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Abstract

We derive the fully backreacted bulk solution dual to a boundary superfluid

with finite supercurrent density in AdS/CFT. The non-linear boundary

hydrodynamical description of this solution is shown to be governed by a

relativistic version of the Tisza-Landau two-fluid model to non-dissipative

order. As previously noted, the phase transition can be both first order

and second order, but in the strongly-backreacted regime at low charge q

we find that the transition remains second order for all allowed fractions of

superfluid density.
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1 Introduction

A holographic superfluid [1, 2] is a charged, asymptotically AdS black hole, which below

a certain temperature Tc spontaneously develops a scalar condensate. The relevant

instability of charged scalars in AdS-black-hole backgrounds was first pointed out in [3].

In many contexts one can also use such systems to explore the physics of holographic

superconductivity. In this work we focus on the superfluid aspects by deriving the

boundary superfluid hydrodynamical equations that govern them.

According to the AdS/CFT correspondence [4], asymptotically AdS black holes are

dual to thermal states of a large-N boundary conformal field theory [5]. If we re-

strict ourselves to considering low-frequency fluctuations of this field theory with large

wavelengths, we expect an effective hydrodynamic description to be valid [6]. Said

differently, the hydrodynamical description is applicable for configurations of the field

theory which are locally in thermodynamic equilibrium and which vary from local

patch to local patch such that all gradients remain small. It was shown in [7] that

such a field-theory gradient expansion can be implemented in AdS/CFT as a pertur-

bative scheme of solving Einstein’s equations in the universal subsector of gravity with

a cosmological constant. Charged branes, and thus chemical potentials for conserved

global currents in the boundary theory, were introduced by [8, 9]. The setup was sub-

sequently generalised in [10] to include effects a bulk U(1) field inducing boundary

magnetic fields.

A qualitatively rather different picture should arise for systems that allow for the

breaking of a global U(1) symmetry thus giving rise to superfluidity. The hydrodynamic

limit of such a system is given by the Tisza-Landau [11, 12] two-fluid model, which

describes the superfluid as a two-component mixture of a normal fluid with density ρn

and velocity uµ and a superfluid component with density ρs and flow velocity vµ.

In this paper we find solutions of 4d gravity1 which we argue to be dual to holographic

superfluids with finite supercurrent density and we show that their hydrodynamical

description is captured precisely by a relativistic version of the Tisza-Landau two-

fluid model. We do this by constructing asymptotically AdS solutions that break

the bulk U(1) symmetry with a charged condensate at finite chemical potential. The

use of charged AdS black holes to study field theory at finite chemical potential was

considered early on in [13], albeit in the context of global AdS. Our solutions are gauge-

1The spacetime coordinates {xM} split into {r, xµ}, where r is the holographic direction and we
refer to {xµ} as the field-theory or boundary coordinates.
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equivalent to situations where the phase of the bulk scalar, given the interpretation

of the field-theory Goldstone mode, has non-trivial dependence on the field theory

directions. To non-dissipative order in the fluid expansion this dependence is linear so

that the Goldstone mode has a constant gradient.

Some properties of holographic superfluids, both with s-wave and p-wave conden-

sates, such as its various sound modes etc., were explored in [14, 15, 16, 17, 18, 19, 20,

21]. Our treatment is complementary to theirs in two ways: Firstly we improve on the

state of the art by including the backreaction consistently, that is we solve the full set

of coupled Einstein-Maxwell-scalar equations. Secondly, our approach, akin to that of

[7] for the normal fluid case, derives the non-linear boundary fluid dynamics, including

the ‘Josephson equation’ from bulk gravity, rather than taking them as a given and

then fitting transport coefficients to the postulated model.

The paper is organised as follows. Immediately following this paragraph we give a

brief overview of the analytical results of this paper. In section 2 we review and extend

the by now well-known holographic superconductor. In section 3 we describe the gravity

setup corresponding to introducing a non-zero supercurrent on the boundary, perform

its holographic renormalisation and define the appropriate statistical grand partition

function. In this section we also derive the boundary stress tensor and U(1) current.

Section 4 contains our numerical method and results and section 5 gives a discussion

of the results and some open issues. Appendix A contains the bulk equations in their

full glory.

1.1 Summary of results

Here we summarise the findings of the rest of the paper. We emphasise that the equa-

tions of fluid dynamics, as well as the form of the constitutive relations are exact and

derived analytically. The hydrodynamical equations following from our bulk analysis

to non-dissipative order can be summarised as follows

Tµν = (ε+ P )uµuν + Pηµν + µρsvµvν

Jµ = ρnuµ + ρsvµ ,

∂µJ
µ = 0

∂µT
µν = 0 (1.1)

where the total charge density is ρ = ρn+ρs and we have set a possible external applied

field that can appear on the right-hand side of the stress-tensor conservation equation,
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to zero. The quantity uµ has the interpretation of normal fluid velocity, whereas vµ is

the superfluid component. These satisfy the constraint

uµvµ = −1 (1.2)

also known as a Josephson equation. The rest of this paper explains the bulk origin of

these equations and numerically constructs the dual solutions. We also use our non-

linear solutions to study certain physical properties, such as the order of the phase

transition, numerically.

2 Isotropic holographic superfluids

In this section we review and (slightly) extend the work of [1, 2] on the equilibrium

properties of holographic superfluids. This section also serves to introduce our notation

and conventions: rather than using standard Schwarzschild-like coordinates, we use

ingoing Eddington-Finkelstein coordinates and introduce a boost uµ along the direction

of the (flat) horizon. The class of solutions we are constructing in this section are thus

generalisations of boosted black branes allowing for a non-trivial profile of a complex

scalar field.

