating them explicitly in terms of general components for
our metric ansatz (13), and comparing to the unreduced equations (A1,A2,A3).
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