A simple action that is sufficiently general for our aims is given by

Sbulk =

∫ √−g
[

1

16πG

(
R +

6

`2

)
− 1

4
FMNF

MN − V (|ψ|)− |Dψ|2
]
d4x , (2.1)

supplemented by the Gibbons-Hawking-York boundary term. Here ψ is a complex

scalar with charge q under the U(1) gauge field

Dψ = dψ − iqAψ (2.2)

and the potential V (|ψ|) is chosen to consist of just a mass term

V (|ψ|) = − 2

`2
|ψ|2 , (2.3)

where ` is the AdS length. Different choices of the potential [22, 23] are possible. The

work of [16] used first-order perturbation theory to study the effects of a |ψ|4 term

on the various superfluid sound modes. Embedding in M-theory [24, 25] or string

theory [26] dictates a specific form of the scalar potential and it would be interesting

to investigate their hydrodynamics.
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As we are interested in black holes with flat horizon sections, we propose an ansatz

of the form

ds2
static = −2huµdx

µdr − r2

`2
fuµuνdx

µdxν + r2

`2
∆µνdx

µdxν

A = −φuµdxµ −
`2φh

r2f
dr

ψ = |ψ| eiqα := ξ eiqα . (2.4)

We have chosen to write everything covariantly in the boundary directions {xµ} by

introducing the boost velocity uµ which satisfies γ∞µνu
µuν = −1. The quantity γ∞µν :=

limr→∞
`2

r2
γµν is the metric on the boundary

ds2
∞ = γ∞µνdx

µdxν . (2.5)

Finally, we have the spatial projector

∆µν = γ∞µν + uµuν (2.6)

At this point this is nothing more than a boosted version (by uµ) of the holographic

superconductor solution of [2] written in Eddington-Finkelstein coordinates.

If we rescale Aµ → Aµ
q

and ψ → ψ
q
, the rescaled Maxwell-scalar sector is down by

a factor of q−2 with respect to the Einstein-Hilbert action. Taking the limit q → ∞
thus eliminates any backreaction on the metric. Gravity backreaction is physically

important not only for low charge q but also at low temperatures. In this paper we are

able to work away from the probe limit. For completeness we demonstrate that our

results do indeed go over into the various perturbative results known in the literature

in the appropriate limits.

2.1 Exact black brane solution

The normal phase of the superfluid which has vanishing order parameter on the bound-

ary is given by the standard charged RNAdS black brane

f = h2
∞ −

8πG`2ε

r3
+

4πGh2
∞`

6 ρ2

r4
,

φ = h∞

(
µ− ρ`2

r

)
, h = h∞ , ψ = 0 . (2.7)

The metric on the boundary is now

ds2
∞ = −h2

∞dv
2 + δijdx

idxj . (2.8)
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In order for A to be a well-defined one form at the horizon (r = r+), we must set

ρ =
r+µ

`2
. (2.9)

This can be seen, e.g. by going to Kruskal coordinates. In this gauge µ can be identified

as the chemical potential of the boundary theory. Also ρ is the charge density of the

system ∫
∗F = ρ vol2 (2.10)

with vol2 the divergent two-volume of the flat spatial sections of the geometry. The

Euclidean solution can be thought of as a thermodynamic ensemble at temperature

T =
r2

+

4π`2h∞

f ′(r+)

h(r+)
. (2.11)

We will soon generalise the metric ansatz, but the expression for temperature will

remain unaltered.

2.2 Holographic stress-energy and current

It is well known that the naively defined boundary stress tensor in asymptotically AdS

space needs to be renormalised by introducing suitable counterterms [27]. For our

system (2.1), the desired stress tensor and current follow from varying the action

Sren = Sbulk +
1

8πG

∫

∂Σ

√−γ
(
K +

2

`

)
d3x+

∫

∂Σ

√−γ
(

1

`
|ψ|2

)
d3x , (2.12)

where γµν is the induced metric on the boundary. In addition to the standard gravita-

tional terms there is an additional counterterm for the scalar field. This choice is valid

provided that one fixes the coefficient of the leading r−1 behaviour of ψ to zero. We

restrict to this boundary condition from now on. Alternatively, we could have fixed the

coefficient of the r−2 behaviour by adding a different counterterm for the scalar field ψ.

The mass of the field ψ places it in the range where both behaviours can be thought of

as vevs. For a more extensive discussion, involving both possible choices of boundary

conditions, see e.g. [2, 25]. In order to evaluate the stress tensor and current, we need

to determine the asymptotic expansions of the fields. The near-boundary expansion of
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the equations in appendix A yields

h = h∞

(
1− 4πG`2ξ2

1

r2
+ · · ·

)

f = h2
∞ −

8πG`2ε

r3
+ · · ·

φ = h∞

(
µ− ρ`2

r
+ · · ·

)

ξ =
ξ1

r
+
ξ2

r2
+ · · · (2.13)

Furthermore, we can set h∞ to unity by invoking a scaling symmetry and we will do

so wherever convenient. However, it is important to keep in mind where it occurs

formally when we compute boundary variations later on and variations of h∞ translate

into variations of temperature.

It now follows that the current and stress tensor

Tµν =
2√−γ

δSren

δγµν
=

1

8πG

[
Kµν −Kγµν −

2

`
γµν

]
− 1

`
|ψ|2γµν

Jµ =
1√−γ

δSren

δAµ
= nMFMµ , (2.14)

are finite in the limit r → ∞. An explicit calculation reveals that the background

solution reproduces the stress tensor and current of an ideal conformal2 relativistic

fluid, which we can see from the leading order behaviour

lim
r→∞

r

`
Tµν =

ε

2
(ηµν + 3uµuν) , lim

r→∞

r

`
Jµ = ρuµ (2.15)

We can also determine the total energy of the solution,

E =

∫
d2x

r

`
T00 = ε vol2 , (2.16)

where the total (divergent) two-volume vol2 comes from the integral over spatial direc-

tions.

2.3 Thermodynamics

Having already determined the counterterms, we can use standard Euclidean techniques

[28] to find the thermodynamics of this system. We want to calculate the Euclidean

2One can show that TrTµν ∝ ξ1ξ2, so that the fluid satisfies the tracelessness requirement of
conformal invariance if and only if either ξ1 or ξ2 is zero. In the dual field theory this corresponds
to not deforming by the relevant operator Oψ. Of course finite temperature and/or finite chemical
potential then break conformal invariance.
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action IE, which takes on the rôle of the Gibbs free energy for the holographic superfluid

in the saddle point approximation. The results in this section are standard so we will

give few details on their derivation. We take

v = −iτ , IE = −iSren . (2.17)

and use the fact that the gravitational Euclidean partition function defines a thermo-

dynamic potential via

lnZ = −βΩ . (2.18)

Following the same kind of manipulations as in [25, 24] we find that the manifestly

finite Euclidean action gives us the thermodynamic potential

IE = βΩ(µ, T ) =
vol2
T

(ε− µρ− Ts) , (2.19)

where s is entropy density (the entropy S = A
4G

is defined as usual in terms of the

horizon area). From the on-shell variation of the action we learn that the action is

stationary for fixed temperature β−1 and fixed chemical potential µ. Furthermore,

stationarity of the action requires that either ξ1 = 0 or ξ2 = 0. Thus we have the first

law

δε = Tδs+ µδρ . (2.20)

We will now generalise this system by adding an additional chemical potential, related

to the Goldstone field of the broken global U(1) of the boundary theory. This has the

physical interpretation of allowing for a finite supercurrent to flow in the broken phase.

The bulk manifestation of this is a non-zero value for the spatial components of the

vector field, best quantified by saying that the gauge invariant expression Aµ − ∂µα

develops a non-trivial value in the bulk.

3 Introducing a Supercurrent

Let nµ be a constant vector of unit magnitude, such that

γµν∞ nµuν = 0 (3.1)
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This means that in a frame where u0 = 1 ,u = 0, we can write n0 = 0 and the spatial

components are given by n, a unit two vector. We consider the bulk ansatz

ds2 = ds2
static +

r2

`2

(
2 Cu(µnν) − Bnµnν

)
dxµdxν +

2Ch
f
nµdx

µdr

A = (−φuµ + Φnµ) dxµ − φh

r2f
dr

ψ = ξ eiqα . (3.2)

The additional functions in this ansatz depend only on the radial direction. The con-

dition (3.1) can be imposed without loss of generality in the sense that any constant

space-like vector nµ defines a bulk metric that is diffeomorphically equivalent to (3.2).

So, by splitting up such a space-like vector into components parallel to uµ and compo-

nents normal to uµ we can arrange for (3.1) to hold.

For specific calculations we will always work in a gauge where the scalar ψ is real.

However, notice that such solutions are gauge-equivalent to ones where the phase α

has a boundary dependence that is linear in boundary coordinates. To see this, one

applies a gauge transformation

Aµ → Aµ + ∂µ(xνλν) , α→ α + xνλν . (3.3)

Let us define the combination

αM = AM −∇Mα . (3.4)

Then the quantity

α∞µ = lim
r→∞

(Aµ − ∂µα) (3.5)

is gauge invariant with respect to the bulk U(1) and therefore an operationally conve-

nient measure of the magnitude of the boundary Goldstone mode. We note that

α∞µ α
µ∞ = −µ2 + Φ2

∞ (3.6)

gives us a gauge-invariant definition of the boundary supercurrent density. The lat-

ter part of this paper will be concerned with numerically solving the Einstein-Scalar-
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Maxwell equations

GM
N −

3

`2
δMN =

1

2
FNPF

MP − 1

2
δMN

(
1

4
F 2 + V +

(
(∇ξ)2 + q2ξ2α2

))

+
(
q2αMαNξ

2 +∇Mξ∇Nξ
)

2ξ = q2α2ξ +
1

2
V ′

∇MF
M
N = −2q2ξ2αN

∇M

(
ξ2αM

)
= 0 (3.7)

with the above ansatz. They are given explicitly in appendix A. However, even without

numerics, we can learn a lot about the system by analysing its behaviour in an analytic

near-boundary expansion. Let us turn to this analysis now.

3.1 Asymptotic analysis

The equations allow the following asymptotic expansion (the remaining fields have the

same form as in (2.13) ):

f = h2
∞ −

8πG`2ε

r3
− 8πG`2B(3)

3r3
+ · · ·

B = B(0) +
16πG`4B(3)

3r3
+ · · ·

C = C(0) +
16πG`4C(3)

3r3
+ · · ·

Φ =

(
µs −

Js`
2

r
+ · · ·

)
. (3.8)

In order to keep the asymptotic boundary metric in Minkowski form, we demand that

the non-normalisable parts of B and C vanish. Thus we restrict attention to solutions

with

B(0) = C(0) = 0 . (3.9)

3.2 Free energy and First Law

We can now identify the relevant thermodynamic potentials and variables of the bound-

ary theory from our asymptotic bulk analysis. In order to relate the Euclidean action

to a thermodynamic partition function we first have to write the bulk part of the action
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as a total derivative. This can be done in two different ways:

S
(I)
bulk =

iβvol2
16πG

∫ ∞

r+

(
2

r

√−ggrr
)′
dr

S
(II)
bulk = iβvol2

∫ ∞

r+

[
1

16πG

r4

√−g
(
grr

g

r4

)′
+
√−ggrrFrµAµ

]′
dr . (3.10)

The first expression gets contributions only from the upper boundary of the integral,

whereas the second expression receives both horizon and boundary contributions.

Let us consider the on-shell variation of the Euclidean action. This receives no

contribution from the lower boundary of the integral. From the upper boundary we

find for variations that preserve the (conformally) Minkowski metric on the boundary:

δIbulk
E + δIcounter

E

∣∣∣
OS

= βvol2 [(ε− µρ) δh∞ − ρδµ+ Jsδµs] . (3.11)

For fixed β, we have δh∞ = − δT
h∞T

, so that the action is stationary for fixed µ, µs, T .

Putting all this together we learn that the Euclidean action defines a grand canonical

ensemble in terms of temperature T and chemical potentials µ and µs.

Using

Ibulk
E + Icounter

E = βΩ(µ, µs, T ) = βvol2 ω(µ, µs, T ) (3.12)

we find the quantum statistical relation

ω(I)(µ, µs, T ) = −ε
2
− B

(3)

2
= −P , (3.13)

where P is pressure, following from the first form of the action, and

ω(II)(µ, µs, T ) = 2P − Ts− µρ+ µsJs (3.14)

from the second form. Equating the two different expressions for the thermodynamic

free energy gives rise to a Smarr-Gibbs-Duhem relation:

3P = Ts+ µρ− µsJs . (3.15)

Using (3.14) and (3.11) we can deduce the first law in the form

δω = −
(
s+

ε− 2P

T
− µsJs

T

)
δT − ρδµ+ Jsδµs (3.16)

Note that via (3.6) and (3.8) the third term involves a variation of the norm of the

boundary Goldstone field. Using the relation ω = −P we can rewrite this in the form

δP = ŝδT + ρnδµ−
ρs
2µ
δ
(
(α∞µ )2

)
(3.17)
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where we defined the normal and superfluid density as

ρ = ρn + ρs , with ρs =
µJs
µs

(3.18)

The conjugate function of temperature,

ŝ = s+
ε− 2P − µsJs

T
, (3.19)

is the thermodynamic entropy, which gets contributions not only from the horizon

entropy, but also from the hair of the black hole. We will see in the next section that

these contributions in fact cancel each other, so that the final expression of the entropy

density is that of the black-hole horizon. Thus the pressure P (T, µ, (αµ)2) is the same

thermodynamic potential as that appearing in the context of relativistic field theory

in [29, 30]. Here we gave a derivation from bulk gravity, which via the AdS/CFT

correspondence is dual to a strongly-coupled relativistic field theory on the boundary.

We can rewrite the Smarr-Gibbs-Duhem relation as

P + ε = T ŝ+ µρn . (3.20)

It is obvious from this definition that ε is the Legendre transform of pressure with

respect to temperature and chemical potential. From (3.15) and (3.18), it is related to

the zero-zero component of the energy-momentum tensor via

ε = ε− µρs . (3.21)

3.3 The energy momentum tensor and current

Using the renormalised expressions (2.14) we can deduce the form of the boundary

stress tensor and current following from the bulk ansatz (3.2). We find

Tµν = (ε+ P )uµuν + Pηµν − B(3)nµnν + 2C(3)u(µnν)

Jµ = ρuµ − Jsnµ . (3.22)

Notice that the stress tensor is traceless on account of the orthogonality relation be-

tween nµ and uµ and the definition of pressure in terms of ε and B(3). One might be

a little surprised by the occurrence of a cross term between uµ and nµ. To elucidate

this point, let us compare our form of the constitutive relations with those of [16, 29].

These in turn were shown to be equivalent to the original formulation of Israel, Carter,

Khalatnikov, and Lebedev (see references in [16, 29]).
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Let us define a new superfluid velocity vµ via

nµ =
C(3)

B(3)
(uµ − vµ) with uµvµ = −1 (3.23)

In the new frame we get a stress tensor and current

Tµν =

(
ε+

[C(3)]2

B(3)
+ P

)
uµuν + Pηµν −

[C(3)]2

B(3)
vµvν

Jµ =

(
ρ− Js

C(3)

B(3)

)
uµ + Js

C(3)

B(3)
vµ (3.24)

The coefficient of vµ is the superfluid density ρs. From section 3.2 the entropy density

in the fluid rest frame is ŝ. To get to the arbitrary reference frame of (3.24) we must

apply the boost uµ. From this, it follows that the current ŝuµ describes the flow of

entropy. As in [11], one can constrain the form of the constitutive relations by requiring

a vanishing divergence of the entropy current

ŝµ = ŝuµ (3.25)

This requires that

µJs = −C(3) with ρs = Js
C(3)

B(3)
(3.26)

Finally, we should compare this expression for the superfluid density to that in Eq.

(3.18). Evidently we must have
µ

µs
=
C(3)

B(3)
. (3.27)

Interestingly, using (3.27) and (3.26) in (3.19) we see that the additional contribu-

tions to the entropy cancel against each other, so that ŝ = s. We just derived these

constraints among the boundary data from a careful analysis of the thermodynamics

following from a semiclassical treatment of the bulk quantum partition function. The

conditions (3.26) and (3.27) have to be satisfied if the boundary is to have a sensi-

ble thermodynamic description and indeed they imply that the entropy ŝ is in fact

the thermodynamic entropy s of the black hole. However, we cannot simply impose

these constraints on the asymptotic data of any generic solution. There is not enough

freedom in the equations to do this. We therefore need to check that the full bulk so-

lutions, once appropriate regularity conditions have been given at the horizon, satisfy

these constraints automatically. We will see below that both relations between asymp-

totic data coefficients are satisfied by our numerical solutions to very high accuracy

(see figure 4). We should see this result as a non-trivial consequence of the interplay
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between horizon regularity and boundary fluid dynamics that can only be seen at the

full non-linear level.

The description of superfluids we have derived in the preceding sections is identical

to that proposed by Landau [11], and later generalised to the relativistic domain by

Khalatnikov et al., [31].

Note that when going on to include dissipative terms, i.e. terms of higher order in the

derivative expansion, the conservation of the entropy current should be replaced by the

requirement that its divergence be non-negative. A positive entropy current has been

constructed for general fluid-dynamical solutions without bulk symmetry breaking in

[32] and it would be interesting to see if such a construction could also be carried out

in our case. The analysis in this paper establishes semi-analytically - in the sense that

the horizon-to-boundary map had to be constructed numerically - that such a current

exists at non-dissipative order.

Finally note that in terms of vµ, the gauge invariant quantity evaluates to

α∞µ = −µvµ . (3.28)

By choosing a different gauge in the bulk, we can make direct contact with the standard

treatment, given for example in [29]. Thus, if we take ∂µα = µvµ, the Josephson

condition becomes

µ+ uµ∂µα = 0 , (3.29)

where now µ is the chemical potential appearing in [29]. Note that we had to use

the constraints (3.26) and (3.27), which we have confirmed numerically, in order to

connect the quantities nµ and consequently vµ to the superfluid velocity. Analytically

these relations follow from requiring a positive semi-definite divergence of the entropy

current. However this property of the divergence should follow from the second law

of black-hole thermodynamics and establishing this law in the present context would

constitute an analytical proof of the identifications of (3.26) and (3.27).

3.4 Local bulk symmetries → Boundary hydrodynamics

One use for the solutions we have constructed is as a homogeneous starting point

for a hydrodynamic gradient expansion of the form pioneered in [7]. Although many

interesting physical properties have been obtained in (ordinary) perturbative studies

[14, 15, 16], these perturbative solutions do not serve as a good starting point for a

gradient expansion and we comment on this further in the discussion section. We hope
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to return to the dissipative order of the gradient expansion in the future. However,

even without explicitly carrying out the higher orders of this expansion, we can already

deduce the hydrodynamic relations these will satisfy from general symmetry principles.

Among the Einstein equations there are constraint equations, which are first order

in radial derivatives, and dynamical equations, which are of second order. In the

context of a gradient expansion of the universal gravity subsector of AdS/CFT it

was shown in [7] that these constraint equations at order n imply that the boundary

stress tensor and U(1) current satisfy the equations of fluid dynamics up to order n−
1. However, these equations in fact follow from elementary symmetry considerations.

Namely, boundary current conservation follows from the U(1) gauge symmetry in the

bulk, and the remaining equations, involving the stress-energy tensor, can be derived

by considering an infinitesimal diffeomorphism generated by a vector field lying parallel

to the boundary directions.

The resulting equations take the form of a conservation equation for the current and

an equation of continuity for the stress-energy tensor:

∂µJ
µ = 0 , ∂µT

µν = FνλJλ (3.30)

where F is the applied boundary field strength tensor (to be distinguished from the

bulk field strength F ). The bulk gradient expansion then serves to derive the form

of the conserved stress and current order by order. In this work we have determined

all non-dissipative contributions. It is a straightforward extension to go on to include

dissipative terms.

From the bulk analysis we have also learned that

vµuµ = −1 , (3.31)

which gives us the ‘Josephson equation’ governing the dynamics of the Goldstone mode.

From a field-theory perspective it has been elaborated upon in [29]. Together with

the constitutive relations (3.22), the equations (3.30) and (3.31) form the full set of

equations of conformal relativistic superfluid hydrodynamics. This is as far as the

analytical results can take us. We will now turn to the numerical part of this paper.

4 Numerical Results

We wish to solve the differential equations of appendix A subject to the following two

requirements
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FIG. 1: (colour online) The condensate �Oψ� as a function of reduced temperature. For larger values of the

charge q the condensate becomes multi-valued beyond a critical fraction of superfluid ζc indicating that the

phase transition is now first order. The normalisation of the condensate is chosen for ease of comparison

with the probe calculations of [14].

incorporated in the asymptotic boundary expansion, the first requirement fixes the near-horizon

expansion to take the form

f(r) = f+(r − r+) + · · ·
h(r) = h+ + · · ·
B(r) = B+ + · · ·
C(r) = C+(r − r+) + · · ·
φ(r) = φ+(r − r+)

Φ(r) = Φ+ + · · ·
ξ(r) = ξ+ + · · ·

with

f+ = h2
+

�
3 + 16πGξ2

+

�
− 4πG�2φ+ , (IV.1)

Figure 1: (colour online) The condensate 〈Oψ〉 as a function of reduced tem-
perature. For larger values of the charge q the condensate becomes multi-valued
beyond a critical fraction of superfluid ζc indicating that the phase transition
is now first order. The normalisation of the condensate is chosen for ease of
comparison with the probe calculations of [14].

1. There is a regular horizon in the bulk at r = r+.

2. The asymptotic boundary metric remains conformally flat.

This is the minimal set of physical requirements that ensures that the boundary theory

is dual to a locally equilibrated fluid living on Minkowski space. From the second

requirement we already deduced the condition (3.9) on the asymptotic expansion (3.8).

It is convenient to choose units (that is using a scaling symmetry) to fix r+ = 1.

While the second condition has already been incorporated in the asymptotic boundary
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expansion, the first requirement fixes the near-horizon expansion to take the form

f(r) = f+(r − r+) + · · ·
h(r) = h+ + · · ·
B(r) = B+ + · · ·
C(r) = C+(r − r+) + · · ·
φ(r) = φ+(r − r+)

Φ(r) = Φ+ + · · ·
ξ(r) = ξ+ + · · ·

with

f+ = h2
+

(
3 + 16πGξ2

+

)
− 4πG`2φ+ , (4.1)

where {h+,B+, C+, φ+,Φ+, ξ+} are the independent horizon data and f+ and all higher-

order coefficients are uniquely determined by them. Regularity demands that C van-

ishes at the horizon in such a way that C
f

remains finite, as can be seen for instance by

inspecting the nµdx
µdr term of the metric in (3.2). Similarly φ(r+) = 0 for regularity.

In practise we determine the expansion to a high order and use it to set boundary

conditions near the horizon.

The total differential order of the system of ODEs we are solving is twelve. After

taking account of all scaling symmetries we are left with eight more data at infinity,

{B(3), C(3), µ, ρ, µs, Js, h∞, ε}, giving a total of 14 independent pieces of data. We will

thus get a two-parameter family of solutions. Of course we are free to choose any two

non-conflicting parameters, but a natural and convenient choice is the temperature T

and the superfluid chemical potential µs. Because of the underlying conformal symme-

try, all physical quantities will depend on the dimensionless ratios T
µ

and ζ = µs
µ

. We

will refer to t = T

qµ
√

1−ζ2
as the reduced temperature and ζ as the superfluid fraction.

4.1 The condensate

The r−2 asymptotic behaviour of the field ψ sets the expectation value of the symmetry-

breaking dimension-two operator Oψ in the boundary theory.

〈Oψ〉 =
√

2 ξ2 (4.2)

This operator tends to condense at low temperatures. By numerically constructing ξ2

we determined the graphs shown in figure 1 illustrating the dependence of the con-

densate on reduced temperature and superfluid fraction. There is always a critical
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FIG. 2: (colour online) The quantity ρs/ρ as a function of reduced temperature. This fraction approaches

unity for q > 1, but for q = 1 there always remains a normal component, even at very low temperatures.

Some of the curves are multi-valued as a consequence of the first-order phase transition. In those cases only

the upper branch below the critical temperature tc(ζ) is physical.

smooth and the transition second order up until the critical value ζc above which no superfluid phase

exists. The free energy higher values of q looks very similar to the q = 2 case and we do not show

the corresponding plots here. The bulk charge q appears in the boundary theory as a normalisation

factor of a ratio of three-point and two-point functions [3], so from this perspective there appears

to be no need to restrict its value to be above a certain treshold or indeed to be integer valued.

We use integer values in our numerics only for convenience, as is the case in most of the pertinent

literature. Figure 2 presents plots of the behaviour of ρn and ρs as a function of temperature.

The double-valued nature of the graphs is a consequence of the first-order phase transition. At

Tc the system spontaneously develops a finite value of the condensate and immediately jumps to

the thermodynamically preferred branch. Again we emphasise that the low-temperature behaviour

involves strong backreaction and can therefore not be determined in the probe limit.

Figure 4 demonstrates the validity, to numerical accuracy, of the relations between the two

expressions for the superfluid density, Eqs. (III.26) and (III.27), that we derived in section III C

Figure 2: (colour online) The quantity ρs/ρ as a function of reduced tem-
perature. This fraction approaches unity for q > 1, but for q = 1 there always
remains a normal component, even at very low temperatures. Some of the curves
are multi-valued as a consequence of the first-order phase transition. In those
cases only the upper branch below the critical temperature tc(ζ) is physical.

superfluid fraction above which the system is forced into its normal state. The same

behaviour was found in probe-limit calculations [14, 15], as well as for rotating su-

perfluids in [33]. Furthermore, for sufficiently high charge q of the field dual to the

condensing operator there is also a special point on the phase diagram below which the

superfluid transition is first order and above which it is second order. This behaviour

was already found in the probe limit calculations. However, we find that for lower

values of q the transition never becomes first order. This is clearly a result of strong

gravitational backreaction. In order to conclusively show that the transition is first

order or second order we also computed the free energy as a function of temperature
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for fixed ζ.

4.2 Free energy and superfluid density

Figure 3 show numerical graphs of the thermodynamic free energy

Ω (T, ζ0)

µ3vol2
with S = −∂Ω (T, ζ0)

∂T

∣∣∣∣∣
µ,µs

(4.3)

at fixed superfluid fraction. We show curves for q = 1, 2. For sufficiently high q and

larger fractions ζ, we clearly see that the smooth second-order behaviour goes over into

the swallow-tail cusp behaviour characteristic of first-order phase transitions, but for

q = 1 the free energy remains smooth and the transition second order up until the

critical value ζc above which no superfluid phase exists. The free energy higher values

of q looks very similar to the q = 2 case and we do not show the corresponding plots

here. The bulk charge q appears in the boundary theory as a normalisation factor of a

ratio of three-point and two-point functions [3], so from this perspective there appears

to be no need to restrict its value to be above a certain treshold or indeed to be integer

valued. We use integer values in our numerics only for convenience, as is the case in

most of the pertinent literature. Figure 2 presents plots of the behaviour of ρn and ρs as

16

from basic thermodynamic considerations.

Finally, in figure 5 we show that the critical temperatures of [14] are recovered for large q for

appropriately rescaled quantities. Note that even though q = 1, 2 are far from the probe limit,

q = 8 already gives a close approximation to the critical temperature in the probe limit.

We shall conclude with a brief discussion of the relevance of our approach to determining

higher-order transport properties of strongly coupled relativistic superfluids and mention some

open questions.

V. DISCUSSION

If one attempts to formulate a gradient expansion of a hydrodynamical system all transport

coefficients at non-zero derivative order are subject to an ambiguity stemming from the freedom to

shift zeroth-order quantities by gradients. In the gravity setup these shifts manifest themselves as

homogeneous modes of the bulk equations. One can resolve this ambiguity by fixing appropriate

frames, a popular choice being the Landau frame. Alternatively one can concentrate on a set of

scheme-independent quantities. However, both approaches show that the set of scheme-independent

quantities (transport coefficients) at first order, and therefore in turn all higher orders, depends on

the number of independent thermodynamic quantities present already at zeroth order. This means

that, for a well-defined gradient expansion that includes non-trivial transport coefficients associ-

ated to the superfluid component, we must incorporate the superfluid velocity in the homogeneous

zeroth-order solution. We have constructed such a supercurrent solution in this paper. Incorpo-

rating the supercurrent only perturbatively at zeroth order [16] means that the hydrodynamical

expansion must be a double expansion, both in slow gradients and small superfluid density. This
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unbroken branch is shown as a dashed line. For the lowest q the broken branch joins the unbroken branch

smoothly for all allowed values of ζ. For q = 2, we see the swallow-tail behaviour characteristic of first-order

transitions for fractions above a critical value ζc. The behaviour for q > 2 is very similar and we do not

reproduce these plots here.
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Figure 3: (colour online) The free energy at fixed ζ as a function of reduced
temperature for q = 1, 2. The unbroken branch is shown as a dashed line. For
the lowest q the broken branch joins the unbroken branch smoothly for all allowed
values of ζ. For q = 2, we see the swallow-tail behaviour characteristic of first-
order transitions for fractions above a critical value ζc. The behaviour for q > 2
is very similar and we do not reproduce these plots here.
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indicate fractions of the condensate of ζ = 1/4, 1/3, 2/5, 1/2 and the horizontal dashed lines are visual aids

in order to identify the critical temperatures for the q = 100 curve.
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expansion must be a double expansion, both in slow gradients and small superfluid density. This

is appropriate for determining physical quantities, such as various sound speeds away from low

temperature or large condensates [17, 18], but we would expect the method to break down at some

point, when the superfluid component strongly backreacts on the metric. It is thus an interesting

project to determine systematically, using our techniques, the new transport coefficients associated

with the superfluid component to first and perhaps second order.

This work assumes that classical (super) gravity is a good approximation to the underlying string

theory. This is true so long as the geometric curvature scales are small and thus the dual gauge

theory is strongly coupled. Figure 6 demonstrates that the assumption that curvatures remain

Figure 4: (colour online) Figure demonstrating to numerical accuracy (in this
case the numerical error is of the order of 10−4) the constraints among asymp-
totic data following from horizon regularity. Both constraints are illustrated based
on the data points we used to generate the plots at q = 8 and ζ = 2

5 .

a function of temperature. The double-valued nature of the graphs is a consequence of

the first-order phase transition. At Tc the system spontaneously develops a finite value

of the condensate and immediately jumps to the thermodynamically preferred branch.

Again we emphasise that the low-temperature behaviour involves strong backreaction

and can therefore not be determined in the probe limit.

Figure 4 demonstrates the validity, to numerical accuracy, of the relations between

the two expressions for the superfluid density, Eqs. (3.26) and (3.27), that we derived

in section 3.3 from basic thermodynamic considerations.

Finally, in figure 5 we show that the critical temperatures of [14] are recovered for

large q for appropriately rescaled quantities. Note that even though q = 1, 2 are far from

the probe limit, q = 8 already gives a close approximation to the critical temperature

in the probe limit.

We shall conclude with a brief discussion of the relevance of our approach to de-

termining higher-order transport properties of strongly coupled relativistic superfluids

and mention some open questions.

5 Discussion

If one attempts to formulate a gradient expansion of a hydrodynamical system all

transport coefficients at non-zero derivative order are subject to an ambiguity stem-

ming from the freedom to shift zeroth-order quantities by gradients. In the gravity

setup these shifts manifest themselves as homogeneous modes of the bulk equations.
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point, when the superfluid component strongly backreacts on the metric. It is thus an interesting

project to determine systematically, using our techniques, the new transport coefficients associated

with the superfluid component to first and perhaps second order.

This work assumes that classical (super) gravity is a good approximation to the underlying string

theory. This is true so long as the geometric curvature scales are small and thus the dual gauge

theory is strongly coupled. Figure 6 demonstrates that the assumption that curvatures remain

Figure 5: (colour online) Temperature, at which the marginal mode occurs as a
function of superfluid fraction ζ. The curves for ascending q = 1, 2, 8, 16, 32, 100
are shown from bottom to top. The vertical dashed lines indicate fractions of the
condensate of ζ = 1/4, 1/3, 2/5, 1/2 and the horizontal dashed lines are visual
aids in order to identify the critical temperatures for the q = 100 curve.

One can resolve this ambiguity by fixing appropriate frames, a popular choice being

the Landau frame. Alternatively one can concentrate on a set of scheme-independent

quantities. However, both approaches show that the set of scheme-independent quan-

tities (transport coefficients) at first order, and therefore in turn all higher orders,

depends on the number of independent thermodynamic quantities present already at

zeroth order. This means that, for a well-defined gradient expansion that includes

non-trivial transport coefficients associated to the superfluid component, we must in-

corporate the superfluid velocity in the homogeneous zeroth-order solution. We have

constructed such a supercurrent solution in this paper. Incorporating the supercurrent

only perturbatively at zeroth order [16] means that the hydrodynamical expansion

must be a double expansion, both in slow gradients and small superfluid density. This

is appropriate for determining physical quantities, such as various sound speeds away

from low temperature or large condensates [17, 18], but we would expect the method

to break down at some point, when the superfluid component strongly backreacts on

the metric. It is thus an interesting project to determine systematically, using our

techniques, the new transport coefficients associated with the superfluid component to

first and perhaps second order.

This work assumes that classical (super) gravity is a good approximation to the
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RMNPQRMNPQ, whose normalisation N is chosen so that Kr = N at tc(ζ = 0). Both quantities diverge

at very low temperatures, indicating that the supergravity approximation breaks down.

small is not valid at low temperatures close to the horizon for q = 1, 2 (again, the qualitative

behaviour for q > 2 is similar to q = 2 and thus not shown). This was demonstrated previously

for zero superfluid fraction in [24, 25, 34]. It was also shown that adding higher-order terms to the

scalar potential, as dictated by M-theory, can cure this problem. We expect the same to be the

case here.

Furthermore we demonstrated that the holographic superfluid admits an entropy current, as-

sociated with its normal component, with positive definite divergence. Fundamentally, in the

AdS/CFT setup, this of course follows from the second law of black hole thermodynamics and thus

there should be a general proof to all orders in the gradient expansion. Such an an entropy current

was developed in full generality for the gravity subsector in [32] and it would be interesting to see if

a similar analysis can be made for our solutions. We have reason to be optimistic about this, since

the entropy of the field theory at zeroth order is simply given by the classical entropy associated

with the black-hole horizon.

Finally, the analysis of this paper focuses on bulk solutions of 4d gravity, corresponding to

thin films of superfluids. It would be interesting to repeat the numerical analysis in one higher

dimension corresponding to relativistic 3 + 1 dimensional superfluids which are also relevant for

certain parts of the QCD phase diagram3. Many of our analytical results are valid in any dimension

and the remaining ones can be straightforwardly extended.

Acknowledgements

It is a pleasure to thank Evgeny Buchbinder, Jerome Gauntlett, Chris Herzog, James Lucietti,

Andy O’Bannon, Toby Wiseman and Dam Son for useful discussions and correspondence. We

would also like to thank Amos Yarom for correspondence concerning the vanishing of the additional

3 Subject to the usual caveats of applying AdS/CFT techniques to QCD.
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at very low temperatures, indicating that the supergravity approximation breaks
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underlying string theory. This is true so long as the geometric curvature scales are

small and thus the dual gauge theory is strongly coupled. Figure 6 demonstrates that

the assumption that curvatures remain small is not valid at low temperatures close to

the horizon for q = 1, 2 (again, the qualitative behaviour for q > 2 is similar to q = 2

and thus not shown). This was demonstrated previously for zero superfluid fraction in

[24, 25, 34]. It was also shown that adding higher-order terms to the scalar potential,

as dictated by M-theory, can cure this problem. We expect the same to be the case

here.

Furthermore we demonstrated that the holographic superfluid admits an entropy

current, associated with its normal component, with positive definite divergence. Fun-

damentally, in the AdS/CFT setup, this of course follows from the second law of black

hole thermodynamics and thus there should be a general proof to all orders in the gra-

dient expansion. Such an an entropy current was developed in full generality for the

gravity subsector in [32] and it would be interesting to see if a similar analysis can be

made for our solutions. We have reason to be optimistic about this, since the entropy

of the field theory at zeroth order is simply given by the classical entropy associated

with the black-hole horizon.

Finally, the analysis of this paper focuses on bulk solutions of 4d gravity, corre-

sponding to thin films of superfluids. It would be interesting to repeat the numerical

analysis in one higher dimension corresponding to relativistic 3 + 1 dimensional su-
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perfluids which are also relevant for certain parts of the QCD phase diagram3. Many

of our analytical results are valid in any dimension and the remaining ones can be

straightforwardly extended.
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A The bulk equations

Here we reproduce the bulk equations governing the holographic superfluid. The equa-

tions for f(r) and h(r) are first-order ODEs, the rest are second order.

f equation:

−r5f (rB′ + 4B − 4) f ′ =

4r5f2B′ + 4r4h2ξ2
(
−Bf + C2 + f

)
− 12r4

(
f − h2

) (
−Bf + C2 + f

)

+2r6fξ′2
(
−Bf + C2 + f

)
+ r4(B − 1)fφ′2 − 2q2r2(B − 1)h2ξ2φ2

+r6(−f)C′2 − 8r5CfC′ − 2r4Cfφ′Φ′

+4q2r2Ch2ξ2φΦ− 2q2r2fh2ξ2Φ2 + r4f2Φ′2

(A.1)

3Subject to the usual caveats of applying AdS/CFT techniques to QCD.

22



h equation:

4r3f2 (rB′ + 4B − 4)
(
−Bf + C2 + f

)
h′ =

C′
(
4r4Cf2hB′ + 16r3Cfh

(
−Bf + C2 + f

))

+4r3fhB′
(
f − 3h2

) (
−Bf + C2 + f

)

+ξ2
(
−4r3fh3B′

(
−Bf + C2 + f

)
− 8r2C2h3

(
−Bf + C2 + f

))

+φ′Φ′ (2r3Cf2hB′ + 4r2C3f(r)h
)

+φ′2
(
r3(−(B − 1))f2hB′ − 2r2(B − 1)C2fh

)

+Φ′2 (−r3f3hB′ − 2r2C2f2h
)
− 2r4f3hB′2

+2r4fhC′2
(
C2 − 2(B − 1)f

)
− 8q2C(r)h3ξ2φΦ

(
C2 − 2(B − 1)f

)

−4q2(B − 1)h3ξ2φ2
(
2(B − 1)f − C2

)
+ 4q2fh3ξ2Φ2

(
C2 − 2(B − 1)f

)

−4r4fhξ′2
(
−3(B − 1)C2f + 2(B − 1)2f2 + C4

)

+24r2C(r)2h
(
f − h2

) (
−Bf + C2 + f

)

(A.2)

B equation:

4r8f
(
−Bf + C2 + f

)
B′′ =

8r8CfB′C′ − 4r7h2ξ2B′
(
−Bf + C2 + f

)

−4r7B′
(
f + 3h2

) (
−Bf + C2 + f

)
+ 2r7CfB′φ′Φ′

+Φ′2 (4r6f
(
−Bf + C2 + f

)
− r7f2B′

)
− 4r8f2B′2

−r7(B − 1)fB′φ′2 − 4r8(B − 1)fC′2
+8q2r4h2ξ(r)2Φ2

(
−Bf + C2 + f

)

(A.3)

ξ equation:

4r4f
(
−Bf + C2 + f

)
ξ′′ =

−4r3h2ξ2ξ′
(
−Bf + C2 + f

)
− 4r3

(
f + 3h2

)
ξ′
(
−Bf + C2 + f

)

−8r2h2ξ
(
−Bf + C2 + f

)
+ r3(−(B − 1))f(r)ξ′φ′2 + 4q2(B − 1)h2ξφ2

+2r3Cfξ′φ′Φ′ − 8q2Ch2ξφΦ + 4q2fh2ξΦ2 − r3f2ξ′Φ′2

(A.4)

Φ equation:

4r2f
(
−Bf + C2 + f

)
Φ′′ =

B′
(
4r2Cfφ′ − 4r2f2Φ′)+ C′

(
4r2CfΦ′ − 4r2(B − 1)fφ′

)

+8q2h2ξ2Φ
(
−Bf + C2 + f

)
− 4rh2ξ2Φ′ (−Bf + C2 + f

)

+Φ′ (4r
(
f − 3h2

) (
−Bf + C2 + f

)
− r(B − 1)fφ′2

)
+ 2rCfφ′Φ′2

−rf2Φ′3

(A.5)
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C equation:

4r4f (rB′ + 4B − 4)
(
−Bf + C2 + f

)
C′′ =

ξ2φΦ
(
− 8q2rh2B′

(
(B − 1)f + C2

)
+ 16q2r(B − 1)Ch2C′

+32q2(B − 1)h2
(
−Bf + C2 + f

) )

+ξ2Φ2
(
8q2rCfh2B′ − 8q2r(B − 1)fh2C′

)

+ξ2
(
− 4r4h2B′C′

(
−Bf + C2 + f

)
− 16r3Ch2B′

(
−Bf + C2 + f

) )

+C′
(

4r4B′
(
(B − 1)f

(
f + 3h2

)
+ C2

(
7f − 3h2

))

−4r5f2B′2 − 64r3(B − 1)f
(
−Bf + C2 + f

) )

+ξ′2
(
8r5(B − 1)fC′

(
−Bf + C2 + f

)
− 8r5CfB′

(
−Bf + C2 + f

))

+C′2
(
8r5CfB′ − 16r4(B − 1)Cf

)

+φ′2
(
r4(−(B − 1))fB′C′ − 4r3(B − 1)CfB′

)

+Φ′2 (r4
(
−f2

)
B′C′ − 4r3Cf2B′

)

+φ′Φ′
(

2r4CfB′C′ + 4r3fB′
(
−Bf + 3C2 + f

)

+16r2(B − 1)f
(
−Bf + C2 + f

) )

+ξ2φ2
(
8q2r(B − 1)Ch2B′ − 8q2r(B − 1)2h2C′

)

+48r3CB′ (f − h2
) (
−Bf + C2 + f

)
− 16r4Cf2B′2 − 4r5(B − 1)fC′3

(A.6)

φ equation:

4r3f (rB′ + 4B − 4)
(
−Bf + C2 + f

)
φ′′ =

C′
(
B′
(
4r4Cfφ′ − 4r4f2Φ′)− 16r3(B − 1)Cfφ′

+16r3fΦ′ (−Bf + 2C2 + f
) )

+φ
(
ξ2
(
8q2r2h2B′

(
−Bf + C2 + f

)
+ 32q2r(B − 1)h2

(
−Bf + C2 + f

))

+ξ2Φ
(
16q2(B − 1)Ch2φ′ − 16q2C2h2Φ′) )

+B′
(

4r3φ′
(
3(B − 1)f

(
f + h2

)
+ C2

(
f − 3h2

))

+r3(−(B − 1))fφ′3 + Φ′ (2r3Cfφ′2 − 16r3Cf2
)
− r3f2φ′Φ′2

)

+ξ2
(
−4r3h2B′φ′

(
−Bf + C2 + f

)
− 16r2Ch2Φ′ (−Bf + C2 + f

))

+C′2
(
4r4CfΦ′ − 4r4(B − 1)fφ′

)

+ξ2Φ2
(
8q2Cfh2Φ′ − 8q2(B − 1)fh2φ′

)

+Φ′ (48r2C
(
f − h2

) (
−Bf + C2 + f

)
− 4r2(B − 1)Cfφ′2

)

+ξ′2
(
−8r4(B − 1)fφ′

(
(B − 1)f − C2

)
− 8r4CfΦ′ (−Bf + C2 + f

))

−32r2(B − 1)fφ′
(
−Bf + C2 + f

)

+ξ2φ2
(
8q2(B − 1)Ch2Φ′ − 8q2(B − 1)2h2φ′

)
+ 8r2C2fφ′Φ′2

−4r2Cf2Φ′3

(A.7)
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